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Abstract. One can perform equational reasoning about computational
effects with a purely functional programming language thanks to mon-
ads. Even though equational reasoning for effectful programs is desirable,
it is not yet mainstream. This is partly because it is difficult to maintain
pencil-and-paper proofs of large examples. We propose a formalization of
a hierarchy of effects using monads in the Coq proof assistant that makes
equational reasoning practical. Our main idea is to formalize the hierar-
chy of effects and algebraic laws like it is done when formalizing hierarchy
of traditional algebras. We can then take advantage of the sophisticated
rewriting capabilities of Coq to achieve concise proofs of programs. We
also show how to ensure the consistency of our hierarchy by providing
rigorous models. We explain the various techniques we use to formal-
ize a rich hierarchy of effects (with nondeterminism, state, probability,
and more), to mechanize numerous examples from the literature, and we
furthermore discuss extensions and new applications.

1 Introduction

Our goal is to provide a framework to produce formal proofs of semantical cor-
rectness for programs with effects. To formalize effects, we use monads. The
notion of monad is one of the category-theoretic frameworks that are used to
formalize effects in programming languages and reason about them. It is not
the only available option for this purpose (for example, algebraic effects pro-
vide an alternative [36, § 5]), but monads comparatively have a longer history in
proving themselves useful for the study of semantics [28] as well as for actual pro-
gramming languages like Haskell as a construct to represent effects [40]. Though
there exist a few formalizations of monads in proof assistants, they do not sup-
port well our interest in proving programs. Existing formalizations often focus
on category theory [17,39] or on meta-theory of programming languages [9]. In
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contrast, proving programs raises specific practical challenges, among which the
generic problem of combining monads is a central issue.

In the practical use-cases of monads in programming, a programmer often has
to combine two or more monads in order to deal with several effects in the same
context. The combination of monads can be carried out in an ad-hoc way [22].
There exist more generic ways to combine monads under specific conditions [21]
including the distributive law between monads, which are unfortunately not
always satisfied [38] and therefore do not provide a practical solution.

In this paper, we propose a formalization of monads in the Coq proof assis-
tant that addresses monad combination in a practical way. The main idea is to
favor a good representation of the hierarchy of effects and their equational theory
in terms of interfaces. In other words, monads are composed as in Haskell. We
insist on interfaces but this does not preclude the formal construction of models:
they just come afterwards. It happens that this corresponds to the presenta-
tion of monads as used in monadic equational reasoning [13], so that a direct
consequence of our approach is that we can reproduce formally and faithfully
pencil-and-paper proofs from the literature.

When it comes to proving properties of effectful programs, there is more
than the hierarchy of effects: one also needs to provide practical tools to per-
form equational reasoning. With this respect, the second aspect of our approach
is to leverage the rewriting capabilities of Coq by favoring a shallow embed-
ding. Shallow embedding is a well-known encoding technique through which one
can reuse the native language of the proof assistant at hand. This bears the
promise of a reduced formalization effort and it indeed experimentally met some
success [16,20] (formal verification using a shallow embedding often relies on a
combination of monads and Hoare logic, e.g., [19]). However, most formal verifi-
cation frameworks proceeds via a deep embedding of the target language, which
requires substantial instrumentations of syntax and semantics, resulting in tech-
nical lemmas that are difficult to use, which in turn call for meta-programming.
Though this paper favors shallow embedding, it does not prevent syntactical
reasoning, as we will demonstrate.

Our main contribution in this paper is to demonstrate a combination of
formalization techniques that make formal reasoning about effectful programs
in Coq practical:

– We formalize a rich hierarchy of effects (failure, exception, nondeterminism,
state, probability, and more) whose heart is the theory by Gibbons and
Hinze [13] that we extend with more monads and formal models. The key
technique is packed classes [11], a methodology used in the MathComp
library [26] to formalize the hierarchy of mathematical structures. We do
not know of another mechanization with that many monads.

– We provide many definitions and lemmas that allow for the mechanization of
several examples. Because we use a shallow embedding, we can leverage Coq
native rewriting capabilities, in particular SSReflect’s rewrite tactic [15].

– The proof scripts we obtain are faithful to the original proofs. We bench-
mark our library against numerous examples of the literature (most examples



from [12,13,30,31]) and observe that formal proofs closely match their pencil-
and-paper counterparts and that they can actually be shorter thanks to the
terseness of SSReflect’s tactic language. We also apply our framework to
new examples such as the formalization of the semantics of an imperative
language.

Outline. In Sections 2 and 3, we show how we build a hierarchy of algebraic
laws on top of the theory of monads. In Sect. 4, we illustrate its usability for
mechanizing pencil-and-paper proofs. We then deal with syntactic properties in
Sect. 5. In Sect. 6, we show how we can give models to our algebraic laws, thus
ensuring their consistency. In Sect. 7, we discuss some technical aspects of our
formalization of monads that are specific to Coq. We finally discuss related work
in Sect. 8 before concluding in Sect. 9.

2 Build a Hierarchy of Algebraic Laws on Top of the
Theory of Monads

The heart of our formalization is a hierarchy of effects. Each effect is represented
by a monad with some additional algebraic structure that defines the effect,
providing effect operators and equations that capture the properties of operators.
These effects form a hierarchy in the sense that each effect is the result of a series
of extensions starting from the theory of functors, each step extending an existing
one in such a way that it shares operators and properties with its parents. We
use the methodology of packed classes, which was originally used to formalize
mathematical structures [11]. We explain how we use packed classes to formalize
monads in Sect. 2.1 and to combine monads in Sect. 2.2. The next section makes
a thorough presentation of the complete hierarchy (depicted in Fig. 1).

2.1 Basic Layers: Theories of Functors and Monads

Our formalization of monads starts with a formal definition of functors. This is
in contrast to the hierarchy from Gibbons and Hinze [13], where the monad’s
functor action on morphisms (fmap) is defined using bind (hereafter, we use the
infix notation �= for bind); starting with functors simplifies the organization
of lemmas used in monadic equational reasoning and results in a more robust
hierarchy.

Functors as the Base Packed Class. The class of functors is defined in
the module Functor below. The definition follows the usual one in category the-
ory [25] except that the domain and codomain of functors are fixed to Type.
In set-theoretical semantics, Type is interpreted as the universe of sets, thus
rendering our functors to be the endofunctors on the category Set of sets and
functions.

We use Coq modules only to get a namespace. Inside this namespace, func-
tors are defined by the dependent record class_of with one field f satisfying the



functor laws (the naming should be self-explanatory, see Table 2, Appendix B in
case of doubt). The type of functors t is a dependent record4 with a function m

of type Type -> Type, which is the object part of the functor, that satisfies the
class_of interface. The morphism part appears as f in the record. We define Fun

to refer to it, but the purpose of the definition is essentially technical. It does
not reduce (thanks to the simpl never declaration) and can therefore be used to
provide a stable notation: F # g denotes the action of a functor F on a function g.
Last, we provide a notation functor that denotes the type Functor.t outside of
the module and a coercion so that functors can be used as if they were functions
(by taking the first projection m of the dependent record that represents their
type).

Module Functor.

Record class_of (m : Type -> Type) : Type := Class {

f : forall A B, (A -> B) -> m A -> m B ;

_ : FunctorLaws.id f ;

_ : FunctorLaws.comp f }.

Structure t : Type := Pack { m : Type -> Type ; class : class_of m }.

Module Exports.

Definition Fun (F : t) : forall A B, (A -> B) -> m F A -> m F B :=

let: Pack _ (Class f _ _) := F

return forall A B, (A -> B) -> m F A -> m F B in f.

Arguments Fun _ [A] [B] : simpl never.

Notation functor := t.

Coercion m : functor >-> Funclass.

End Exports.

End Functor.

Export Functor.Exports.

Notation "F # g" := (Fun F g).

Monads as a Packed Class Extension. A monad in category theory is
defined as an endofunctor M with two natural transformations η : Id → M
(where Id is the identity endofunctor) and µ : M2 →M satisfying some laws [25].
Following the above definition, our class of monads is defined as an extension of
the class of functors.

Inside the module Monad below, the interface of monads is captured by the
dependent record mixin_of with two fields ret and join, that correspond to
η and µ respectively, satisfying the monad laws (Table 2, Appendix B). The
type of monads Monad.t is a dependent record with a function Monad.m of type
Type -> Type that satisfies a class_of interface; the latter extends the class of
functors (its base) with the mixin of monads. Thanks to the definition baseType,
a monad can also be seen as a functor. This fact is handled transparently by the
type system of Coq thanks to the Canonical command.

Module Monad.

Record mixin_of (M : functor) : Type := Mixin {

4 Record and Structure are synonymous but the latter is used to emphasize that it
is to be made Canonical.



ret : forall A, A -> M A ;

join : forall A, M (M A) -> M A ;

_ : JoinLaws.ret_naturality ret ;

_ : JoinLaws.join_naturality join ;

_ : JoinLaws.left_unit ret join ;

_ : JoinLaws.right_unit ret join ;

_ : JoinLaws.associativity join }.

Record class_of (M : Type -> Type) := Class {

base : Functor.class_of M ; mixin : mixin_of (Functor.Pack base) }.

Structure t : Type := Pack { m : Type -> Type ; class : class_of m }.

Definition baseType (M : t) := Functor.Pack (base (class M)).

Module Exports.

(* intermediate definitions of Ret and Join omitted *)

Notation monad := t.

Coercion baseType : monad >-> functor.

Canonical baseType.

End Exports.

End Monad.

Export Monad.Exports.

The monad above is defined in terms of ret and join. In programming, the
operator bind is more common. Using Coq notation, its type can be written
forall A B, M A -> (A -> M B) -> M B. The second argument of type A -> M B

is a Coq function that represents a piece of effectful program. This concretely
shows that we are heading for a framework using a shallow embedding. We
provide an alternative way to define monads using ret and bind. Let us assume
that we are given ret and bind functions that satisfy the monad laws:

Variable M : Type -> Type.

Variable bind : forall A B, M A -> (A -> M B) -> M B.

Variable ret : forall A, A -> M A.

Hypothesis bindretf : BindLaws.left_neutral bind ret.

Hypothesis bindmret : BindLaws.right_neutral bind ret.

Hypothesis bindA : BindLaws.associative bind.

We can then define fmap that satisfies the functor laws:

Definition fmap A B (f : A -> B) (m : M A) := bind m (ret (A:=B) \o f).

Lemma fmap_id : FunctorLaws.id fmap.

Lemma fmap_o : FunctorLaws.comp fmap.

We can use these lemmas to build M' of type functor and use M' to define join:

Definition join A (pp : M' (M' A)) := bind pp id.

It is now an exercise to prove that ret and join satisfy the monad laws, us-
ing which we eventually build M of type monad. We call Monad_of_ret_bind this
construction that we use in the rest of this paper.



2.2 Extensions: Specific Monads as Combined Theories

In the previous section, we explained the case of a simple extension: one struc-
ture that extends another. In this section we explain how a structure extends
two structures. Here, we just explain how we combine theories, how we provide
concrete models for combined theories is the topic of Sect. 6.

For the sake of illustration, we use the nondeterminism monad that extends
both the failure monad and the choice monad. The failure monad failMonad

extends the class of monads (Sect. 2.1) with a failure operator fail that is a
left-zero of bind. Since the extension methodology is the same as in Sect. 2.1,
we provide the code with little explanations5:

Module MonadFail.

Record mixin_of (M : monad) : Type := Mixin {

fail : forall A, M A ;

_ : BindLaws.left_zero (@Bind M) fail }.

Record class_of (m : Type -> Type) := Class {

base : Monad.class_of m ; mixin : mixin_of (Monad.Pack base) }.

Structure t := Pack { m : Type -> Type ; class : class_of m }.

Definition baseType (M : t) := Monad.Pack (base (class M)).

Module Exports.

(* intermediate definition of Fail omitted *)

Notation failMonad := t.

Coercion baseType : failMonad >-> monad.

Canonical baseType.

End Exports.

End MonadFail.

Export MonadFail.Exports.

The choice monad altMonad extends the class of monads with a choice oper-
ator alt (infix notation: [~]; prefix: [~p]) that is associative and such that bind
distributes leftwards over choice (the complete code is displayed in Appendix A).

The nondeterminism monad nondetMonad defined below extends both the fail-
ure monad and the choice monad. This extension is performed by first selecting
the failure monad as the base whose base itself is further required to satisfy the
mixin of the choice monad (see base2 below). As a result, a nondeterminism
monad can be regarded both as a failure monad (definition baseType) or as a
choice monad (definition alt_of_nondet): both views are declared as Canonical.

Module MonadNondet.

Record mixin_of (M : failMonad) (a : forall A, M A -> M A -> M A) : Type :=

Mixin { _ : BindLaws.left_id (@Fail M) a ;

_ : BindLaws.right_id (@Fail M) a }.

Record class_of (m : Type -> Type) : Type := Class {

base : MonadFail.class_of m ;

base2 : MonadAlt.mixin_of (Monad.Pack (MonadFail.base base)) ;

mixin : @mixin_of (MonadFail.Pack base) (MonadAlt.alt base2) }.

5 Just note that the prefix @ turns off implicit arguments in Coq.
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Fig. 1. Hierarchy of effects formalized. See Table 3 for the algebraic laws. In the Coq
scripts [3], the monad xyz appears as xyzMonad.

Structure t : Type := Pack { m : Type -> Type ; class : class_of m }.

Definition baseType (M : t) := MonadFail.Pack (base (class M)).

Module Exports.

Notation nondetMonad := t.

Coercion baseType : nondetMonad >-> failMonad.

Canonical baseType.

Definition alt_of_nondet (M : nondetMonad) : altMonad :=

MonadAlt.Pack (MonadAlt.Class (base2 (class M))).

Canonical alt_of_nondet.

End Exports.

End MonadNondet.

Export MonadNondet.Exports.

3 More Monads from our Hierarchy of Effects

This section complements the previous one by explaining more monads from
our hierarchy of effects (Fig. 1). We explain these monads in particular because
they are used later in the paper6 They are all obtained using the combination
technique previously explained in Sect. 2.2.

3.1 The Exception Monad

The exception monad exceptMonad extends the failure monad (Sect. 2.2) with a
Catch operator with monoidal properties (the Fail operator being the neutral)
and the property that unexceptional bodies need no handler [13, §5]:

6 The exception monad is used in the motivating example of Sect. 4.1, state-related
monads are used in particular to discuss the relation with deep embedding in
Sect. 5.1, the state-trace monad is used in the application of Sect. 5.2, and a model
of the probability monad is provided in Sect. 6.2.



Record mixin_of (M : failMonad) : Type := Mixin {

catch : forall A, M A -> M A -> M A ;

_ : forall A, right_id Fail (@catch A) ;

_ : forall A, left_id Fail (@catch A) ;

_ : forall A, associative (@catch A) ;

_ : forall A x, left_zero (Ret x) (@catch A) }.

The algebraic laws are given self-explanatory names; see Table 1, Appendix B
in case of doubt.

3.2 The State Monad and Derived Structures

The state monad is certainly the first monad that comes to mind when speaking
of effects. It denotes computations that transform a state (type S below). It
comes with a Get operator to yield a copy of the state and a Put operator to
overwrite it. These functions are constrained by four laws [13]:

Record mixin_of (M : monad) (S : Type) : Type := Mixin {

get : M S ;

put : S -> M unit ;

_ : forall s s', put s >> put s' = put s' ;

_ : forall s, put s >> get = put s >> Ret s ;

_ : get >>= put = skip ;

_ : forall k : S -> S -> M S,

get >>= (fun s => get >>= k s) = get >>= fun s => k s s }.

Reification of State Monads. We introduce a Run operator to reify state-
related monads (this topic is briefly exposed in [13, §6.2], we use reification in
Sect. 3.3). First, the operator run defines the semantics of Ret and Bind according
to the following equations:

Record mixin_of S (M : monad) : Type := Mixin {

run : forall A, M A -> S -> A * S ;

_ : forall A (a : A) s, run (Ret a) s = (a, s) ;

_ : forall A B (m : M A) (f : A -> M B) s,

run (do a <- m ; f a) s = let: (a', s') := run m s in run (f a') s' }.

The type of run shows that it turns a state into a pair of a value and a state. We
call the monad that extends monad with such an operator a runMonad. Second,
we combine stateMonad with runMonad and extend it with Run equations for Get

and Put; this forms the stateRunMonad:

Record mixin_of S (M : runMonad S)

(get : M S) (put : S -> M unit) : Type := Mixin {

_ : forall s, Run get s = (s, s) ;

_ : forall s s', Run (put s') s = (tt, s') }.

Monads with the Run operator appear shaded in Fig. 1, they can be given
concrete models so as to run sample programs inside Coq (there are toy examples
in [3, file smallstep_examples.v]).



The Backtrackable-state Monad. The monad nondetStateMonad combines
state with nondeterminism (recall that the nondeterminism monad is itself al-
ready the result of such a combination) and extends their properties with the
properties of backtrackable-state ([13, §6], [30, §4]):

Record mixin_of (M : nondetMonad) : Type := Mixin {

_ : BindLaws.right_zero (@Bind M) (@Fail _) ;

_ : BindLaws.right_distributive (@Bind M) [~p] }.

Failure is a right zero of composition to discard any accumulated stateful effects
and composition distributes over choice.

3.3 The State-trace Monad

The state-trace monad is the result of combining a state monad with a trace
monad. Our trace monad extends monads with a Mark operator to record events:

Record mixin_of T (m : Type -> Type) : Type :=

Mixin { mark : T -> m unit }.

We call the operators of the state-trace monad st_get, st_put, and st_mark

(notations: stGet, stPut, stMark). stGet and stPut fulfill laws similar to the ones
of Get and Put, but their interactions with stMark call for two more laws:

Record mixin_of S T (M : monad) : Type := Mixin {

st_get : M S ;

st_put : S -> M unit ;

st_mark : T -> M unit ;

_ : forall s s', st_put s >> st_put s' = st_put s' ;

_ : forall s, st_put s >> st_get = st_put s >> Ret s ;

_ : st_get >>= st_put = skip ;

_ : forall k : S -> S -> M S,

st_get >>= (fun s => st_get >>= k s) = st_get >>= fun s => k s s ;

_ : forall s e, st_put s >> st_mark e = st_mark e >> st_put s ;

_ : forall e (k : _ -> _ S),

st_get >>= (fun v => st_mark e >> k v) = st_mark e >> st_get >>= k }

3.4 The Probability Monad

First, we define a type prob of probabilities [4] as reals of type R between 0 and 1:

(* Module Prob *)

Record t := mk { p :> R ; pO1 : 0 <= p <= 1 }.

Definition O1 (p : t) := pO1 p.

Arguments O1 : simpl never.

Notation prob := t.

Notation "'`Pr' q" := (@mk q (@O1 _)).



This definition is interesting because the notation makes it possible to write
concrete probabilities succinctly: the proof that the real is between 0 and 1 is
hidden and can be inferred automatically. For example, the probability 1

2 is
written `Pr /2, the probability p̄ = 1 − p (where p is a probability) is written
`Pr p.~, etc. This is under the condition that we equip Coq with appropriate
canonical structures. For example, here follows the registration of the proof 0 ≤
1
p ≤ 1 that makes it possible to write `Pr /2 (IZR injects integers into reals):

Lemma prob_IZR (p : positive) : 0 <= / IZR (Zpos p) <= 1.

Canonical probIZR (p : positive) := @Prob.mk _ (prob_IZR p).

The above type and notation for probabilities lead us to the following mixin
for the probability monad [13, § 8]:

1 Record mixin_of (M : monad) : Type := Mixin {

2 choice : forall (p : prob) A, M A -> M A -> M A

3 where "mx <| p |> my" := (choice p mx my) ;

4 _ : forall A (mx my : M A), mx <| `Pr 0 |> my = my ;

5 _ : forall A (mx my : M A), mx <| `Pr 1 |> my = mx ;

6 _ : forall A p (mx my : M A), mx <| p |> my = my <| `Pr p.~ |> mx ;

7 _ : forall A p, idempotent (@choice p A) ;

8 _ : forall A (p q r s : prob) (mx my mz : M A),

9 p = r * s /\ s.~ = p.~ * q.~ ->

10 mx <| p |> (my <| q |> mz) = (mx <| r |> my) <| s |> mz ;

11 _ : forall p, BindLaws.left_distributive (@Bind M) (choice p) }.

mx <p> my behaves as mx with probability p and as my with probability p̄. Lines 6
and 7 are a skewed commutativity law and idempotence. Lines 8–10 is a quasi
associativity law. Above laws are the same as convex spaces [18, Def 3]. Line 11
says that bind left-distributes over probabilistic choice.

3.5 Other Monads in the Hierarchy of Effects

Figure 1 pictures the hierarchy of effects that we have formalized; Table 3 (Ap-
pendix C) lists the corresponding algebraic laws. The starting point is the hier-
archy of [13]. It needed to be adjusted to fit other papers [1,12,30,31]:

– As explained in Sect. 2.1, we put functors at the top to simplify formal
proofs.

– The examples of [13] relying on nondeterministic choice use altMonad. How-
ever, the combination of nondeterminism and probability in altProbMonad

requires idempotence and commutativity of nondeterministic choice [12].
Idempotence and commutativity are also required in the first part of [31].
We therefore insert the monad altCIMonad with those properties in the hier-
archy, and also the monad nondetCIMonad to deal more specifically with the
second part of [31].

– The probability monad probMonad is explained in Sect. 3.4. The probability
monad probDrMonad is explained in [13, §8]. The main difference with [13]
is that we extract probMonad from probDrMonad as an intermediate step.



probDrMonad extends probMonad with right distributivity of bind (· �= ·) over
probabilistic choice (· / · . ·). The reason is that this property is not compat-
ible with distributivity of probabilistic choice over nondeterministic choice
(· � ·) and therefore needs to be put aside to be able to form altProbMonad

by combining probMonad and altMonad (the issue is explained in [1]).

There are two more monads that we have not explained. exceptProbMonad com-
bines probability and exception [12, §7.1]. freshMonad and failFreshMonad are
explained in [13, §9.1]; freshMonad provides an operator to generate fresh labels.

We have furthermore extended the hierarchy of [13] with reification (Sect. 3.2),
the trace and state-trace monads (Sect. 3.3), and the array monad [35].

4 Monadic Equational Reasoning

The faithful mechanization of pencil-and-paper proofs by monadic equational
reasoning is the main benefit of a hierarchy of effects built with packed classes.
After a motivating example in Sect. 4.1, we explain how the Coq rewrite tactics
copes with notation and lemma overloading in Sect. 4.2. Section 4.3 explains the
technical issue of rewriting under function abstractions. Section 4.4 provides an
overview of the existing proofs that we have mechanized.

4.1 Motivating Example: the Fast Product

This example shows the equivalence between a functional implementation of the
product of integers with a monadic version (fastprod) [13]. On the left of Fig. 2
we (faithfully) reproduce the series of rewritings that constitute the original
proof. On the right, we display the equivalent series of Coq goals and tactics.

The product of natural numbers is simply defined as foldr muln 1. A “faster”
product can be implemented using the failure monad (Sect. 2.2) and the excep-
tion monad (Sect. 3.1):

Definition work (M : failMonad) s : M nat :=

if O \in s then Fail else Ret (product s).

Definition fastprod (M : exceptMonad) s : M nat := Catch (work s) (Ret O).

We observe that the user can write a monadic program with one monad and
use a notation from a monad below in the hierarchy. Concretely, here, work is
written with failMonad but still uses the unit operator Ret of the base monad. The
same can be said of fastprod. This is one consequence of packed classes. What
happens is that Coq inserts appropriate calls to canonical structures so that the
program type-checks. In fact, the program work and fastprod are actually equal
to the following (more verbose) ones:

Let Work (M : failMonad) s := if O \in s

then @Fail M nat else @Ret (MonadFail.baseType M) nat (product s).

Let Fastprod (M : exceptMonad) s := @Catch M nat

(@work (MonadExcept.baseType M) s) (@Ret (MonadExcept.monadType M) nat O).



Pencil-and-paper proof [13, §5.1] Coq intermediate goals and tactics

fastprod xs fastprod s

=J definition of fastprod K =J rewrite /fastprod K
catch (work xs) (ret 0) Catch (work s) (Ret 0)

=J specification of work K =J rewrite /work K
catch (if 0 in xs then fail Catch (if 0 \in s then Fail

else ret (product xs)) (ret 0) else Ret (product s)) (Ret 0)

=J lift out the conditional K =J rewrite lift_if if_ext K
if 0 in xs then catch fail (ret 0) if 0 \in s then Catch Fail (Ret 0)

else catch (ret (product xs)) (ret 0) else Catch (Ret (product s)) (Ret 0)

=J laws of catch, fail, and ret K =J rewrite catchfailm catchret K
if 0 in xs then ret 0 if 0 \in s then Ret 0

else ret (product xs) else Ret (product s)

=J arithmetic: 0 in xs ⇒ product xs = 0 K =J case: ifPn => // /product0 K
if 0 in xs then ret (product xs) (product0

def
= ∀s. 0 ∈ s→ product s = 0)

else ret (product xs) Ret 0

=J redundant conditional K =J move <- K
ret (product xs) Ret (product s)

Fig. 2. Comparison between an existing proof and our Coq formalization

The Coq proof that fastprod is pure, i.e., that it never throws an unhan-
dled exception, can be compared to its pencil-and-paper counterpart in Fig. 2.
Both proofs are essentially the same, though in practice the Coq proof will be
streamlined in two lines (of less than 80 characters) of script:

Lemma fastprodE s : fastprod s = Ret (product s).

Proof.

rewrite /fastprod /work lift_if if_ext catchfailm.

by rewrite catchret; case: ifPn => // /product0 <-.

Qed.

The fact that we achieve the same conciseness as the pencil-and-paper proof is
not because the example is simple: the same can be said of all the examples we
mechanized (see Sect. 4.4).

4.2 Basics of Equational Reasoning with Packed Classes

Packed classes not only allow sharing of notations but also sharing of lemmas:
one can rewrite a monadic program with any algebraic law from structures be-
low in the hierarchy of effects. SSReflect’s advanced rewrite tactic7 becomes
available to faithfully reproduce monadic equational reasoning.

For illustration, let us consider a function that nondeterministically builds a
subsequence of a list using the choice monad [12, §3.1]:

7 SSReflect extends Coq’s rewrite with contextual patterns, unfolding, etc. [15].
The main benefit is that semantically-close actions can be performed on the same
line of script, instead of having to interleave with other Coq tactics such as pattern
or unfold.



Variables (M : altMonad) (A : Type).

Fixpoint subs (s : seq A) : M (seq A) :=

if s isn't h :: t then Ret [::]

else let t' := subs t in fmap (cons h) t' [~] t'.

The mixed use of algebraic laws from various monads can be observed when
proving that subsequences of concatenation are concatenations of subsequences:

1 Lemma subs_cat (xs ys : seq A) :

2 subs (xs ++ ys) = do us <- subs xs; do vs <- subs ys; Ret (us ++ vs).

3 Proof.

4 elim: xs ys => [ys |x xs IH ys].

5 rewrite /= bindretf. (* Ret is left neutral *)

6 by rewrite bindmret. (* Ret is right neutral *)

7 rewrite [in RHS]/=. (* beta-reduction of the rhs *)

8 rewrite alt_bindDl. (* left-distribution of Bind over Alt *)

9 rewrite bindA. (* associativity of Bind *)

10 rewrite [in RHS]/=. (* to be continued in Sect. 4.3 *)

The proof is by induction on the sequence xs (line 4). While the lemma alt_bindDl

(line 8) belongs to the interface of the altMonad interface, the lemma bindA (line 9)
comes from the monad interface.

4.3 Rewriting under Function Abstractions

In pencil-and-paper proofs of monadic equational reasoning, whether rewriting
occurs under a function abstraction or not does not make any difference. We
need custom automation to support this feature in Coq which does not natively
perform rewriting in this situation.

The proof from the previous section led us to the following subgoal:

subs ((x :: xs) ++ ys) =

do x0 <- subs xs; do us <- Ret (x :: x0); do vs <- subs ys; Ret (us ++ vs)

[~] (do us <- subs xs; do vs <- subs ys; Ret (us ++ vs))

We want to turn the first branch of the nondeterministic choice

do x0 <- subs xs; do us <- Ret (x :: x0); do vs <- subs ys; Ret (us ++ vs)

into

do x0 <- subs xs; do vs <- subs ys; Ret (x :: x0 ++ vs)

but since the occurrence of Ret of interest is under the binder “do x0 <-”,
rewrite bindretf fails. Instead, we “open” the continuation with a custom tactic
Open (X in subs xs >>= X) to get a new subgoal

do us <- Ret (x :: x0); do vs <- subs ys; Ret (us ++ vs) = ?g x0

where ?g is an existential variable. Now, rewrite bindretf succeeds:

do vs <- subs ys; Ret ((x :: x0) ++ vs) = ?g x0



Yet, the last Ret is still under a binder. We could again “open” the continuation
but instead we use a custom “rewrite under” tactic rewrite_ cat_cons to get:

do x1 <- subs ys; Ret (x :: x0 ++ x1) = ?g x0

Now we can trigger unification to instantiate the existential variable and thus
complete the intended rewriting.

In practice, there is little need for Open and most situations can be handled
directly without revealing the existential variable using rewrite_. We chose to
explain Open here because it shows how rewrite_ is implemented.

4.4 Mechanization of Existing Pencil-and-paper Proofs

We used our framework to mechanize the definitions, lemmas, and examples
from [13] (except Sect. 10.2), from [12] (up to Sect. 7.2, which overlaps and
complements [13]), examples from [30,31], and examples from [21] (up to Sect. 3).
This includes in particular:

– Spark aggregation: Spark is a platform for distributed computing, in which
the aggregation of data is therefore nondeterministic. Monadic equational
reasoning can be used to sort out the conditions under which aggregation is
actually deterministic [31, §4.2] as well as other properties. We have mecha-
nized these results [3, file example_spark.v], which are part of a larger spec-
ification [6].

– The n-queens puzzle: This puzzle is used to illustrate the combination of state
and nondeterminism. We have mechanized the relations between functional
and stateful implementations [13, §6–7] [3, file example_nqueens.v], as well as
the derivation of a version of the algorithm using monadic hylo-fusion [30,
§5]. This example demonstrates the importance of commutativity lemmas,
calling for syntax reflection (see Sect. 5).

– The Monty Hall problem: We have mechanized the probability calculations
for several variants of the Monty Hall problem [12,13] using probMonad,
altProbMonad, and exceptProbMonad [3, file example_monty.v].

– The tree relabeling example: This example originally motivated monadic
equational reasoning [13]. It amounts to show that the labels of a binary tree
are distinct when the latter has been relabeled with fresh (see freshMonad)
labels. We have mechanized this result [3, file example_relabeling.v].

– The swap construction: This is an example of monad composition [21].
Strictly speaking, this is not monadic equational reasoning: formalization
does not require a mechanism such as canonical structures. Yet, our frame-
work proved adequate because it allows to mix in a single equation different
ret’s and join’s without explicit mention of which monad they belong to;
inference is automatic thanks to coercions.

The level of details provided by the authors using monadic equational rea-
soning is helpful and provides a way to check that our mechanization is faith-
ful. Among the differences between pencil-and-paper and mechanized proofs,



the main one is maybe function termination. Pencil-and-paper proofs assume
Haskell and do not require particular care about function termination, whereas
Coq functions must terminate, so that formalization requires an extra effort.
See for example the formalization of unfoldM and hyloM [3] which are not struc-
turally terminating. These difficulties are known [32] and can be addressed using
standard techniques. Another difference is that Coq functions must be total, so
that some Haskell functions cannot be formalized as such (e.g., foldr1).

We discovered a few problems in the work we have formalized. The main
one was an error in a proof of monadic hylo-fusion for the n-queens puzzle
from a draft paper [29] which has been reported to the author and fixed [30].
In short8, the functional specification of the n-queens puzzle can be rewritten
using nondetStateMonad as

Get >>= (fun ini => Put (0, [::], [::]) >>

queensBody (map Z_of_nat (iota 0 n)) >>= overwrite ini)

in which queensBody can be rewritten as

hyloM (@opdot_queens M) [::] (@nilp _)

select seed_select (@well_founded_size _)

The heart of this last step was a theorem [29, Thm 4.2] (now [30, Thm 5.1])
whose hypotheses did not properly match the ones available in the course of
the proof. However, we were able to complete the proof with a variant of the
theorem in question. Other problems were at the level of typos (they could be
easily caught by type-checking): almost none in [13], a few in the appendices
of [6] (whose mechanization has not been completed yet).

5 Properties Proved using Syntax

Our formalization is a shallow embedding: a monadic program is a Coq function
of return-type M A for some monad M and some type A. This is practical because
we can use the Coq language to write, execute, and prove programs. However,
it happens that some properties require an explicit syntax to be proved. In this
section, we show how to handle such situations. The basic idea is to locally
restrict programs to a subset characterized by a deep embedding. Section 5.1
is an example of property of backtrackable-states. Section 5.2 is an example
of equivalence between an operational and a denotational semantics, the latter
being given by a monad.

5.1 The Commutativity of State and Nondeterminism

The commutativity of state and nondeterminism is an important aspect of
backtrackable-states [30]. Such a property can be proved directly on specific

8 We just show the main steps of the derivation, we cannot reproduce all the definitions
for lack of space, see the source code [3] for all the details.



programs using their semantics but it can also be proved more generally using
syntax.

The following predicate [30, Def 4.2] defines the commutativity of two com-
putations m and n (in the same monad M):

Definition commute {M : monad} A B

(m : M A) (n : M B) C (f : A -> B -> M C) : Prop :=

m >>= (fun x => n >>= (fun y => f x y)) =

n >>= (fun y => m >>= (fun x => f x y)).

In order to state a generic property of commutativity between nondetermin-
ism and state monads, we first define a predicate that captures syntactically
nondeterminism monads. They are written with the following (higher-order ab-
stract [33]) syntax:

(* Module SyntaxNondet *)

Inductive t : Type -> Type :=

| ret : forall A, A -> t A

| bind : forall B A, t B -> (B -> t A) -> t A

| fail : forall A, t A

| alt : forall A, t A -> t A -> t A.

Let denote be a function that turns the above syntax into the corresponding
monadic computation:

Fixpoint denote (M : nondetMonad) A (m : t A) : M A :=

match m with

| ret A a => Ret a

| bind A B m f => denote m >>= (fun x => denote (f x))

| fail A => Fail

| alt A m1 m2 => denote m1 [~] denote m2

end.

Using above definitions, we can write a predicate that captures computations
in a nondetStateMonad that are actually just computations in a nondetMonad:

Definition nondetState_sub S (M : nondetStateMonad S) A (n : M A) :=

{m | denote m = n}.

Eventually, it becomes possible to prove by induction on the syntax that two
computations m and n using both state and choice commute when m actually does
not use the state effects:

Lemma commute_nondetState S (M : nondetStateMonad S)

A (m : M A) B (n : M B) C (f : A -> B -> M C) :

nondetState_sub m -> commute m n f.

5.2 Equivalence between Operational and Denotation Semantics

We consider a small imperative language with a state and an operator to generate
events. We equip this language with a small-step semantics and a denotational



semantics using stateTraceMonad (Sect. 3.3), and prove that both semantics are
equivalent. We will see that we need an induction on the syntax to prove this
equivalence.

Here follows the (higher-order abstract) syntax of our imperative language:

Inductive program : Type -> Type :=

| p_ret : forall {A}, A -> program A

| p_bind : forall {A B}, program A -> (A -> program B) -> program B

| p_cond : forall {A}, bool -> program A -> program A -> program A

| p_get : program S

| p_put : S -> program unit

| p_mark : T -> program unit | ... (* see Appendix~D *)

We give our language a small-step semantics specified with continuations in
the style of CompCert [5]. We distinguish two kinds of continuations: stop for
halting and cont (notation: ·;·) for sequencing:

Inductive continuation : Type :=

| stop : forall A, A -> continuation

| cont : forall A, program A -> (A -> continuation) -> continuation.

We can then define the ternary relation step that relates a state to the next one
and optionally an event:

Definition state : Type := S * @continuation T S.

Inductive step : state -> option T -> state -> Prop :=

| s_ret : forall s A a (k : A -> _), step (s, p_ret a `; k) None (s, k a)

| s_bind : forall s A B p (f : A -> program B) k,

step (s, p_bind p f `; k) None (s, p `; fun a => f a `; k)

| s_cond_true : forall s A p1 p2 (k : A -> _),

step (s, p_cond true p1 p2 `; k) None (s, p1 `; k)

| s_cond_false : forall s A p1 p2 (k : A -> _),

step (s, p_cond false p1 p2 `; k) None (s, p2 `; k)

| s_get : forall s k, step (s, p_get `; k) None (s, k s)

| s_put : forall s s' k, step (s, p_put s' `; k) None (s', k tt)

| s_mark : forall s t k, step (s, p_mark t `; k) (Some t) (s, k tt)

| ... (* see Appendix~D *)

Its reflexive and transitive closure step_star of type state -> seq T -> state -> Prop

is defined as one expects. We prove that step is deterministic and that step_star
is confluent and deterministic.

We also give our language a denotational semantics using the stateTraceMonad:

Variable M : stateTraceMonad S T.

Fixpoint denote A (p : program A) : M A :=

match p with

| p_ret _ v => Ret v

| p_bind _ _ m f => do a <- denote m; denote (f a)

| p_cond _ b p1 p2 => if b then denote p1 else denote p2

| p_get => stGet

| p_put s' => stPut s'

| p_mark t => stMark t | ... (* see Appendix~D *) end.



It is important to note here that the operators stGet and stPut can only read
and update the state (of type S) but not the log of emitted events (of type
seq T). Only the operator stMark has access to the list of emitted events but it
can neither read nor overwrite it: it can only log a new event to the list.

We proved the correctness and completeness of the small-step semantics
step_star w.r.t. the denotational semantics denote [3, file smallstep monad.v].
For that we use only the equations of the run interface of the state-trace monad
(Sect. 3.3). We now come to those parts of the proofs of correctness and complete-
ness that require induction on the syntax. They take the form of two lemmas.
Like in the previous section, we introduce a predicate to distinguish the monadic
computations that can be written with the syntax of the programming language:

Definition stateTrace_sub A (m : M A) := { p | denote p = m }.

The first lemma states that once an event is emitted it cannot be deleted:

Lemma denote_prefix_preserved A (m : M A) : stateTrace_sub m ->

forall s s' l1 l a, Run m (s, l1) = (a, (s', l)) ->

exists l2, l = l1 ++ l2.

The second lemma states that the remaining execution of a program does not
depend on the previously emitted events:

Lemma denote_prefix_independent A (m : M A) : stateTrace_sub m ->

forall s l1 l2, Run m (s, l1 ++ l2) =

let res := Run m (s, l2) in (res.1, (res.2.1, l1 ++ res.2.2)).

Those are natural properties that ought to be true for any monadic code, and not
only the monadic code that results from the denotation of a program. But this is
not the case with our monad. Indeed, the interface specifies those operators that
should be implemented but does not prevent one to add other operators that
might break the above properties of emitted events. This is why we restrict those
properties to monadic code using the stateTrace_sub predicate, thus allowing us
to prove the two above lemmas by induction on the syntax.

6 Models of Monads

Sections 2 and 3 explained how to build a hierarchy of effects. In this section, we
complete this formalization by explaining how to provide models, i.e., concrete
objects that validate the equational theories. Providing a model amounts to
define a function of type Type -> Type for the base monad and instantiate all
the interfaces up to the monad of interest. For illustration, we explain models
of state monads and of the probability monad; see [3, file monad_model.v] for
simpler models.

6.1 Models of State Monads

State-trace Monad. A model for stateTraceMonad (Sect. 3.3) is a function
fun A => S * seq T -> A * (S * seq T). We start by providing the ret and bind
operators of the base monad using the constructor Monad_of_ret_bind (Sect. 2.1):



1 (* Module ModelMonad *)

2 Variables S : Type.

3 Let m := fun A => S -> A * S.

4 Definition state : monad.

5 refine (@Monad_of_ret_bind m

6 (fun A a => fun s => (a, s)) (* ret *)

7 (fun A B m f => fun s => uncurry f (m s)) (* bind *) _ _ _).

One needs to prove the monad laws to complete this definition. This gives a
monad ModelMonad.state upon which we define the get, put, and mark operators:

(* Module ModelStateTrace *)

Variables (S T : Type).

Program Definition mk : stateTraceMonad S T :=

let m := Monad.class (@ModelMonad.state (S * seq T)) in

let stm := @MonadStateTrace.Class S T _ m

(@MonadStateTrace.Mixin _ _ (Monad.Pack m)

(fun s => (s.1, s)) (* st_get *)

(fun s' s => (tt, (s', s.2))) (* st_put *)

(fun t s => (tt, (s.1, rcons s.2 t))) (* st_mark *) _ _ _ _ _ _) in

@MonadStateTrace.Pack S T _ stm.

The laws of the state-trace monad are proved automatically by Coq.

Backtrackable-state. A possible model for nondetStateMonad (Sect. 3.2) is
fun A => S -> {fset (A * S)}, where {fset X} is the type of finite sets over X

provided by the Finmap library. This formalization of finite sets is based on
list representations of finite predicates. The canonical representation is chosen
uniquely among its permutations. This choice requires the base type X of {fset X}

to be a choiceType, i.e., a type equipped with a choice function, thus satisfying
a form of the axiom of choice. To be able to use the Finmap library, we use
a construct (gen_choiceMixin) from the MathComp-Analysis library that can
turn any type into a choiceType. We use it to define a model for nondetStateMonad
as follows:

Let choice_of_Type (T : Type) : choiceType :=

Choice.Pack (Choice.Class (equality_mixin_of_Type T) gen_choiceMixin).

Definition _m : Type -> Type :=

fun A => S -> {fset (choice_of_Type A * choice_of_Type S)}.

It remains to prove all the algebraic laws of the interfaces up to nondetStateMonad;
see [3, file monad_model.v] for details.

6.2 A Model of the Probability Monad

A theory of probability distributions provides a model for the probability monad
(Sect. 3.4). For this paper, we propose the following definition of probability
distribution [4]:



(* Module Dist *)

Record t := mk {

f :> {fsfun A -> R with 0} ;

f01 : all (fun x => 0 < f x) (finsupp f) &&

\sum_(a <- finsupp f) f a == 1}.

The first field is a finitely-supported function f: it evaluates to 0 outside its
support finsupp f. The second field contains proofs that (1) the probability
function outputs positive reals and that (2) its outputs sum to 1. Let Dist be a
notation for Dist.t. It has type choiceType -> choiceType and can therefore be
used to build a monad (thanks to choice_of_Type from the previous section).

The bind operator is well-known: given p : Dist A and g : A -> Dist B, it
returns a distribution with probability mass function b 7→

∑
a∈supp(p) p(a)·g(a, b).

This is implemented by the following combinator:

(* Module DistBind *)

Variables (A B : choiceType) (p : Dist A) (g : A -> Dist B).

Let D := ... (* definition of the support omitted *)

Definition f : {fsfun B -> R with 0} :=

[fsfun b in D => \sum_(a <- finsupp p) p a * (g a) b | 0].

Definition d : Dist B := ... (* packaging of f omitted *)

The resulting combinator DistBind.d can be proved to satisfy the monad laws,
for example, associativity:

Lemma DistBindA A B C (m : Dist A) (f : A -> Dist B) (g : B -> Dist C) :

DistBind.d (DistBind.d m f) g =

DistBind.d m (fun x => DistBind.d (f x) g).

Completing the model with a distribution for the ret operator and the other
properties of monads is an exercise.

The last step is to provide an implementation for the interface of the proba-
bility monad. The probabilistic choice operator corresponds to the construction
of a distribution d from two distributions d1 and d2 biased by a probability p:

(* Module Conv2Dist *)

Variables (A : choiceType) (d1 d2 : Dist A) (p : prob).

Definition d : Dist A := locked

(ConvDist.d (I2Dist.d p) (fun i => if i == ord0 then d1 else d2)).

The combinator ConvDist.d is a generalization that handles the combination of
any distribution of distributions: it is instantiated here with the binary distri-
bution I2Dist.d p [4]. We finally prove that the probabilistic choice d have the
expected properties, for example, skewed commutativity:

Notation "x <| p |> y" := (d x y p). (* probabilistic choice *)

Lemma convC (p : prob) (a b : Dist A) : a <| p |> b = b <| `Pr p.~ |> a.



7 Technical Aspects of Formalization in Coq

About Coq Commands and Tactics. There are several Coq commands and
tactics that are instrumental in our formalization. Most importantly, we use Coq
canonical structures (as implemented by the command Canonical) to implement
packed classes (Sect. 2), but also to implement other theories such as probabilities
(Sect. 3.4). We already mentioned that the rewrite tactic from SSReflect is
important to obtain short proof scripts (Sect. 4). We take advantage of the reals
of the Coq standard library which come with automation: the field and lra

(linear real/rational arithmetic) tactics are important in practice to compute
probabilities (for example in the Monty Hall problem).

About Useful Coq Libraries. We use the SSReflect library for lists because
it is closer to the Haskell library than the Coq standard library. It provides
Haskell-like notations (e.g., notation for comprehension) and more functions
(e.g., allpairs, a.k.a. cp in Haskell). We use the Finmap library of MathComp
for its finite sets (see Sect. 6.1). We also benefit from other libraries compatible
with MathComp to formalize the model of the probability monad [4].

About the Use of Extra Axioms. We use axioms inherited from the MathComp-
Analysis library (they are explained in [2, §5]). More precisely, we use functional
extensionality in particular to identify the Coq functions that appear in the
bind operator. We use gen_choiceMixin to turn Types into choiceTypes when
constructing models (see Sect. 6). To provide a model for the probability monad
(Sect. 6.2), we proposed a type of probability distributions that requires reals
to also enjoy an axiom of choice. We also have a localized use of the axiom
of proof irrelevance to prove properties of functors [3, file monad.v]. All these
axioms make our Coq environment resemble classical set theory. We choose to
go with these axioms because it does not restrict the applicability of our work:
equational reasoning does not forbid a classical meta-theory with the axiom of
choice.

8 Related Work

Formalization of Monads in Coq. Monads are widely used for modeling pro-
gramming languages with effects. For instance, Delaware et al. formalize several
monads and monad transformers, each one associated with a feature theorem [9].
When monads are combined, those feature theorems can then be combined to
prove type soundness. In comparison, the work we formalize here contains more
monads and focuses on equational reasoning about concrete programs instead of
meta-theory about programming languages.

Monads have been used in Coq to verify low-level systems [19,20] or for their
modular verification [23] based on free monads. Our motivation is similar: enable
formal reasoning for effectful programs using monads.

There are more formalizations of monads in other proof assistants. To pick
one example that can be easily compared to our mechanization, one can find



a formalization of the Monty Hall problem in Isabelle [8] (but using the pGCL
programming language).

About Monadic Equational Reasoning. Although enabling equational reasoning
for reasoning about monadic programs seems to be a natural idea, there does not
seem to be much related work. Gibbons and Hinze seem to be the first to syn-
thesize monadic equational reasoning as an approach [1,12,13]. This viewpoint
is also adopted by other authors [6,30,31,37].

Applicative functor is an alternative approach to represent effectful compu-
tations. It has been formalized in Isabelle/HOL together with the tree relabeling
example [24]. This work focuses on the lifting of equations to allow for automa-
tion, while our approach is rather the one of small-scale reflection [14]: the con-
struction of a hierarchy backed up by a rich library of definitions and lemmas to
make the most out of the rewriting facilities of Coq.

We extended the hierarchy of Gibbons and Hinze with a state-trace monad
with the intent of performing formal verification about programs written with
the syntax and semantics of Sect. 5.2. There are actually more topics to explore
about the formalization of tracing and monads [34].

About Formalization Techniques. We use packed classes [11] to formalize the
hierarchy of effects. It should be possible to use other techniques. In fact, a
preliminary version of our formalization was using a combination of telescopes
and canonical structures. It did not suffer major problems but packed classes
are more disciplined and are known to scale up to deep hierarchies. Coq’s type
classes have been reported to replace canonical structures in many situations,
but we have not tested them here.

The problem of rewriting under function abstraction (Sect. 4.3) is not specific
to monadic equational reasoning. For example, it also occurs when dealing with
the big operators of the MathComp library, a situation for which a forthcoming
version of Coq provides automation [27].

9 Conclusions and Future Work

We reported on the formalization in the Coq proof assistant of an extensive hi-
erarchy of effects with their algebraic laws, and its application to monadic equa-
tional reasoning. The key technique is the one of packed classes, which allows for
the sharing of notations and properties of various monads, enforces modularity
by insisting on interfaces, while preserving the ability to provide rigorous models.
We also discussed other techniques of practical interest for monadic equational
reasoning such as reasoning on the syntax despite dealing with a shallow embed-
ding. As a benchmark, we applied our formalization to several pencil-and-paper
proofs and furthermore formalized and proved properties of the semantics of an
imperative programming language. Our approach is successful in the sense that
our proof scripts closely match their paper-and-pencil counterparts. Our work
also led us to revisit existing proofs and extend the hierarchy of effects originally



proposed by Gibbons and Hinze. We believe that our experiments demonstrate
that the formalization of monadic equational reasoning with packed classes and
a shallow embedding provides a practical tool for formal verification of effectful
programs.

Future Work. We have started the formalization of more examples of monadic
equational reasoning [3, branch experiments]: [6] is underway, [10] proposes a
sharing monad whose equations seems to call for more syntax reflection and
brings to the table the issue of infinite data structures.

In its current state the rewrite_ tactic (Sect. 4.3) is not completely satisfac-
tory. Its main defect is practical: it cannot be chained with the standard rewrite

tactic. We defer the design of a better solution to future work because the topic
is actually more general (as discussed in Sect. 8).

The main task that we are now addressing is the formalization of the model
of the monad that combines probability and nondeterminism. Though well-
understood [7], its formalization requires a careful formalization of convexity,
which is work in progress.

It remains to check whether we can improve the modularity of model con-
struction (or even the extension of the hierarchy) through formalizing other
generic methods for combining effects, such as algebraic effects and distributive
laws between monads.
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A The Choice Monad

The following excerpt from the source code [3] corresponds to the choice monad
first mentioned in Sect. 2.2:

Module MonadAlt.

Record mixin_of (M : monad) : Type := Mixin {

alt : forall A, M A -> M A -> M A ;

_ : forall A, associative (@alt A) ;

_ : BindLaws.left_distributive (@Bind M) alt }.

Record class_of (m : Type -> Type) : Type := Class {

base : Monad.class_of m ; mixin : mixin_of (Monad.Pack base) }.

Structure t := Pack { m : Type -> Type ; class : class_of m }.

Definition baseType (M : t) := Monad.Pack (base (class M)).

Module Exports.

Definition Alt M : forall A, m M A -> m M A -> m M A :=

let: Pack _ (Class _ (Mixin x _ _)) := M



return forall A, m M A -> m M A -> m M A in x.

Arguments Alt {M A} : simpl never.

Notation "'[~p]'" := (@Alt _). (* prefix notation *)

Notation "x '[~]' y" := (Alt x y). (* infix notation *)

Notation altMonad := t.

Coercion baseType : altMonad >-> monad.

Canonical baseType.

End Exports.

End MonadAlt.

Export MonadAlt.Exports.

B Generic Algebraic Laws

The algebraic laws used in this paper are instances of generic definitions with
self-explanatory names. Table 1 summarizes the laws defined in SSReflect (file
ssrfun.v from the standard distribution of Coq). Table 2 summarizes the laws
introduced in this paper. The Coq definitions are available online [3].

Table 1. Algebraic laws defined in SSReflect

associative op ∀x, y, z. x op (y op z) = (x op y) op z
left_id e op ∀x. e opx = x
right_id e op ∀x. x op e = x
left_zero z op ∀x. z opx = z
idempotent op ∀x. x opx = x

C Summary of Monads and their Algebraic Laws

Table 3 summarizes the structures and the algebraic laws that we formalize and
explain in this paper. Precise Coq definitions are available online [3].

D Details about the Imperative Language from Sect. 5.2

For the sake of completeness, we provide the definition of the syntax (program)
and semantics (operational step and denotational denote) of the imperative lan-
guage of Sect. 5.2 where we omitted looping constructs to help reading:

Inductive program : Type -> Type :=

| p_ret : forall {A}, A -> program A

| p_bind : forall {A B}, program A -> (A -> program B) -> program B

| p_cond : forall {A}, bool -> program A -> program A -> program A

| p_get : program S

| p_put : S -> program unit

| p_mark : T -> program unit.



Table 2. Algebraic laws defined in this paper

Module FunctorLaws.

id f f id = id
comp f ∀g, h. f (g ◦ h) = f g ◦ fh
Module JoinLaws.

ret_naturality ret ∀h. fmap h ◦ ret = ret ◦ h
join_naturality join ∀h. fmap h ◦ join = join ◦ fmap (fmap h)
left_unit ret join join ◦ ret = id
right_unit ret join join ◦ fmap ret = id
associativity join join ◦ fmap join = join ◦ join
Module BindLaws.

associative bind ∀m, f, g. (m�= f)�= g = m�= λx.(f(x)�= g)
left_id op ret ∀m. ret opm = m
right_id op ret ∀m. m op ret = m
left_neutral bind ret ∀f. ret�= f = f
right_neutral bind ret ∀m. m�= ret = m
left_zero bind z ∀f. z�= f = z

right_zero bind z ∀m. m�= z = z

left_distributive bind op ∀m,n, f. m opn�= f = (m�= f) op (n�= f)
right_distributive bind op ∀m, f, g. m�= λx.(f x) op (g x) = (m�= f) op (m�= g)

| p_repeat : nat -> program unit -> program unit

| p_while : nat -> (S -> bool) -> program unit -> program unit

Variables T S : Type.

Definition state : Type := S * @continuation T S.

Inductive step : state -> option T -> state -> Prop :=

| s_ret : forall s A a (k : A -> _), step (s, p_ret a `; k) None (s, k a)

| s_bind : forall s A B p (f : A -> program B) k,

step (s, p_bind p f `; k) None (s, p `; fun a => f a `; k)

| s_cond_true : forall s A p1 p2 (k : A -> _),

step (s, p_cond true p1 p2 `; k) None (s, p1 `; k)

| s_cond_false : forall s A p1 p2 (k : A -> _),

step (s, p_cond false p1 p2 `; k) None (s, p2 `; k)

| s_get : forall s k, step (s, p_get `; k) None (s, k s)

| s_put : forall s s' k, step (s, p_put s' `; k) None (s', k tt)

| s_mark : forall s t k, step (s, p_mark t `; k) (Some t) (s, k tt).

| s_repeat_O : forall s p k, step (s, p_repeat O p `; k) None (s, k tt)

| s_repeat_S : forall s n p k,

step (s, p_repeat n.+1 p `; k) None

(s, p `; fun _ => p_repeat n p `; k)

| s_while_true : forall fuel s c p k, c s = true ->

step (s, p_while fuel.+1 c p `; k) None

(s, p `; fun _ => p_while fuel c p `; k)

| s_while_false : forall fuel s c p k, c s = false ->

step (s, p_while fuel.+1 c p `; k) None (s, k tt)

| s_while_broke : forall s c p k,

step (s, p_while O c p `; k) None (s, k tt)



Variables S T : Type.

Variable M : stateTraceMonad S T.

Fixpoint denote A (p : program A) : M A :=

match p with

| p_ret _ v => Ret v

| p_bind _ _ m f => do a <- denote m; denote (f a)

| p_cond _ b p1 p2 => if b then denote p1 else denote p2

| p_get => stGet

| p_put s' => stPut s'

| p_mark t => stMark t

| p_repeat n p => (fix loop m : M unit :=

if m is m'.+1 then denote p >> loop m' else Ret tt) n

| p_while fuel c p => (fix loop m : M unit :=

if m is m'.+1

then (do s <- stGet ; if c s then denote p >> loop m' else Ret tt)

else Ret tt) fuel

end.
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Table 3. Monads Defined in this Paper and the Algebraic Laws They Introduce

Structure Operators Equations

functor (§2.1) Fun/# functor_id, functor_o

monad (§2.1) Ret ret_naturality

Join join_naturality, joinretM (left unit),
joinMret (right unit), joinA (associativity)

Bind/>>=/>> bindretf (left neutral), bindmret (right neutral),
bindA (associativity)

failMonad (§2.2) Fail bindfailf (fail left-zero of bind)

altMonad (§A) Alt/[~]/[~p] alt_bindDl (bind left-distributes over choice),
altA (associativity)

nondetMonad (§2.2) altmfail (right-id), altfailm (left-id)

exceptMonad (§3.1) Catch catchfailm (left-id),catchmfail (right-id),
catchA (associativity), catchret (left-zero)

stateMonad (§3.2) Get, Put putget, getputskip, putput, getget

runMonad (§3.2) Run runret, runbind

stateRunMonad (§3.2) runget, runput

nondetStateMonad (§3.2) bindmfail (right-zero),
alt_bindDr (bind right-distributes over choice)

traceMonad (§3.3) Mark

stateTraceMonad (§3.3) stGet st_getget

stPut st_putput, st_putget, st_getputskip
stMark st_putmark, st_getmark

traceRunMonad (§3.3) runmark

stateTraceRunMonad (§3.3) runstget, runstput, runstmark

probMonad (§3.4) Choice choicemm (idempotence),
choice0, choice1 (identity laws),
choiceA (quasi associativity),
choiceC (skewed commutativity),
prob_bindDl (bind left-distributes over choice)

altCIMonad (§3.5) altmm (idempotence), altC (commutativity)

nondetCIMonad (§3.5)

freshMonad (§3.5) Fresh

failFreshMonad (§3.5) Distinct failfresh_bindmfail (fail right-zero of bind)
bassert (Distinct M) \o Symbols = Symbols

arrayMonad (§3.5) aGet i, aputput, aputget, agetputskip, agetget,
aPut i s agetC, aputC, aputgetC

probDrMonad (§3.5) prob_bindDr (bind right-distributes over choice)

altProbMonad (§3.5) choiceDr (probabilistic choice right-distributes
over nondeterministic choice)

exceptProbMonad (§3.5) catchDl (catch left-distributes over choice)
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