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Summary Statement 

In pigment cells, generation of PI(3,5)P2 by the PIKfyve complex regulates 

endosomal actin branching and associated membrane remodeling of early 

melanosomes. This process controls import-export balance that is required for 

functional amyloid formation and melanosome identity.  

Abstract 

The metabolism of PI(3,5)P2 is regulated by the PIKfyve, VAC14 and FIG4 complex, 

whose mutations are associated with hypopigmentation in mice. These pigmentation 

defects indicate a key but yet unexplored physiological relevance of this complex in 

the biogenesis of melanosomes. Here we show that PIKfyve activity regulates 

formation of amyloid matrix composed of PMEL protein within early endosomes, 

called stage I melanosomes. PIKfyve activity controls the membrane remodeling of 

stage I melanosomes that increases PMEL abundance and impairs its sorting and 

processing. PIKfyve activity also affects stage I melanosome kiss-and-run 

interactions with lysosomes that is required for PMEL amyloidogenesis and 

establishment of melanosome identity. Mechanistically, PIKfyve activity promotes the 

formation and membrane tubules from stage I melanosomes and their release by 

modulating endosomal actin branching. Together our data indicate that PIKfyve 

activity is a key regulator of the melanosomal import-export machinery that fine tunes 

the formation of functional amyloid fibrils in melanosomes and the maintenance of 

melanosome identity. 
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Introduction 
The protein complex composed of the kinase PIKfyve (Fab1), the phosphatase FIG4 

(Sac3) and the scaffolding protein VAC14 (ArPIKfyve) regulates levels of 

phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) (Ikonomov et al., 2009; Jin et al., 

2008) and PI(5)P in mammalian cells (Sbrissa et al., 2012; Zhang et al., 2007). 

These low abundant signaling lipids of endosomal membranes are key regulators in 

the homeostasis of the endolysosomal system (McCartney et al., 2014; Viaud et al., 

2014). Although FIG4 acts as a PI(3,5)P2 5-phosphatase (Duex et al., 2006a; Rudge 

et al., 2004), its activity is also required, together with VAC14, for activation of 

PIKfyve (Bonangelino et al., 2002; Dove et al., 2002; Duex et al., 2006b; Jin et al., 

2008). Thus, depletion not only of VAC14 and PIKfyve, but also of FIG4 reduces 

cellular PI(3,5)P2 levels  (Chow et al., 2007; Zhang et al., 2007; Zolov et al., 2012). 

Inhibition or depletion of the PIKfyve/VAC14/FIG4 complex (hereafter called PIKfyve 

complex) impairs endolysosomal functions such as endosome-to-TGN transport, 

endosomal homeostasis and autophagy (Ferguson et al., 2009; McCartney et al., 

2014). However, the molecular mechanisms by which the PIKfyve complex controls 

these processes and their physiological relevance remain to be fully understood. 

Mouse models with mutations in VAC14 or FIG4 exhibit diluted pigmentation (Chow 

et al., 2007; Jin et al., 2008; Zhang et al., 2007). This hypopigmentation suggests 

that in melanocytes the PIKfyve complex may be involved in the biogenesis of 

melanosomes, in which the pigment melanin is synthesized. Our current 

understanding of the stepwise process of melanosome biogenesis from endosomes 

provides a unique opportunity to investigate the molecular origin of hypopigmentation 

and the role of the PIKfyve complex in the endosomal system (Bissig et al., 2016; 

Sitaram and Marks, 2012).  

 

Melanogenesis involves two sequential but independent processes, functional 

amyloid fibril formation and pigment synthesis. Melanosomes are lysosome-related 

organelles that derive from early endosomes, which are called stage I melanosomes 

in pigment cells. During melanosome biogenesis, stage I melanosomes mature into 

stage II melanosomes which have acquired specific identity and morphology distinct 

from lysosomal organelles. Stage I melanosomes have been proposed to be the 

crossroad where melanosomal and endolysosomal pathways segregate (Raposo et 

al., 2001). However, the underlying molecular mechanisms of this segregation are 



	

not fully understood. Stage I melanosomes are characterized by a clathrin coat and 

few intralumenal vesicles (ILVs) (Raposo et al., 2001). In their lumen amyloid fibril 

generation is initiated from cleavage products of PMEL, a transmembrane protein 

expressed in melanocytes (Bissig et al., 2016). During maturation into stage II 

melanosomes, the formation of these fibrils requires concomitant proteolytic 

processing of PMEL and differential sorting of PMEL cleavage products (Hurbain et 

al., 2008; Rochin et al., 2013; Theos et al., 2006b; van Niel et al., 2015; van Niel et 

al., 2011). PMEL amyloidogenesis is completed in ellipsoidal shaped stage II 

melanosomes where the assembled amyloid lumenal fibrils serve as a matrix for 

pigment deposition in later stage III and IV melanosomes, which have acquired 

melanogenic enzymes (Raposo et al., 2001). This matrix is proposed to sequester 

highly reactive oxidative intermediates of melanin production, which otherwise may 

oxidize melanosomal content and damage organelle integrity (Fowler et al., 2006; 

Lee et al., 1996).  

 

Here, we show that PIKfyve activity promotes the formation of membrane tubules 

emerging from stage I melanosomes and regulates their release by controlling 

branched actin dynamics. Interference with PIKfyve activity abrogates membrane 

tubule formation and branched actin-dependent release, which strongly affects stage 

I melanosomes homeostasis and leads to accumulation of unstructured aggregates 

of amyloidogenic PMEL fragments preventing amyloid matrix formation. These 

defects are accompanied by prolonged kiss-and-run interactions of stage I 

melanosomes with lysosomal compartments that affect melanosome identity and 

maturation. 

 

 



Results 
PIKfyve complex is required for PMEL fibril formation  
To gain insight into the pigmentation defect caused by loss of VAC14 and FIG4 we 

used conventional electron microscopy (EM) for morphological analysis of 

melanosomes in the retinal pigment epithelium (RPE) in eyes of newborn mutant 

mice (Chow et al., 2007; Zhang et al., 2007). These melanosomes are fully mature 

and less susceptible to compensatory effects, as they are formed during a brief 

developmental period (Lopes et al., 2007). Compared to wild type (WT) RPE, we 

found fewer but enlarged melanosomes per µm2 in the RPE of Fig4-/- and Vac14-/- 

mice (Figure 1A-D). Enlargment of melanosomes associated with hypopigmentation 

is reminiscent of those observed in ocular albinism type 1 (OA1)-deficient mice 

(Incerti et al., 2000), where the melanin-synthesizing enzyme tyrosinase-related 

protein 1 (TYRP1) is mistrafficked and LAMP-1, a lysosomal protein usually poorly 

present in early and late melanosomes (Raposo et al., 2001) (Figure S1 left panels), 

is enriched in these compartments. The melanosomes in the RPE of Fig4-/- and 

Vac14-/- mice were also rounder than in the elongated wildtype melanosomes 

(Figure 1E). As reported previously for melanosomes in the RPE of mouse mutants 

Bace2-/- (Rochin et al., 2013), PMEL silver (Dunn, 1930) and Pmel-/- (Hellstrom et al., 

2011), round melanosomes are indicative of a defect in PMEL fibril assembly, since 

the fibrils give melanosomes their characteristic ellipsoidal shape (Hellstrom et al., 

2011; Theos et al., 2006a). Vac14L156R/L156R and Fig4-/- mice also exhibit the diluted 

coat color characteristic of certain cases of impaired PMEL fibril assembly (Chow et 

al., 2007; Dunn, 1930; Hellstrom et al., 2011; Jin et al., 2008; Rochin et al., 2013; 

Zhang et al., 2007).  

To confirm these findings, we used human melanocytic cell line MNT-1 to knock 

down PIKfyve, VAC14 or FIG4 by RNAi (Figure 1F). In these knocked down cells 

(Figure 1G-H) and in MNT-1 cells treated with the PIKfyve inhibitor YM201636 

(Figure S1A-E), we found more lysosomal LAMP1 and PSEN2 localized to stage II 

melanosomes containing processed PMEL. We also observed miscolocalization of 

LAMP1 with the melanin-synthesizing protein TYRP1 present on pigmented 

melanosomes upon YM201636 treatment (Figure S1A-C). But the TYRP1 was 

correctly localized to pigmented melanosomes (Figure 1I) and the melanin content 

was unchanged (Figure 1J), excluding abnormal targeting of melanizing enzymes as 

in OA1 depleted MNT-1 cells (Giordano et al., 2009). As reported in MNT-1 cells 



	

displaying a defect in PMEL fibril assembly (Rochin et al., 2013; van Niel et al., 

2011), immuno-labeling with an antibody recognizing PMEL fibrils (anti-HMB45) was 

decreased in cells treated with RNAi against the PIKfyve complex protein when 

compared to control cells (Figure 1K-L). These findings indicate that the PIKfyve 

complex is involved in processes regulating PMEL fibril formation during early 

melanogenesis, which impact melanosome identity and maturation, but not pigment 

synthesis occurring at later steps of melanosome maturation.  

 

Lumenal PMEL fragments accumulate upon interference with PIKfyve function 
Generation of PMEL fibrils requires stepwise processing of PMEL by a serie of 

proteases (Figure 2A). First, mature P2 form of PMEL is cleaved by proprotein 

convertase (PC) generating lumenal M-alpha and transmembrane M-beta fragment 

that remain linked by a disulfide bond (Berson et al., 2003; Leonhardt et al., 2011; 

Theos et al., 2006b). Then, M-beta fragment is processed by beta-site APP-cleaving 

enzyme 2 (BACE2) generating a membrane-associated C-terminal fragment (CTF) 

and releasing amyloidogenic M-alpha into the melanosome lumen (Rochin et al., 

2013). Unknown lysosomal proteases then further proteolytically process M-alpha 

into amyloidogenic peptides that finally assemble into fibrils (Ho et al., 2016; 

Kawaguchi et al., 2015; Leonhardt et al., 2013). Given the reported involvement of 

PIKfyve complex in endolysosome homeostasis (Bissig et al., 2017; Jefferies et al., 

2008), we studied whether PIKfyve inhibition or knockdown would affect PMEL 

processing.  

Using a set of antibodies that recognize distinct epitopes and processed fragments 

of PMEL (Figure 2B) we found that PIKfyve complex knockdown or inhibition for 2 h 

and 24 h did not affect PC- and BACE2-mediated PMEL cleavage producing M-

alpha, M-beta and CTF fragments, but caused an accumulation of the CTF (Figure 

2C and S1G) that is not part of PMEL fibrils and of M-alpha (Figure S1G). Due to 

their amyloidogenic nature, PMEL fibril associated fragments distribute to the Triton 

X-100 insoluble fraction in cell lysates (Berson et al., 2003; Leonhardt et al., 2013; 

Watt et al., 2009). In this fraction, we found accumulation of M-alpha, M-alphaN, M-

alphaC (Figure 2D and S1H). Treatment of MNT-1 cells for 2 h and 24 h with a mix 

of lysosomal protease inhibitors (100 µM leupeptin, 10 µM pepstatin A and 10 µM E-

64d) led to a similar accumulation CTF, M-alpha, M-alphaN and M-alphaC (Figure 

2E-F) but decreased generation of RPT and PKD fragments. These results confirm 



	

that lysosomal proteases are required for PMEL processing (Ho et al., 2016; 

Kawaguchi et al., 2015; Leonhardt et al., 2013), and suggest that accumulation of 

processed and non-processed fragments of PMEL lumenal domain under PIKfyve 

inhibition may be caused by changes of lysosomal activity. 

 

Lysosomal activity is not affected upon inhibition of PIKfyve  
We assessed the lysosomal functions of melanocytes treated with YM201636. In 

these cells neither the number nor the size of LAMP1 compartments significantly 

changed upon inhibition of PIKfyve activity (Figure 3A-D). Using ratiometric 

fluorescence imaging we detected similar pH of endolysosomes in mock and 

YM201636 treated cells (4.4 ± 0.2 and 4.5 ± 0.2, respectively) (Figure S2A-B) in 

good agreement with previous reports (Bissig et al., 2017; Ho et al., 2015). 

Internalization of proteolytically dequenched DQ-BSA showed that treatment with 

PIKfyve inhibitor slightly increased proteolysis of endocytosed DQ-BSA, although the 

effect was not statistically significant (Figure S2C-D). The levels of mature cathepsin 

D (CatD) decreased and immature CatD accumulated upon treatment with lysosomal 

protease inhibitors, but not upon YM201636 treatment (Figure S2E), indicating that 

PIKfyve inhibition does not impair endolysosomal activity. To reinforce these results, 

we assessed steady-state levels of the melanocyte specific transmembrane protein 

MART1, which is ubiquitylated and degraded in lysosomes (Levy et al., 2005). 

PIKfyve inhibition, in contrast to inhibition of lysosomal proteases did not cause 

MART1 accumulation (Figure S2E). The trafficking of fluid phase marker 

(DextranAF647) (Figure S2F-G) or lysosomal transmembrane protein (PSEN2) 

(Figure S2H-I) to lysosomes was not affected upon YM201636 treatment, showing 

that PIKfyve inhibition neither affected transport of endocytosed cargo to 

endolysosomes nor trafficking of lysosomal resident proteins. This set of data shows 

that inhibition of PIKfyve does not impair lysosomal activity, excluding lysosomal 

dysfunction as a cause for accumulation of PMEL fragments. 

 

Lysosomal activity is delivered to melanosomes through kiss-and-run 

Others and our data show that lysosomal protease activity is required for PMEL 

processing and fibril formation in stage I melanosomes (Ho et al., 2016; Leonhardt et 

al., 2013). However, in melanocytes lysosomes and melanosomes co-exist as 

separate entities with distinct content and morphology (Raposo et al., 2001). In line 



	

with this, immuno-labeling of M-alpha species revealed their accumulation in EEA1, 

but not LAMP1 labelled compartments at steady state and upon inhibition of PIKfyve 

activity (Figure 3A-B, E-F). We speculated that PMEL localized in stage I 

melanosomes may be processed by lysosomal proteases through transient 

interactions of stage I melanosomes and endolysosomes, which could be affected by 

YM201636 treatment. 

We tested this hypothesis by live-cell imaging of MNT-1 cells co-expressing LAMP1-

mRuby2 and the PI(3)P-binding protein 2xFYVE-GFP, as markers for 

endolysosomes and stage I melanosomes, respectively. We confirmed in fixed cells 

that 2xFYVE-GFP is found on stage I melanosomes, which correspond to early 

endosomes in pigment cells and contain mature PMEL and M-alpha (Figure S3A-B). 

In contrast, 2xFYVE-GFP did not co-localize with endolysosomes or with later stages 

melanosomes containing fully formed PMEL fibrils or melanin synthesizing enzymes 

or endolysosomes (Figure S3C-F). Our live-cell imaging revealed that in mock 

treated cells 2xFYVE-GFP and LAMP1-mRuby2 compartments transiently interact 

for on average 4.0 sec without undergoing complete compartment mixing (Figure 

3I,K and movie 1-2). To assess whether membrane fusion occurs, endolysosomes of 

2xFYVE-GFP expressing cells were loaded by pulse-chase with DextranAF555 and 

transfer of endolysosomal DextranAF555 to 2xFYVE-GFP compartments was 

monitored by live-cell microscopy. We found that endolysosomal DextranAF555 can 

be transferred to 2xFYVE-GFP compartments (Figure 3L-M and movie 3), showing 

that membrane fusion between the two compartments occurs. These findings 

support our hypothesis that the substrate PMEL, localized to stage I melanosomes is 

processed by lysosomal proteases through transient fusions of stage I melanosomes 

and endolysosomes. These interorganellar kiss-and-runs strengthen the role of 

stage I melanosomes as crossroad between melanosomal and endolysosomal 

pathways and provides mechanistic insights into the segregation of both pathways.  

In YM201636 treated cells, stage I melanosomes and endolysosomes transiently 

interacted. However, the time of contact doubled when compared to mock (10.0 sec 

vs 4.0 sec), but was restored upon YM201636 washout and re-synthesis of 

PI(3,5)P2/PI(5)P (Figure 3J-K and S3G and movies 4-7). Moreover, upon PIKfyve 

inhibition the two compartments still transiently fused, as illustrated by the transfer of 

endolysosomal DextranAF555 (Fig 3N-O and movie 8). 
These data show that accumulation of processed and unprocessed PMEL/M-alpha 



	

species in stage I melanosomes upon PIKfyve inhibition did not result from impaired 

transient fusion between stage I melanosomes and endolysosomes. However, the 

prolonged duration of contact between stage I melanosomes and endolysosomes 

upon inhibition of PIKfyve activity may cause over time the observed mislocalization 

of endolysosomal proteins to melanosomes and loss of melanosome identity.  

 

PMEL fragments accumulate in enlarged EEA1 compartments  
The absence of defect of lysosomal activity and morphology upon inhibition of 

PIKfyve activity led us investigate potential defect of the EEA1 compartments where 

PMEL fragments accumulated upon treatment. Interestingly, immuno-labeling 

showed that EEA1-positive compartements that accumulated PMEL/M-alpha species 

following YM201636 treatment (Figure 3E-F) were enlarged and less numerous 

when compared to control (Figure 3G-H). In good agreement with this, after PIKfyve 

inhibition by YM201636 treatment we observed enlargement of 2xFYVE-GFP-

positive stage I melanosomes, but not LAMP1-mRuby2-positive endolysosomes in 

our live-cell imaging experiments (Figure 3J).  

It is thus conceivable that PIKfyve activity directly regulates stage I melanosome 

homeostasis explaining the lack of PMEL fibrillation when PIKfyve function is 

impaired. 

To better characterize the apparent defect in early melanosomes, we performed EM 

analysis of resin embedded and chemically fixed MNT-1 cells knocked down for 

PIKfyve, VAC14 or FIG4 by RNAi or treated with the PIKfyve inhibitor YM201636 

(Figure 4A-B). In MNT-1 cells, melanosome biogenesis occurs continuously. 

Therefore, all four melanosome maturation stages are present and can 

morphologically be distinguished by EM. We observed enlarged ILV containing stage 

I melanosomes decorated with a clathrin coat in inhibitor or RNAi treated cells 

(Figure 4A-B). Of note the mean size increase was only significant for YM201636 

treatment and PIKfyve knockdown (Figure 4C). Similarly, stage I melanosomes were 

enlarged in human primary melanocytes knocked down for VAC14, FIG4 and 

PIKfyve (Figure 4F). In addition, MNT-1 cells treated with RNAi for the PIKfyve 

complex proteins displayed fewer fibril-containing stage II melanosomes, but more 

unpigmented melanosomes with unstructured lumenal aggregates (Figure 4D-E), 

further confirming our findings that the PIKfyve complex is involved in PMEL fibril 

formation (Figure 1K-L). In line with our observations that the PIKfyve complex is not 



	

involved in pigment synthesis (Figure 1I-J), interference with PIKfyve complex did 

not alter the number and morphology of pigmented melanosomes (Figure 4A-B and 

E). These morphological observations show that the PIKfyve complex is required for 

stage I melanosome homeostasis and PMEL fibril formation, which is initiated in 

these compartments.  

PMEL fibrillation results from concomitant processing and sorting of the 

amyloidogenic lumenal domain of PMEL to ILVs of stage I melanosomes (Hurbain et 

al., 2008; Rochin et al., 2013; Theos et al., 2006b; van Niel et al., 2015; van Niel et 

al., 2011). Ultrathin cryosections of MNT-1 cells confirmed the presence of ILV in 

stage I melanosomes labeled by anti-PMEL-N antibody (Figure 4G-H), indicating that 

PIKfyve activity is not critical for ILV formation. These data also revealed that upon 

PIKfyve inhibition mature PMEL/M-alpha is localized to enlarged clathrin-coat 

containing stage I melanosomes, where it was mostly found on the limiting 

membrane and to a lesser extent on ILVs (Figure 4G-H). However, a similar amount 

of gold labeling was found on ILVs between YM201636 treated and control condition 

(Figure 4I), suggesting that PMEL/M-alpha sorting to ILVs is not impaired. However, 

accumulation of this fragment on the limiting membrane may indicate a saturation of 

the sorting machinery.  

Altogether, our results suggest that upon interference with the PIKfyve complex 

lumenal PMEL fragments accumulate in enlarged stage I melanosomes causing 

unstructured PMEL aggregation preventing fibril formation and impairing 

melanosome maturation.   
 

PIKfyve activity promotes membrane remodeling 
Our observations show that upon PIKfyve inhibition the size of stage I melanosomes 

doubles, their number decreases and they accumulate PMEL fragments. A similar 

organelle enlargement induced by inhibition of PIKfyve activity was observed for 

endolysosomes in HeLa cells. In these cells PIKfyve activity was shown to control 

endolysosome homeostasis by promoting membrane remodeling (Bissig et al., 

2017). Thus, we hypothesized that PIKfyve exerts a similar function on stage I 

melanosomes and we studied stage I melanosome homeostasis and membrane 

dynamics by live-cell microscopy using 2xFYVE-GFP. In mock treated cells these 

compartments were highly dynamic and underwent frequent homotypic fusion and 

fission (Movie 9). Their shape was heterogeneous, and they were often tubulated 



	

(Figure 5A-B). These features were lost upon inhibition of PIKfyve activity, where 

stage I melanosomes were fewer, enlarged, spherical and lacked membrane tubules 

(Figure 5A-D). In addition, the compartments were less dynamic as compared to 

control (Movie 10). Upon YM201636 washout and re-synthesis of PI(3,5)P2/PI(5)P 

membrane dynamics was restored and tubules and buds were formed and released 

resulting in recovery of compartment size and number (Figure 5A-D and movie 11). 

These findings indicate that PIKfyve activity promotes membrane remodeling of 

stage I melanosomes required to maintain compartment size, number and 

homeostasis during homotypic fusion-fission processes of stage I melanosomes.  

To confirm these findings, we performed electron microscopy analyses on high-

pressure frozen and freeze-substituted melanocytes, because this technique 

optimally preserves subtle membrane deformation such as membrane tubulations. In 

mock treated cells multivesicular stage I melanosomes often displayed tubules and 

beared a clathrin coat on their limiting membrane. In contrast after YM201636 

treatment these compartments lost their tubular appearance and were enlarged, but 

still displayed clathrin coats. Upon YM201636 washout the tubular feature was 

restored and dividing enlarged compartments were observed (Figure 5E-H), showing 

that PIKfyve activity is required for membrane remodeling on stage I melanosomes. 

We assessed the contribution of this membrane remodeling to PMEL accumulation 

by performing immunofluorescence microscopy. YM201636 induced accumulation of 

PMEL fragments in these enlarged EEA1-positive stage I melanosomes that were 

both rescued after drug washout and PI(3,5)P2/PI(5)P re-synthesis (Figure 5I-K). 

These findings confirm that PIKfyve activity controls stage I melanosome size, 

number and dynamics by regulating fission processes of stage I melanosomes. 

Interference with PIKfyve activity by inhibiting the homotypic fission induce the 

accumulation of PMEL fragments in fewer but larger stage I melanosomes that 

would contribute to the impaired PMEL fibrillation.  

 

PIKfyve activity controls endosomal branched actin required for tubule release  
To refine the mechanisms involved in the inhibition of PMEL fibrillation upon PIKfyve 

activity we explored the downstream and upstream pathways regulated by this 

complex such as the activation of mucolipin channels by PI(3,5)P2 (Dong et al., 

2010), PI(3)P levels (Zolov et al., 2012), pH (Jefferies et al., 2008) or endosomal 

actin branching (Hong et al., 2015). In MNT-1 cells, co-treatment of YM201636 with 



	

the mucolipin activator MLSA1 did not restore stage I melanosome size and 

membrane dynamics (Figure S4A-B). These findings indicate that mucolipins may 

not be downstream effectors of PIKfyve activity in melanosome biogenesis, which is 

in line with our observations in HeLa cells (Bissig et al., 2017). Ratiometric 

fluorescence imaging with a short pulse-chase protocol excluded a pH defect in 

stage I melanosomes as a cause of impaired fibrillation of PMEL (Figure S4C). 

Inhibition of PIKfyve activity was shown to cause a slight increase in the PI(3,5)P2 

substrate PI(3)P in some, but not all cell types (Jefferies et al., 2008; Zolov et al., 

2012). Upon inhibition of PIKfyve activity we did not observe any change in the 

localization or intensity of fluorescence associated to endogenous protein EEA1 nor 

to 2xFYVE-GFP that both bind PI3P (Figure S4D). Similarly, biochemical analysis 

showed no significant differences in membrane recruitment of endogenous EEA1 

and expressed 2xFYVE-GFP between DMSO and YM201636 treated cells (Figure 

S4E-F). These results show that localization of PI(3)P-binding proteins is unaffected 

upon PIKfyve inhibition and indicate that in melanocytes PI(3)P does likely not 

accumulate upon PIKfyve activity inhibition.  

Recently, PI(3,5)P2 has been shown to control dynamics of branched actin on 

endosomal membranes (Hong et al., 2015), which is itself involved in various 

membrane remodeling processes (Anitei and Hoflack, 2011). Thus, we asked 

whether PIKfyve activity promotes membrane remodeling through regulation of 

endosomal actin dynamics. As observed in human breast adenocarcinoma cells 

(Hong et al., 2015), we found that actin patches accumulated on EEA1-positive and 

enlarged stage I melanosomes upon PIKfyve inhibitor treatment. Actin accumulation 

was abolished upon inhibition of the Arp2/3 complex by treatment with CK666 

(Figure 6A). These data reveal that in melanocytes as in other cells PI(3,5)P2/PI(5)P 

regulates branched endosomal actin. 

We performed live-cell imaging of 2xFYVE-GFP transfected cells to study whether 

endosomal actin is involved in PI(3,5)P2/PI(5)P-mediated membrane remodeling. 

Stage I melanosomes of cells treated with the Arp2/3 inhibitor CK666 still displayed 

membrane tubules. Similarly, when YM201636 was washed out in the presence of 

CK666, membrane tubules were observed (Figure 6B and 6C-E), showing that 

endosomal branched actin is not required for PI(3,5)P2/PI(5)P-mediated membrane 

remodeling. However, upon inhibition of branched actin dynamics by CK666 

treatment, membrane buds and tubules were less readily released and often 



	

collapsed (Figure 6C-E and movie 12-15), suggesting that endosomal actin 

dynamics is involved in membrane tubule release.  

Electron microscopy analyses of high-pressure frozen MNT-1 cells confirmed that 

upon inhibition of Arp2/3 complex tubules are formed on stage I melanosomes 

(Figure 6F). Similarly, membrane tubules on enlarged stage I melanosomes were 

observed upon YM201636 washout in the presence of CK666 (Figure 6F), but stage 

I melanosomes were still enlarged after 4 h YM201636 washout in the presence of 

CK666, indicating that although membrane tubules are formed the compartment size 

was not rescued (Figure 6F), probably because the tubules were less readily 

released. Immunofluorescence microscopy showed that YM201636 induced 

accumulation of PMEL in EEA1-positive stage I melanosomes and their enlargement 

were rescued after drug washout and PI(3,5)P2/PI(5)P re-synthesis. However, both 

accumulation of PMEL and enlargement of EEA1-positive stage I melanosomes 

persisted when YM201636 was washed out in the presence of Arp2/3 complex 

inhibitor (Figure 6G-I), showing that PI(3,5)P2/PI(5)P-mediated membrane 

remodeling and endosomal actin dynamics are involved in the same pathway. Thus, 

our findings indicate that PI(3,5)P2/PI(5)P spatially and temporally coordinates 

membrane remodeling and actin-dependent release of endosomal tubules and buds, 

which is required for stage I melanosome homeostasis and PMEL fibril formation. 

 

 

 



Discussion 
Our data show that the formation of PMEL amyloid fibrils and melanosome identity 

rely on tight regulation of the homeostasis of stage I melanosomes and their 

transient interaction with lysosomes. By controlling membrane remodeling at stage I 

melanosomes, PIKfyve activity balances the import of lysosomal proteases and the 

steady state level of their substrate, PMEL, and thereby regulates the formation of 

amyloid matrix and the preservation of melanosome identity (Figure 7). Functionally, 

PIKfyve activity regulates morphology, size and number of stage I melanosomes by 

promoting the formation of membrane tubules and buds that are released in a 

mechanism involving branched endosomal actin dynamics (Figure 7 inset). Inhibition 

of PIKfyve activity abrogates membrane remodeling, causing an imbalance favouring 

stage I melanosomes homotypic fusion over fission that reduces the number and 

increases the size of stage I melanosomes. The imbalance between homotypic 

fusion and fission causes accumulation of PMEL that saturates amyloidogenic 

processing and sorting machineries. These defects result in accumulation and 

aberrant aggregation of amyloidogenic PMEL fragments impairing fibril formation.  

 
Interorganelle interactions ensure PMEL amyloid formation 
The data presented here confirm the requirement of lysosomal proteases for PMEL 

processing and amyloid formation, although their localization is separated from 

PMEL (Ho et al., 2016; Kawaguchi et al., 2015; Leonhardt et al., 2013; Raposo et al., 

2001). We describe a model in which transient kiss-and-run interactions and fusions 

between endolysosomes and PMEL-containing stage I melanosomes ensure PMEL 

processing by lysosomal proteases. These transient interactions provide a dynamic 

means to coordinate melanosome maturation with PMEL processing and fibril 

formation and thus ensure proper amyloid assembly. The kiss-and-run interactions 

that we describe do not lead to full fusion of both compartments and are thus 

consistent with previous observations that endolysosomes and melanosomes co-

exist as distinct, but proximate organelles in melanocytes (Raposo et al., 2001). By 

regulating interorganelles interaction, the PIKfyve activy appears as a key element of 

the acquisition of melanosome identity. 

Inhibition of PIKfyve activity results in longer interorganelle contacts, which 

correlates with mislocalization of endolysosomal proteins to melanosomes. Such 

impaired segregation of melanosomal and lysosomal cargo was suggested to affect 



	

PMEL fibril formation and early melanogenesis (Giordano et al., 2009). One can 

imagine that the increased lysosomal character of maturing melanosomes may affect 

PMEL assembly rates.  

 
PIKfyve activity promotes membrane remodeling 
Our data demonstrate that PIKfyve activity promotes membrane remodeling and 

tubule formation required to maintain stage I melanosome number, homeostasis and 

function in melanocytes. The molecular mechanism by which PIKfyve activity 

induces the formation of membrane tubules in mammalian cells still remains elusive. 

PI(3,5)P2 produced by PIKfyve activates transient receptor potential mucolipin 

(TRPML) channel family and mice carrying a mutation in TRPML3, which is highly 

expressed in melanocytes, show pigmentation abnormalities (Di Palma et al., 2002; 

Dong et al., 2010). Activation of the TRPML protein family by the small molecule 

activator MLSA1 was shown to rescue the enlarged compartment phenotype of 

PI(3,5)P2-depleted FIG4 and VAC14 knockout cells (Dong et al., 2010; Zou et al., 

2015). However, in melanocytes MLSA1 co-treatment with YM201636 neither 

counteracted stage I melanosome enlargement nor rescued membrane tubule 

formation (Figure S4A-B). These findings indicate that during melanosome 

biogenesis, TRPMLs may not be downstream effectors of PIKfyve activity, which is 

in line with our observations in HeLa cells (Bissig et al., 2017). It is worth noting that 

mice mutant for TRPML3,VAC14 and FIG4 exhibit different fur pigmentation 

phenotypes (Atiba-Davies and Noben-Trauth, 2007; Chow et al., 2007; Jin et al., 

2008; Zhang et al., 2007), which may reflect distinct molecular roles.  PI(3,5)P2 was 

also shown to activate melanosomal two-pore sodium channel 2 (TPC2) that 

negatively regulates pigmentation (Bellono et al., 2016). However, TPC2 acts mainly 

on pigmented melanosomes, whereas PIKfyve activity is involved in homeostasis of 

unpigmented melanosomes and inhibition of PIKfyve activity does not impair melanin 

production.  

It is attractive to speculate that PI(3,5)P2 synthesis by PIKfyve triggers the 

recruitment of PI(3,5)P2-binding effector proteins, which may have membrane 

bending properties, as shown for the BAR domain of SNX1 involved in retrograde 

transport (Carlton et al., 2004). Recently, the PROPPIN domain of yeast Atg18, 

which binds PI(3)P and PI(3,5)P2, was shown to drive membrane tubule formation 

and fission via bilayer insertion of an amphipathic alpha-helix and oligomerization 



	

(Gopaldass et al., 2017). This membrane deformation and fission function may be 

shared by other PROPPINs, such as the mammalian WIPI proteins, which also 

contain potential amphipathic alpha-helical features. Interestingly, mammalian WIPI1 

is involved in early melanogenesis and is thus a promising PI(3,5)P2 effector in 

melanocytes (Ho et al., 2011).  

Our data further provide evidence that membrane tubules generated by PIKfyve 

activity are released by a mechanism involving branched actin dynamics. As 

PI(3,5)P2 regulates endosomal branched actin, it is likely that PIKfyve activity also 

controls actin-dependent membrane release. A role of actin in membrane release is 

exemplified by the fission of Shiga-toxin carriers induced by actin-driven lipid phase 

separation (Allain et al., 2004; Romer et al., 2010; Roux et al., 2005) and in 

endosomal fission associated to ER contact sites (Rowland et al., 2014). The actin 

network may also promote membrane reorganization and neck constriction by 

inducing mechanical forces, which may involve the action of actin-based motors 

(Derivery et al., 2009; Ripoll et al., 2018). In that respect it is interesting to note that 

overexpression of myosin 1b affects early endosome morphology, slows PMEL 

processing and impairs PMEL fibril formation (Salas-Cortes et al., 2005) – 

phenotypes reminiscent of PIKfyve inhibition. 

 

PIKfyve mediated membrane remodeling is required for formation of PMEL 
amyloid matrix  
Our study provides evidence that formation of early melanosomal membrane tubules 

initiated by PIKfyve activity is co-ordinated with PMEL amyloid assembly and 

melanosome maturation. Similarly, endosome maturation was described to be co-

ordinated with endosome tubule formation (van Weering et al., 2012), indicating that 

melanocytes have fine-tuned a ubiquitous endosomal process for melanosome 

biogenesis. Membrane tubules formed during endosome maturation serve cargo 

sorting to different cellular locations, which is ensured by the assembly of various 

sorting machineries. In melanocytes, tubules emerging in an actin dependent 

manner from recycling endosomes transport melanogenic enzymes, transporters 

and accessory proteins to melanosomes for pigment synthesis (Delevoye et al., 

2016; Dennis et al., 2016; Setty et al., 2007; Sitaram et al., 2012). These tubules are, 

however, distinct from the PIKfyve-driven tubules described here, as we do not 

observe any defect in pigment synthesis. Endosomal tubules formed by PIKfyve 



	

activity are involved in endosome-to-TGN retrograde transport (de Lartigue et al., 

2009; Rutherford et al., 2006), a process that also involves endosomal actin network 

(Seaman et al., 2013). However, such retrograde transport has not been described 

for PMEL. The membrane remodeling initiated by the PIKfyve activity contributes 

here to homotypic fusion-fission processes that allow a homogenous repartition of 

PMEL within the small and highly dynamic population of stage I melanosomes. 

Impaired membrane remodeling results then in the accumulation of PMEL lumenal 

fragments in enlarged, immotile and fewer stage I melanosomes. This accumulation 

saturates PMEL processing and sorting machinery and leads to aberrant 

aggregation of PMEL and thus a defect in PMEL fibril formation and melanosome 

maturation. Interestingly, evidence suggests that terminal proteolytic maturation of 

lumenal PMEL fragments only occurs after aggregation into a pre-matrix (Leonhardt 

et al., 2013). Thus, impaired pre-matrix assembly may lead to accumulation of 

partially processed lumenal PMEL fragments that aberrantly aggregate due their 

amyloidogenic nature. 

 
Implications for pathological amyloid formation 
The PMEL fibrils that assemble within melanosomes are amyloids (Fowler et al., 

2006). In contrast to pathological amyloids that are associated with 

neurodegenerative diseases such as Alzheimer’s, Parkinson’s or Huntington’s 

disease, PMEL amyloid fibrils are not pathogenic and serve beneficial functions. 

They are thus called functional or physiological amyloids. Nevertheless, the 

amyloidogenic nature of PMEL presents a potential danger for the cell, as aberrant 

aggregation may be toxic (Watt et al., 2011). It is possible that long-term inhibition of 

PIKfyve activity may damage melanosome integrity by accumulation of toxic PMEL 

aggregates and/or melanin intermediates, perhaps leading to melanocyte death. 

Interestingly, mice uniquely knockout for PIKfyve in pigment cells (Liggins et al., 

2018) exhibit hair greying that is similar to mouse models with impaired PMEL fibril 

(Rochin et al., 2013) and their melanocytes display vacuolar compartments that are 

reminiscent of our observations. Lower melanocyte survival rates may also explain 

why VAC14 and FIG4 mutant mice show hypopigmentation phenotypes, while we 

did not observe impaired pigment synthesis. Since PMEL fibrils sequester melanin 

and thus might facilitate melanin transfer to keratinocytes, fur hypopigmentation may 

also result from inefficient pigment transfer. These two models are not mutually 



	

exclusive.  

In view of the interesting similarities between intracellular trafficking and processing 

of PMEL and amyloid precursor protein (APP), which is involved in Alzheimer’s 

disease (Bissig et al., 2016; Sannerud et al., 2016), our studies may also have 

important implications for pathological amyloid formation during Alzheimer’s disease. 

Intriguingly, PIKfyve depletion leads to massive neurodegeneration in individuals 

with mutations of FIG4 and VAC14 (Baulac et al., 2014; Campeau et al., 2013; Chow 

et al., 2007; Lenk et al., 2011; Lenk et al., 2016) and PIKfyve influences  APP 

(Balklava et al., 2015; Currinn et al., 2016). It is therefore tempting to speculate that, 

in neurons, PIKfyve activity regulates the abundance of an amyloidogenic substrate 

and its proteases in a compartment known to generate the Abeta intracellular pool 

(Peric and Annaert, 2015; Rajendran and Annaert, 2012; Sannerud et al., 2016). 

Further work will determine whether PIKfyve activity plays analogous roles in 

physiological and pathological amyloid formation.  

 



Materials and Methods  
 
Cell culture, transfections and drug treatment 
Human melanocytic MNT-1 cells and primary melanocytes were maintained as 

previously described (Berson et al., 2001; Raposo et al., 2001; van Niel et al., 2015). 

Cells were transfected according to manufacturer’s recommendation with DNA and 

siRNA using JetPrime (Polyplus transfection TM) and oligofectamine (Invitrogen), 

respectively. Experiments were performed 16h after transfection with DNA. siRNA 

transfections were performed twice at 48h interval and experiments were performed 

96h after the first siRNA transfection. If not otherwise indicated, cells were incubated 

for 2h with 1.6 µM YM201636 (Abcam), 200 µM CK-666 (Tocris), 1µM Vps34 

inhibitor (IN1, Calbiochem) or DMSO (Sigma-Aldrich). YM201636 was washed out 

for 1h to 4h at 37°C after 3 washes with cold medium. If indicated 200 µM CK-666 

(Tocris) was present during the washout. 

 

Reagents, antibodies, siRNAs and plasmids 
Reagents were obtained from the following sources: DAPI (4’,6-diamidino-2-

phenylindole), Dextran 10’000 MW conjugated to Alexa Fluor 488, 555 or 647 and 

DQ-BSA from Thermo Fisher Scientific; YM201636 from Abcam; MagicRed probe 

from Immuno Chemistry Technologies; CK-666 from Tocris; IN1 from Calbiochem; 

pepstatinA and E-64d from Calbiochem; leupeptin from Euromedex and other 

reagents were obtained from Sigma-Aldrich.  

Antibodies were obtained from the following sources: anti-FIG4 (ab186269), anti-

VAC14 (ab67369), anti-Melanoma (HMB45) (ab787), anti-ß-TUB (ab6046), anti-

PSEN2 (ab51249), anti-TYRP1 (ab3312), anti-EEA1 (Ab70521) antibodies and 

horseradish peroxidase (HRP)-conjugated goat polyclonal antibodies to rabbit IgG 

(ab6721) and to mouse IgG (ab6789) from Abcam; anti- PMEL NKI from 

Neomarkers, anti-PIKfyve antibody (PCR-PIKFYVE-3C9) from Developmental 

Studies Hybridoma Bank (DSHB); mouse anti-LAMP1 antibody (555798) from BD 

Biosciences; secondary goat anti-rabbit or anti-mouse antibodies conjugated to Alex 

Fluor 488, 555 or 647 were from Thermo Fisher Scientific. Protein A conjugated to 

15 nm gold particles (PAG15) and BSA conjugated to 5 nm gold particles (BSA-gold 

5nm) were from Cell Microscopy Center (AZU, Utrecht University, Netherlands); 

Affinity-purified anti-peptide antibodies recognizing the PMEL N-terminus (anti-



	

PMEL-N) (Berson et al., 2003) and C-terminus (anti-PMEL-C) (Raposo et al., 2001) 

were described previously. 

The siRNAs targeting FIG4 (L019141), VAC14 (L015729), PIKfyve (L005058) and 

non-targeting control (D001810) ON-TARGET plus SMARTpool were from Thermo 

Fisher Scientific. 

The 2xFYVE-GFP (Gillooly et al., 2000) and LAMP1-mRuby2 (Lam et al., 2012) 

(Addgene plasmid #55902) plasmid were kind gifts from Harald Stenmark and 

Michael Davidson, respectively. 

 
Dextran internalization assays  
Dextran internalization for Dextran transfer experiments: To internalize Dextran 

10’000MW AF555 into endolysosomes, MNT-1 cells were pulsed with 1mg/ml 

Dextran-AF555 at 37°C for 4h, washed 3 times with cold medium and chased with 

conjugate-free medium for 20h at 37°C (Bright et al., 2005).  

Dextran-AF647 co-internalization with DQ-BSA: MNT-1 cells were pretreated for 2h 

with 1.6µM YM201636 or DMSO. Then Dextran-AF647 and DQ-BSA were co-

internalized at a concentration of 50µg/ml each for 2h at 37°C. Cells were washed 3 

times with cold medium and incubated for 1h with conjugate-free medium at 37°C. 

Snapshots of live-cells were taken at 37°C in imaging buffer (20mM Hepes-NaOH 

pH 7.4 140mM NaCl, 2.5mM KCl, 1.8mM CaCl2, 1.0mM MgCl2, 4.5g/L D-Glucose). 

YM201636 or DMSO was present throughout the experiment.  

 
Electron microscopy 
For conventional EM, MNT-1 were grown on coverslips, fixed in 2.5% glutaraldehyde 

in 0.1 M cacodylate buffer for 24 h, post-fixed with 1% osmium tetroxide, dehydrated 

in ethanol and embedded in epon as described (Raposo et al., 2001). For EM 

analysis of RPE sections, tissues from newborn mice were processed as previsouly 

(Rochin et al., 2013) For high-pressure freezing MNT-1 cells were grown on 

carbonated sapphire discs (30 mm in diameter) and high-pressure frozen using a 

HPM 100 (Leica Microsystems) or HPM Light µ (CryoCapCell) in FBS serving as 

filler. High-pressure frozen samples were transferred to an AFS (Leica 

Microsystems) with precooled (-90°C) anhydrous acetone containing 2% osmium 

tetroxide and 1% H2O. Freeze substitution and epon embedding was performed as 

described (Hurbain et al., 2008). Ultrathin sections of cell monolayers or RPE were 



	

prepared with a Reichert UltracutS ultramicrotome (Leica Microsystems) and 

contrasted with uranyl acetate and lead citrate.  

For ultrathin cryosectioning and immunogold labeling, cells were fixed in 2% PFA, 

0.2% glutaraldehyde in 0.1M phosphate buffer pH 7.4. Cells were processed for 

ultracryomicrotomy and immunogold labeled using PAG 15 as described (Raposo et 

al., 2001). 

All samples were examined with a FEI Tecnai Spirit electron microscope ( Thermo 

Fisher Scientific), and digital acquisitions were made with a numeric camera 

(Quemesa; EMSIS).   

 

Live cell microscopy and immunofluorescence analysis 
MNT-1 cells grown on coverslips were fixed with 2% PFA, permeabilized with 0.05% 

saponin/1% BSA in PBS, quenched with 50mM glycine and processed for indirect 

immunolabeling. Images were captured on a LSM 780 confocal microscope (Zeiss) 

using an oil-immersion plan Apo 63x A/1.40 NA objective lens.  

Live-cell imaging experiments were done in fluorodishes (World Precision 

Instruments) at an inverted spinning disc microscope (Nikon) using an oil-immersion 

plan Apo 100x A/1.40 NA objective lens. Live-cell imaging was performed at 37°C in 

imaging buffer (20mM Hepes-NaOH pH 7.4 140mM NaCl, 2.5mM KCl, 1.8mM 

CaCl2, 1.0mM MgCl2, 4.5g/L D-Glucose) and movies were taken at 0.4s frame rate 

for 2min. Data were collected using Metamorph Software and analyzed using 

ImageJ, Icy and CellProfiler software.  

 

Image analysis and quantification 
Melanosome stages were defined by morphology (Raposo et al., 2001; Seiji et al., 

1963). Length and width of melanosomes, as well as the size were measured using 

ImageJ software. To measure contact times, organelles were segmented using Icy 

software and the time that two organelles partially overlap was assessed. The size of 

organelles was measured after segmentation using Icy software. Colocalization was 

quantified using CellProfiler software calculating the correlation coefficient. Dextran 

transfer to 2xFYVE-GFP compartments (defined as ROI) was quantified measuring 

the fluorescence intensity of the Dextran channel in the ROI using ImageJ. P values 

were determined by Student’s t-test, unpaired, unequal variance (*p<0.05, **p<0.01, 

***p<0.001). 



	

 

Other methods 
Western blot: 

For Western blots a Triton X-soluble lysate was prepared in 20 mM Tris-HCl pH 7.4, 

150 mM NaCl, 1% TX-100, 1 mM EDTA, protease inhibitors. The Triton X-insoluble 

fraction was resuspended in 1% SDS, 1% B-mercaptoethanol in PBS containing 

protease inhibitors, incubated for 10 min at RT and then heated for 10 min at 100°C.  

Membrane-cytosol fractionation 

Cells are scraped and centrifuged at 900 rpm for 5min at 4°C. The pellet is 

homogenized in homogenization buffer (0.25M sucrose, 10mM Hepes-NaOH pH 7,4) 

and then centrifuged at 2000 rpm for 10min at 4°C. The pellet is resuspended in the 

homogenization buffer and after centrifugation at 2000 rpm for 10min, the Post 

Nuclear Supernatant (PNS) is collected and centrifuged at 53000 rpm for 1h at 4°C. 

The supernatant (cytosol fraction) is collected and the pellet (membrane fraction) is 

resuspended in (10mM Tris-HCL pH7.4, 150mM NaCl, 0.5mM EDTA) solution 

containing protease inhibitors. 

Melanin assay:  

Cells were disrupted by sonication in 50 mM Tris-HCl, pH 7.4, 2 mM EDTA, 150 mM 

NaCl, 1 mM DTT, and protease inhibitors. Pigment was pelleted at 16000g for 15min 

at 4°C, rinsed once in ethanol/ether (1:1), and dissolved in 2M NaOH/20% DMSO at 

60°C. Melanin content was measured as optical density at 492nm.   

Ratiometric pH measurement:  

pH-sensitive fluorophore Oregon green 488 (DextranOG) and pH-insensitive 

fluorophore Alexa Fluor 647 (DextranAF647) were internalized and imaged as 

described above in Dextran internalization assays. To convert fluorescence values to 

pH the emission of the two dyes was recorded separately and the fluorescence ratio 

was converted to pH using an internal calibration curve. To acquire the calibration 

curve cells were sequentially bathed for 5min in 143mM KCl, 5mM glucose, 1mM 

MgCl2, 1mM CaCl2, 20mM Hepes buffered to a pH ranging from 4.0 to 7.5 and 

containing 10µM nigericin and 5µM monensin. 

 

 
 
 
 



	

Author contributions 
C.B. conceived, designed, performed and analyzed data from all experiments and 

wrote the manuscript. P.C. designed, performed and analyzed some experiments. 

I.H and X.H. helped to perform HPF and related EM. R.S. performed some 

experiments. G.L. and E.K. provided essential mouse biopsies. W.A., M.M., L.W. 

and G.R. edited and reviewed the manuscript. G.v.N. conceived and supervised the 

project, analyzed data and wrote the manuscript. 

 

Acknowledgements 
We are grateful to Michael S. Marks and Cedric Delevoye for fruitful discussions and 

critical reading of the manuscript. We thank the PITC-IBiSA Imaging Facility, the 

Institut Curie (Paris), the Nikon Imaging Center and the members of the France-

BioImaging national research infrastructure for assistance with microscopy.  

 

Competing interests 
The authors declare no competing interests 

 

Funding 
This work was supported by Institut Curie, CNRS, by the Fondation ARC pour la 

Recherche sur le Cancer (grant SL220100601359) (to GR), by the Fondation pour la 

Recherche Médicale (AJE20160635884) (to GvN), by a Research Grant from the 

Amyloidosis Foundation (to GvN), by the French National Research Agency through 

the "Investments for the Future" program (France-BioImaging, ANR-10-INSB-04)", 

the CelTisPhyBio Labex (N° ANR-10-LBX-0038) part of the IDEX PSL (N°ANR-10-

IDEX-0001-02 PSL)", the Swiss National Fund for Research for the Early Postdoc. 

Mobility fellowship P2GEP3-151589 and the Advanced Postdoc. Mobility fellowship 

P300PA_167618 (to CB), the Federation of European Biochemical Societies for the 

Long-Term Fellowship (to CB) and Labex CelTisPhyBio for the post-doctoral 

fellowship (CB). WA and RS are supported by VIB and grants of KU Leuven 

(C16/15/073), FWO (G078117N and SBO-S006617N), Hercules (AKUL/09/037) and 

SAO-FRA (S#16018; 2017/033).  We also acknowledge NIH grant R01 GM24872 

(MHM) and R01 NS NS064015 (LSW). 

 

 



	

 

 



References 
Allain, J.M., Storm, C., Roux, A., Ben Amar, M., Joanny, J.F., 2004. Fission of a 

multiphase membrane tube. Physical review letters 93, 158104. 
Anitei, M., Hoflack, B., 2011. Bridging membrane and cytoskeleton dynamics in the 

secretory and endocytic pathways. Nat Cell Biol 14, 11-19. 
Atiba-Davies, M., Noben-Trauth, K., 2007. TRPML3 and hearing loss in the varitint-

waddler mouse. Biochimica et biophysica acta 1772, 1028-1031. 
Balklava, Z., Niehage, C., Currinn, H., Mellor, L., Guscott, B., Poulin, G., Hoflack, B., 

Wassmer, T., 2015. The Amyloid Precursor Protein Controls PIKfyve Function. 
PLoS One 10, e0130485. 

Baulac, S., Lenk, G.M., Dufresnois, B., Ouled Amar Bencheikh, B., Couarch, P., 
Renard, J., Larson, P.A., Ferguson, C.J., Noe, E., Poirier, K., Hubans, C., 
Ferreira, S., Guerrini, R., Ouazzani, R., El Hachimi, K.H., Meisler, M.H., 
Leguern, E., 2014. Role of the phosphoinositide phosphatase FIG4 gene in 
familial epilepsy with polymicrogyria. Neurology 82, 1068-1075. 

Bellono, N.W., Escobar, I.E., Oancea, E., 2016. A melanosomal two-pore sodium 
channel regulates pigmentation. Scientific reports 6, 26570. 

Berson, J.F., Harper, D.C., Tenza, D., Raposo, G., Marks, M.S., 2001. Pmel17 
initiates premelanosome morphogenesis within multivesicular bodies. Mol Biol 
Cell 12, 3451-3464. 

Berson, J.F., Theos, A.C., Harper, D.C., Tenza, D., Raposo, G., Marks, M.S., 2003. 
Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident 
glycoprotein to initiate melanosome biogenesis. J Cell Biol 161, 521-533. 

Bissig, C., Hurbain, I., Raposo, G., van Niel, G., 2017. PIKfyve activity regulates 
reformation of terminal storage lysosomes from endolysosomes. Traffic. 

Bissig, C., Rochin, L., van Niel, G., 2016. PMEL Amyloid Fibril Formation: The Bright 
Steps of Pigmentation. Int J Mol Sci 17. 

Bonangelino, C.J., Nau, J.J., Duex, J.E., Brinkman, M., Wurmser, A.E., Gary, J.D., 
Emr, S.D., Weisman, L.S., 2002. Osmotic stress-induced increase of 
phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid 
kinase Fab1p. J Cell Biol 156, 1015-1028. 

Bright, N.A., Gratian, M.J., Luzio, J.P., 2005. Endocytic delivery to lysosomes 
mediated by concurrent fusion and kissing events in living cells. Curr Biol 15, 
360-365. 

Campeau, P.M., Lenk, G.M., Lu, J.T., Bae, Y., Burrage, L., Turnpenny, P., Roman 
Corona-Rivera, J., Morandi, L., Mora, M., Reutter, H., Vulto-van Silfhout, A.T., 
Faivre, L., Haan, E., Gibbs, R.A., Meisler, M.H., Lee, B.H., 2013. Yunis-Varon 
syndrome is caused by mutations in FIG4, encoding a phosphoinositide 
phosphatase. American journal of human genetics 92, 781-791. 

Carlton, J., Bujny, M., Peter, B.J., Oorschot, V.M., Rutherford, A., Mellor, H., 
Klumperman, J., McMahon, H.T., Cullen, P.J., 2004. Sorting nexin-1 mediates 
tubular endosome-to-TGN transport through coincidence sensing of high- 
curvature membranes and 3-phosphoinositides. Curr Biol 14, 1791-1800. 

Chow, C.Y., Zhang, Y., Dowling, J.J., Jin, N., Adamska, M., Shiga, K., Szigeti, K., 
Shy, M.E., Li, J., Zhang, X., Lupski, J.R., Weisman, L.S., Meisler, M.H., 2007. 
Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and 
patients with CMT4J. Nature 448, 68-72. 

Currinn, H., Guscott, B., Balklava, Z., Rothnie, A., Wassmer, T., 2016. APP controls 
the formation of PI(3,5)P-2 vesicles through its binding of the PIKfyve complex. 
Cell Mol Life Sci 73, 393-408. 



	

de Lartigue, J., Polson, H., Feldman, M., Shokat, K., Tooze, S.A., Urbe, S., Clague, 
M.J., 2009. PIKfyve regulation of endosome-linked pathways. Traffic 10, 883-
893. 

Delevoye, C., Heiligenstein, X., Ripoll, L., Gilles-Marsens, F., Dennis, M.K., Linares, 
R.A., Derman, L., Gokhale, A., Morel, E., Faundez, V., Marks, M.S., Raposo, 
G., 2016. BLOC-1 Brings Together the Actin and Microtubule Cytoskeletons to 
Generate Recycling Endosomes. Current Biology 26, 1-13. 

Dennis, M.K., Delevoye, C., Acosta-Ruiz, A., Hurbain, I., Romao, M., Hesketh, G.G., 
Goff, P.S., Sviderskaya, E.V., Bennett, D.C., Luzio, J.P., Galli, T., Owen, D.J., 
Raposo, G., Marks, M.S., 2016. BLOC-1 and BLOC-3 regulate VAMP7 cycling 
to and from melanosomes via distinct tubular transport carriers. J Cell Biol 214, 
293-308. 

Derivery, E., Sousa, C., Gautier, J.J., Lombard, B., Loew, D., Gautreau, A., 2009. 
The Arp2/3 activator WASH controls the fission of endosomes through a large 
multiprotein complex. Developmental cell 17, 712-723. 

Di Palma, F., Belyantseva, I.A., Kim, H.J., Vogt, T.F., Kachar, B., Noben-Trauth, K., 
2002. Mutations in Mcoln3 associated with deafness and pigmentation defects 
in varitint-waddler (Va) mice. Proc Natl Acad Sci U S A 99, 14994-14999. 

Dong, X.P., Shen, D., Wang, X., Dawson, T., Li, X., Zhang, Q., Cheng, X., Zhang, Y., 
Weisman, L.S., Delling, M., Xu, H., 2010. PI(3,5)P(2) controls membrane 
trafficking by direct activation of mucolipin Ca(2+) release channels in the 
endolysosome. Nature communications 1, 38. 

Dove, S.K., McEwen, R.K., Mayes, A., Hughes, D.C., Beggs, J.D., Michell, R.H., 
2002. Vac14 controls PtdIns(3,5)P(2) synthesis and Fab1-dependent protein 
trafficking to the multivesicular body. Curr Biol 12, 885-893. 

Duex, J.E., Nau, J.J., Kauffman, E.J., Weisman, L.S., 2006a. Phosphoinositide 5-
phosphatase Fig 4p is required for both acute rise and subsequent fall in 
stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell 5, 
723-731. 

Duex, J.E., Tang, F., Weisman, L.S., 2006b. The Vac14p-Fig4p complex acts 
independently of Vac7p and couples PI3,5P2 synthesis and turnover. J Cell 
Biol 172, 693-704. 

Dunn, L.C., and Thigpen, L.W., 1930. The silver mouse: a recessive color variation. 
J. Heredity, 495-498. 

Ferguson, C.J., Lenk, G.M., Meisler, M.H., 2009. Defective autophagy in neurons 
and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet 18, 4868-
4878. 

Fowler, D.M., Koulov, A.V., Alory-Jost, C., Marks, M.S., Balch, W.E., Kelly, J.W., 
2006. Functional amyloid formation within mammalian tissue. PLoS Biol 4, e6. 

Gillooly, D.J., Morrow, I.C., Lindsay, M., Gould, R., Bryant, N.J., Gaullier, J.M., 
Parton, R.G., Stenmark, H., 2000. Localization of phosphatidylinositol 3-
phosphate in yeast and mammalian cells. EMBO J 19, 4577-4588. 

Giordano, F., Bonetti, C., Surace, E.M., Marigo, V., Raposo, G., 2009. The ocular 
albinism type 1 (OA1) G-protein-coupled receptor functions with MART-1 at 
early stages of melanogenesis to control melanosome identity and composition. 
Hum Mol Genet 18, 4530-4545. 

Gopaldass, N., Fauvet, B., Lashuel, H., Roux, A., Mayer, A., 2017. Membrane 
scission driven by the PROPPIN Atg18. Embo j 36, 3274-3291. 

Hellstrom, A.R., Watt, B., Fard, S.S., Tenza, D., Mannstrom, P., Narfstrom, K., 
Ekesten, B., Ito, S., Wakamatsu, K., Larsson, J., Ulfendahl, M., Kullander, K., 



	

Raposo, G., Kerje, S., Hallbook, F., Marks, M.S., Andersson, L., 2011. 
Inactivation of Pmel alters melanosome shape but has only a subtle effect on 
visible pigmentation. PLoS Genet 7, e1002285. 

Ho, C.Y., Choy, C.H., Wattson, C.A., Johnson, D.E., Botelho, R.J., 2015. The 
Fab1/PIKfyve phosphoinositide phosphate kinase is not necessary to maintain 
the pH of lysosomes and of the yeast vacuole. J Biol Chem 290, 9919-9928. 

Ho, H., Kapadia, R., Al-Tahan, S., Ahmad, S., Ganesan, A.K., 2011. WIPI1 
coordinates melanogenic gene transcription and melanosome formation via 
TORC1 inhibition. J Biol Chem 286, 12509-12523. 

Ho, T., Watt, B., Spruce, L.A., Seeholzer, S.H., Marks, M.S., 2016. The Kringle-like 
Domain Facilitates Post-endoplasmic Reticulum Changes to Premelanosome 
Protein (PMEL) Oligomerization and Disulfide Bond Configuration and 
Promotes Amyloid Formation. J Biol Chem 291, 3595-3612. 

Hong, N.H., Qi, A., Weaver, A.M., 2015. PI(3,5)P2 controls endosomal branched 
actin dynamics by regulating cortactin-actin interactions. J Cell Biol 210, 753-
769. 

Hurbain, I., Geerts, W.J., Boudier, T., Marco, S., Verkleij, A.J., Marks, M.S., Raposo, 
G., 2008. Electron tomography of early melanosomes: implications for 
melanogenesis and the generation of fibrillar amyloid sheets. Proc Natl Acad 
Sci U S A 105, 19726-19731. 

Ikonomov, O.C., Sbrissa, D., Fenner, H., Shisheva, A., 2009. PIKfyve-ArPIKfyve-
Sac3 core complex: contact sites and their consequence for Sac3 phosphatase 
activity and endocytic membrane homeostasis. J Biol Chem 284, 35794-35806. 

Incerti, B., Cortese, K., Pizzigoni, A., Surace, E.M., Varani, S., Coppola, M., Jeffery, 
G., Seeliger, M., Jaissle, G., Bennett, D.C., Marigo, V., Schiaffino, M.V., 
Tacchetti, C., Ballabio, A., 2000. Oa1 knock-out: new insights on the 
pathogenesis of ocular albinism type 1. Hum Mol Genet 9, 2781-2788. 

Jefferies, H.B., Cooke, F.T., Jat, P., Boucheron, C., Koizumi, T., Hayakawa, M., 
Kaizawa, H., Ohishi, T., Workman, P., Waterfield, M.D., Parker, P.J., 2008. A 
selective PIKfyve inhibitor blocks PtdIns(3,5)P(2) production and disrupts 
endomembrane transport and retroviral budding. EMBO Rep 9, 164-170. 

Jin, N., Chow, C.Y., Liu, L., Zolov, S.N., Bronson, R., Davisson, M., Petersen, J.L., 
Zhang, Y., Park, S., Duex, J.E., Goldowitz, D., Meisler, M.H., Weisman, L.S., 
2008. VAC14 nucleates a protein complex essential for the acute 
interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO J 27, 3221-
3234. 

Kawaguchi, M., Hozumi, Y., Suzuki, T., 2015. ADAM protease inhibitors reduce 
melanogenesis by regulating PMEL17 processing in human melanocytes. J 
Dermatol Sci 78, 133-142. 

Lam, A.J., St-Pierre, F., Gong, Y., Marshall, J.D., Cranfill, P.J., Baird, M.A., 
McKeown, M.R., Wiedenmann, J., Davidson, M.W., Schnitzer, M.J., Tsien, 
R.Y., Lin, M.Z., 2012. Improving FRET dynamic range with bright green and red 
fluorescent proteins. Nat Methods 9, 1005-1012. 

Lee, Z.H., Hou, L., Moellmann, G., Kuklinska, E., Antol, K., Fraser, M., Halaban, R., 
Kwon, B.S., 1996. Characterization and subcellular localization of human Pmel 
17/silver, a 110-kDa (pre)melanosomal membrane protein associated with 5,6,-
dihydroxyindole-2-carboxylic acid (DHICA) converting activity. The Journal of 
investigative dermatology 106, 605-610. 

Lenk, G.M., Ferguson, C.J., Chow, C.Y., Jin, N., Jones, J.M., Grant, A.E., Zolov, 
S.N., Winters, J.J., Giger, R.J., Dowling, J.J., Weisman, L.S., Meisler, M.H., 



	

2011. Pathogenic mechanism of the FIG4 mutation responsible for Charcot-
Marie-Tooth disease CMT4J. PLoS Genet 7, e1002104. 

Lenk, G.M., Szymanska, K., Debska-Vielhaber, G., Rydzanicz, M., Walczak, A., 
Bekiesinska-Figatowska, M., Vielhaber, S., Hallmann, K., Stawinski, P., 
Buehring, S., Hsu, D.A., Kunz, W.S., Meisler, M.H., Ploski, R., 2016. Biallelic 
Mutations of VAC14 in Pediatric-Onset Neurological Disease. American journal 
of human genetics 99, 188-194. 

Leonhardt, R.M., Vigneron, N., Hee, J.S., Graham, M., Cresswell, P., 2013. Critical 
residues in the PMEL/Pmel17 N-terminus direct the hierarchical assembly of 
melanosomal fibrils. Mol Biol Cell 24, 964-981. 

Leonhardt, R.M., Vigneron, N., Rahner, C., Cresswell, P., 2011. Proprotein 
convertases process Pmel17 during secretion. J Biol Chem 286, 9321-9337. 

Levy, F., Muehlethaler, K., Salvi, S., Peitrequin, A.L., Lindholm, C.K., Cerottini, J.C., 
Rimoldi, D., 2005. Ubiquitylation of a melanosomal protein by HECT-E3 ligases 
serves as sorting signal for lysosomal degradation. Mol Biol Cell 16, 1777-
1787. 

Liggins, M.C., Flesher, J.L., Jahid, S., Vasudeva, P., Eby, V., Takasuga, S., Sasaki, 
J., Sasaki, T., Boissy, R.E., Ganesan, A.K., 2018. PIKfyve regulates 
melanosome biogenesis. PLoS Genet 14, e1007290. 

Lopes, V.S., Wasmeier, C., Seabra, M.C., Futter, C.E., 2007. Melanosome 
maturation defect in rab38-deficient retinal pigment epithelium results in 
instability of immature Melanosomes during transient melanogenesis. 
Molecular Biology of the Cell 18, 3914-3927. 

McCartney, A.J., Zhang, Y., Weisman, L.S., 2014. Phosphatidylinositol 3,5-
bisphosphate: low abundance, high significance. Bioessays 36, 52-64. 

Peric, A., Annaert, W., 2015. Early etiology of Alzheimer's disease: tipping the 
balance toward autophagy or endosomal dysfunction? Acta neuropathologica 
129, 363-381. 

Rajendran, L., Annaert, W., 2012. Membrane trafficking pathways in Alzheimer's 
disease. Traffic 13, 759-770. 

Raposo, G., Tenza, D., Murphy, D.M., Berson, J.F., Marks, M.S., 2001. Distinct 
protein sorting and localization to premelanosomes, melanosomes, and 
lysosomes in pigmented melanocytic cells. J Cell Biol 152, 809-824. 

Ripoll, L., Heiligenstein, X., Hurbain, I., Domingues, L., Figon, F., Petersen, K.J., 
Dennis, M.K., Houdusse, A., Marks, M.S., Raposo, G., Delevoye, C., 2018. 
Myosin VI and branched actin filaments mediate membrane constriction and 
fission of melanosomal tubule carriers. J Cell Biol 217, 2709-2726. 

Rochin, L., Hurbain, I., Serneels, L., Fort, C., Watt, B., Leblanc, P., Marks, M.S., De 
Strooper, B., Raposo, G., van Niel, G., 2013. BACE2 processes PMEL to form 
the melanosome amyloid matrix in pigment cells. Proc Natl Acad Sci U S A 
110, 10658-10663. 

Romer, W., Pontani, L.L., Sorre, B., Rentero, C., Berland, L., Chambon, V., Lamaze, 
C., Bassereau, P., Sykes, C., Gaus, K., Johannes, L., 2010. Actin dynamics 
drive membrane reorganization and scission in clathrin-independent 
endocytosis. Cell 140, 540-553. 

Roux, A., Cuvelier, D., Nassoy, P., Prost, J., Bassereau, P., Goud, B., 2005. Role of 
curvature and phase transition in lipid sorting and fission of membrane tubules. 
Embo j 24, 1537-1545. 

Rowland, A.A., Chitwood, P.J., Phillips, M.J., Voeltz, G.K., 2014. ER contact sites 
define the position and timing of endosome fission. Cell 159, 1027-1041. 



	

Rudge, S.A., Anderson, D.M., Emr, S.D., 2004. Vacuole size control: regulation of 
PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a 
PtdIns(3,5)P2-specific phosphatase. Mol Biol Cell 15, 24-36. 

Rutherford, A.C., Traer, C., Wassmer, T., Pattni, K., Bujny, M.V., Carlton, J.G., 
Stenmark, H., Cullen, P.J., 2006. The mammalian phosphatidylinositol 3-
phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde 
transport. J Cell Sci 119, 3944-3957. 

Salas-Cortes, L., Ye, F., Tenza, D., Wilhelm, C., Theos, A., Louvard, D., Raposo, G., 
Coudrier, E., 2005. Myosin Ib modulates the morphology and the protein 
transport within multi-vesicular sorting endosomes. J Cell Sci 118, 4823-4832. 

Sannerud, R., Esselens, C., Ejsmont, P., Mattera, R., Rochin, L., Tharkeshwar, A.K., 
De Baets, G., De Wever, V., Habets, R., Baert, V., Vermeire, W., Michiels, C., 
Groot, A.J., Wouters, R., Dillen, K., Vints, K., Baatsen, P., Munck, S., Derua, 
R., Waelkens, E., Basi, G.S., Mercken, M., Vooijs, M., Bollen, M., Schymkowitz, 
J., Rousseau, F., Bonifacino, J.S., Van Niel, G., De Strooper, B., Annaert, W., 
2016. Restricted Location of PSEN2/gamma-Secretase Determines Substrate 
Specificity and Generates an Intracellular Abeta Pool. Cell 166, 193-208. 

Sbrissa, D., Ikonomov, O.C., Filios, C., Delvecchio, K., Shisheva, A., 2012. 
Functional dissociation between PIKfyve-synthesized PtdIns5P and 
PtdIns(3,5)P2 by means of the PIKfyve inhibitor YM201636. American journal 
of physiology. Cell physiology 303, C436-446. 

Seaman, M.N., Gautreau, A., Billadeau, D.D., 2013. Retromer-mediated endosomal 
protein sorting: all WASHed up! Trends in cell biology 23, 522-528. 

Seiji, M., Fitzpatrick, T.B., Simpson, R.T., Birbeck, M.S., 1963. Chemical composition 
and terminology of specialized organelles (melanosomes and melanin 
granules) in mammalian melanocytes. Nature 197, 1082-1084. 

Setty, S.R., Tenza, D., Truschel, S.T., Chou, E., Sviderskaya, E.V., Theos, A.C., 
Lamoreux, M.L., Di Pietro, S.M., Starcevic, M., Bennett, D.C., Dell'Angelica, 
E.C., Raposo, G., Marks, M.S., 2007. BLOC-1 is required for cargo-specific 
sorting from vacuolar early endosomes toward lysosome-related organelles. 
Mol Biol Cell 18, 768-780. 

Sitaram, A., Dennis, M.K., Chaudhuri, R., De Jesus-Rojas, W., Tenza, D., Setty, 
S.R., Wood, C.S., Sviderskaya, E.V., Bennett, D.C., Raposo, G., Bonifacino, 
J.S., Marks, M.S., 2012. Differential recognition of a dileucine-based sorting 
signal by AP-1 and AP-3 reveals a requirement for both BLOC-1 and AP-3 in 
delivery of OCA2 to melanosomes. Mol Biol Cell 23, 3178-3192. 

Sitaram, A., Marks, M.S., 2012. Mechanisms of protein delivery to melanosomes in 
pigment cells. Physiology (Bethesda, Md.) 27, 85-99. 

Theos, A.C., Berson, J.F., Theos, S.C., Herman, K.E., Harper, D.C., Tenza, D., 
Sviderskaya, E.V., Lamoreux, M.L., Bennett, D.C., Raposo, G., Marks, M.S., 
2006a. Dual loss of ER export and endocytic signals with altered melanosome 
morphology in the silver mutation of Pmel17. Mol Biol Cell 17, 3598-3612. 

Theos, A.C., Truschel, S.T., Tenza, D., Hurbain, I., Harper, D.C., Berson, J.F., 
Thomas, P.C., Raposo, G., Marks, M.S., 2006b. A lumenal domain-dependent 
pathway for sorting to intralumenal vesicles of multivesicular endosomes 
involved in organelle morphogenesis. Developmental cell 10, 343-354. 

van Niel, G., Bergam, P., Di Cicco, A., Hurbain, I., Lo Cicero, A., Dingli, F., Palmulli, 
R., Fort, C., Potier, M.C., Schurgers, L.J., Loew, D., Levy, D., Raposo, G., 
2015. Apolipoprotein E Regulates Amyloid Formation within Endosomes of 
Pigment Cells. Cell Rep 13, 43-51. 



	

van Niel, G., Charrin, S., Simoes, S., Romao, M., Rochin, L., Saftig, P., Marks, M.S., 
Rubinstein, E., Raposo, G., 2011. The tetraspanin CD63 regulates ESCRT-
independent and -dependent endosomal sorting during melanogenesis. 
Developmental cell 21, 708-721. 

van Weering, J.R., Verkade, P., Cullen, P.J., 2012. SNX-BAR-mediated endosome 
tubulation is co-ordinated with endosome maturation. Traffic 13, 94-107. 

Viaud, J., Boal, F., Tronchere, H., Gaits-Iacovoni, F., Payrastre, B., 2014. 
Phosphatidylinositol 5-phosphate: a nuclear stress lipid and a tuner of 
membranes and cytoskeleton dynamics. Bioessays 36, 260-272. 

Watt, B., Tenza, D., Lemmon, M.A., Kerje, S., Raposo, G., Andersson, L., Marks, 
M.S., 2011. Mutations in or near the transmembrane domain alter PMEL 
amyloid formation from functional to pathogenic. PLoS Genet 7, e1002286. 

Watt, B., van Niel, G., Fowler, D.M., Hurbain, I., Luk, K.C., Stayrook, S.E., Lemmon, 
M.A., Raposo, G., Shorter, J., Kelly, J.W., Marks, M.S., 2009. N-terminal 
domains elicit formation of functional Pmel17 amyloid fibrils. J Biol Chem 284, 
35543-35555. 

Zhang, Y., Zolov, S.N., Chow, C.Y., Slutsky, S.G., Richardson, S.C., Piper, R.C., 
Yang, B., Nau, J.J., Westrick, R.J., Morrison, S.J., Meisler, M.H., Weisman, 
L.S., 2007. Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 
3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci U S 
A 104, 17518-17523. 

Zolov, S.N., Bridges, D., Zhang, Y., Lee, W.W., Riehle, E., Verma, R., Lenk, G.M., 
Converso-Baran, K., Weide, T., Albin, R.L., Saltiel, A.R., Meisler, M.H., Russell, 
M.W., Weisman, L.S., 2012. In vivo, Pikfyve generates PI(3,5)P2, which serves 
as both a signaling lipid and the major precursor for PI5P. Proc Natl Acad Sci U 
S A 109, 17472-17477. 

Zou, J., Hu, B., Arpag, S., Yan, Q., Hamilton, A., Zeng, Y.S., Vanoye, C.G., Li, J., 
2015. Reactivation of Lysosomal Ca2+ Efflux Rescues Abnormal Lysosomal 
Storage in FIG4-Deficient Cells. The Journal of neuroscience : the official 
journal of the Society for Neuroscience 35, 6801-6812. 



	 31	

Figure 1. Interference with the PIKfyve complex affects melanosome 
morphology and identity  

A-B) EM analysis of epon-embedded RPE of newborn Vac14+/+ and Vac14-/- mice 

(A) and Fig4+/+ and Fig4-/- mice (B). (Scale bar: 2µm). C-E) Quantification of 

melanosome number per µm2 RPE (C), melanosome size (D) and the ratio (R) of 

maximal width and length of melanosomes (E). F) MNT-1 cells were treated with 

control siRNAs or siRNAs against VAC14, FIG4 and PIKfyve and knock-down 

efficiencies were analyzed by immunoblotting. Antibodies to tubulin (anti-TUB) were 

used as equal loading marker. G) MNT-1 cells treated with siRNAs as in F were 

fixed, permeabilized and immuno-labelled using anti-LAMP1 (red) and anti-PMEL-

NKI antibodies (green). DAPI was used to stain nuclei. Insets show magnifications of 

the boxed regions. (Scale bars: 10 µm). H) Quantification of colocalization between 

LAMP1 and PMEL fluorescence. I) MNT-1 cells treated with control siRNAs or 

siRNAs against VAC14, FIG4 or PIKfyve were fixed, permeabilized and immuno-

labeled using anti-TYRP1 antibody (green) and DAPI (blue) to stain nuclei. 

Pigmented melanosomes are shown in bright field images. Panels on the right show 

magnifications of the boxed regions. (Scale bars: 10 µm). J) Quantification of melanin 

content of MNT-1 cells treated with control siRNAs or siRNAs against VAC14, FIG4 

or PIKfyve. K) MNT-1 cells treated with control siRNAs or siRNAs against VAC14, 

FIG4 or PIKfyve were fixed, permeabilized and immuno-labeled using DAPI (blue) to 

stain nuclei and anti-PMEL (HMB45) antibody (grey) that recognizes PMEL fibrils. 

(Scale bars: 10 µm). L) Quantification of the mean fluorescence intensity per cell 

normalized to siCTRL. Data are represented as mean ± SEM. (See also Figure S1) 
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Figure 2. M-alpha fragments accumulate upon interference with PIKfyve 
function or lysosomal protease activity 

A) Schematic representation of PMEL maturation and proteolytic processing and 

sorting. PMEL protein domains: signal peptide (SP), N-terminal region (NTR), 

polycystic kidney disease protein-1-like repeat domain (PKD), repeat domain (RPT), 

kringle-like domain (KDL), C-terminal fragment (CTF), intracellular domain (ICD). 

PMEL processing proteases are indicated in red: proprotein convertase (PC), beta-

site APP-cleaving enzyme 2 (BACE2) and presenilin 2 (PSEN2). Colored 

background highlights the intracellular localization of the different PMEL cleavage 

forms. B) Table of antibodies used in this study summarizing their epitopes and the 

major PMEL forms they recognize. C-F) MNT-1 cells were treated for 2 h or 24 h with 

1.6 µM YM201636 (C-D) or with a mixture of protease inhibitors (100 µM leupeptin, 

10 µM pepstatin A and 10 µM E-64d) (E-F) and Triton X-100-soluble (C and E) and 

Triton X-100-insoluble (D and F) lysates were analyzed by immuno-blotting using 

antibodies against the PMEL C-terminus (anti-PMEL-C), the PMEL N-terminus (anti-

PMEL-N), the PMEL RPT domain (anti-PMEL-HMB45), the PMEL PKD domain (anti-

PMEL-I51) and Tubulin (anti-TUB) as equal loading marker. The different PMEL 

fragments are annotated on the right. Stars indicate M-alpha fragments derived from 

another isoform generated by alternative splicing. Right panels show higher 

exposures. Data are represented as mean ± SEM. (See also Figure S1) 
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Figure 3. Stage I melanosomes and endolysosomes transiently interact and 
exchange content even upon inhibition of PIKfyve activity A) MNT-1 cells treated 

for 2 h with 1.6 µm YM201636 or DMSO were fixed, permeabilized and immuno-

labelled using DAPI (blue) to stain nuclei and anti-PMEL-N (green) and anti-LAMP1 

(red) antibodies to label mature PMEL/M-alpha and endolysosomes, respectively. 

Panels on the right show magnifications of the boxed regions. (Scale bars: 10 µm). 

B-D) Quantification of the mean fluorescence intensity (FI) of anti-PMEL-N signal in 

LAMP1 compartments (B), of the number of LAMP1 compartments per cell (C) and of 

the size of LAMP1 compartments (D). E) MNT-1 cells treated for 2 h with 1.6 µM 

YM201636 or DMSO were fixed, permeabilized and immuno-labelled using DAPI 

(blue) to stain nuclei and anti-PMEL-N (green) and anti-EEA1 (red) antibodies to 

label mature PMEL/M-alpha and stage I melanosomes, respectively. Panels on the 

right show magnifications of the boxed regions. (Scale bars: 10 µm). F-H) 

Quantification of the mean fluorescence intensity (FI) of anti-PMEL-N signal in EEA1 

compartments F), of the number of EEA1 compartments per cell G) and of the size of 

EEA1 compartments H). I-J) MNT-1 cells were co-transfected with LAMP1-mRuby2 

(red) and 2xFYVE-GFP (green), to mark endolysosomes and stage I melanosomes, 

respectively. Then cells were treated for 2 h with DMSO (I) or 1.6 µM YM201636 J) 

and subsequently YM201636 was washed out for 1 h (Figure S3H). Movies were 

taken at a frame rate of 0.4 s by spinning disc microscopy. The left panels show the 

first frame of the movies. The right panels show stills of the magnified regions. (Scale 

bars: 10 µm).J) Quantification of the mean duration time of interaction. L-N) Dextran-

AF555 (Dex555) (red) was internalized by 4 h pulse and 20 h chase into lysosomes 

of MNT-1 cells overexpressing 2xFYVE-GFP (localized on stage I melanosomes). 

Then cells were treated for 2 h with DMSO (L) or 1.6 µM YM201636 (N) and movies 

were taken at a frame rate of 0.4 s by spinning disc microscopy. Upper panels show 

stills of a movie, where lyososomal DextranAF555 is shown in red and 2xFYVE-GFP 

localized on stage I melanosomes in green. Lower panels illustrate DextranAF555 

transfer from lysosomes to 2xFYVE-GFP compartments. In these panels only 

lysosomal DextranAF555 is shown in grey and circles indicate the positions of the 

2xFYVE-GFP compartment. M-O) Fluorescence intensity of lysosomal 

DextranAF555 in 2xFYVE-GFP compartments denoted with circles in L and N in cells 

treated with DMSO (M) and YM201636 (O). Data are represented as mean ± SEM. 

(See also Figure S3)  
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Figure 4. PMEL fragments accumulate in enlarged EEA1 compartments  
A-B) EM analysis of epon-embedded MNT-1 cells treated for 2 h with the PIKfyve 

inhibitor YM201636 (A) or knocked-down for VAC14, FIG4 and PIKfyve (B). Upper 

panels show low magnification overviews of unpigmented and pigmented 

melanosomes and lower panels show unpigmented melanosomes at higher 

magnification. Arrowheads point towards enlarged stage I melanosomes and arrows 

highlight aberrant unpigmented melanosomes containing unstructured aggregates 

present in VAC14, FIG4 and PIKfyve knock-down cells. (Scale bars: upper panels 

500 nm and lower panels 200 nm). C) Quantification of stage I melanosome size. D) 

Quantification of unpigmented melanosomes grouped into stage I, stage II and 

aberrant melanosomes. E) Quantification of pigmented and unpigmented 

melanosomes expressed as a percentage of the total number of melanosomes. F) 

EM analysis of epon-embedded human primary melanocytes treated with control 

siRNAs or siRNAs against VAC14, FIG4 and PIKfyve. Right panels show 

magnifications of stage I melanosomes. (Scale bars: left panels 1 µm and right 

panels 500 nm). G) Ultrathin cryosections of MNT-1 cells treated for 2 h with 1.6 µM 

YM201636 or DMSO were immunogold labelled using anti-PMEL-N antibody 

followed by protein-A gold 15 nm diameter. Arrows indicate clathrin coats. (Scale 

bars: 200nm). H) Quantification of the percentage of gold particles on ILVs 

expressed as a percentage of the total number of gold particles. I) Quantification of 

the number of gold particles on ILVs per compartment. Data are represented as 

mean ± SEM. 
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Figure 5. PIKfyve activity promotes formation of membrane tubules that 
modulate PMEL accumulation.  
A) Snapshots of live 2xFYVE-GFP transfected MNT-1 cells treated for 2 h with 1.6 

µM YM201636 or DMSO. Magnifications of the boxed regions illustrate the absence 

of membrane tubules in PIKfyve inhibitor treated cells. (Scale bars: 10 µm). B-D) 

Quantification of 2xFYVE-GFP tubules per cell (B), of 2xFYVE-GFP compartments 

size (C) and number per cell (D). E) EM analysis of HPF/freeze substituted MNT-1 

cells treated for 2 h with DMSO or 1.6 µM YM201636 and subsequently YM201636 

was washed out for 4 h. Arrows point at membrane tubules and deformations. (Scale 

bars: 500 nm). F) Examples of compartments undergoing membrane remodeling 

upon 4h of YM201636 washout. (Scale bars: 200 nm). G-H) Quantification of the 

percentage of tubulated stage I melanosomes G) and of stage I melanosome size H). 

Data are represented as mean ± SEM. I) MNT-1 cells treated as indicated were fixed, 

permeabilized and immuno-labelled using DAPI (blue) to stain nuclei and anti-PMEL-

N (green) and anti-EEA1 (red) antibodies to label the PMEL/M-alpha and stage I 

melanosomes, respectively. Panels on the right show magnifications of the boxed 

regions. (Scale bars: 10 µm). J-K) Quantification of EEA1 size (J) and the mean 

fluorescence (Fl) of PMELN in EEA1 compartment (K). Data are represented as 

mean ± SEM.  

 

  



	 37	

Figure 6. Endosomal actin dynamics is required for membrane tubule release 

A) MNT-1 cells treated for 2 h with DMSO or 1.6 µM YM201636 in the presence or 

absence of 200 µM CK-666 were fixed, permeabilized and immuno-labelled using 

anti-EEA1 antibody (green) and phalloidin-TRITC (red) to label actin. Lower panels 

show magnifications of the boxed regions. B) Snapshots of live 2xFYVE-GFP 

expressing MNT-1 cells treated for 2 h with DMSO or 200 µM CK-666 and after 

washout of YM201636 in the absence and presence of 200 µM CK-666. Arrows 

highlight membrane tubules or buds. Magnifications of boxed regions illustrate 

membrane tubules. C) Stills of compartments of cells in B illustrating membrane 

tubules and release. White arrows highlight membrane tubules or buds. Green and 

red arrows highlight membrane bud release and retraction, respectively. D-E) 

Quantification of tubules per cell (D) and of the percentage of tubules undergoing 

release (E). F) EM analysis of HPF/freeze substituted MNT-1 cells treated for 2 h 200 

µM CK-666 or 1.6 µM YM201636, which was subsequently washed out for 1 h and 4 

h in the presence of 200 µM CK-666. Arrows point at membrane tubules and 

deformations. (Scale bars: 200 nm). G) MNT-1 cells treated as indicated were fixed, 

permeabilized and immuno-labelled using DAPI (blue) to stain nuclei and anti-PMEL-

N (green) and anti-EEA1 (red) antibodies to label the PMEL/M-alpha and stage I 

melanosomes, respectively. Panels on the right show magnifications of the boxed 

regions. (Scale bars: 10 µm). H-I) Quantification of EEA1 size (H) and the mean 

fluorescence (Fl) of PMELN in EEA1 compartment (I). Data are represented as mean 

± SEM.  
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Figure 7. Working model of PIKfyve function in melanosome biogenesis 

Stage I melanosomes are highly dynamic organelles undergoing frequent homotypic 

fusion and fission. In these compartments PMEL fibril formation is initiated by PMEL 

processing and sorting to ILVs. PMEL is processed by lysosomal proteases that are 

delivered to stage I melanosomes via transient interorganelle interactions. PI(3,5)P2 

synthesized by PIKfyve regulates morphology, size and number of stage I 

melanosomes by promoting formation of membrane tubules and buds that are 

released in a mechanism involving branched endosomal actin dynamics. Inhibition of 

PIKfyve activity abrogates membrane remodeling, reduces the number and increases 

the size of stage I melanosomes leading to accumulation and unstructured 

aggregation of PMEL thus impairing fibril formation and melanosome maturation. 

PIKfyve inhibition also prolongs interactions between stage I melanosomes and 

lysosomes, probably because PIKfyve activity and PI(3,5)P2 are also involved in 

membrane remodeling processes that lead to segregation of the two compartments. 

Prolonged interorganelle interactions most likely cause mislocalization of 

endolysosomal proteins to melanosomes and a loss of melanosomal identity during 

the whole melanogenesis process. Inset: schematic representation of the role of 

PIKfyve activity on the regulation of import/export processes in stage I  

melanosomes.  
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