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Necessary and possible interaction between criteria in a

2-additive Choquet integral model ∗

Brice Mayag †

Denis Bouyssou ‡

Abstract

This paper deals with the interpretation of the 2-additive Choquet integral model
in the context of Multiple Criteria Decision Making. When the set of alternatives
is discrete, using classical interaction indices proposed in the literature may lead to
interpretations that are not robust. Indeed, the sign of these indices may depend
upon the arbitrary choice of a numerical representation within the set of all possible
numerical representations. We tackle this problem in two ways. First, in the context
of binary alternatives, we characterize the preference relations for which the problem
does not occur. Outside the framework of binary alternatives, we propose a simple
linear programming model allowing one to test for robust conclusions concerning
the sign of interaction indices. We illustrate our results on a real world example in
the domain of health.

Keywords: Multiple criteria decision analysis, Choquet integral, 2-additive Ca-
pacity, Interaction

1 Introduction

The dominant model in Multiple Criteria Decision Making (MCDM) is the additive
value function model. It has quite solid theoretical foundations [28]. Moreover, many
techniques have been proposed in order to elicit its parameters [26, 50]. This model
makes central use of an independence hypothesis stating that tradeoffs between criteria
can be elicited independently of common evaluations on other criteria. In some contexts,
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this independence hypothesis may seem restrictive. Hence, alternative preference mod-
els were developed. Among the various models allowing weakening the independence
hypothesis, the Choquet integral model stands as a central reference point. Its use in
MCDM was popularized through the work of Michel Grabisch [13, 14], following its wide
diffusion in the field of decision making under uncertainty [42, 51, 52]. The theoretical
status of the Choquet integral model is less firmly established in the field of MCDM than
it is in the field of decision making under uncertainty. Indeed, the model assumes that
criteria are somehow “commensurate”, while there is no consensus in the literature on
the precise meaning of this hypothesis and the way to test it in practice. Nevertheless,
this model is now considered as a central tool in MCDM when one wants to escape the
independence hypothesis [16, 17, 18].

The Choquet integral model is quite flexible. The elicitation of its parameters (i.e.,
the capacity assigning a weight to all subsets of criteria) is therefore difficult without
additional hypotheses. In the literature, the special case of 2-additive capacities has
received much attention [15]. This case is often considered as a useful compromise be-
tween a fully additive model implying independence and a fully general Choquet integral
model (i.e., using a capacity that is not restricted to be 2-additive) raising difficult elic-
itation issues [22]. This model is often used in applications (evaluation of discomfort
[20], performance measurement in supply chains [3, 7], complex system design [39]).

This paper wishes to be a contribution to the study and interpretation of the 2-
additive Choquet integral model (i.e., the Choquet integral model using a 2-additive
capacity) in MCDM. We will not be concerned here with the commensurability hypoth-
esis and we shall suppose that criteria has been built so as to be commensurate. Given
this hypothesis, the Choquet integral model is often interpreted as an extension of the
weighted sum model in which “weights” can also be allocated to sets of criteria contain-
ing more than one element. The interpretation of such weights requires the definition
of adequate interaction indices among criteria [19]. It is widely believed that these in-
dices can be used to interpret the type of interaction at work with a given capacity. A
null interaction means “independence”, a positive interaction implies “complementar-
ity”, while a negative interaction implies “substitutability” [27, 31]. The main purpose
of this paper is to question the soundness of this received interpretation.

It is clear that using a 1-additive capacity in the Choquet integral model (i.e., a
simple weighted sum) implies independence. It is known that the reverse implication is
also true when the model is applied to a “continuous structure” (see Theorem 4.1 in [38]
and the use of condition DC). When the structure is discrete, one may clearly not expect
a representation in the Choquet integral model to be unique. When several (2-additive)
capacities can represent the same preference relation, it would then be heroic to suppose
that the sign of the interaction indices remains unchanged in all possible representations.
This paper starts by showing that this is indeed the case. We then proceed by defin-
ing cases in which preference information allows for an unambiguous interpretation of
interaction indices. This will lead us to define “necessary” and “possible” interactions.
These notions are reminiscent of this idea of necessary and possible preference relations
used in the context of robust ordinal regression (see UTAGMS [24], GRIP [11] or their
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extension to possibly non-additive models [1]). We use a similar idea applied to the sign
of interaction indices.

We study necessary interactions in two contexts. First, within the binary alternatives
framework used in [35], we characterize preference relations allowing for an unambigu-
ous interpretation of interaction indices. Our conclusion is that, for a large variety of
preference relations on binary alternatives, the use of negative interaction is not neces-
sary, i.e., negative interaction does not occur in all feasible numerical representation of
the preference information. The framework of binary alternatives may however seem re-
strictive because it contains too few alternatives. Hence, we also present a simple linear
programming model allowing us to test whether the interpretation of interaction indices
is or not ambiguous. This model is not limited to the case of preference information on
binary alternatives.

The paper is organized as follows. Section 2 presents our setting and recalls some
basic facts about the Choquet integral model in MCDM. Section 3 analyzes a classic
example showing the difficulty to interpret interaction indices in the discrete case. Sec-
tion 4 defines necessary (and possible) interactions in order to circumvent this ambiguity.
Section 5 characterizes preference relation giving rise to necessary interactions, in the
context of binary alternatives. Section 6 proposes a linear programming model allowing
one to test the existence of necessary interactions outside the framework of binary al-
ternatives. Section 7 illustrates our results using a real-world example coming from the
medical field. A final section concludes.

2 Notation and definitions

2.1 The framework

We consider a set of alternatives X evaluated on a finite set of n criteria N = {1, . . . , n}.
The set of all alternatives X is assumed to be a Cartesian product X = X1 × · · · ×Xn.

The various criteria are recoded numerically using, for each i ∈ N , a function ui
from Xi into R. It is supposed the use of these functions allow to assume that the
various recoded criteria are “commensurate” and, hence, the application of the Choquet
integral model is meaningful [21]. We will sometimes write u(x) as a shorthand for
(u1(x1), . . . , un(xn)).

2.2 The Choquet integral

The Choquet integral [18] is an aggregation function known in MCDM as a tool general-
izing the arithmetic mean. It is based on the notion of capacity µ defined as a function
from the powerset 2N into [0, 1] such that,∀A,B ∈ 2N :

µ(∅) = 0,

µ(N) = 1,

[A ⊆ B ⇒ µ(A) ≤ µ(B)] (monotonicity).
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The Möbius transform mµ : 2N → R of a capacity µ is defined, for all T ∈ 2N , by:

mµ(T ) :=
∑
K⊆T

(−1)|T\K|µ(K). (1)

Conversely, we have, for all T ∈ 2N ,

µ(T ) =
∑
K⊆T

mµ(K). (2)

A 2-additive capacity [35] is a capacity µ such that its Möbius transform satisfies the
following two conditions:

• for all subset T of N such that |T | > 2, mµ(T ) = 0,

• there exists a subset B of N such that |B| = 2 and mµ(B) 6= 0.

We simplify our notation for a 2-additive capacity µ by using the following shorthand:
µi := µ({i}), µij := µ({i, j}) for all i, j ∈ N , i 6= j. Whenever we use i and j together,
it is always understood that they are distinct.

For an alternative x := (x1, . . . , xn) ∈ X, the expression of the Choquet integral
w.r.t. a capacity µ is given by:

Cµ(u(x)) := Cµ(u1(x1), . . . , un(xn)) :=
n∑
i=1

(uτ(i)(xτ(i))− uτ(i−1)(xτ(i−1)))µ({τ(i), . . . , τ(n)}),

where τ is a permutation onN such that uτ(1)(xτ(1)) ≤ uτ(2)(xτ(2)) ≤ · · · ≤ uτ(n−1)(xτ(n−1)) ≤
uτ(n)(xτ(n)), and uτ(0)(xτ(0)) := 0.

In the case of the Choquet integral w.r.t. a 2-additive capacity, called for short
the 2-additive Choquet integral, the above equation is equivalent to the following two
expressions: [18, 33]:

Cµ(u1(x1), . . . , un(xn)) :=
∑
i∈N

mµ({i})ui(xi)

+
∑
i,j∈N

mµ({i, j}) min(ui(xi), uj(xj)) (3)

:=
n∑
i

V µ
i ui(xi)−

1

2

∑
{i,j}⊆N

Iµij |ui(xi)− uj(xj)|, (4)

where

V µ
i =

∑
K⊆N\{i}

(n− |K| − 1)!|K|!
n!

[µ(K ∪ i)− µ(K)] = µi +
1

2

∑
j∈N\{i}

[µij − µi − µj ],
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is an interpretation, according to the Shapley value of µ [43], of the importance of
criterion i, and Iµij = µij −µi−µj is the interaction index between the two criteria i and
j as defined in [15, 37]. We have Iµij = mµ({i, j}), when µ is a 2-additive capacity.

Only interactions between two criteria can exist when using a 2-additive Choquet
integral, i.e., interaction among more than three criteria are ignored by this model.
Equation (4) is equivalent to an arithmetic mean when there is no interaction between
criteria. Therefore this operator appears as a compromise between the arithmetic mean
and the Choquet integral. We can notice that, given a 2-additive capacity, the interaction
between criteria i and j, measured by Iµij , has a very simple expression that is much
simpler than the ones that deal with the general Choquet integral [17, 18, 33]. It is
usually interpreted as follows:

• there is complementarity among the criteria i and j when Iµij > 0, i.e., these criteria
have some value by themselves, but put together they become even more important
for the decision maker (DM),

• there is substitutability or redundancy among criteria i and j when Iµij < 0, i.e.,
these criteria have some value by themselves, but put together they become less
important for the DM,

• it seems natural to consider that criteria i and j do not interact, i.e., that they
have independent roles in the decision problem when Iµij = 0.

The interpretation given to the interaction index Iµij between two criteria is clearly
dependent upon the capacity µ. But when several capacities can represent the same
preference information, the situation becomes more complex, as shown in the next sec-
tion.

3 A motivating example

We consider a classic exemple in the literature [18]. Four students of a faculty are
evaluated on three subjects Mathematics (M), Statistics (S) and Language skills (L). All
marks are taken from the same scale, from 0 to 20. The evaluations of these students
are given by the table below:

1: Mathematics (M) 2: Statistics (S) 3: Language (L)

a 16 13 7
b 16 11 9
c 6 13 7
d 6 11 9

To select the best students, the Dean of the faculty expresses his/her preferences
where the notation x P y means x is strictly preferred to y. For a student good in
Mathematics, Language is privileged compared to Statistics, so that

b P a, (5)
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for a student bad in Mathematics, Statistics is privileged, compared to Language, so
that

c P d. (6)

Let us denote by wM , wS and wL the weights associated to Mathematics, Statistics
and Language. It is not possible to model the two preferences b P a and c P d by an
arithmetic mean model. Indeed we have:

b P a⇒ uM (16)wM + uS(13)wS + uL(7)wL <

uM (16)wM + uS(11)wS + uL(9)wL,

c P d⇒ uM (6)wM + uS(11)wS + uL(9)wL <

uM (6)wM + uS(13)wS + uL(7)wL.

(7)

leading to the following contradiction:

uS(13)wS + uL(7)wL < uS(11)wS + uL(9)wL and

uS(11)wS + uL(9)wL < uS(13)wS + uL(7).

Let us assume that the scale of evaluation [0, 20] corresponds to the utility function
associated to each subject, i.e., uM (16) = 16, uM (6) = 6, uS(13) = 13, uS(11) = 11,
uL(7) = 7 and uL(9) = 9. Using these utility functions the preferences b P a and
c P d, are now representable by a 2-additive Choquet integral w.r.t. any capacity given
in Table 1 below. Among all the capacities compatible with these preferences, we chose
nine of them (called Parameter, Par. for short in Table 1) in order to illustrate the fact
that the sign of an interaction index is strongly dependent upon to the chosen capacity.

In this example, it seems clear that it is not easy to interpret the interaction between
two criteria. For instance, depending on the capacity, the interaction between Mathe-
matics and Statistics, IµMS , could be positive (Par. 3), null (Par. 1) or negative (Par.
4). In other words, from the preferences given by the Dean, could we conclude that
the subjects Mathematics and Statistics are complementary, redundant or independent?
Answering this question is not obvious. This conclusion is still valid concerning the in-
teraction IµML between Mathematics and Language (see Par. 2, Par. 8 and Par. 9), and
interaction IµSL between Statistics and Language (see Par. 5, Par. 6 and Par. 7). In fact,
the only information provided by Equation (7) is that: “the three criteria (subjects),
taken together, are not without interaction”, i.e., the three interaction indices cannot be
simultaneously null. Roughly speaking, for each 2-additive capacity µ allowing to have
b P a and c P d via the use of a Choquet integral, there are i, j ∈ {M,S,L} such that
Iµij 6= 0.

We have used a classic example to argue that the usual interpretation of interaction
indices is not always convincing. This troubling observation may arise because, in the ex-
ample, the DM gave only very poor information consisting in two strict preferences. We
may expect that adding more preferences could help to have a consistent interpretation
of an interaction index. Indeed, when the set of alternative has a continuous structure
and preference is compatible with this rich structure, the recent work of M. Timonin
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Par. 1 Par. 2 Par.3 Par. 4 Par. 5 Par. 6 Par. 7 Par.8 Par. 9

Cµ(a) 8.5 13.75 9.1 13.765 13.75 13.75 11.47 12.535 10.45
Cµ(b) 9.5 14.25 9.7 13.995 14.25 14.25 11.93 12.785 10.75
Cµ(c) 7.75 9.75 7.75 11.325 11.25 9.75 9.45 9.515 7.85
Cµ(d) 7.25 9.25 7.25 10.295 9.75 9.25 8.91 9.265 7.55

µM 0 0.75 0 0.685 0.75 0.75 0.36 0.485 0.15
µS 0.25 0.5 0.25 0.73 0.75 0.5 0.465 0.455 0.25
µL 0 0.25 0 0.315 0 0 0.205 0.32 0
µMS 0.25 0.75 0.35 0.785 0.75 0.75 0.565 0.68 0.5
µML 0.75 1 0.65 1 0.1 0.75 0.805 0.795 0.55
µSL 0.25 0.75 0.25 0.945 0.75 0.75 0.66 0.785 0.35

V µM 0.375 0.5 0.375 0.37 0.5 0.5 0.35 0.35 0.4
V µS 0.25 0.25 0.3 0.365 0.375 0.375 0.33 0.33 0.35
V µL 0.375 0.25 0.325 0.265 0.125 0.125 0.32 0.32 0.25

IµMS 0 −0.5 0.1 −0.63 −0.75 −0.5 −0.26 −0.26 0.1

IµML 0.75 0 0.65 0 0.25 0 0.24 −0.01 0.4

IµSL 0 0 0 −0.1 0 0.25 −0.01 0.01 0.1

Table 1: A set of nine 2-additive capacities compatible with the preferences b P a and
c P d.

[46, 47, 48] shows that, in such a situation, the representing capacity becomes unique, so
that there is no interpretation problem of the interaction index (one may also see [38]).
But in common elicitation tasks, the DM only provides information on a discrete set of
alternatives. We will show below that, when this discrete set of alternatives takes the
form of binary alternatives, the problem exemplified in this section remains.

4 Necessary and possible interaction

In all what follows, we will suppose that: the DM has compared 1 a number of alternatives
in terms of strict preference (P ) or indifference (I), that the criteria have been made
commensurable via the use of adequate utility functions u1, u2, . . . , un, and that this
preference information can be represented in the 2-additive Choquet integral model, i.e.,
that there is a 2-additive capacity µ such that:

(x, y) ∈ P ⇒ Cµ(u(x)) > Cµ(u(y)),

(x, y) ∈ I ⇒ Cµ(u(x)) = Cµ(u(y)).
(8)

1We restrict ourselves in this paper to ordinal preference information, i.e., judgments of preference
and indifference provided by the DM. In particular, we do not take into account information concerning
the comparison of “preference differences” or the “intensity of preference”. Although enlarging the
type of preference information that is taken into account would clearly alleviate some of the difficulties
encountered below, it is not completely clear how we could obtain such information in a clear and reliable
way. This is further commented in Section 8.
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The set of all 2-additive capacities that can be used to represent the preference informa-
tion at hand will be denoted C2-add(P, I). When there is no ambiguity on the underlying
preference information, we will simply write C2-add.

The following definition of necessary and possible interactions will be central in the
rest of this text.

Definition 1
Let i, j ∈ N be two distinct criteria, We say that:

1. there exists a possible positive (resp. null, negative) interaction between i and j if
there exists a capacity µ ∈ C2-add such that Iµij > 0 (resp. Iµij = 0, Iµij < 0),

2. there exists a necessary positive (resp. null, negative) interaction between i and j
if Iµij > 0 (resp. Iµij = 0, Iµij < 0) for all capacity µ ∈ C2-add. y

This notion of necessary and possible interaction, defined here for interactions indices Iµij ,
is related to, but different from, the necessary and possible preference relations defined
in [1, 11, 24]. We are here concerned with the sign of interaction indices.

An obvious consequence of the above definition is spelled out in the following Remark.

Remark 1
Let i, j ∈ N be two distinct criteria. If there exists a necessary positive (resp. null,
negative) interaction between i and j, then there exists a possible positive (resp. null,
negative) interaction between i and j.

If there is no necessary positive (resp. null, negative) interaction between i and j,
then there exists a possible negative or null (resp. positive or negative, positive or null)
interaction between i and j. •

Given preference information provided by the DM, the interpretation of interaction
indices is only meaningful when interactions are necessary. An interaction that is possible
but not necessary is meaningless since its interpretation is dependent upon the arbitrary
choice a capacity µ in the set C2-add. The conditions under which preference information
may lead to necessary interactions are investigated in the next two sections.

We conclude this section with a simple observation. In the discrete case, when there
is no indifference, there are “holes” between all values of Cµ(u(x)). If we slightly modify
the capacity µ, so as to keep all values Cµ(u(x)) within these “holes”, we find that null
interactions are never necessary. We formalize this as a simple Proposition. Its proof is
elementary: it simply exploits the fact that when the structure has holes, it is possible
to slightly modify the representing model while remaining in the holes.

Proposition 1
Suppose that we have a preference structure (P, I) on a set Y ⊆ X that can be represented
using the 2-additive Choquet integral model. If the relation I is empty then there is no
necessary null interactions.

Proof
We only give the proof in the special case in which the DM has provided a linear order
on a subset Y ⊆ X. It is easy to modify the proof to cover the other cases.
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Suppose that we have a 2-additive Choquet integral model representing the preference
relation P that linearly orders the set Y = {x1, x2, . . . , xp}. We suppose w.l.o.g. that
xp P xp−1 P · · · P x1.

Let us suppose that this information can be represented using a 2-additive Choquet
integral model using a capacity µ for which Iµij = 0, so that mµ

ij = 0. Let us first show
that this possible null interaction is not necessary.

Let us denote by αµ∗ the smallest difference between the value of the Choquet integral
Cµ for two consecutive elements in Y .

Let us build a capacity τ that has the same Möbius transform as µ but has mτ
ij =

ε > 0. Notice that this modification of mµ
ij will require a normalization of the values of

mτ in order to have
∑

im
τ
i +

∑
i,jm

τ
ij = 1, but this normalization plays no role in the

ranking of the elements of Y .
Let kij(x

h) = min(xhi , x
h
j ). Let k∗ij = maxh kij(x

h). Obviously, if we choose ε in such
a way that k∗ij × ε < α∗, the ranking of all alternatives in Y will remain unchanged
with the new capacity in which mτ

ij > 0. The value of the 2-additive Choquet integral

Cµ(u(xh)) is now increased to Cτ (u(xh)) but this increase is sufficiently small so as to
remain smaller than the difference Cµ(u(xh+1)) − Cµ(u(xh)). Hence there is no null
interaction between i and j.

Note that, if the modified capacity shows a possible null interaction between a dif-
ferent pair of criteria, the above process can be repeated. This will lead to exhibit a
capacity in which there are only positive interactions. Hence, null interactions are never
necessary when I = ∅. 2

Remark 2
The condition that I is empty is likely to be met in most applications: indifference is
indeed much less likely between alternative than strict preference, unless alternatives
have been specially designed to be indifferent. Going through the above proof shows
that the result can be generalized to some cases in which I is not empty. We leave the
details to the interested reader. •

5 Necessary interaction with binary alternatives

5.1 Framework

We suppose that the DM has been able to identify on each criterion i ∈ N two reference
levels 1i and 0i.

1. The level 1i ∈ Xi is considered as good and completely satisfying if it can be
attained on criterion i, even though more attractive elements can exist. This refer-
ence level is reminiscent of the satisficing level in the theory of bounded rationality
of [44].

2. The level 0i in Xi is considered to be a neutral level. The level is an element which
is thought by the DM to be neither good nor bad, neither attractive nor repulsive
relatively to his/her concerns with respect to the criterion i. The existence of such

9



a neutral level has roots in Psychology [45], and is used in bipolar models like
Cumulative Prospect Theory [49].

With the definition of these two reference levels, we suppose that the commensu-
rateness problem between criteria has been solved. We set ui(1i) = 1 and ui(0i) = 0.
Therefore the previous reference levels can be used in order to define the same scale on
each criterion [21, 29]. In defining 1i and 0i, we have followed the interpretation favored
in [16, 35]. It is not the only possible one and in all what follows, we only use the fact
that the level 1i is above the level 0i.

For a subset A ( N and alternatives x, y ∈ X, we denote by z = (xA, yN−A) the
element of X such that zi = xi if i ∈ A and zi = yi otherwise.

We call binary alternatives, the elements of the set

B = {0N , (1i,0N−i), (1ij ,0N−ij), i, j ∈ N, i 6= j} ⊆ X,

where

• 0N = (1∅,0N ) =: a0 is an alternative considered neutral on all criteria,

• (1i,0N−i) =: ai is an alternative considered satisfactory on criterion i and neutral
on the other criteria,

• (1ij ,0N−ij) =: aij is an alternative considered satisfactory on criteria i and j and
neutral on the other criteria.

The map φ will indicate the bijection between B and P2(N) = {S ⊆ N : |S| ≤ 2}
defined by, for all S ∈ P2(N), φ((1S ,0N−S)) := S. The number of binary alternatives
is n(n+1)/2 + 1.

For any 2-additive capacity µ, we have:

Cµ(u(a0)) = 0,

Cµ(u(ai)) = µi,

Cµ(u(aij)) = µij .

(9)

In order to compute all the parameters of the 2-additive Choquet integral, Mayag
et al. [35] suggest to ask the DM for preference information {P , I} on the set of binary
alternatives, called ordinal information on B, and given by:

P = {(x, y) ∈ B × B : DM strictly prefers x to y},
I = {(x, y) ∈ B × B : DM is indifferent between x and y}.

(10)

We add to this ordinal information a relation M modeling the relation of monotonicity
between binary alternatives, and allowing us to ensure the satisfaction of the mono-
tonicity conditions µ({i}) ≥ 0 and µ({i, j}) ≥ µ({i}) for a capacity µ. For (x, y) ∈
{(ai, a0), i ∈ N} ∪ {(aij , ai), i, j ∈ N, i 6= j}, we define

x M y if Not [x (P ∪ I) y]. (11)
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Finally, remember from Section 4 that a preference information {P , I} is compatible
with the 2-additive Choquet integral model if there is a 2-additive capacity µ such
that (8) holds.

The characterization of the representation of {P , I} by a 2-additive Choquet integral
is given in [35]. The result is based on the property MOPI defined below and on the
existence of cycles 2 in the relation (P ∪ I ∪M).

Definition 2 ([35, Def. 3.1, p. 305])
Let i, j, k ∈ N . We call Monotonicity of Preferential Information in {i, j, k} w.r.t. i the
following property (denoted by ({i, j, k},i)-MOPI):{

aij ∼ aj
aik ∼ ai

⇒ Not [ak TCP a0],

and{
aij ∼ ai
aik ∼ ak

⇒ Not [aj TCP a0],

and{
aij ∼ aj
aik ∼ ak

⇒ Not [ai TCP a0],

(12)

where

1. x ∼ y if the elements x and y belong to a cycle of (I ∪M),

2. x TCP y if there exists a strict path of (P ∪ I ∪M) from x to y.

We say that, the set {i, j, k} satisfies the property of Monotonicity of Preferential
Information (MOPI) if ∀` ∈ {i, j, k}, Condition ({i, j, k}, `)-MOPI is satisfied. y

The MOPI condition can be interpreted as follows [35]. Suppose that aij and aj are
indifferent. This would suggest that i is not important for the DM, but this is relatively
to j, or put differently, i is much less important than j. Suppose in addition that aik is
indifferent to ai. Again, this suggests that k is much less important than i. Since i is
much less important than j, the conclusion is that k is quite unimportant, hence ak is
indifferent to a0. This explains the first case in the MOPI condition. The second case
(indifference between aik and ak, and between aij and ai) works exactly the same way.
The third case says that aij and aj are indifferent (i is much less important than j) as
well as aik and ak (i is much less important than k). Since i is much less important than
both j and k, the conclusion is that i is quite unimportant, so that ai is indifferent with
a0.

Theorem 1 ([35, Th. 1, p. 305])
An ordinal information {P , I} is representable by a 2-additive Choquet integral on B if
and only if the following two conditions are satisfied:

2Let T be a binary relation on B and x, y ∈ B. We say that {x1, x2, . . . , xp} ∈ B is a path of T from
x to y if x = x1 T x2 T · · · T xp−1 T xp = y. A path from x to x is a cycle. When T = (P ∪ I ∪M), we
say that a path of T is strict if, for some i ∈ {1, . . . , p− 1}, we have xi P xi+1.
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1. (P ∪ I ∪M) contains no strict cycle,

2. Any subset K of N such that |K| = 3 satisfies the MOPI property.

5.2 Results

Thereafter, we assume that {P , I} is an ordinal information on B that can be represented
by a 2-additive Choquet integral. Remember that we denote by C2-add, the set of all 2-
additive capacities compatible with the preference information {P , I}.

Our first result, Theorem 2, says that if I = ∅, it is always possible to find a capacity
µ belonging to C2-add and such that all the interaction indices between two criteria are
strictly positive. This fact implies that negative and null interactions can arise but are
never necessary in this case. Theorem 2 improves over [35, Cor. 1, p. 306], that only
dealt with nonnegative interactions. In following result, as well as others presented later
in this section, positive and negative interactions are not treated in a symmetric way.
This is indeed puzzling and is commented upon in Section 5.4.

Theorem 2
Let {P , I} be an ordinal information on B such that I = ∅. Suppose that this information
can be represented in the 2-additive Choquet integral model. In C2-add, there is a capacity
µ such that, for all i, j ∈ N , Iµij > 0 and, hence, all pairs of criteria possibly interact
positively.

Proof
The proof consists in building a partition {B0,B1, . . . ,Bm} of B. Using this partition, a
capacity µ belonging to C2-add is built. It is such that Iµij > 0 for all i, j ∈ N .

The construction of the partition {B0,B1, . . . ,Bm} is detailed in detailed 3 in [35,
Sect. 5.2, p. 315].

Therefore, given i, j ∈ N , there exist p, q, s ∈ {1, . . . ,m} such that aij ∈ Bp, ai ∈ Bq,
aj ∈ Bs with p > q > 0 and p > s > 0 (as illustrated in Figure 1).

Let us define the mapping f : B → R and µ : 2N → [0, 1] as follows: For ` ∈
{0, . . . ,m}, and for all x ∈ B`,

f(φ(x)) =

{
0 if ` = 0,
(2n)` otherwise.

(13)

3Notice that we use here exactly the same notation as in [35], which should facilitate the task of the
reader willing to understand how the partition is built. We sketch the construction below. We know
that (P ∪ I ∪M) contains no strict cycle.

When I = ∅, the construction is easy to explain. Because, the preference information can be rep-
resented using a 2-additive capacity, we know that (P ∪ M) has no cycle. Then B0 consists in all
alternatives in B having no successor. These alternatives are then removed and the same process is
applied repeatedly.
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and we define µ letting:

µ∅ = 0,
µi = fi/α, ∀i ∈ N,
µij = fij/α, ∀i, j ∈ N,
µ(K) =

∑
{i,j}⊆K µij − (|K| − 2)

∑
i∈K µi, ∀K ⊆ N, |K| > 2,

(14)

where

fi := f(φ(ai)), fij := f(φ(aij)), and α =
∑
{i,j}⊆N

fij − (n− 2)
∑
i∈N

fi.

The capacity µ, defined like this, is 2-additive (see [35, Prop. 7, P. 317]). We have
fij = (2n)p, fi = (2n)q, fj = (2n)s and then µij > µi + µj , i.e., Iµij > 0.

Hence, we proved that, if I = ∅ then there exists a capacity µ such that ∀i, j ∈ N ,
Iµij > 0, i.e., i and j possibly interact positively. In other words, there is no necessary
null and negative interaction between criteria i and j. 2

B0

Bs

Bq

Bp

a0

aj

ai

aij

Figure 1: An illustration of the elements Bp, Bq, Bs, and B0 such that p > q > 0 and
p > s > 0

The above theorem is illustrated below.
Example 1
Let N = {1, 2, 3}, so that B = {a0, a1, a2, a3, a12, a13, a23}. Let P = {(a23, a2), (a23, a12)}
and I = ∅.

This preference information is representable by a 2-additive Choquet since it contains
no strict cycle (see [35, Cor. 1]).

The relation (P ∪M) is as follows:

a23 P a12, a23 P a2, a23 M a3,

a12 M a1, a12 M a2,

a13 M a1, a13 M a3,

a1 M a0, a2 M a0, a3 M a0.
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Using the technique described above, the only alternative without successor is a0, so
that B0 = {a0}. Continuing the process, we find, B1 = {a1, a2, a3}, B2 = {a12, a13} and
B3 = {a23}. This is illustrated in Figure 2,

The capacity µ computed from the mapping f , as defined in the above proof, is:
µ1 = µ2 = µ3 = 6/270, µ12 = µ13 = 36/270, µ13 = 216/270. Hence we have Iµ12 = 36/270 −
6/270− 6/270 = 24/270, Iµ13 = 36/270− 6/270− 6/270 = 24/270 and Iµ23 = 216/270− 6/270− 6/270 =
204/270. 3

B0

B1

B2

B3

a0

a1, a2, a3

a12, a13

a23

f(φ(x)) = 0

f(φ(x)) = (2 × 3)1 = 6

f(φ(x)) = (2 × 3)2 = 36

f(φ(x)) = (2 × 3)3 = 216

Figure 2: The partition of B elaborated from P = {(a23, a2), (a23, a12)}.

Theorem 2 states that negative and null interactions are never necessary if the pref-
erence information on B does not contain indifference. Such a situation in which the
DM provides only strict preferences, most often happens in MCDA.

To investigate the situation when the DM expresses some indifference between binary
alternatives, we need to define the following property, called 2-MOPI (2-Monotonicity
Of Preferential Information), as first introduced in [35, Def. 4.2, p. 308].

Definition 3
A pair {i, j} ⊆ N satisfies the 2-MOPI-{i, j} property if

[aij ∼ ai ⇒ Not [aj TCP a0]] and [aij ∼ aj ⇒ Not [ai TCP a0]]. (15)

When the above equation hold, the alternatives aj and ai are said to be Neutral Binary
Alternatives (NBA).

An ordinal information {P , I} on B satisfies the 2-MOPI property if

∀i, j ∈ N, i 6= j, 2-MOPI-{i, j} is satisfied. (16)

y

The 2-MOPI property means that the contribution of the criterion j to the pair of
criteria {i, j} could be insignificant, whenever the satisfaction of the DM on the pair
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{i, j} is equivalent to his satisfaction on the single criterion i. This is a strong condition,
since it suffices that one such criterion i exists to infer the “nullity” of the criterion j.
If this property holds for all pairs of criteria, then it is always possible to compute a
capacity such that all the interaction indices are nonnegative, i.e., such that negative
interactions are not necessary. This situation is characterized in Theorem 3 below, which
is a reformulation of [35, Th. 3, p. 308], obtained in the case of 2-additive belief functions.
We sketch its proof in order to be self-contained.

Theorem 3
Let {P , I} be a preference information on B, given by the DM and representable by a 2-
additive Choquet integral. There exists a capacity µ ∈ C2-add such that ∀i, j ∈ N, Iµij ≥ 0
iff the preference information satisfies the 2-MOPI property.

Proof
Necessity. Suppose that there exists a capacity µ ∈ C2-add such that ∀i, j ∈ N, Iµij ≥ 0.
If there exists i0, j0 ∈ N such that ai0,j0 ∼ ai0 and aj0 TCP a0, we have µi0,j0 = µi0 and
µj0 > 0, i.e., Iµi0,j0 < 0, a contradiction.

Sufficiency. Assume that ∀i, j ∈ N , 2-MOPI-{i, j} holds, i.e., ∀i, j ∈ N , aij ∼ ai ⇒
Not [aj TCP a0]. We build a partition {B0,B1, . . . ,Bm} of B and build a capacity µ,
belonging to C2-add, that is such that Iµij = 0 if aij ∼ ai and Iµij > 0 if Not [aij ∼ ai]. This

construction is detailed 4 in [35, Sect. 5.2, p. 315].
We consider the mapping f : B → R and the capacity µ : 2N → [0, 1] defined by

Equations (13) and (14).
Let i, j ∈ N , with i 6= j. It is not difficult to check that if aij ∼ ai, then we have

Not [aj TCP a0]. In this case there exists q ∈ {0, . . . ,m} such that aij , ai ∈ Bq and
aj ∈ B0 Therefore we obtain Iµi,j = 0. If Not [aij ∼ ai], then there are p, q, s ∈ {0, . . . ,m}
such that aij ∈ Bp, ai ∈ Bq, aj ∈ Bs with p > q and p > s. Hence, we have fij = (2n)p,
fi = (2n)q, fj = (2n)s and then µij ≥ µi + µj , i.e., Iµij > 0. 2

We illustrate the above theorem below.

Example 2
Let N = {1, 2, 3}, so that B = {a0, a1, a2, a3, a12, a13, a23}. Let P = {(a23, a2), (a23, a12)}
and I = {(a12, a1)}.

This preference information is representable by a 2-additive Choquet since it contains
no strict cycle and it satisfies the MOPI property (see Theorem 1).

It is not difficult to check that every pair {i, j} satisfies the 2-MOPI-{i, j} property.

4Notice that we use here exactly the same notation as in [35], which should facilitate the task of
the reader willing to understand how the construction works. We give a sketch below. We know that
(P ∪ I ∪ M) contains no strict cycle. When I = ∅, we have detailed above the construction. When
I 6= ∅, the construction is slightly more involved. For each Neutral Binary Alternative ai, we add to the
relation (P ∪ I ∪ M) an arc from a0 to ai (this is the relation Z in [35]). We first reduce the cycles of
the relation (I ∪M ∪ Z). We then apply the process described for the case I = ∅ without change.
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The relation (P ∪ I ∪M ∪ Z) is as follows:

a23 P a12, a23 P a2, a23 M a3,

a12 I a1, a12 M a2,

a13 M a1, a13 M a3,

a1 I a12, a1 M a0,

a2 M a0,

a3 M a0,

a0 Z a2.

By using the process described above, we first reduce the circuits in the relation
(I ∪ M ∪ Z), so that a12 and a1 on the one hand and a2 and a0 are now merged, so
that we now deal with a relation without cycle.

Using the technique described above, we obtain: B0 = {a0, a2}. Continuing the
process, we find, B1 = {a1, a3, a12} and B2 = {a13, a23}.

The capacity µ computed from the mapping f , as defined in the proof of Theorem 2
(see Equations (13) and (14)), is such that: µ2 = 0, µ1 = µ3 = µ12 = 6/66, µ23 = µ13 =
36/66. Hence we have Iµ12 = 6/66 − 6/66 − 0 = 0, Iµ13 = 36/66 − 6/66 − 6/66 = 24/66 and
Iµ23 = 36/66− 0− 6/66 = 30/66. 3

Theorem 3 implies that, in order to be sure that there is no necessary negative
interaction, the 2-MOPI condition needs to be satisfied for all pairs of criteria. Hence,
compared to the result of Theorem 2, the test related to the presence of necessary
interactions is more complex when indifference is allowed. In this context, how to detect
a necessary negative interaction between two given criteria, without trying to know what
is happening among the other pairs of criteria? Our main result, Theorem 4 below,
answers this question: a negative interaction between two criteria is necessary if and
only if these two criteria i and j do not satisfy the 2-MOPI-{i, j} property. Therefore,
this condition is seen as a “local” condition.

Theorem 4
Let {P , I} be an ordinal information on B, given by the DM that can be represented by
a 2-additive Choquet integral. Let i, j ∈ N be a pair of distinct criteria.

There exists a capacity µ ∈ C2-add such that Iµij ≥ 0 iff the condition 2-MOPI-{i, j}
holds.

Proof
The proof is entirely similar to that of Theorem 3, except the fact that, here the two
criteria i, j are fixed. 2

Remark 3
In Theorem 3, the capacity µ computed is identical for all the pairs of criteria satisfying
the 2-MOPI property. All the interaction indices w.r.t. µ and associated to all these
pairs are positive or null, i.e., Iµij ≥ 0 for all i, j ∈ N .
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In Theorem 4, the capacity µ is related on a fixed pair i0, j0 satisfying the 2-MOPI
property. Only the interaction index w.r.t. µ and associated to i0, j0 must be positive
or null. Here the sign of the interaction index associated to the other pairs of criteria is
unknown. That is why the 2-MOPI-{i, j} property plays the role of a local condition in
Theorem 4. •

The next remark gives the contrapositive of the Theorem 4. It gives necessary and
sufficient conditions for the existence of necessary negative interaction between two cri-
teria.

Remark 4
Let {P , I} be an ordinal information on B, given by the DM that can be represented
using a 2-additive Choquet integral. Let i, j ∈ N be a fixed pair of distinct criteria.

There is a necessary negative interaction between i and j iff {i, j} does not satisfy
the 2-MOPI-{i, j} property, i.e.,(

aij ∼ ai and aj TCP a0
)

or
(
aij ∼ aj and ai TCP a0

)
.

This is illustrated below.

Example 3
Let N = {1, 2, 3}, so that B = {a0, a1, a2, a3, a12, a13, a23}. Let P = {(a23, a2), (a23,
a12), (a2, a0)} and I = {(a12, a1)}.

This preference information is representable by a 2-additive Choquet since it contains
no strict cycle and it satisfies the MOPI property (see Theorem 1).

It is not difficult to check that:

• The pairs {1, 3} and {2, 3} satisfy the 2-MOPI-{i, j} property,

• The pair {1, 2} does not satisfy 2-MOPI-{i, j} property since a12 I a1 and a2 P a0.

It follows from Remark 4 that only the interaction between 1 and 2 is necessarily
negative.

The relation (P ∪ I ∪M ∪ Z) is as follows:

a23 P a12, a23 P a2, a23 M a3,

a12 I a1, a12 M a2,

a13 M a1, a13 M a3,

a1 I a12, a1 M a0,

a2 P a0,

a3 M a0.

Using the technique described above, we obtain: B0 = {a0}, B1 = {a2, a3}, B2 =
{a1, a12} and B3 = {a13, a23}.

Using Equations (13) and (14), we obtain µ2 = µ3 = 6/420, µ1 = µ12 = 36/420,
µ13 = µ23 = 216/429. This implies Iµ12 = 36/420 − 36/420 − 6/420 = −6/420, Iµ13 = 216/420 −
36/420− 6/420 = 174/420 and Iµ23 = 216/420− 6/420− 6/420 = 204/420. 3

17



5.3 A procedure identifying necessary interactions on binary alterna-
tives

In many MCDA applications, capturing an interaction phenomenon seems important.
We have seen that, when a capacity is inferred from preference information, it is advisable
not to interpret interactions that are not necessary.

For preference information obtained on binary alternatives, it is possible to summa-
rize our results in the form of an algorithm. This algorithm deals with the detection
of necessary negative interactions between criteria i and j. It was elaborated following
the conditions used in the previous three theorems. Its justification is provided by the
contrapositive of Theorem 4 (see Remark 4).

The input of the algorithm is a preference information {P , I} on the set B. We first
test if I is empty. If yes, then the algorithm outputs that “i and j possibly interact
positively” and stops. If no, then we test if aij ∼ ai. If no , then the algorithm outputs
that “i and j do not necessarily interact negatively” and stops. If yes, then we test if
aj TCP a0. If no , then the algorithm outputs that “i and j do not necessarily interact
negatively” and stops. If yes , then the algorithm outputs that “i and j necessarily
interact negatively” and stops.

5.4 Remarks

Because the results above may appear rather negative, we would like to emphasize here
several features of the above analysis that call for caution in their interpretation.

First of all, the framework of binary alternatives is quite restrictive. Outside this
framework, it is simple to devise examples in which preference information leads to a
necessary negative interaction. The following example was suggested to us by Patrice
Perny and is based on the analysis in [6, Th. 1].

Example 4
Suppose that 2 criteria expressed on a commensurate scale form 0 to 1. Suppose now
the decision maker has given the following information:

(1, 0) P (0.5, 0.5),

(0, 1) P (0.5, 0.5).

This very poor preference information is nevertheless sufficient to imply the existence
of a necessary negative interaction between the two criteria. Indeed, these two relations
imply:

µ1 > 1/2µ12,

µ2 > 1/2µ12,

which implies µ1 + µ2 > µ12, so that Iµ12 < 0. 3

Second, our results on binary alternatives exhibit a strange asymmetry. We have
been able to prove that necessary negative interactions are rare. It would be tempting
to conclude that a similar conclusion holds for necessary positive interactions. However,
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we do not have such results at hand. Indeed, the proof technique that was used above
is not easily adapted to cover the case of positive interactions.

Hence, when we say that necessary negative interactions are rare, this is only valid
when we work with binary alternatives and we do not suggest that the same conclusion
holds for necessary positive interaction. Hence there is a real need to have tools to test
for the existence of positive and negative interactions outside the framework of binary
alternatives. We do so in the next section.

6 A LP model testing for necessary interaction

In this section, we drop the hypothesis that we only ask preference information on binary
alternatives. We show how to test for the existence of necessary positive and negative
interactions on the basis of preference information given on a subset of X that is not
necessarily B. Our approach is based on a linear program that was initially proposed
in [34] for the elicitation of a capacity. We are only interested here in testing for the
existence of a capacity with given properties and not in choosing the more “adequate”
one (e.g., the one maximizing entropy, as done in [32, Sect. 5]).

Assume that the DM provides a strict preference P and an indifference I relations
on a subset of X. Let i, j be two distinct criteria in N . Our approach consists in
testing first, in two steps, the compatibility of this preference information with a 2-
additive Choquet integral, and then, in the last step, the existence of necessary positive
or negative interaction between i and j. These three steps are as follows 5.

Step 1. The following linear program (PL1) models each preference of {P , I} by
introducing two nonnegative slack variables Γ+

xy and Γ−xy in the corresponding constraint
(Equation (17a) or (17b)). To ensure the normalization and monotonicity of the capacity
µ, Equations (17e) to (17g), expressed in terms of the Möbius transform, need to be
satisfied. The objective function Z1 minimizes all the nonnegative variables introduced
in (17a) and (17b).

Minimize Z1 =
∑

(x,y)∈P∪I

(Γ+
xy + Γ−xy), (PL1)

subject to

Cµ(u(x))− Cµ(u(y)) + Γ+
xy − Γ−xy ≥ ε ∀x, y ∈ X such that x P y, (17a)

Cµ(u(x))− Cµ(u(y)) + Γ+
xy − Γ−xy = 0 ∀x, y ∈ X such that x I y, (17b)

Γ+
xy ≥ 0, Γ−xy ≥ 0 ∀x, y ∈ X such that x (P ∪ I) y, (17c)

5It is customary to convert strict inequalities into non-strict ones, using a constant ε, chosen to be
“small”. This is perfectly legitimate. Doing so would clearly allow to simplify the presentation below,
converting Steps 1 and 2 into a single step. However, we think that using such a constant ε should be
avoided, whenever possible. An infeasible LP using such a constant has an ambiguous interpretation:
either the constraints are indeed incompatible or ε has not been chosen small enough. With our use
of Steps 1 and 2, we avoid this potential ambiguity. Notice that Steps 1 and 2 below can be treated
simultaneously, using the lexicographic optimization options offered by most solvers.
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ε ≥ 0, (17d)∑
{i,j}⊆N

mµ({i, j}) +
∑
i∈N

mµ({i}) = 1, (17e)

mµ({i}) ≥ 0 for all i ∈ N, (17f)

mµ({i}) +
∑

j∈A\{i}

mµ({i, j}) ≥ 0 ∀A \ {i},∀i ∈ N. (17g)

Observe that the linear program (PL1) is always feasible due to the introduction of the
nonnegative variables Γ+

xy and Γ−xy. There are two cases:

1. If the optimal solution of (PL1) is Z∗1 = 0, then we can conclude that, depending on
the sign of the variable ε, the preference information {P , I} may be representable
by a 2-additive Choquet integral. The next step of the procedure, Step 2 hereafter,
will confirm or not this possibility.

2. If the optimal solution of (PL1) is Z∗1 > 0, then there is no 2-additive Choquet
integral model compatible with {P , I}.

Step 2. The linear program (PL2) ensures the existence of a 2-additive Choquet
integral model compatible with {P , I}, when the optimal solution of (PL1) is Z∗1 = 0.
Compared to the previous linear program, in this formulation, we only removed the
nonnegative variables Γ+

xy and Γ−xy (or put them equal to zero) and change the objective
function by maximizing the value of the variable ε, in order to satisfy the strict preference
relation.

Maximize Z2 = ε, (PL2)

subject to

Cµ(u(x))− Cµ(u(y)) ≥ ε ∀x, y ∈ X such that x P y, (18a)

Cµ(u(x))− Cµ(u(y)) = 0 ∀x, y ∈ X such that x I y, (18b)

ε ≥ 0, (18c)∑
{i,j}⊆N

mµ({i, j}) +
∑
i∈N

mµ({i}) = 1, (18d)

mµ({i}) ≥ 0 for all i ∈ N, (18e)

mµ({i}) +
∑

j∈A\{i}

mµ({i, j}) ≥ 0 ∀A \ {i},∀i ∈ N. (18f)

Notice that (PL2) is solved only if Z∗1 = 0. Hence, the linear program (PL2) is always
feasible and it does not have an unbounded solution (it is not restrictive to suppose that
Cµ(u(x)) ∈ [0, 1],∀x ∈ X). Hence, there are two cases.

1. If the optimal solution of (PL2) is Z∗2 = 0, then there is no 2-additive Choquet
integral model compatible with {P , I}.
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2. If the optimal solution of (PL2) is Z∗2 > 0, then {P , I} is representable by a
2-additive Choquet integral.

Step 3. At this step, we suppose the preference information {P , I} representable by
a 2-additive Choquet integral, i.e., Z∗2 > 0. In order to know if the interaction between i
and j is necessarily negative (resp. positive) w.r.t. the provided preference information,
we solve the following linear program denoted by PLijN-N (resp. PLijN-P):

Maximize Z3 = ε, (PLijN-N)

subject to

mµ({i, j}) ≥ 0 (resp. mµ({i, j}) ≤ 0), (19a)

Cµ(u(x))− Cµ(u(y)) ≥ ε ∀x, y ∈ X such that x P y, (19b)

Cµ(u(x))− Cµ(u(y)) = 0 ∀x, y ∈ X such that x I y, (19c)

ε ≥ 0, (19d)∑
{i,j}⊆N

mµ({i, j}) +
∑
i∈N

mµ({i}) = 1, (19e)

mµ({i}) ≥ 0 for all i ∈ N, (19f)

mµ({i}) +
∑

j∈A\{i}

mµ({i, j}) ≥ 0 ∀A \ {i},∀i ∈ N. (19g)

This linear program tries to find a possible positive (resp. a negative) interaction index
between i and j, such that the preference {P , I} is representable by a 2-additive Choquet
integral. To do this, as in (PL2), the positive value ε, allowing to satisfy the strict
preference relation P , is maximized. We keep also the other constraints of the linear
program (PL2) and add only the sign of the interaction index Iµij = mµ({i, j}) = µij −
µi − µj (positive or negative), between i and j, tested by the Equation (19a).

After a resolution of the linear program PLijN-N (resp. PLijN-P), we have one of the
following three conclusions:

1. If PLijN-N (resp. PLijN-P) is not feasible, then there is a necessary negative (resp.
positive) interaction between i and j. Indeed, as the program (PL2) is feasible
with an optimal solution Z∗2 > 0, the contradiction about the representation of
{P , I} only comes from the introduction of the constraint Iµij = mµ({i, j}) =

µij − µi − µj ≥ 0 (resp. Iµij = mµ({i, j}) = µij − µi − µj ≤ 0) in PLijN-N (resp.

PLijN-P).

2. If PLijN-N (resp. PLijN-P) is feasible and the optimal solution Z∗3 = 0, then the
constraint (19b) is satisfied with ε = 0, i.e., it is not possible to model strict
preference by adding the constraint Iµij = mµ({i, j}) = µij − µi − µj ≥ 0 (resp.

Iµij = mµ({i, j}) = µij − µi − µj ≤ 0) in PLijN-N (resp. PLijN-P). Therefore, we can
conclude that there is a necessary negative (resp. positive) interaction between i
and j.
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3. If PLijN-N (resp. PLijN-P) is feasible and the optimal solution Z∗3 > 0, then there is
no necessary negative (resp. positive) interaction between i and j.

This procedure is illustrated below.

Example 5
We consider the preferences given by the DM in the classic example of students evaluation
where N = {M,S,L}. We proved in Section 3 that these preferences are representable by
a 2-additive Choquet integral. The linear program PLMS

N-N (resp. PLMS
N-P) corresponding

to the test of the existence of a necessary negative (resp. positive) interaction between
the Mathematics (M) and Statistics (S) is the following:

Maximize Z3 = ε,

subject to

mµ({M,S}) ≥ 0 (resp. mµ({M,S}) ≤ 0),

ε ≥ 0,

Cµ(u(b))− Cµ(u(a)) ≥ ε,
Cµ(u(c))− Cµ(u(d)) ≥ ε,
mµ({M,S}) +mµ({M,L}) +mµ({S,L}) +mµ({M}) +mµ({S}) +mµ({L}) = 1,

mµ({M}) ≥ 0 mµ({S}) ≥ 0 mµ({L}) ≥ 0,

mµ({M}) +mµ({M,S}) ≥ 0,

mµ({M}) +mµ({M,L}) ≥ 0,

mµ({M}) +mµ({M,S}) +mµ({M,L}) ≥ 0,

mµ({S}) +mµ({M,S}) ≥ 0,

mµ({S}) +mµ({S,L}) ≥ 0,

mµ({S}) +mµ({M,S}) +mµ({S,L}) ≥ 0,

mµ({L}) +mµ({M,L}) ≥ 0,

mµ({L}) +mµ({S,L}) ≥ 0,

mµ({L}) +mµ({S,L}) +mµ({M,L}) ≥ 0.

Replacing Cµ(u(a)), Cµ(u(b)), Cµ(u(c)) and Cµ(u(d)) by their expression (in terms of
interaction indices Iµij and Shapley values Vi, i, j ∈ N = {M,S,L}) in the above linear
program, we obtain this equivalent formulation:

Maximize Z3 = ε,

subject to

16V µM + 11V µS + 9V µL − 2.5IµMS − 3.5IµML − I
µ
SL−

[16V µM + 13V µS + 7V µL − 1.5IµMS − 4.5IµML − 3IµSL] ≥ ε,
6V µM + 13V µS + 7V µL − 3.5IµMS − 0.5IµML − 3IµSL−

[6V µM + 11V µS + 9V µL − 2.5IµMS − 1.5IµML − I
µ
SL] ≥ ε,

mµ({M,S}) ≥ 0 (resp. mµ({M,S}) ≤ 0),

ε ≥ 0,
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mµ({M,S}) +mµ({M,L}) +mµ({S,L}) +mµ({M}) +mµ({S}) +mµ({L}) = 1,

mµ({M}) ≥ 0 mµ({S}) ≥ 0 mµ({L}) ≥ 0,

mµ({M}) +mµ({M,S}) ≥ 0,

mµ({M}) +mµ({M,L}) ≥ 0,

mµ({M}) +mµ({M,S}) +mµ({M,L}) ≥ 0,

mµ({S}) +mµ({M,S}) ≥ 0,

mµ({S}) +mµ({S,L}) ≥ 0,

mµ({S}) +mµ({M,S}) +mµ({S,L}) ≥ 0,

mµ({L}) +mµ({M,L}) ≥ 0,

mµ({L}) +mµ({S,L}) ≥ 0,

mµ({L}) +mµ({S,L}) +mµ({M,L}) ≥ 0,

IµMS = mµ({M,S}),
IµML = mµ({M,L}),
IµSL = mµ({S,L}),
VM = mµ({M}) + 0.5IµMS + 0.5IµML,

VS = mµ({S}) + 0.5IµMS + 0.5IµSL,

VL = mµ({L}) + 0.5IµML + 0.5IµSL.

The results obtained by solving PLMS
N-N (resp. PLMS

N-P) are given in Table 2 (resp.
Table 3). We can conclude that the interaction between Mathematics and Statistics is
neither not necessarily negative nor necessarily positive, because the optimal solution of
the program PLMS

N-N and PLMS
N-P is respectively Z∗3 = 0.667 and Z∗3 = 1. 3

Z3 = ε M S L {M,S} {M,L} {S,L}

Optimal solution Z∗3 0.667 − − − − − −
Möbius transform mµ 0 0.33 0.33 0 0.67 −0.33
Importance index V µ

i 0.33 0.17 0.5 − − −
Interaction index Iµij − − − 0 0.67 −0.33

Table 2: Results of PLMS
N-N testing necessary negative interaction between Mathematics

and Statistics

7 Interactions in a ranking of hospitals for weight loss
surgery

In this section, we illustrate our results using a real-world application. At the time the
problem was tackled, it was thought that the MCDA model elaborated would allow for
a solid interpretation of interaction phenomena. The problem is about a ranking of
French hospitals for weight loss surgery elaborated in [36] using a 2-additive Choquet
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Z3 = ε M S L {M,S} {M,L} {S,L}

Optimal solution Z∗3 1 − − − − − −
Möbius transform mµ 0.5 0.5 0 −0.5 0.5 0
Importance index V µ

i 0.5 0.25 0.25 − − −
Interaction index Iµij − − − −0.5 0.5 0

Table 3: Results of PLMS
N-P testing necessary positive interaction between Mathematics

and Statistics

integral model. Weight loss surgery (bariatric surgery) includes a variety of procedures
performed on people who are obese 6.

To identify the “best” hospitals in weight loss surgery, four criteria 7 are considered:

1. Activity : number of procedures performed during one year. In general, if a hos-
pital has a good score on activity then its teams are more trained and often have
good results. Therefore this criterion has to be maximized. The relevance of this
criterion is not totally shared by all the experts in medicine.

2. Notoriety : Its corresponds to the reputation and attractiveness of the hospital. It
is a percentage of patients treated in the hospital but living in another French ad-
ministrative department. The more the percentage increases, the more the hospital
is attractive.

3. Average Length Of Stay (ALOS): a mean calculated by dividing the sum of inpa-
tient days by the number of patients admissions with the same diagnosis-related
group classification. The more the hospital is organized in terms of ressources, the
more the ALOS score decreases.

4. Technicality : this particular indicator measures the ratio of procedures performed
with an efficient technology compared to the same procedures performed with
obsolete technology. The higher the percentage is, the more the team is trained in
advanced technologies or complex surgeries.

We denote this set of criteria by N = {1, 2, 3, 4}. We have the following sets of values
on each criterion X1 = [0, 500], X2 = [0, 100], X3 = [5, 0] and X4 = [0, 100].

The reference levels 1i and 0i associated to each criterion i, and identified by
the DM, are given in Table 4 below. Of course, these reference elements could be
different from the bounds defined in Xi, even if it is not the here. We have B =
{a0, a1, a2, a3, a4, a12, a13, a14, a23, a24, a34}.

6Weight loss is achieved by reducing the size of the stomach with a gastric band or through removal
of a portion of the stomach (sleeve gastrectomy or biliopancreatic diversion with duodenal switch) or by
resecting and re-routing the small intestines to a small stomach pouch (gastric bypass surgery).

7These four criteria are also used by the French magazine “Le Point” in their ranking of hospitals
using the arithmetic mean.
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Activity Notoriety ALOS Technicality

Satisfactory level 1i 500 100 0 100
Neutral level 0i 0 0 5 0

Table 4: The reference levels associated to each criterion in weight loss surgery.

The following interpretation of the binary alternatives, understandable by the ex-
perts, was proposed:

• 0N = (1∅,0N ) := a0 is a hospital considered neutral on all the four criteria.

• (1i,0N−i) := ai is a hospital considered satisfactory on criterion i and neutral on
the other criteria.

• (1ij ,0N−ij) := aij is a hospital considered satisfactory on criteria i and j and
neutral on the other criteria.

The preferences, on B, provided by the DM are:

• A satisfactory hospital on Activity and ALOS (neutral on the other criteria) is
better than a satisfactory hospital on Notoriety and Technicality (neutral on the
other criteria), i.e., a13 P a24.

• A satisfactory hospital on Activity (neutral on the other criteria) is better that a
satisfactory hospital only on Notoriety and ALOS (neutral on the other criteria),
i.e., a1 P a23.

• A hospital only better in Activity (neutral on the other criteria) is judged indiffer-
ent to a hospital better on Activity and ALOS (neutral on the other criteria), i.e.,
a1 I a13.

• If a hospital is fully satisfying on the criterion Technicality (neutral on the other
criteria), then it will be preferred to a hospital satisfactory on Notoriety (neutral
on the other criteria), i.e., a4 P a2.

• A satisfactory hospital on Activity and Technicality (neutral on the other criteria)
is better than a satisfactory hospital on ALOS and Technicality (neutral on the
other criteria), i.e., a14 P a34.

In [36], it is shown that this preference information can be represented by a 2-additive
Choquet integral w.r.t. the capacity µ given in Table 5.

Based on the capacity computed in Table 5, Activity and Notoriety were judged
complementary (positive interaction) while Activity and ALOS were judged redundant
(negative interaction). The results presented above show that this interpretation is not
fully warranted, since it does not correspond to necessary interactions. Indeed, it can
be noticed that each pair of criteria satisfies the 2-MOPI property. Therefore, the only
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1 2 3 4 {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

µ 0.2 0 0.1 0.1 0.9 0.2 0.3 0.1 0.1 0.2
V µi 0.5 0.35 0.05 0.1 − − − − − −
Iµij − − − − 0.7 −0.1 0 0 0 0

Table 5: The parameters computed for our 2-additive Choquet integral model in weight
loss surgery.

valid conclusion is: “the negative interaction related to these preference information is
not necessary”. In other words, the criteria Activity and Notoriety possibly interact
positively while criteria Activity and ALOS possibly interact negatively.

8 Discussion

This paper has discussed the use of interaction indices in order to interpret interaction
phenomena at work within a 2-additive Choquet integral model. We have concentrated
on the case in which the 2-additive capacity is assessed on the basis of preference in-
formation provided by the DM. Our emphasis is on the common case in which the DM
expresses preference information on a finite number of alternatives, as opposed to the
continuous setting used in [46, 47, 48]. Unsurprisingly, the capacity that is elicited in
such a setting is not unique. Moreover, the interpretation of the interaction effects
between criteria requires some caution. Indeed, we have exhibited simple examples in
which the sign of the interaction index depends upon the arbitrary choice of a capacity
within the polyhedron of all capacities compatible with the preference information. This
has led us to define the notion of necessary and possible interactions, given a prefer-
ence information. Only necessary interactions are robust since their sign and, hence,
interpretation, does not vary within the set of all representing capacities.

In the context of binary alternatives, we have characterized the situations in which
negative interactions are necessary. Quite surprisingly, when the preference information
does not contain indifference, there are no such situations. Negative interaction is possi-
ble but never necessary. This extends previous results in [35]. It is important to realize
that these results do not carry over to the case of positive interaction and are only valid
with the framework of binary alternatives.

Outside the framework of binary alternatives, we extend the linear programming
formulation proposed in [34] to test for the existence of necessary interactions of various
kinds. The central message of the paper is that interpreting interaction indices requires
some care.

The subject of the paper offers several avenues for future research.
First, our results show a curious asymmetry. We have been able to show that nec-

essary negative interactions are rare in the context of binary alternatives. It would be
tempting to conjecture similar results for necessary positive interactions. But we do not
have such results at hand for the time being. The suggestive duality between positive
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and negative interactions is not easy to exploit in view of the proof technique used in
the results presented in Section 5. This clearly deserves further study.

Second, the framework of an ordinal preference information {P , I} provided the
decision-maker may seem unnecessarily poor. As pointed out to us by Christophe
Labreuche, many decision-makers in the real world seem to be confortable with the
idea of expressing more than only an ordinal preference information and ready to ex-
press preference differences or even intensity of preference when comparing alternatives
with which they are familiar. If this kind of information is taken into account, this
potentially drastically restricts the set of representing 2-additive capacity, which would
increase the likelihood of obtaining necessary interactions. Using information of prefer-
ence differences is indeed commonly used in the field of decision with multiple attributes
[2, 11, 50]. We refer to [1] for the use of information concerning preference difference
together with the use of a Choquet integral.

As pointed out to us by a referee, some authors think that the DM can be confortable
in expressing directly information about the sign of interactions between pairs of criteria
when eliciting the parameters of a Choquet integral. This was indeed suggested in [1]
and in the application reported in [4] (for similar ideas in other contexts, one may also
refer to [10, 40]). Without questioning the potential usefulness of such an approach in a
constructive approach to decision-aiding [41], our results seem to show that interactions
between criteria are a concept that is less easy to define and to grasp than is usually
thought. Indeed as shown, for instance, by the analysis of the classic example presented
in Section 3, imposing of constraint on the sign of the interaction index Iµij does not
always ensure that the underlying logic of the preference model that is built will be
compatible with the constraint. Although the preference given by the Dean is justified
by the fact that Mathematics and Statistics are somewhat redundant, this preference
can be explained using a model in which the interaction index between Mathematics
and Statistics is strictly positive (see Table 1). Hence, imposing in an LP model of the
type presented in Section 6 a constraint such as Iµij < 0 (resp. > 0) is not a guarantee
that the resulting preference model can be interpreted as if there is redundancy (resp.
complementarity) between i and j.

Third, our analysis only deals with the case of 2-additive Choquet integrals. Although
dominant, this model is not the only one that have been suggested to capture interaction
phenomena. Among them the Sugeno integral model [5, 8, 9, 23] and the GAI model
[12, 25, 30] deserve mention. This raises several questions. Is the interaction index
mainly developed for the case of the Choquet integral [15, 19, 37] adapted to these new
model? On what basis is it possible to answer this question? Given adequate Interaction
indices for these models, can we obtain results similar to the one presented here.

Finally, the notion of interaction would deserve further study. In particular, it would
be interesting to have a definition that would not depend on a particular aggregation
technique or on a particular index.

We have started working on all these points.
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