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COMBINATORIAL DESCRIPTION OF THE PRINCIPAL CONGRUENCE

SUBGROUP Γ(2) IN SL(2,Z)

FLAVIEN MABILAT

Abstract. We characterize sequences of positive integers (c1, c2, ..., cn) for which the (2 × 2)-matrix
(

c1 −1
1 0

)

· · ·

(

cn −1
1 0

)

belongs to the principal congruence subgroup of level 2 in SL(2,Z). The

answer is given in terms of dissections of a convex n-gon into a mixture of triangles and quadrilaterals.

1. Introduction

The classical modular group

SL(2,Z) =

{(

a b
c d

)

| a, b, c, d ∈ Z, ad− bc = 1

}

and its quotient by the center, PSL(2,Z) = SL(2,Z)/{±Id}, play a central role in several classical areas,
such as the theory of continued fractions, hyperbolic geometry, and the theory of modular forms. The
group SL(2,Z) naturally acts on the upper half-plane, and perhaps the most remarkable fact about it
is that the quotient by this action is the moduli space of elliptic curves (this fact explains the name
“modular group” due to Klein). The structure of the modular group and its subgroups was thoroughly
studied; see [17]. An important class of subgroups are called “principal congruence subgroups of level N”
Γ(N) defined as follows

Γ(N) = {A ∈ SL(2,Z) | A = Id ( mod N)} ,

where N is a positive integer.
This note is about a relation of the modular group to combinatorics. The idea is based on the fact

that every element of SL(2,Z) has a (canonical) presentation by a sequence of positive integers. This has
been known for a long time (cf. [18]), but started to be exploited only very recently; see [16, 14]. One
uses a general principle that positive integers must count some (geometric, combinatorial, etc.) objects.

Our approach is based on the work of Coxeter [7] and Conway-Coxeter [6]. Coxeter and Conway used
the notion of frieze pattern to characterize sequences of positive integers (c1, . . . , cn) such that

(1.1)

(

c1 −1

1 0

)(

c2 −1

1 0

)

· · ·

(

cn −1

1 0

)

= −Id,

and that satisfy an extra condition of total positivity, formulated as the positivity of the entries of Coxeter’s
frieze pattern. All positive solutions of Equation (1.1) were classified in [16]. For a detailed explanation
of the total positivity property; see [16, 14] (and also [5]).

Our goal is twofold. We give a short overview of the combinatorial approach to the modular group,
that we believe should be better known. We prove a new theorem that gives a combinatorial description
of Γ(2), the principal congruence subgroup of level 2.
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2. Sequences of positive integers

The group SL(2,Z) has two generators whose standard choice is

T =

(

1 1

0 1

)

, S =

(

0 −1

1 0

)

.

These generators satisfy the relations: S2 = (TS)3 = −Id, and this is a complete set of relations
in SL(2,Z). This classical fact can be found in many textbooks, for a particularly elementary proof;
see [1]. It readily implies that every element A of SL(2,Z) can be written, for some positive integer n, in
the form

(2.1) A = ±T c1S T c2S · · ·T cnS = ±

(

c1 −1

1 0

)(

c2 −1

1 0

)

· · ·

(

cn −1

1 0

)

,

where c1, . . . , cn are positive integers; see [17, 18, 16] and explanation below. We will use the notation

M(c1, . . . , cn) :=

(

c1 −1

1 0

)(

c2 −1

1 0

)

· · ·

(

cn −1

1 0

)

,

For the generators one easily checks

T = −M(2, 1, 1), T−1 = −M(1, 1, 2, 1), and S = −M(1, 1, 2, 1, 1).

A decomposition A = ±M(c1, . . . , cn) with each ci positive can then be obtained for every chosen A by
concatenation of any expression of A in terms of the generators.

The decomposition A = ±M(c1, . . . , cn) is obviously not unique (however a canonical, shortest expres-
sion was suggested in [14]). The first natural problem is thus to consider the equation

(2.2) M(c1, . . . , cn) = ±Id,

and look for a combinatorial description of the sequences of positive integer solutions. In other words,
this problem is to give an explicit combinatorial description of relations in PSL(2,Z). This problem was
studied in [6, 16]; see also [2, 14, 10] and Section 4 below. It turns out that equation (2.2) is related to
triangulations of n-gons and to more sophisticated polygon dissections.

3. The main result of this paper

We will generalize the equation (2.2) and describe the sequences of positive integers (c1, . . . , cn) for
which

(3.1) M(c1, . . . , cn) ∈ Γ(2),

where Γ(2) is the principal congruence subgroup of SL(2,Z) of level 2, see the introduction..
Similarly to the case of equation (2.2), the property to be a solution of equation (3.1) is cyclically

invariant (i.e., if an n-tuple (c1, . . . , cn) a solution of equation (3.1), then (cn, c1, . . . , cn−1) is also a
solution). It is thus often convenient to consider instead of an n-tuple (c1, . . . , cn) an n-periodic infinite
sequence (ci)i∈Z

.
The solutions of equation (3.1) can be formulated in terms of polygon dissections.

Definition 3.1. We call a (3|4)-dissection a partition of a convex n-gon into sub-polygons by pairwise
non-crossing diagonals, such that every subpolygon is a triangle or a quadrilateral.
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Example 3.2. Let us give here simple examples:

• •

• •

•

❄❄
❄❄

❄❄
•

• •

•
qqq ▼▼▼

• •

• •

•
qqq ▼▼▼

• •

• •

•
▼▼▼ qqq

•

✒✒
✒✒
✒✒
✒✒
✒✒
✒✒

❥❥❥❥ ❚❚❚❚
•

✠✠
•
✻✻

✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁

• •

✔✔
✔✔
✔✔

•
✻✻

•
✠✠

• ❚❚❚❚ •❥❥❥❥•

For an integer a, we denote a := a+ 2Z the projection of a to Z → Z/2Z; if a is odd then a = 1, if a
is even then a = 0. The following notion is analogous to that of [6].

Definition 3.3. The quiddity of a (3|4)-dissection of a convex n-gon is the (cyclically ordered) sequence
(c1, . . . , cn) of elements of Z → Z/2Z, such that for every i

ci =

{

1, if the number of triangles adjacent to the i-th vertex is odd;

0, if the number of triangles adjacent to the i-th vertex is even.

Example 3.4. The quiddities (c1, . . . , cn) of the (3|4)-dissections of Example 3.2 are as follows.

(a) For the first two examples, (c1, c2, c3, c4) =
(

0, 0, 0, 0
)

, (c1, c2, c3, c4) = (0, 1, 0, 1), and these are
the only quiddities for n = 4.

(b) For the remaining examples one has (c1, . . . , c5) = (1, 1, 1, 0, 0), (c1, . . . , c6) = (0, 0, 0, 0, 0, 0), and
(c1, . . . , c10) = (0, 1, 0, 0, 0, 0, 0, 1, 0, 0), respectively.

The following statement is our main result. It gives a combinatorial characteristic of solutions of
equation (3.1) for n ≥ 3. Note that the product of elements of SL(2,Z) commutes with the projection of
the entries of matrices to Z/2Z. This allows one to make all the computations in SL(2,Z/2Z).

Theorem 1. (i) Every quiddity of a (3|4)-dissection of an n-gon is a solution of equation (3.1).
(ii) Every solution of equation (3.1) with n ≥ 3 is a quiddity of a (3|4)-dissection of an n-gon.

This statement is proved in Section 5.
Let us mention that the number of solutions of equation (3.1), for a fixed n, can be deduced from the

main result of [13] and is given by the Jacobsthal sequence (A001045 in OEIS [15]).

4. Relations in PSL(2,Z) and polygon dissections

We give a brief overview of the theorems of Conway and Coxeter [6] (see also [2, 10]) and Ovsienko [16].
The first one relates equation (2.2) to one of the most classical notion of combinatorics, namely that of
triangulation of an n-gon, while the second describes all positive integer solutions of equation (2.2) in
terms of polygon dissections. This overview will allow us to compare equation (2.2) and equation (3.1).
It also makes the presentation complete.

4.1. Triangulations and friezes. Fix a triangulation of a convex n-gon. Following [6], we call a quiddity
of the triangulation the sequence of positive integers (c1, . . . , cn), where ci is equal to the number of
triangles adjacent to the i-th vertex of the n-gon.

The theorem of Conway and Coxeter can be formulated in the following way (cf. [16], Corollary 2.3).

Theorem 2 ([6]). (i) The quiddity of a triangulation of an n-gon is a solution of M(c1, . . . , cn) = −Id.
(ii) Every solution (c1, . . . , cn) of equation (2.2), satisfying the condition

(4.1) c1 + c2 + · · ·+ cn = 3n− 6,

is the quiddity of a triangulation of an n-gon.
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The simplest examples, with n = 3, 4, 5, are

•

✌✌
✌✌ ✶✶

✶✶

• •

•
③③③ ❉❉❉

• •

•

❉❉❉ ③③③

•
❖❖❖

❖
♦♦♦

♦

✔✔
✔✔
✔✔
✔

✯✯
✯✯
✯✯
✯

•

✴✴
✴✴
✴ •

✎✎
✎✎
✎

• •

It is easy to see that the corresponding quiddities (c1, c2, c3) = (1, 1, 1), (c1, c2, c3, c4) = (1, 2, 1, 2) and
(c1, c2, c3, c4, c5) = (1, 3, 1, 2, 2) are, indeed, solutions of M(c1, . . . , cn) = −Id.

The original formulation of Theorem 2 uses the beautiful notion of Coxeter’s frieze pattern. Let us
recall that a frieze pattern is an array of (n − 1) infinite rows of positive integers with the rows 1 and
n− 1 consisting in 1’s. Every elementary 2× 2 “diamond”

b
a d

c
,

of the frieze must satisfy the unimodular rule ad−bc = 1. Coxeter proved in [7] that the row 2 (and n−2)
is an n-periodic sequence satisfying equation (1.1). The Conway-Coxeter theorem [6] identifies Coxeter’s
friezes with triangulations.

Let us give here an example of a frieze pattern for n = 5.

· · · 1 1 1 1 1

1 3 1 2 2 · · ·

· · · 2 2 1 3 1

1 1 1 1 1 · · ·

The 5-periodic sequence (1, 3, 1, 2, 2) is the quiddity of a triangulation of a pentagon.
For a survey on frieze patterns; see [12]. Variants of frieze patterns involving other types of polygon

dissections can be found in [4, 11, 9]. Links with frieze patterns and presentations of SL(2,Z) also
appeared in [3].

Remark 4.1. Let us mention that (4.1) turns out to be equivalent to the condition of total positivity;
see [16], Corollary 2.3, and can be formulated in more standard terms of continued fractions and total
positive (2× 2)-matrices; see [14]. In terms used by Coxeter, this total positivity means that every entry
of the frieze pattern is positive.

4.2. Complete solution of equation (2.2). For n ≥ 6, there exist many solutions of equation (2.2)
that cannot be obtained from triangulations of n-gons. The complete solution of equation (2.2) was given
in [16] and led to the following notion of “3d-dissection”.

Definition 4.2. (i) A 3d-dissection is a partition of a convex n-gon into sub-polygons by means of
pairwise non-crossing diagonals, such that the number of vertices of every sub-polygon is a multiple of 3.

(ii) The quiddity of a 3d-dissection of an n-gon is the (cyclically ordered) n-tuple of positive integers
(c1, . . . , cn) such that ci is the number of sub-polygons adjacent to the i-th vertex of the n-gon.

Theorem 3 ([16], Theorem 1). Every quiddity of a 3d-dissection of an n-gon is a solution of equa-
tion (2.2). Conversely, every solution of equation (2.2) is a quiddity of a 3d-dissection of an n-gon.
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The simplest examples of 3d-dissections, that are not triangulations, are:

• ❖❖♦♦
•

✎✎
✎

•
✴✴
✴

•
✴✴
✴ •

✎✎
✎

• •

•❥❥❥❥ ❚❚❚❚
•

✠✠
•
✻✻

• •

•
✻✻

•
✠✠

• ❚❚❚❚ •❥❥❥❥•

and the corresponding quiddities are: (2, 1, 2, 1, 1, 1, 1) and (2, 1, 1, 1, 1, 2, 1, 1, 1, 1).

4.3. The idea of the proof. The proof of Theorem 3 is inductive. The main idea uses the following
“local surgery” operations.

(α) (c1, . . . , ci, ci+1, . . . , cn) 7→ (c1, . . . , ci + 1, 1, ci+1 + 1, . . . , cn),
(β) (c1, . . . , ci−1, ci, ci+1 . . . , cn) 7→ (c1, . . . , ci−1, c

′

i, 1, 1, c′′i , ci+1, . . . , cn),

where c′i+c′′i = ci+1. One readily checks that the matrix M(c1, . . . , cn) is invariant under the operations
of type (α) and changes the sign under the operations of type (β).

A simple lemma then states that a sequence of positive integers (c1, . . . , cn) satisfying equation (2.2)
always has some entries ci = 1; cf. [6, 16]. This allows one to construct any solution of equation (2.2)
from the simplest solution (1, 1, 1).

The inductive step in the proof is based on the observation that the above surgery operations have a
combinatorial meaning. Given a dissection of an n-gon, the operation (α) consists in gluing an additional
triangle on the edge (i, i+1), while the operation (β) changes a 3k-gon adjacent to the i-th vertex in the
dissection into a (3k + 3)-gon; see [16].

5. Proof of Theorem 1

Our proof of Theorem 1 is quite similar to that of Theorem 3. We give an inductive procedure of
construction of all the solutions of equation (3.1).

5.1. Local surgery. Consider the following two families of “local surgery” operations for sequences of
elements of Z/2Z.

(a) Operations of the first family insert 1 into the sequence (c1, c2, . . . , cn):

(c1, . . . , ci, ci+1, . . . , cn) 7→ (c1, . . . , ci + 1, 1, ci+1 + 1, . . . , cn).

(b) Operations from the second family insert 0 in two consecutive positions:

(c1, . . . , ci, ci+1, . . . , cn) 7→ (c1, . . . , ci, 0, 0, ci+1, . . . , cn).

Within the cyclic ordering, the operations (a) and (b) are defined for all 1 ≤ i ≤ n. Every operation
(a) transforms a sequence of n elements of Z/2Z into a sequence of (n+ 1) elements of Z/2Z, and every
operation (b) transforms a sequence of n elements of Z/2Z into a sequence of (n+ 2) elements of Z/2Z.

The following statement means that equation (3.1) is invariant under the operations (a) and (b).

Lemma 5.1. One has in the group SL(2,Z/2Z)

M(c1, . . . , cn+1) = M(c1, . . . , ci + 1, 1, ci+1 + 1, . . . , cn),

M(c1, . . . , cn+1) = −M(c1, . . . , ci, 0, 0, ci+1, . . . , cn).
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Proof. An operation of type (a) replaces the matrix

(

ci 1
1 0

)(

ci+1 1
1 0

)

by

(

ci + 1 1
1 0

)(

1 1
1 0

)(

ci+1 + 1 1
1 0

)

=

(

ci ci + 1
1 1

)(

ci+1 + 1 1
1 0

)

=

(

cici+1 + 1 ci
ci+1 1

)

=

(

ci 1
1 0

)(

ci+1 1
1 0

)

.

Therefore, M(c1, . . . , cn+1) = M(c1, . . . , ci + 1, 1, ci+1 + 1, . . . , cn), as an element of SL(2,Z/2Z). An
operation of type (b) adds −Id in the product defining Mn(c1, . . . , cn). �

5.2. The special cases n = 2 and n = 3. The equation (3.1) has no solution if n = 1. Consider now
the simplest cases n = 2 and n = 3.

Lemma 5.2. (i) For n = 2, (c1, c2) is a solution of equation (3.1) if and only if (c1, c2) = (0, 0).
(ii) For n = 3, (c1, c2, c3) is a solution of equation (3.1) if and only if (c1, c2, c3) = (1, 1, 1).

Proof. Part(i). This follows from

(

c1 1
1 0

)(

c2 1
1 0

)

=

(

c1c2 + 1 c1
c2 1

)

.

Part (ii). This follows from

(

c1 1
1 0

)(

c2 1
1 0

)(

c3 1
1 0

)

=

(

c1c2 + 1 c1
c2 1

)(

c3 1
1 0

)

=

(

c1c2c3 + c1 + c3 c1c2 + 1
c2c3 + 1 c2

)

.

Hence the result. �

5.3. Inductive construction. We now give an inductive procedure for construction of all the solutions
of equation (3.1) starting from the simplest case n = 2 and the corresponding solution (0, 0).

Proposition 5.3. An n-tuple (c1, . . . , cn) is a solution of equation (3.1) if and only if the sequence
(c1, . . . , cn) can be obtained from (0, 0) by applying the operations (a) and (b) in any order.

Proof. The “if” part follows from Lemma 5.1.
Conversely, given a solution (c1, . . . , cn) of equation (3.1), one has the following two possibilities.

A) One has ci = 0 for all i. Then n is even and (c1, . . . , cn) is obtained from (0, 0) by a sequence
of n−2

2 operations of type (b).

B) ci = 1 for some i, 1 ≤ i ≤ n. Then the inverse of the operation of type (a) centered at i can be
applied to (c1, . . . , cn). This results in an (n − 1)-tuple (c1, . . . , ci−1 + 1, ci+1 + 1, . . . , cn). The same
computation as in the proof of Lemma 5.1 implies that this (n− 1)-tuple is a solution of equation (3.1).
We conclude by induction assumption. �

Let us mention that there exists an analog of Proposition 5.3 in the case of non-negative integer
solutions of (1.1), see [8, Thm 3.1].



COMBINATORIAL DESCRIPTION OF THE PRINCIPAL CONGRUENCE SUBGROUP Γ(2) IN SL(2,Z) 7

5.4. End of the proof of Theorem 1. We will need the following combinatorial interpretation of
operation (a) and (b). Let (c1, . . . , cn) be a sequence corresponding to a (3|4)-dissection of a convex
n-gon, then the result of either operation is again a sequence corresponding to a (3|4)-dissection of a
convex (n+ 1)-gon, or (n+ 2)-gon, respectively.

(i) The operation (a) glues to a (3|4)-dissection a triangle on the segment (i, i+ 1).
(ii) The operation (b) glues a quadrilateral on the segment (i, i+ 1).

We are ready to complete the proof of Theorem 2.
Part (i). The induction basis consists of two cases, n = 3 and n = 4. For n = 3, the quiddity of a

(3|4)-dissection of a triangle is (1, 1, 1) which is a solution of equation (3.1). For n = 4, the quiddity
of a (3|4)-dissection of a quadrilateral is (1, 0, 1, 0) (quadrilateral cut into two triangles) and (0, 0, 0, 0)
(quadrilateral alone) and it follows from Lemma 5.1 that they are solutions of equation (3.1).
Assume that an n-tuple (c1, . . . , cn) is the quiddity of a (3|4)-dissection of a convex n-gon. Every (3|4)-
dissection has (at least one) exterior triangle (such a triangle is sometimes called “an ear” in the literature),
or quadrilateral. Cutting this exterior piece, one obtains either an (n − 1)-tuple or an (n − 2)-tuple of
elements of (Z/2Z) which is the quiddity of a (3|4)-dissection of a convex (n− 1)-gon or a convex (n− 2)-
gon. The result then follows from Lemma 5.1 and the induction assumption.

Part (ii). For n = 3, a triple (c1, c2, c3) is a solution of equation (3.1) if and only if (c1, c2, c3) = (1, 1, 1),
which corresponds to a triangle. Similarly to Lemma 5.2, one shows the following, for n = 4, the (cyclically
ordered) solutions are (1, 0, 1, 0) and (0, 0, 0, 0) already considered in Example 3.2.

Assume that a sequence (c1, . . . , cn) is a solution of equation (3.1), and let us show that it is the
quiddity of a (3|4)-dissection of a convex n-gon. By Proposition 5.3, this sequence is obtained from (0, 0)
by a sequence of the surgery operations (a) and (b).

If ci = 1 for some i, where 0 ≤ i ≤ n, then, by induction assumption, the sequence

(c1, . . . , ci−1 + 1, ci+1 + 1, . . . , cn)

is the quiddity of a (3|4)-dissection of a convex (n − 1)-gon. Therefore, (c1, . . . , cn) is the quiddity of a
(3|4)-dissection of a convex n-gon, obtained from this (3|4)-dissection by the gluing of a triangle.

If ci = ci+1 = 0, then the sequence is of the form (c1, . . . , ci−1, 0, 0, ci+2, . . . , cn). By induction assump-
tion, (c1, . . . , ci−1, ci+2, . . . , cn) is the sequence associated to a (3|4)-dissection of a convex (n − 2)-gon.
Therefore, (c1, . . . , cn) is the quiddity of a (3|4)-dissection of a convex n-gon, obtained from this (3|4)-
dissection by the gluing of a quadrilateral.

Theorem 1 is proved.

Remark 5.4. Part (ii) of Theorem 1 can be strengthened. Let (c1, . . . , cn) be a solution of equation (3.1).
Assume that at least one element ci of Z/2Z different from 0 (i.e., that not all of ci are even). It turns
out that, under this assumption, (c1, . . . , cn) is the quiddity of a triangulation of a convex n-gon. For
example, the two following (3|4)-dissections have the same quiddity (1, 1, 1, 0, 0).

•
❖❖❖

❖
♦♦♦

♦
•

✴✴
✴✴
✴ •

✎✎
✎✎
✎

• •

•
❖❖❖

❖
♦♦♦

♦

✔✔
✔✔
✔✔
✔

✯✯
✯✯
✯✯
✯

•

✴✴
✴✴
✴ •

✎✎
✎✎
✎

• •

The proof of this strengthened statement is very similar to that of Theorem 1, Part (ii). It uses the
following idea: if an (n− 1)-tuple, obtained by applying the operation inverse to (a) centered at i to an
n-tuple (c1, . . . , cn), contains only 0, then the (n− 1)-tuple obtained by the operation inverse to (a) and
centered at i+ 1 to the n-tuple (c1, . . . , cn) contains an element different from 0.
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Remark 5.5. Let us mention that Part (i) of Theorem 1 can be deduced from the combinatorial model
and results of [9, Thm 7.3]. One can also deduce from this model that every quiddity (c1, . . . , cn) coming
from a (3|4)-dissection can be lift to an integer solution (c1, . . . , cn) of Equation (1.1).

We end the note with the following concluding remark.
The equation (3.1) naturally extends to arbitrary principal congruence subgroup Γ(N) in SL(2,Z), and

it would be interesting to find combinatorial description of the set of solutions in the general situation.

Acknowledgments. We are grateful to Valentin Ovsienko for the statement of the problem and
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