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Abstract—The Compton camera is a gamma ray imaging
device already employed in astronomy and still in investigation
for clinical domain. A key point in the imaging process is the to-
mographic reconstruction step. When the acquisition parameters
and the a priori information are correctly accounted for, iterative
algorithms are able to produce accurate images by compensating
for measurement uncertainties and statistical noise. In this
work we focus on the list-mode maximum likelihood expectation
maximization (LM-MLEM) algorithm with smoothness a priori
information expressed by the total variation norm. This type of
regularization is particularly well suited for low-dose acquisitions,
as it is the case in the applications foreseen for the camera. We
show that the TV a priori strongly improves the images when
data are acquired in ideal conditions. For realistic data, this a
priori is not sufficient and deconvolution with a pre-calculated
image-space kernel should also be considered.

Index Terms—Compton camera imaging, gamma ray, max-
imum likelihood, maximum a posteriori, total variation, point
spread function

I. INTRODUCTION

The number of photons detected by virtual elements of a
Compton camera are i.i.d. Poisson random variables. Let tij
denote the probability for a photon emitted in voxel j to
be detected as event i and let λj be the mean number of
photons emitted in voxel j. The contribution of the acquisition
uncertainties can be modelled as a convolution in the image
domain, in the sense that the data are supposed to come
from projections of the real distribution λ convolved with
some known kernel k. With T = (tij) denoting the system
matrix, the data are thus observations from a multi-variate
Poisson law with mean T (λ⊗k). The kernel (also called point
spread function, PSF) is a low-pass filter corresponding to
various physical effects that occur during the acquisition, e.g.
measurement errors, attenuation and scatter. This approach
has two relatively opposite effects: on the one hand it brings
some smoothness to the solution, on the other hand it improves
resolution. The first effect comes from the implicit relaxation
of data fidelity constrains. The second is due to the decon-
volution capabilities of the MLEM algorithm (known under
the name Richardson-Lucy in image processing applications).
However the PSF has to be carefully designed in order to
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capture entirely the data variability without over-corrections
that would lead to Gibbs artifacts ( [1]). For instance, for ideal
data the PSF should be chosen as a Dirac distribution.

The statistical noise and the ill-conditioned nature of the
problem lead to reconstructed images that usually appear
overly noisy. As a consequence, the iterations have to be
stopped at some point that is difficult to anticipate and the
images are usually post-smoothed. Maximum a posteriori
expectation maximization (MAP-EM) algorithms have been
previously investigated as they may bring information about
the source distribution properties and thus regularize the
solution. Often smooth priors are considered. In this study we
investigate a non-smooth and spatially variant prior, the total
variation norm. We show that in conjunction with the use of
the image-space PSF, total variation allows to reduce the noise,
improve the resolution and accelerate the convergence.

II. METHODS

A. Image-space PSF deconvolution

The logarithm of the likelihood of a measurement Y gen-
erated from the emission λ can be formulated as:

ln(L(λ|Y )) =
∑
i

(−
∑
j

tijλj + yi ln(
∑
j

tijλj)− ln(yi! ))

(1)
Let s = (sj) be the sensitivity vector, containing the detection
probabilities for photons emitted from voxels j. The MLEM
algorithm consists in calculating, starting from some initial
value λ̂0 ∈ (R∗

+)
J , the sequence:

λ̂l+1
j =

λ̂lj
sj

∑
i

tijyi∑
k tikλ̂

l
k

. (2)

It solves the minimization problem:

min{−L(λ|Y ) : λ ∈ (R+)
J}. (3)

In the list-mode version that we use in this work, the data
space is highly sampled in order to have yi ∈ {0, 1}.

Image reconstruction and deconvolution can be solved si-
multaneously with the MLEM algorithm, with two additional
convolutions. The algorithm becomes:

λ̂l+1 =
λ̂l

s
(R⊗ k), with R = TT

[
1

T (λ̂l ⊗ k)

]
. (4)



The image-space PSF method was originally introduced by
Snyder et al. [2]. In Reader et al. [3] the method was applied
to PET imaging resolution recovery with a Gaussian model for
the stationary PSF. Its use for the Compton camera imaging
was originally proposed by Kim et al. [4] and was further
developed by Jan et al. [5].

B. Total variation regularization

Since MLEM gives noisy results, a step forward consists
in considering regularized solutions of (3) and MAP-EM
algorithms. Total variation control is a common method for
noise reduction, first intoduced by Rudin et al. [6], which can
remove the noise from images while preserving the edges.
Adding this regularization to MLEM aims to reconstruct
the image with both minimal total variation and maximal
likelihood through the resolution of the minimization problem:

min{−L(λ|Y ) + αG(λ) : λ ∈ (R+)
J}. (5)

Here α ≥ 0 is the weight of TV regularization and G denotes
the L1-norm of the gradient in the image:

G(λ) =

∫
Ω

|∇λ(x)|dx. (6)

MAP-EM formalism has already been proposed by Demp-
ster et al. [7]. For the calculation of the MAP-EM estimator
with TV prior, Panin et al. [8] proposed a modified version
of the MLEM algorithm. However, this solution is unstable
and restricted to small values of the smoothing parameter α.
Other solutions were proposed since then (see, e.g. [9], [10]).
In [11], Sawatzky et al. proposed a two-step scheme consisting
in smoothing at each iteration the MLEM approximate solution
in (2), hereafter denoted by λ̂l+1/2. The smoothing step is a
weighted version of the TV denoising algorithm proposed by
A. Chambolle [12]. We used a new algorithm for the denoising
step proposed by Maxim et al. in [13], based on the dual
formulation of the (M) step from the EM algorithm. The (M)
step consists in solving:

λ̂l+1 ∈ argmin
λ
{H(λ) + αG(λ)} , (7)

with
H(λ) = 〈λ− λ̂l+1/2 log λ, s〉. (8)

The method is convergent and as fast as the one proposed by
Sawatzky et al.

C. Monte-Carlo simulation

Monte Carlo simulation of a cylindrical source in vacuum
was performed with MEGAlib [14]. The simulation geometry
is described in figure 1(a). The camera is composed of silicon
strip scatterers (512 strips on each face) and a segmented
LaBr3 absorber. The MLEM+TV method was evaluated with
ideal data, where only Doppler broadening was accounted for.
More realistic data was simulated adding Gaussian uncertain-
ties on the measured energies with σ = 1 keV for the scatterers
and σ = 11.4 keV at 511 keV for the absorber. The position
errors are determined by the strip pitch (≈ 1 mm) and by the

(a) simulation geometry

(b) central slices parallel to the detector

Fig. 1. Images reconstructed from ideal data (first column) and realistic data
(second and third column). The values of the maximum are normalized to 1.

size of the crystals (0.5×0.5×4 cm3). The PSF deconvolution
is only tested on realistic data. The PSF FWHM is fixed
to 16 mm in z direction and 8 mm in x and y directions.
The reconstructed volume has (5 cm)3 and is divided in 453

voxels.

III. RESULTS AND CONCLUSIONS

Results from figure 1(b) were obtained from 8 × 105

detected events after 200 MLEM iterations. In the first column,
reconstructions for ideal data are shown, with (bottom) and
without (top) total variation regularization. The results from
the central column show that TV regularization smooths the
image, but do not allow to distinguish the hole in the cylinder.
The results improve with the use of the PSF (last column).

In this work we focus on Compton camera image re-
construction using realistic data and with low statistics. We
show that in this context the image-space PSF deconvolution
smooths the result and improves the resolution. TV regular-
ization allows to further smooth the images while reinforcing
the edges. We also observed that it promotes convergence.
However, the deconvolution did not recover properly the hole
since its size is comparable to the FWHM of the system PSF.
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