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We consider the Cauchy problem of the nonlinear Landau equation of Maxwellian molecules, under the perturbation frame work to global equilibrium. We show that if H r x (L 2 v ), r > 3/2 norm of the initial perturbation is small enough, then the Cauchy problem of the nonlinear Landau equation admits a unique global solution which becomes analytic with respect to both position x and velocity v variables for any time t > 0. This is the first result of analytic smoothing effect for the spatially inhomogeneous nonlinear kinetic equation. The method used here is microlocal analysis and energy estimates. The key point is adopting a time integral weight associated with the kinetic transport operator.

Introduction

We consider the Cauchy problem for the spatially inhomogeneous Landau equation, a kinetic model from plasma physics that describes the evolution of a particle density f (t, x, v) ≥ 0 with position x ∈ R 3 and velocity v ∈ R 3 at time t. It reads (1.1)

∂ t f + v • ∇ x f = Q L (f, f ), f | t=0 = f 0 ,
where the term Q L (f, f ) corresponds to the Landau collision operator associated to the bilinear operator

Q L (g, f ) = ∇ v • R 3 a(v -v * ) g(v * )(∇ v f )(v) -(∇ v g)(v * )f (v) dv * .
Here a = (a i,j ) 1≤i,j≤3 stands for the non-negative symmetric matrix

(1.2) a(v) = |v| γ |v| 2 I -v ⊗ v = |v| γ+2 P v ⊥ ∈ M 3 (R), -3 ≤ γ < +∞,
where P v ⊥ is the orthogonal projection on v ⊥ . The Landau equation with γ = -3 was first proposed in 1936 [START_REF] Landau | Kinetic equation for the case of Coulomb interaction[END_REF] by the Russian theoretical physicist Lev Davidovitch Landau, as a transport equation for a system of charged particles, where the long range of the Coulomb interactions makes it impossible to use the normal Boltzmann equation. It soon became (in combination with the Vlasov equation) the most important mathematical kinetic model in the theory of collisional plasma.

The "generalized" Landau equation with γ > -3 was independently introduced by several authors ( see e.g. [START_REF] Bobylev | Expansion of the Boltzmann collision integral in a Landau series[END_REF][START_REF] Desvillettes | On asymptotics of the Boltzmann equation when collisions became grazing[END_REF]). It plays a role of a model of the Boltzmann equation for various interactions including inverse power law potential ρ -n+1 , n > 2. This equation can be obtained as a limit of the Boltzmann equation when grazing collisions prevails (see [START_REF] Villani | On a new class of week solutions to the homogeneous Boltzmann and Landau equations[END_REF][START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF] for a detailed study of the limiting process and further references on the subjects). Though the Landau equation has no relation to physics in the non-Coulomb case, from various mathematical points of view, it has been intensively studied by mathematicians in last two decades, because it is a simple approximation of the non-cutoff Boltzmann equation (see, e.g. [START_REF] Alexandre | Entropy dissipation and longrange interactions[END_REF][START_REF] Lerner | Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators[END_REF]). We refer the reader to the surveys [START_REF] Lions | On Boltzmann and Landau equations[END_REF][START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF][START_REF] Bouchut | Kinetic equations and asymtotic theory[END_REF] and recent papers [START_REF] Bobylev | From practical system to the Landau equation: a consistency result[END_REF][START_REF] Bobylev | On some properties of the Lnadau kinetic equation[END_REF][START_REF] Carrapatoso | Landau equation for very soft and Coulomb potentials near Maxwellians[END_REF], as well as to the references therein for matters related to the derivation and basic results for that equation.

In this article, we focus our attention on the analytic smoothing effect of a solution for the Cauchy problem (1.1). More specifically, we study the Landau equation with Maxwellian molecules in a close to equilibrium framework. The Maxwellian molecules corresponds to the case when the parameter γ = 0 in the cross section (1.2). We consider the fluctuation

f = µ + √ µg,
around the Maxwellian equilibrium distribution 2 . This distribution is a stationary solution for the Landau equation since it only depends on the velocity variable v and the fact that Q L (µ, µ) = 0. We consider the linearized Landau operator around this equilibrium distribution given by L g = -µ -1/2 Q L (µ, µ 1/2 g) -µ -1/2 Q L (µ 1/2 g, µ).

(1.3) µ(v) = (2π) -3 2 e -|v| 2
The Cauchy problem for the Landau equation (1.1) is then reduced to the one for the fluctuation (1.4) ∂ t g + v • ∇ x g + L g = Γ(g, g), g| t=0 = g 0 , with Γ(g, f ) = µ -1/2 Q L ( √ µg, √ µf ). To state our main result, we define the Sobolev space H r x (L 2 v ) for r ≥ 0 by

H r x (L 2 v ) = u ∈ L 2 (R 6 x,v ); D x r u ∈ L 2 (R 6 
x,v ) , with D x = √ 1 -△ x and D x = -i∂ x . Let A(R n ) denote the analytic function space on R n . Theorem 1.1. Let r > 3/2. There exists a small constant ǫ 0 > 0 such that for all

g 0 ∈ H r x (L 2 v ) satisfying g 0 H r x (L 2 
v ) ≤ ǫ 0 , the Cauchy problem (1.4) admits a unique global solution such that g(t) ∈ A(R 6

x,v ), ∀t > 0 . Furthermore, there exists a c 0 > 0 such that, (1.5) e c0{ t2 (-∆x) 1/2 + t(-∆v) 1/2 } g(t) ∈ L ∞ [0, +∞), H r x (L 2 v ) , where t = min{1, t} for t ≥ 0. This article concerns the existence of a solution to the Cauchy problem for the Landau equation, as well as the smoothing properties of that solution, which is a topic studied in many previous works, as stated above. Among them we refer [START_REF] Villani | On a new class of week solutions to the homogeneous Boltzmann and Landau equations[END_REF][START_REF] Desvillettes | On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness[END_REF][START_REF] Desvillettes | On the spatially homogeneous Landau equation for hard potentials. II. H-theorem and applications[END_REF][START_REF] Desvillettes | Entropy dissipation estimates for the Landau equation in the Coulomb case and applications[END_REF] concerning the existence result, [START_REF] Morimoto | Ultra-analytic effect of Cauchy problem for a class of kinetic equations[END_REF][START_REF] Morimoto | A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equations[END_REF] about higher regularity such as (ultra-)analyticity, in the spatially homogeneous case, while in the spatially inhomogeneous case, [START_REF] Alexandre | On the Landau approximation in plasma physics[END_REF] concerning renormalized solution with defect measure, [START_REF] Guo | The Landau equation in a periodic box[END_REF][START_REF] Strain | Exponential decay for soft potentials near Maxwellian[END_REF][START_REF] Carrapatoso | Cauchy problem and exponential stability for the inhomogeneous Landau equation[END_REF][START_REF] Carrapatoso | Landau equation for very soft and Coulomb potentials near Maxwellians[END_REF][START_REF] Cao | Well-posedness of Cauchy problem for Landau equation in critical Besov space Kinetic and Related[END_REF][START_REF] Duan | Global mild solutions of the Landau and non-cutoff Boltzmann equations[END_REF] in a close to equilibrium setting, and recent regularity results by [START_REF] Cameron | Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials[END_REF][START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF][START_REF] Ch | C ∞ smoothing for weak solutions of the inhomogeneous Landau equations[END_REF] under boundedness conditions on the mass, energy, entropy densities. Also we want to mention the related works on the non cut-off Boltzmann equation, e.g., the papers by [START_REF] Alexandre | Entropy dissipation and longrange interactions[END_REF][START_REF] Morimoto | Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff[END_REF][START_REF] Morimoto | Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff[END_REF][START_REF] Glangetas | Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation[END_REF][START_REF] Alexandre | Regularizing effect and local existence for the non-cutoff Boltzmann equation[END_REF][START_REF] Alexandre | The Boltzmann equation without angular cutoff in the whole space: qualitative properties of solutions[END_REF][START_REF] Alexandre | Global existence and full regularity of the Boltzmann equation without angular cutoff[END_REF][START_REF] Lerner | Gelfand-Shilov smoothing effect for the spatially inhomogeneous non-cutoff Kac equation[END_REF][START_REF] Morimoto | Measure valued solutions to the spatially homogeneous Boltzmann equation without angular cutoff[END_REF][START_REF] Barbaroux | Gevrey smoothing for weak solutions of the fully nonlinear homogeneous Boltzmann and Kac equation without cutoff for Maxwellian molecules[END_REF].

The rest of paper is arranged as follows: In Section 2 we recall the exact expression of the linear operator given in [START_REF] Lerner | Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators[END_REF], introduce a version of the exponential weight used in the previous work [START_REF] Morimoto | Ultra-analytic effect of Cauchy problem for a class of kinetic equations[END_REF], and show the estimate for the linear term with the exponential weight. In Section 3 we give an explicit form of the nonlinear term by means of creation and annihilation operators and spherical derivatives. In Section 4, we use this to show a trilinear estimate for the inner product of the nonlinear term and test function with exponential weight. Section 5 is devoted to complete the proof of the main theorem by constructing the time local solution with analytic smoothing property and by combining this and the known global existence result.

Fourier analysis of linear Landau operator

With µ defined in (1.3), the linearized Landau operator L is defined by

L g = -µ -1/2 Q L (µ, µ 1/2 g) -µ -1/2 Q L (µ 1/2 g, µ),
is an unbounded symmetric operator on L 2 (R 3 v ). In the case of Maxwellian molecules, the linearized Landau operator may be computed explicitly (see e.g. [START_REF] Lerner | Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators[END_REF], Proposition 1), and we have

L = L 1 + L 2 ,
with

L 1 = 2 -∆ v + |v| 2 4 - 3 2 -∆ S 2 , L 2 = ∆ S 2 -2 -∆ v + |v| 2 4 - 3 2 P 1 + -∆ S 2 -2 -∆ v + |v| 2 4 - 3 2 P 2
where

∆ S 2 = 1 2 1≤j,k≤3 j =k L 2 k,j , L k,j = v j ∂ v k -v k ∂ vj ,
stands for the Laplace-Beltrami operator on the unit sphere S 2 , and P k denotes the orthogonal projection onto the Hermite basis

E k = Span{Φ α } α∈N 3 ,|α|=k . Here Φ 0 (v) = µ 1/2 (v), Φ α = 1 √ α! a α1 +,1 a α2 +,2 a α3 +,3 Φ 0 , α = (α 1 , α 2 , α 3 ) ∈ N 3 , α! = α 1 !α 2 !α 3 !, with a ±,j = v j 2 ∓ ∂ ∂v j , 1 ≤ j ≤ 3.
We have then,

(L 1 g, g) L 2 (R 3 v ) = 2 3 j=1 ∂ vj g 2 L 2 (R 3 v ) + 1 4 v j g 2 L 2 (R 3 v ) + 1 2 1≤j,k≤3 j =k L k,j g 2 L 2 (R 3 v ) -3 g 2 L 2 (R 3 v ) .
The operators

L 2 is bounded in L 2 (R 3 v ).
Putting

|||g||| 2 v = 2 3 j=1 ∂ vj g 2 L 2 (R 3 v ) + 1 4 v j g 2 L 2 (R 3 v ) + 1 2 1≤j,k≤3 j =k L k,j g 2 L 2 (R 3 v ) |||g||| 2 r,0 = 2 3 j=1 ∂ vj g 2 H r x (L 2 v ) + 1 4 v j g 2 H r x (L 2 v ) + 1 2 1≤j,k≤3 j =k L k,j g 2 H r x (L 2 v ) ,
we have the following coercive estimates; there exists C > 0 such that for all g ∈ S (R 3 ),

|||g||| 2 v ≤ (L g, g) L 2 (R 3 v ) + C g 2 L 2 (R 3 
v ) . Ultra-analytic smoothing effect of Kolmogorov equation. We recall the Cauchy problem of Kolmogorov equation

∂ t f + v • ∇ x f -∆ v f = 0 , f (0, x, v) = f 0 (x, v) ∈ L 2 (R 2n
x,v ). Using the Fourier transform ( (x, v) ↔ (η, ξ) ) we have

f (t, η, ξ) = e -t 0 |ξ+ρη| 2 dρ f0 (η, ξ + tη) because (∂ t -η • ∇ ξ + |ξ| 2 ) f = 0. Using the following Ukai inequality (2.1) with α = 2, ∃c > 0 , c (t|ξ| 2 + t 3 |η| 2 ) ≤ t 0 |ξ + ρη| 2 dρ. Then we have e c(-t∆v-t 3 ∆x) f (t, •, • ) ∈ L 2 (R 2n x,v
) , which shows the ultra-analytic smoothing effect of (x, v) variables for any t > 0.

Lemma 2.1. For any α > 0, there exists c α > 0 such that

(2.1) t 0 (1 + |ξ + ρη| 2 ) α/2 dρ ≥ c α t 1 + |ξ| 2 + t 2 |η| 2 α/2 , for all t > 0.
Remark 2.2. The following simple proof is due to Seiji Ukai. On the other hand, there exists C α > 0 such that

(2.2) t 0 (1 + |ξ + ρη| 2 ) α/2 dρ ≤ C α t 1 + |ξ| 2 + t 2 |η| 2 α/2 , ∀t > 0.
Proof. Put ρ = tτ , η = -tη, then the estimate (2.1) is equivalent to

1 0 ξ -τ η α dτ ≥ c α 1 + |ξ| 2 + |η| 2 α/2 , with the notation • = 1 + | • | 2 .
Since the case η = 0 is trivial, we assume η = 0. Notice

2 1 0 ξ -τ η α dτ ≥ 1 + 1 0 |ξ -τ η| α dτ. If |ξ| ≥ |η| 1 0 |ξ -τ η| α dτ ≥ |ξ| α 1 0 1 -τ |η| |ξ| α dτ ≥ |ξ| α 1 0 1 -τ α dτ = |ξ| α α + 1 ≥ 1 2 α (α + 1) (|ξ| 2 + |η| 2 ) α/2 . If |ξ| < |η| 1 0 |ξ -τ η| α dτ ≥ |η| α 1 0 τ - |ξ| |η| α dτ = |η| α |ξ|/|η| 0 |ξ| |η| -τ α dτ + 1 |ξ|/|η| τ - |ξ| |η| α dτ ≥ |η| α α + 1 min 0≤θ≤1 (θ α+1 + (1 -θ) α+1 ) = |η| α 2 α (α + 1) ≥ 1 2 2α (α + 1) (|ξ| 2 + |η| 2 ) α/2 .
We finally get (2.1).

We set

Ψ(t, η, ξ) = c 0 t 0 ξ + ρη dρ = c 0 t 0 ξ + (t -ρ)η dρ,
for a sufficiently small c 0 > 0 which will be chosen later on. We have that

(∂ t -η • ∇ ξ )Ψ = c 0 ξ .
Then we can use (2.1) with α = 1 to estimate Ψ.

To study the Gevery (and analytic) regularity of kinetic equations, exponential type weights were used in [START_REF] Morimoto | Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff[END_REF][START_REF] Morimoto | Ultra-analytic effect of Cauchy problem for a class of kinetic equations[END_REF] (see also [START_REF] Barbaroux | Gevrey smoothing for weak solutions of the fully nonlinear homogeneous Boltzmann and Kac equation without cutoff for Maxwellian molecules[END_REF]). Now we set

F δ,δ ′ (t, η, ξ) = e Ψ (1 + δe Ψ )(1 + δ ′ Ψ) r for 0 < δ ≤ 1, r > 3/2, 0 < rδ ′ ≤ 1.
Without the confusion, we use the same notation F δ,δ ′ for the symbol F δ,δ ′ (t, η, ξ) and also the the pseudo-differential operator F δ,δ ′ (t, D x , D v ). If A is a first order differential operator of (t, η, ξ) variables, then we have

(2.3) AF δ,δ ′ = 1 1 + δe Ψ - rδ ′ 1 + δ ′ Ψ (AΨ)F δ,δ ′ , and 1 1 + δe Ψ - rδ ′ 1 + δ ′ Ψ ≤ 1, since 0 ≤ a, b ≤ 1 implies |a -b| ≤ 1.
We study now the apriori estimate of solution g ∈ L

∞ (]0, T [, H r x (L 2 v )) of the equa- tion ∂ t g + v • ∇ x g + L g = Γ(g, g) .
Since in this case,

v • ∇ x g ∈ L ∞ (]0, T [, H r-1 x (L 2 -1 (R 3 v ))), L g, Γ(g, g) ∈ L ∞ (]0, T [, H r x (H -2 -2 (R 3 v ))
), we will take

g = F δ,δ ′ (t, D x , D v ) δ ′ v -4 F δ,δ ′ (t, D x , D v )g ∈ L ∞ (]0, T [, H 2r 4 (R 6 x,v ))
as test function, where H m ℓ (R 6

x,v ) is the weighted Sobolev space of order ℓ with respect to v variable. Taking the H r x (L 2 v ) inner product for r > 3 2 , we get,

(∂ t + v • ∇ x )g, F δ,δ ′ δ ′ v -4 F δ,δ ′ g H r x (L 2 v ) + L g, F δ,δ ′ δ ′ v -4 F δ,δ ′ g H r x (L 2 v ) = Γ(g, g), F δ,δ ′ δ ′ v -4 F δ,δ ′ g H r x (L 2 v )
.

For the first term, we have

Proposition 2.3. There exist C 1 , C 2 > 0 independent of δ, δ ′ such that, for 0 < t ≤ 1, (∂ t + v • ∇ x )g, F δ,δ ′ δ ′ v -4 F δ,δ ′ g H r x (L 2 v ) ≥ 1 2 d dt δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) -c 0 C 1 D v δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) -C 2 δ ′ v -2 F δ,δ ′ g H r x (L 2 
v ) . Proof. Using the Plancherel formula, we have

(∂ t + v • ∇ x )g, F δ,δ ′ δ ′ v -4 F δ,δ ′ g H r x (L 2 v ) = 1 (2π) 6 δ ′ D ξ -2 F δ,δ ′ (∂ t -η • ∇ ξ )ĝ, η 2r δ ′ D ξ -2 F δ,δ ′ ĝ(t, η, ξ) L 2 η,ξ = 1 (2π) 6 (∂ t -η • ∇ ξ ) δ ′ D ξ -2 F δ,δ ′ ĝ, η 2r δ ′ D ξ -2 F δ,δ ′ ĝ(t, η, ξ) L 2 η,ξ + 1 (2π) 6 [ δ ′ D ξ -2 F δ,δ ′ , (∂ t -η • ∇ ξ )]ĝ, η 2r δ ′ D ξ -2 F δ,δ ′ ĝ(t, η, ξ) L 2 η,ξ
, and

(∂ t -η • ∇ ξ ) δ ′ D ξ -2 F δ,δ ′ ĝ, η 2r δ ′ D ξ -2 F δ,δ ′ ĝ(t, η, ξ) L 2 η,ξ = 1 2 d dt R 6 | δ ′ D ξ -2 F δ,δ ′ ĝ(t, η, ξ)| 2 η 2r dηdξ (2π) 6 .
We study now the commutators term. Since (∂ t -η • ∇ ξ )Ψ = c 0 ξ , we have

-[F δ,δ ′ , (∂ t -η • ∇ ξ )] = (∂ t -η • ∇ ξ )F δ,δ ′ = c 0 ξ 1 1 + δe Ψ - rδ ′ 1 + δ ′ Ψ F δ,δ ′ ,
and

[ δ ′ D ξ -2 F δ,δ ′ , (∂ t -η • ∇ ξ )] = δ ′ D ξ -2 [F δ,δ ′ , (∂ t -η • ∇ ξ )] = -c 0 δ ′ D ξ -2 ξ 1 1 + δe Ψ - rδ ′ 1 + δ ′ Ψ δ ′ D ξ 2 δ ′ D ξ -2 F δ,δ ′ .
Moreover, we have

δ ′ D ξ -2 ξ 1 + δe Ψ - rδ ′ ξ 1 + δ ′ Ψ δ ′ D ξ 2 = ξ 1 1 + δe Ψ - rδ ′ 1 + δ ′ Ψ + δ ′ D ξ -2 ξ 1 1 + δe Ψ - rδ ′ 1 + δ ′ Ψ , δ ′ D ξ 2 ,
and

δ ′ D ξ -2 ξ 1 1 + δe Ψ - rδ ′ 1 + δ ′ Ψ , δ ′ D ξ 2 = 2 (δ ′ ) 2 D ξ δ ′ D ξ 2 • D ξ ξ 1 + δe Ψ - rδ ′ ξ 1 + δ ′ Ψ -δ ′ D ξ -2 (δ ′ ) 2 D 2 ξ ξ 1 + δe Ψ - rδ ′ ξ 1 + δ ′ Ψ . Now using (2.4) |∂ ξj Ψ| = c 0 t 0 ξ j -ρη j ξ -ρη dρ ≤ c 0 t, |∂ α ξ Ψ| ≤ C α c 0 t for |α| ≥ 2,
we can complete the proof of Proposition 2.3.

We study now terms concerning linear operators.

Proposition 2.4. If 0 < c 0 ≪ 1, then there exists a C > 0 independent of δ, δ ′ > 0 such that for any 0 < t ≤ 1 we have

L 1 g, F δ,δ ′ δ ′ v -4 F δ,δ ′ g H r x (L 2 v ) ≥ 1 2 ||| δ ′ v -2 F δ,δ ′ g||| 2 r,0 -C δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) . Proof. Note that L 1 = 2 3 j=1 (D 2 vj + v 2 j 4 ) -3 - 1 2 1≤j,k≤3 j =k L 2 k,j .
Then we have firstly

D 2 vj g, F δ,δ ′ δ ′ v -4 F δ,δ ′ g H r x (L 2 v ) = D 2 vj F δ,δ ′ g, δ ′ v -4 F δ,δ ′ g H r x (L 2 v ) = δ ′ v -2 D 2 vj δ ′ v 2 δ ′ v -2 F δ,δ ′ g, δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) = D 2 vj δ ′ v -2 F δ,δ ′ g, δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) + δ ′ v -2 [D 2 vj , δ ′ v 2 ] δ ′ v -2 F δ,δ ′ g, δ ′ v -2 F δ,δ ′ g H r x (L 2 v )
.

Since [D 2 vj , δ ′ v 2 ] = -2δ ′2 -i4δ ′2 v j D vj ,
we have

δ ′ v -2 [D 2 vj , δ ′ v 2 ] δ ′ v -2 F δ,δ ′ g, δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) ≤ 2δ ′2 δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) + 4δ ′ D vj δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) ≤ 10δ ′2 δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) + 1 2 D vj δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) , which gives D 2 vj g, F δ,δ ′ δ ′ v -4 F δ,δ ′ g H r x (L 2 v ) ≥ 1 2 D vj δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v )
(2.5)

-10δ ′2 δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v )
. Now, for the second terms, we write

v 2 j g, F δ,δ ′ δ ′ v -4 F δ,δ ′ g H r x (L 2 v ) = v 2 j δ ′ v -2 F δ,δ ′ g, δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) + δ ′ v -2 [F δ,δ ′ , v 2 j ]g, δ ′ v -2 F δ,δ ′ g H r x (L 2 v )
, and note that

[F δ,δ ′ , v 2 j ] = 2(D ξj F δ,δ ′ )(t, D x , D v )v j -(D 2 ξj F δ,δ ′ )(t, D x , D v ) (2.6) = 2v j (D ξj F δ,δ ′ )(t, D x , D v ) + (D 2 ξj F δ,δ ′ )(t, D x , D v )
. By using (2.3), we have

(D ξj F δ,δ ′ )(t, D x , D v ) = 1 1 + δe Ψ - rδ ′ 1 + δ ′ Ψ (D ξj Ψ)F δ,δ ′ := B j,δ,δ ′ (t, D x , D v )F δ,δ ′ (2.7)
and moreover

(D 2 ξj F δ,δ ′ )(t, D x , D v ) = (D ξj B j,δ,δ ′ )(t, D x , D v ) + B j,δ,δ ′ (t, D x , D v ) 2 F δ,δ ′ := Bj,δ,δ ′ (t, D x , D v )F δ,δ ′ . (2.8) Consequently δ ′ v -2 [F δ,δ ′ , v 2 j ]g, δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) ≤ 2 δ ′ v -2 B j,δ,δ ′ δ ′ v 2 δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) v j δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) + δ ′ v -2 Bj,δ,δ ′ δ ′ v 2 δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) . Since it follows from (2.4) that δ ′ v -2 B δ,δ ′ δ ′ v 2 = B δ,δ ′ -δ ′2 δ ′ v -2 [B δ,δ ′ , |v| 2 ] is an L 2 (R 6
x,v ) bounded operator with a constant factor c 0 t and the same fact holds for Bδ,δ ′ , we have that for 0 < t ≤ 1,

v 2 j g, F δ,δ ′ δ ′ v -4 F δ,δ ′ g H r x (L 2 v )
(2.9)

≥ 1 2 v j δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) -C 1 δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) .
Finally, for the last terms, let Lk,j = -

ξ k ∂ ξj + ξ j ∂ ξ k . Then we have Lk,j F δ,δ ′ (t, η, ξ) = 1 1 + δe Ψ - rδ ′ 1 + δ ′ Ψ F δ,δ ′ -ξ k ∂ ξj Ψ + ξ j ∂ ξ k Ψ , (2.10) and hence, in view of rδ ′ ≤ 1, -L 2 k,j g, F δ,δ ′ δ ′ v -4 F δ,δ ′ g H r x (L 2 v ) = R 6 
Lk,j -

1 1 + δe Ψ - rδ ′ 1 + δ ′ Ψ -ξ k ∂ ξj Ψ + ξ j ∂ ξ k Ψ F δ,δ ′ ĝ η 2r × Lk,j + 1 1 + δe Ψ - rδ ′ 1 + δ ′ Ψ -ξ k ∂ ξj Ψ + ξ j ∂ ξ k Ψ δ ′ D ξ -4 F δ,δ ′ ĝ dηdξ (2π) 6 ≥ L k,j δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) -c 2 0 t 2 C 2 ∂ vj δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) + ∂ v k δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) -c 0 tC 3 L k,j δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) × ∂ vj δ ′ v -2 F δ,δ ′ g H r x L 2 v + ∂ v k δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) -c 2 0 t 2 C 4 δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) ,
where we have used Lk,j , δ ′ D ξ = 0, because δ ′ D ξ is radial. Therefore, for 0 < t ≤ 1 and 0 < c 0 ≪ 1 we get

-L 2 k,j g, F δ,δ ′ δ ′ v -4 F δ,δ ′ g H r x (L 2 v ) ≥ 1 2 L k,j δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v )
(2.11)

- 1 8 ∂ vj δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) + ∂ v k δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) -C 5 δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v )
. Combing the estimates (2.5),(2.9) and (2.11), we finish the proof of Proposition 2.4.

We recall the notations: Φ

0 (v) = µ 1/2 (v), Φ α = 1 √ α! a α1 +,1 a α2 +,2 a α3 +,3 Φ 0 , α = (α 1 , α 2 , α 3 ) ∈ N 3 , α! = α 1 !α 2 !α 3 !, with a ±,j = v j 2 ∓ ∂ ∂v j , 1 ≤ j ≤ 3. Φ e k = v k Φ 0 , Φ 2e k = 1 √ 2 (v 2 k -1)Φ 0 , Φ ej +e k = v j v k Φ 0 (j = k),
where (e 1 , e 2 , e 3 ) stands for the canonical basis of R 3 .

Proposition 2.5. For 0 < t ≤ 1, there exists C 6 > 0 independent of 0 < δ ≤ 1, 0 < δ ′ < r -1 and 0 < c 0 ≪ 1 such that we have

L 2 g, F δ,δ ′ δ ′ v -4 F δ,δ ′ h H r x (L 2 v ) ≤ C 6 δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) δ ′ v -2 F δ,δ ′ h H r x (L 2 v ) . Proof. First we recall L 2 g = ∆ S 2 -2 -∆ v + |v| 2 4 - 3 2 P 1 g + -∆ S 2 -2 -∆ v + |v| 2 4 - 3 2 P 2 g.
Notice

P 1 g = 3 k=1 (g, Φ e k ) L 2 (R 3 v ) Φ e k , P 2 g = |α|=2 (g, Φ α ) L 2 (R 3 v ) Φ α .
Then

L 2 g = 3 k=1 (g, Φ e k ) L 2 (R 3 v ) Φe k + |α|=2 (g, Φ α ) L 2 (R 3 v ) Φα with Φe k = ∆ S 2 -2 -∆ v + |v| 2 4 - 3 2 Φ e k = p e k (v)e -|v| 2 4 , Φ2 = -∆ S 2 -2 -∆ v + |v| 2 4 - 3 2 Φ α = p α (v)e -|v| 2 4 ,
where p * (v) are the polynomial of v-variables of 3 or 4 degrees. We then study one of terms, where Φ denotes Φ e k , Φ α ,

(g, Φ) L 2 (R 3 v ) Φ, F δ,δ ′ δ ′ v -4 F δ,δ ′ h H r x (L 2 v ) = η,ξ (ĝ(t, η, •), F v * (Φ)) L 2 (R 3 ξ * ) F v ( Φ)(ξ)F δ,δ ′ δ ′ D ξ -4 F δ,δ ′ ĥ(t, η, ξ) η 2r dηdξ (2π) 6 = η,ξ,ξ * ĝ(t, η, ξ * )F v * (Φ)(ξ * )F v ( Φ)(ξ)F δ,δ ′ δ ′ D ξ -4 F δ,δ ′ ĥ(t, η, ξ) η 2r dηdξdξ * (2π) 9 = η,ξ,ξ * δ ′ D ξ * -2 F δ,δ ′ (t, η, ξ * )ĝ(t, η, ξ * ) δ ′ D ξ * 2 F v * (Φ)(ξ * ) F v ( Φ)(ξ) × F δ,δ ′ (t, η, ξ) F δ,δ ′ (t, η, ξ * ) δ ′ D ξ -4 F δ,δ ′ (t, η, ξ) ĥ(t, η, ξ) η 2r dηdξdξ * (2π) 9 + 2δ ′2 η,ξ,ξ * δ ′ D ξ * -2 F δ,δ ′ (t, η, ξ * )ĝ(t, η, ξ * ) D ξ * F v * (Φ)(ξ * ) F v ( Φ)(ξ) × D ξ * F δ,δ ′ (t, η, ξ) F δ,δ ′ (t, η, ξ * ) δ ′ D ξ -4 F δ,δ ′ (t, η, ξ) ĥ(t, η, ξ) η 2r dηdξdξ * (2π) 9 + δ ′2 η,ξ,ξ * δ ′ D ξ * -2 F δ,δ ′ (t, η, ξ * )ĝ(t, η, ξ * ) F v * (Φ)(ξ * ) F v ( Φ)(ξ) × D 2 ξ * F δ,δ ′ (t, η, ξ) F δ,δ ′ (t, η, ξ * ) δ ′ D ξ -4 F δ,δ ′ (t, η, ξ) ĥ(t, η, ξ) η 2r dηdξdξ * (2π) 9 .
On the other hand, we have

F δ,δ ′ (t, η, ξ) F δ,δ ′ (t, η, ξ * ) =e c0 t 0 ( ξ+ρη -ξ * +ρη )dρ 1 + δe c0 t 0 ξ * +ρη dρ 1 + δe c0 t 0 ξ+ρη dρ × 1 + δ ′ c 0 t 0 ξ * + ρη dρ 1 + δ ′ c 0 t 0 ξ + ρη dρ r . Since ξ + ρη = |(1, ξ + ρη)| ≤ |(1, ξ * + ρη)| + |(0, ξ -ξ * )| (2.12) ≤ ξ * + ρη + |ξ| + |ξ * |, ∀ξ, ξ * ∈ R 3 ,
we have, by using (2.3) and (2.4), for 0

< t ≤ 1, 1 ≤ p ≤ 2, D p ξ * F δ,δ ′ (t, η, ξ) F δ,δ ′ (t, η, ξ * ) ≤ Ce 2c0t(|ξ|+|ξ * |) (1 + |ξ| r + |ξ * | r ). Because, for 0 ≤ p ≤ 2 |ξ| r e 2c0t|ξ| D p ξ F v ( Φ)(ξ) ∈ L 2 (R 3 ξ ), we proved that, for 0 < t ≤ 1, (g, Φ) L 2 (R 3 v ) Φ, F δ,δ ′ δ ′ v -4 F δ,δ ′ h H r x (L 2 v ) ≤ C η δ ′ D ξ * -2 F δ,δ ′ ĝ(t, η, •) L 2 ξ * δ ′ D ξ -4 F δ,δ ′ ĥ(t, η, •) L 2 ξ η 2r dη (2π) 9 ≤ C δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) δ ′ v -2 F δ,δ ′ h H r x (L 2 v ) .
Remark 2.6. Compared to (2.12), there is no constant C > 0 such that

ξ + ρη α -ξ * + ρη α ≤ C(|ξ| α + |ξ * | α ), ∀ξ, ξ * ∈ R 3 , if α > 1.
By this reason we do not seek for the ultra-analytic smoothing effect in the present paper.

In conclusion, for the linear operators, we get that there exists

C 7 > 1 indepen- dent of 0 < δ ≤ 1, 0 < δ ′ < r -1 and 0 < c 0 ≪ 1 such that, for 0 < t ≤ 1 (∂ t + v • ∇ x + L )g, F δ,δ ′ δ ′ v -4 F δ,δ ′ g H r x (L 2 v ) ≥ 1 2 d dt δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) + 1 4 ||| δ ′ v -2 F δ,δ ′ g||| 2 r,0 (2.13) 
-C 7 δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) .

Decomposition of nonlinear operators

We compute now the nonlinear term Γ(f, g), Proposition 3.1.

(3.1) (Γ(f, g), h) L 2 (R 3 v ) = D 1 + D 2 + D 3 + D 4 + D 5 + D 6 + D 7 ,
with

D 1 = √ 2 1≤i,j≤3 i =j (f, Φ 2ej ) L 2 (R 3 v ) (a +,i g, a -,i h) L 2 (R 3 v ) , D 2 = - 1≤i,j≤3 i =j (f, Φ 0 ) L 2 (R 3 v ) (a -,i g, a -,i h) L 2 (R 3 v ) , D 3 = - 1≤i,j≤3 i =j (f, Φ ei+ej ) L 2 (R 3 v ) (a +,j g, a -,i h) L 2 (R 3 v ) , D 4 = 1≤i,j≤3 i =j (f, Φ ei ) L 2 (R 3 v ) (g, a -,i h) L 2 (R 3 v ) , D 5 = - 1 2 1≤i,j≤3 i =j (f, Φ 0 ) L 2 (R 3 v ) L i,j g, L i,j h L 2 (R 3 v ) , D 6 = 1≤i,j≤3 i =j (f, Φ ej ) L 2 (R 3 v ) (L i,j g, a -,i h) L 2 (R 3 v ) , D 7 = - 1≤i,j≤3 i =j (f, Φ ej ) L 2 (R 3 v ) (a +,i g, L i,j h) L 2 (R 3 v ) .
where the creation (resp. annihilation) operator a +,j (resp. a -,j ) is given by

a ±,j = v j 2 ∓ ∂ ∂v j and L k,j = v j ∂ v k -v k ∂ vj .
Proof. We begin by computing explicitly the bilinear term Γ(g, f ). Notice that for all f, g ∈

S (R 3 v ), Γ(f, g) = µ -1/2 (v) 1≤k,j≤3 ∂ v k R 3 a k,j (v-v * )µ 1/2 (v * )f (v * )∂ vj µ 1/2 (v)g(v) dv * -µ -1/2 (v) 1≤k,j≤3 ∂ v k R 3 a i,j (v -v * )∂ v * j µ 1/2 (v * )f (v * ) µ 1/2 (v)g(v)dv * , that is, Γ(f, g) = 1≤k,j≤3 ∂ v k - v k 2 R 3 a k,j (v-v * )µ 1/2 (v * )f (v * ) ∂ j g(v)- v j 2 g(v) dv * - 1≤k,j≤3 ∂ v k - v k 2 R 3 a k,j (v -v * )µ 1/2 (v * ) ∂ j f (v * ) - v * j 2 f (v * ) g(v)dv * . It follows that for all f, g, h ∈ S (R 3 v ), Γ(f, g),h L 2 (R 3 v ) = 1≤k,j≤3 R 6 a k,j (v -v * )µ 1/2 (v * )f (v * ) ∂ j g(v) - v j 2 g(v) × -∂ k h(v) - v k 2 h(v) dv * dv - 1≤k,j≤3 R 6 a k,j (v -v * )µ 1/2 (v * ) ∂ j f (v * ) - v * j 2 f (v * ) g(v) × -∂ k h(v) - v k 2 h(v) dv * dv.
Integrating by parts, we obtain that

R 3 a k,j (v -v * )µ 1/2 (v * ) ∂ j f (v * ) - v * j 2 f (v * ) dv * = - R 3 ∂ v * j a k,j (v -v * ) µ 1/2 (v * )f (v * )dv * ,
and this implies that

Γ(f, g), h L 2 (R 3 v ) = 1≤k,j≤3 R 3 µ(v * ) 1/2 f (v * ) × a k,j (v-v * ) ∂ j g(v)- v j 2 g(v) +∂ v * j a k,j (v-v * ) g(v), -∂ k h(v)- v k 2 h(v) L 2 (R 3 v ) dv * .
Since for the Maxweillian case,

a k,j (z) = δ kj |z| 2 -z k z j , 1 ≤ k, j ≤ 3 .
We have that

Γ(f, g), h L 2 (R 3 v ) = 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) × (v 2 j -2v j v * j + (v * j ) 2 ) ∂ k g(v) - v k 2 g(v) , -∂ k h(v) - v k 2 h(v) L 2 (R 3 v ) dv * + 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) × -(v k -v * k )(v j -v * j ) ∂ j g(v) - v j 2 g(v) + (v k -v * k )g(v), -∂ k h(v) - v k 2 h(v) L 2 (R 3 v ) dv * .
We obtain that

Γ(g, f ), h L 2 (R 3 v ) = A 0 + A 1 + A 2 + A 3 + A 4 + A 5 + A 6 + A 7 ,
with

A 0 = - 1≤k,j≤3 k =j R 3 v * k v * j µ(v * ) 1/2 f (v * ) × ∂ j g(v) - v j 2 g(v), -∂ k h(v) - v k 2 h(v) L 2 (R 3 v ) dv * , A 1 = 1≤k,j≤3 k =j R 3 (v * j ) 2 µ(v * ) 1/2 f (v * ) × ∂ k g(v) - v k 2 g(v), -∂ k h(v) - v k 2 h(v) L 2 (R 3 v ) dv * , A 2 = 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) v k g(v), -∂ k h(v) - v k 2 h(v) L 2 (R 3 v ) dv * , A 3 = - 1≤k,j≤3 k =j R 3 v * k µ(v * ) 1/2 f (v * ) g(v), -∂ k h(v) - v k 2 h(v) L 2 (R 3 v ) dv * , A 4 = 1 4 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) × -v 2 k v 2 j + v 2 k v j v * j + v k v 2 j v * k + v 2 k v 2 j -2v 2 k v j v * j g(v), h(v) L 2 (R 3 v ) dv * = 0, since 1≤k,j≤3 k =j v k v 2 j v * k -v 2 k v j v * j = 0. We have also (3.2) A 5 = 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) × (v 2 j -2v j v * j )∂ k g(v) + -v k v j + v k v * j + v j v * k ∂ j g(v), -∂ k h(v) L 2 (R 3 v )
dv * , and

A 6 = - 1 2 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) v k ∂ j g(v), (-v k v j +v k v * j +v j v * k )h(v) L 2 (R 3 v ) dv * + 1 2 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) (-v k v j + v k v * j + v j v * k )g(v), v j ∂ k h(v) L 2 (R 3 v ) dv * , A 7 = - 1 2 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) v j ∂ k g(v), (v k v j -2v k v * j )h(v) L 2 (R 3 v ) dv * + 1 2 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) (v k v j -2v k v * j )g(v), v j ∂ k h(v) L 2 (R 3 v ) dv * .
It follows from (3.2) that

A 5 = 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) v j ∂ k g(v) -v k ∂ j g(v), -v j ∂ k h(v) L 2 (R 3 v ) dv * + 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) -2v j v * j ∂ k g(v)+ v k v * j +v j v * k ∂ j g(v), -∂ k h(v) L 2 (R 3 v ) dv * .
In the sequel, we shall use several times the (obvious) formula 1≤k,j≤3

k =j α k,j = 1≤k,j≤3 k =j α j,k . We notice that 1≤k,j≤3 k =j v j ∂ k g(v) -v k ∂ j g(v), -v j ∂ k h(v) L 2 (R 3 v ) = 1 2 1≤k,j≤3 k =j v j ∂ k g(v) -v k ∂ j g(v), -v j ∂ k h(v) L 2 (R 3 v ) + 1 2 1≤k,j≤3 k =j v k ∂ j g(v) -v j ∂ k g(v), -v k ∂ j h(v) L 2 (R 3 v ) = - 1 2 1≤k,j≤3 k =j v j ∂ k g(v) -v k ∂ j g(v), v j ∂ k h(v) -v k ∂ j h(v) L 2 (R 3 v ) , and 
1≤k,j≤3 k =j -2v j v * j ∂ k g(v) + v k v * j + v j v * k ∂ j g(v), -∂ k h(v) L 2 (R 3 v ) = 1≤k,j≤3 k =j v j ∂ k g(v), v * j ∂ k h(v) L 2 (R 3 v ) + v * j ∂ k g(v), v j ∂ k h(v) L 2 (R 3 v ) - 1≤k,j≤3 k =j v k ∂ j g(v), v * j ∂ k h(v) L 2 (R 3 v ) - 1≤k,j≤3 k =j v * j ∂ k g(v), v k ∂ j h(v) L 2 (R 3 v ) = 1≤k,j≤3 k =j v j ∂ k g(v) -v k ∂ j g(v), v * j ∂ k h(v) L 2 (R 3 v ) + v * j ∂ k g(v), v j ∂ k h(v) -v k ∂ j h(v) L 2 (R 3 v ) .
This implies that

A 5 = - 1 2 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) v j ∂ k g(v) -v k ∂ j g(v), v j ∂ k h(v) -v k ∂ j h(v) L 2 (R 3 v ) dv * + 1≤k,j≤3 k =j R 3 v * j µ(v * ) 1/2 f (v * ) v j ∂ k g(v) -v k ∂ j g(v), ∂ k h(v) L 2 (R 3 v ) + ∂ k g(v), v j ∂ k h(v) -v k ∂ j h(v) L 2 (R 3 v ) dv * .
On the other hand, we may write that

A 6 + A 7 = - 1 2 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) v k ∂ j g(v), (-v k v j + v k v * j + v j v * k + v j -2v j v * k )h(v) L 2 (R 3 v ) dv * + 1 2 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) (-v k v j + v k v * j + v j v * k + v k v j -2v k v * j )g(v), v j ∂ k h(v) L 2 (R 3 v ) dv * .
It follows that

A 6 + A 7 = - 1 2 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) v k ∂ j g(v), (v k v * j -v j v * k )h(v) L 2 (R 3 v ) dv * + 1 2 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) (v j v * k -v k v * j )g(v), v j ∂ k h(v) L 2 (R 3 v ) dv * .
This implies that

A 6 + A 7 = - 1 4 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) v k ∂ j g(v) -v j ∂ k g(v), (v k v * j -v j v * k )h(v) L 2 (R 3 v ) dv * + 1 4 1≤k,j≤3 k =j R 3 µ(v * ) 1/2 f (v * ) (v j v * k -v k v * j )g(v), v j ∂ k h(v) -v k ∂ j h(v) L 2 (R 3 v ) dv * ,
that is,

A 6 + A 7 = 1 2 1≤k,j≤3 k =j R 3 v * j µ(v * ) 1/2 f (v * ) v j ∂ k g(v) -v k ∂ j g(v), v k h(v) L 2 (R 3 v ) dv * + 1 2 1≤k,j≤3 k =j R 3 v * k µ(v * ) 1/2 f (v * ) v j g(v), v j ∂ k h(v) -v k ∂ j h(v) L 2 (R 3 v ) dv * .
We obtain that

Γ(f, g), h L 2 (R 3 v ) = E 1 + E 2 + E 3 + E 4 + E 5 + E 6 + E 7 , with E 1 = 1≤k,j≤3 k =j f, v 2 j µ 1/2 L 2 (R 3 v ) ∂ k g - v k 2 g, -∂ k h - v k 2 h L 2 (R 3 v ) , E 2 = - 1≤k,j≤3 k =j f, v k v j µ 1/2 L 2 (R 3 v ) ∂ j g - v j 2 g, -∂ k h - v k 2 h L 2 (R 3 v ) , E 3 = 1≤k,j≤3 k =j f, µ 1/2 L 2 (R 3 v ) v k g, -∂ k h - v k 2 h L 2 (R 3 v ) , E 4 = - 1≤k,j≤3 k =j f, v k µ 1/2 L 2 (R 3 v ) g, -∂ k h - v k 2 h L 2 (R 3 v ) , E 5 = - 1 2 1≤k,j≤3 k =j f, µ 1/2 L 2 (R 3 v ) v j ∂ k g -v k ∂ j g, v j ∂ k h -v k ∂ j h L 2 (R 3 v ) , E 6 = 1≤k,j≤3 k =j f, v j µ 1/2 L 2 (R 3 v ) v j ∂ k g -v k ∂ j g, ∂ k h + v k 2 h L 2 (R 3 v ) , E 7 = 1≤k,j≤3 k =j f, v j µ 1/2 L 2 (R 3 v ) ∂ k g - v k 2 g, v j ∂ k h -v k ∂ j h L 2 (R 3 v )
. This is exactly (3.1).

Trilinear estimates with exponential weights

Proposition 4.1. Let 0 < t ≤ 1 and 0 < c 0 ≪ 1. If r > 3 2 , then there exists C 0 > 0 independent of δ, δ ′ , c 0 such that we have for suitable functions f, g, h,

(Γ(f, g), F δ,δ ′ δ ′ v -4 F δ,δ ′ h) H r x (L 2 v ) ≤ C 0 F δ,0 f H r x (L 2 v ) ||| δ ′ v -2 F δ,δ ′ g||| r,0 + δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) (4.1) × ||| δ ′ v -2 F δ,δ ′ h||| r,0 + δ ′ v -2 F δ,δ ′ h H r x (L 2 v ) .
We consider the nonlinear term (Γ(f, g),

F δ,δ ′ δ ′ v -4 F δ,δ ′ h) H r x (L 2 v )
. For instance we estimate a term of D 5 , that is,

R 3 x (f, Φ 0 ) L 2 (R 3 v ) L k,j g, D x 2r L k,j F δ,δ ′ δ ′ v -4 F δ,δ ′ h L 2 (R 3 v ) dx = R 6 R 3 f (η -η, ξ * ) Φ0 (ξ * ) dξ * (2π) 3 Lk,j ĝ(η, ξ)dη × η 2r Lk,j F δ,δ ′ δ ′ D ξ -4 F δ,δ ′ ĥ(η, ξ) dηdξ (2π) 6 = R 6 R 3 f (η -η, ξ * ) Φ0 (ξ * ) dξ * (2π) 3 Lk,j ĝ(η, ξ)dη × η 2r F δ,δ ′ Lk,j δ ′ D ξ -4 F δ,δ ′ ĥ(η, ξ) dηdξ (2π) 6 + R 6 R 3 f (η -η, ξ * ) Φ0 (ξ * ) dξ * (2π) 3 Lk,j ĝ(η, ξ)dη × η 2r [ Lk,j , F δ,δ ′ ] δ ′ D ξ -4 F δ,δ ′ ĥ(η, ξ) dηdξ (2π) 6 , := Γ 1 + Γ 2 .
We consider

F δ,δ ′ (t, η, ξ) η r = e Ψ (1 + δe Ψ ) η (1 + δ ′ Ψ) r := F δ,0 G δ ′ . By means of W + V ≤ W + V , we have t 0 ξ -ρη dρ ≤ t 0 ξ + ξ * -ρ(η -η) -ρη dρ + t 0 ξ * dρ ≤ t 0 ξ * -ρ(η -η) dρ + t 0 ξ -ρη dρ + t ξ * .
Noting that Fδ (X) = e X /(1 + δe X ) is an increasing function and that Fδ (X + Y ) ≤ 3 Fδ (X) Fδ (Y ) , we have

F δ,0 (t, η, ξ) ≤ 9F δ,0 (t, η -η, ξ * )F δ,0 (t, η, ξ)e c0t ξ * , Since Ψ(t, η, ξ) ∼ c 0 t(1 + |ξ| 2 + t 2 |η| 2 ) 1/2 and (1 + Y )/(a + bY ) for any constants a ≥ b > 0 is increasing in Y , there exists a constant C > 0 independent of δ ′ > 0 and (t, ξ), η, η such that G δ ′ (t, η, ξ) ≤ C η -η r + η r (1 + δ ′ Ψ(t, η, ξ)) r .
Consequently, for another constant C 7 > 0 independent of δ ′ > 0 and (t, ξ), η, η we have

F δ,δ ′ (t, η, ξ) η r (4.2) ≤ C 7 ( η -η r + η r ) F δ,0 (t, η -η, ξ * )F δ,δ ′ (t, η, ξ)e c0t ξ * . Γ 1 = R 6 R 3 f (η -η, ξ * ) Φ0 (ξ * ) dξ * (2π) 3 Lk,j δ ′ D ξ -2 ĝ(η, ξ)dη × η 2r δ ′ D ξ 2 F δ,δ ′ Lk,j δ ′ D ξ -4 F δ,δ ′ ĥ(η, ξ) dηdξ (2π) 6 = R 6 R 3 f (η -η, ξ * ) Φ0 (ξ * ) dξ * (2π) 3 Lk,j δ ′ D ξ -2 ĝ(η, ξ)dη × η 2r F δ,δ ′ Lk,j δ ′ D ξ -2 F δ,δ ′ ĥ(η, ξ) dηdξ (2π) 6 + R 6 R 3 f (η -η, ξ * ) Φ0 (ξ * ) dξ * (2π) 3 Lk,j δ ′ D ξ -2 ĝ(η, ξ)dη × η 2r [ δ ′ D ξ 2 , F δ,δ ′ ] δ ′ D ξ -2 Lk,j δ ′ D ξ -2 F δ,δ ′ ĥ(η, ξ) dηdξ (2π) 6 := Γ 1,1 + Γ 1,2 ,
where we have used again Lk,j , δ ′ D ξ = 0. By means of (4.2) and Young inequality, we get

|Γ 1,1 | • r F δ,0 (•, ξ * ) f (•, ξ * ) L 2 (R 6 ) e c0t ξ * -|ξ * | 2 /4 L 2 (R 3 ξ * ) × F δ,δ ′ (•, ξ) Lk,j δ ′ D ξ -2 ĝ(•, ξ) L 2 ξ L 1 L k,j δ ′ v -2 F δ,δ ′ h H 3/2+ǫ x L 2 v + F δ,0 (•, ξ * ) f (•, ξ * ) L 2 ξ * L 1 e c0t ξ * -|ξ * | 2 /4 L 2 (R 3 ξ * ) × • r F δ,δ ′ (•, ξ) Lk,j δ ′ D ξ -2 ĝ(•, ξ) L 2 (R 6 ) L k,j δ ′ v -2 F δ,δ ′ h H r x (L 2 v ) F δ,0 f H r x (L 2 v ) F δ,δ ′ δ ′ v -2 L k,j g H r x (L 2 v ) L k,j δ ′ v -2 F δ,δ ′ h H r x (L 2 v )
. By the same calculus as in (2.6), we note that

F δ,δ ′ (t, η, D v ) = δ ′ v -2 F δ,δ ′ (t, η, D v ) δ ′ v 2 + 2δ ′2 3 j=1 v j δ ′ v -2 (D ξj F δ,δ ′ )(t, η, D v ) -δ ′2 δ ′ v -2 3 j=1 (D 2 ξj F δ,δ ′ )(t, η, D v ).
By means of (2.3) and (2.4), there exists a constant

C 8 > 0 independent of t, η, δ, δ ′ > 0 such that for H(v) ∈ L 2 2 (R 3 ) we have F δ,δ ′ (t, η, D v )H L 2 v ≤ δ ′ v -2 F δ,δ ′ (t, η, D v ) δ ′ v 2 H L 2 v + C 8 δ ′ c 0 F δ,δ ′ (t, η, D v )H L 2 v , and hence F δ,δ ′ (t, η, D v )H L 2 v ≤ 2 δ ′ v -2 F δ,δ ′ δ ′ v 2 H L 2 v if c 0 C 8 < 1/2. Consequently, we obtain F δ,δ ′ δ ′ v -2 L k,j g H r x (L 2 v ) ≤ 2 δ ′ v -2 F δ,δ ′ L k,j g H r x (L 2 v ) ≤ 2 L k,j δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) + 2 δ ′ v -2 [L k,j , F δ,δ ′ ]g H r x (L 2 v ) L k,j δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) + D v k δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) + D vj δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) + δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) .
Here we have used (2.10) at the third inequality. As a consequence, we obtain

|Γ 1,1 | F δ,0 f H r x (L 2 v ) ||| δ ′ v -2 F δ,δ ′ g||| r,0 + δ ′ v -2 F δ,δ ′ g H r x (L 2 v ) × ||| δ ′ v -2 F δ,δ ′ h||| r,0 + δ ′ v -2 F δ,δ ′ h H r x (L 2 
v ) . Since it follows from the almost same calculation as in (2.6), (2.7) and (2.8) that

δ ′ D ξ 2 , F δ,δ ′ δ ′ D ξ -2 = 3 j=1 (D ξj F δ,δ ′ ) 2δ ′ 2 D ξj δ ′ D ξ -2 + (D 2 ξj F δ,δ ′ )δ ′ 2 δ ′ D ξ -2 = F δ,δ ′ (t, η, ξ) 3 j=1 B j,δ,δ ′ (t, η, ξ) 2δ ′ 2 D ξj δ ′ D ξ -2 + Bj,δ,δ ′ (t, η, ξ)δ ′ 2 δ ′ D ξ -2 ,
and since the last factor is a bounded operator, the estimation for Γ 1,2 is similar to the one for Γ 1,1 , As for the estimation of Γ 2 , we recall (2.10). Then

[ Lk,j , F δ,δ ′ ] δ ′ D ξ -2 = iF δ,δ ′ B k,δ,δ ′ ξ j -B j,δ,δ ′ ξ k δ ′ D ξ -2 = iF δ,δ ′ B k,δ,δ ′ δ ′ D ξ -2 ξ j -2i δ ′ 2 D ξj δ ′ D ξ 2 -B j,δ,δ ′ δ ′ D ξ -2 ξ k -2i δ ′ 2 D ξ k δ ′ D ξ 2 . Writing F δ,δ ′ B k,δ,δ ′ δ ′ D ξ -2 = F δ,δ ′ δ ′ D ξ -2 B k,δ,δ ′ + [ δ ′ D ξ 2 , B k,δ,δ ′ ] δ ′ D ξ -2 ,
we see that the estimation for Γ 2 is quite similar to the one for Γ 1 , because there exist bounded operators R k , R j , R j,k such that

[ Lk,j , F δ,δ ′ ] δ ′ D ξ -2 = F δ,δ ′ δ ′ D ξ -2 R k ξ j + R j ξ k + R j,k .
Thus we have a desired estimate for D 5 . For the other terms D j , we remark that [â ±j , δ ′ D ξ ] = 0, but it is bounded, whence we also can estimate them by the same procedure. We omit the detail.

End of proof of main theorem

In the first subsection we show the local existence of solution in [0, 1] and its analytic smoothing effect. We remark the stability and uniqueness of this local solution in the next subsection. In the last subsection we complete the proof of the main theorem by using the global existence theorem given by Guo [START_REF] Guo | The Landau equation in a periodic box[END_REF].

Existence of analytic time-local solution.

Lemma 5.1 (local existence for a linear equation). Let r > 3/2 and 0 < c 0 ≪ 1. Assume that 0 < δ ≤ 1. Then there exist ǫ 0 > 0 and C 9 > 1 independent of δ such that for any 0

< T ≤ 1, g 0 ∈ H r x (L 2 v ), f ∈ L ∞ ([0, T ]; H r x (L 2 v )) satisfying F δ,0 f L ∞ ([0,T ];H r x (L 2 v )) ≤ ǫ 0 , (5.1)
the Cauchy problem

∂ t g + v • ∇ x g + Lg = Γ(f, g), g| t=0 = g 0 , (5.2) admits a weak solution g ∈ L ∞ ([0, T ]; H r x (L 2 v )) satisfying F δ,0 g 2 L ∞ ([0,T ];H r x (L 2 v )) + T 0 |||F δ,0 g(s)||| 2 r,0 ds ≤ C 9 g 0 2 H r x (L 2 v ) . (5.3) Proof. Consider Q = -∂ t + (v • ∇ x + L -Γ(f, •)) * ,
where the adjoint operator (•) * is taken with respect to the scalar product in H r x (L 2 v ). Then, by using (2.13) and (4.1) with δ, δ ′ , c 0 → 0 we see that for all h ∈ C ∞ ([0, T ], S(R 6

x,v )), with h(T ) = 0 and 0

≤ t ≤ T , Re h(t), Qh(t) H r x (L 2 v ) = - 1 2 d dt ( h 2 H r x (L 2 v ) ) + Re(v • ∇ x h, h) H r x (L 2 v ) + Re(Lh, h) H r x (L 2 v ) -Re(Γ(f, h), h) H r x (L 2 v ) ≥ - 1 2 d dt h(t) 2 H r x (L 2 v ) + 1 4 |||h(t)||| 2 r,0 -C 8 h(t) 2 H r x (L 2 v ) -C 0 f (t) H r x (L 2 v ) |||h(t)||| 2 r,0 , because L is a selfadjoint operator and Re(v •∇ x h, h) H r x (L 2 v ) = 0. Since (5.1) implies f L ∞ ([0,T ];H r x (L 2 v )) ≤ 2ǫ 0 , we have - d dt e 2C8t h(t) 2 H r x (L 2 v ) + 1 4 e 2C8t |||h(t)||| 2 r,0 ≤ 2e 2C8t h(t) H r x (L 2 v ) Qh(t) H r x (L 2 v ) , if 16ε 0 C 0 < 1. Since h(T ) = 0, for all t ∈ [0, T ] we have h(t) 2 H r x (L 2 v ) + 1 4 T t |||h(τ )||| 2 r,0 dτ ≤ 2 T t e 2C8(τ -t) h(τ ) H r x (L 2 v ) Qh(τ ) H r x (L 2 v ) dτ ≤ 2e 2C8T h L ∞ ([0,T ];H r x (L 2 v )) Qh L 1 ([0,T ],H r x (L 2 v )) , so that (5.4) h L ∞ ([0,T ];H r x (L 2 v )) ≤ 2e 2C8T Qh L 1 ([0,T ],H r x (L 2 v )
) . We consider the vector subspace

W = {w = Qh : h ∈ C ∞ ([0, T ], S(R 6 x,v )), h(T ) = 0} ⊂ L 1 ([0, T ], H r x (L 2 v )
). This inclusion holds because it follows from Proposition 3.1 that for g

∈ H r x (L 2 v ) |(Γ(f, •) * h, g) H r x (L 2 v ) | = |(h, Γ(f, g)) H r x (L 2 v ) | f H r x (L 2 v ) g H r x (L 2 v ) v 2 h H r x (H 2 v )
, and hence, for all t ∈ [0, T ],

Γ(f, •) * h H r x (L 2 v ) f H r x (L 2 v ) v 2 h H r x (H 2 v ) . Since g 0 ∈ H r x (L 2 v ), we define the linear functional G : W -→ C w =Qh → (g 0 , h(0)) H r x (L 2 v )
where h ∈ C ∞ ([0, T ], S(R 6 x,v )), with h(T ) = 0. According to (5.4), the operator Q is injective. The linear functional G is therefore well-defined. It follows from (5.4) that G is a continuous linear form on (W,

• L 1 ([0,T ];H r x (L 2 v )) ), |G(w)| ≤ g 0 H r x (L 2 v ) h(0) H r x (L 2 v ) ≤ 2e 2C8T g 0 H r x (L 2 v ) Qh L 1 ([0,T ];H r x (L 2 v )) = 2e 2C8T g 0 H r x (L 2 v ) w L 1 ([0,T ];H r x (L 2 v ))
. By using the Hahn-Banach theorem, G may be extended as a continuous linear form on

L 1 ([0, T ]; H r x (L 2 v )), with a norm smaller than 2e 2C8T g 0 H r x (L 2 v ) . Hence there exists g ∈ L ∞ ([0, T ]; H r x (L 2 v )) satisfying g L ∞ ([0,T ],H r x (L 2 v )) ≤ 2e 2C8T g 0 H r x (L 2 v ) , such that ∀w ∈ L 1 ([0, T ]; H r x (L 2 v )), G(w) = T 0 (g(t), w(t)) H r x (L 2 v ) dt. This implies that for all h ∈ C ∞ 0 ((-∞, T ), S(R 6 x,v )), G(Qh) = T 0 (g(t), Qh(t)) H r x (L 2 v ) dt = (g 0 , h(0)) H r x (L 2 v ) . This shows that g ∈ L ∞ ([0, T ]; H r x (L 2 v )
) is a weak solution of the Cauchy problem (5.2).

It remains to show (5.3). Noting that g ∈ L ∞ ([0, T ]; H r x (L 2 v )) implies, for any δ > 0, δ ′ > 0,

v t r D v r + t 2r D x r δ ′ v -2 F δ,δ ′ g ∈ L ∞ ([0, T ]; H r x (L 2 v
)), we multiply the first equation of (5.2) by F δ,δ ′ δ ′ v -4 F δ,δ ′ g and take its H r x (L 2 v ) inner product. Then it follows from (2.13) and (4.1) that for 0

< t ≤ T ≤ 1 1 2 d dt δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v ) + 1 4 ||| δ ′ v -2 F δ,δ ′ g||| 2 r,0 -C 8 δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v )
(5.5)

≤ 2C 0 F δ,0 f H r x (L 2 v ) ||| δ ′ v -2 F δ,δ ′ g||| 2 r,0 + δ ′ v -2 F δ,δ ′ g 2 H r x (L 2 v )
. Since ǫ 0 is chosen small enough that 16ǫ 0 C 0 < 1, we get

δ ′ v -2 F δ,δ ′ g 2 L ∞ ([0,T ];H r x (L 2 v )) + 1 4 T 0 ||| δ ′ v -2 F δ,δ ′ g(s)||| 2 r,0 ds ≤ 2e 3C8T δ ′ v -2 g 0 2 H r x (L 2 
v ) , which yields (5.3) with C 9 = 8e 3C8 , by letting δ ′ → 0. Theorem 5.2 (analytic time-local solution). Let r > 3/2. There exists an ǫ 1 > 0 such that for all g

0 ∈ H r x (L 2 v ) satisfying g 0 H r x (L 2 
v ) ≤ ǫ 1 , the Cauchy problem (1.4) admits a solution such that g(t) ∈ A(R 6

x,v ), 0 < ∀t ≤ 1 .

Furthermore, there exists a 0 < c 1 < 1 such that,

e c1{t 2 (-∆x) 1/2 +t(-∆v) 1/2 } g(t) ∈ L ∞ [0, 1], H r x (L 2 v ) , more precisely for any 0 < t ≤ 1 e c1{t 2 (-∆x) 1/2 +t(-∆v) 1/2 } g(t)|| H r x (L 2 v ) ≤ C 9 g 0 H r x (L 2 v ) . (5.6)
Proof. Consider the sequence of approximate solution defined by (5.7)

∂ t g n+1 + v • ∇ x g n+1 + L g n+1 = Γ(g n , g n+1 ). g n+1 | t=0 = g 0 ,
with g 0 = e -Ψ(t,Dx,Dv ) g 0 . We apply Lemma 5.1 with f = g n and g = g n+1 by assuming √ C 9 ǫ 1 ≤ ǫ 0 . Then it follows from (5.3) with T = 1 that for n ≥ 1

(5.8) F δ,0 g n 2 L ∞ ([0,1];H r x (L 2 v )) + 1 0 |||F δ,0 g n (s)||| 2 r,0 ds ≤ C 9 g 0 2 H r x (L 2 v ) ≤ ǫ 2 0 holds inductively because F δ,0 g 0 H r x (L 2 v ) ≤ g 0 H r x (L 2 v ) ≤ ǫ 1 ≤ ǫ 0 . Setting w n = g n+1 -g n , from (5.7) we have ∂ t w n + v • ∇ x w n + Lw n = Γ(g n , w n ) + Γ(w n-1 , g n ) ,
with w n | t=0 = 0. Similar to the computation for (5.5), we obtain 1 2

d dt δ ′ v -2 F δ,δ ′ w n 2 H r x (L 2 v ) + 1 4 ||| δ ′ v -2 F δ,δ ′ w n ||| 2 r,0 -C 8 δ ′ v -2 F δ,δ ′ w n 2 H r x (L 2 v ) ≤ 2C 0 F δ,0 g n H r x (L 2 v ) ||| δ ′ v -2 F δ,δ ′ w n ||| 2 r,0 + δ ′ v -2 F δ,δ ′ w n 2 H r x (L 2 v ) + 2C 0 F δ,0 w n-1 H r x (L 2 v ) ||| δ ′ v -2 F δ,δ ′ g n ||| 2 r,0 + δ ′ v -2 F δ,δ ′ g n 2 H r x (L 2 v ) 1/2 × ||| δ ′ v -2 F δ,δ ′ w n ||| 2 r,0 + δ ′ v -2 F δ,δ ′ w n 2 H r x (L 2 v ) 1/2 ≤ 2C 0 F δ,0 g n H r x (L 2 v ) + 1 16 ||| δ ′ v -2 F δ,δ ′ w n ||| 2 r,0 + δ ′ v -2 F δ,δ ′ w n 2 H r x (L 2 v ) + 32C 2 0 F δ,0 w n-1 2 L ∞ ([0,1];H r x (L 2 v )) × ||| δ ′ v -2 F δ,δ ′ g n ||| 2 r,0 + δ ′ v -2 F δ,δ ′ g n 2 H r x (L 2 v ) , which implies δ ′ v -2 F δ,δ ′ w n 2 L ∞ ([0,1];H r x (L 2 v )) + 1 8 1 0 ||| δ ′ v -2 F δ,δ ′ w n (τ )||| 2 r,0 dτ ≤ 64C 2 0 e 3C8 1 0 |||F δ,0 g n (τ )||| 2 r,0 dτ + F δ,0 g n 2 L ∞ ([0,1];H r x (L 2 v )) × F δ,0 w n-1 2 L ∞ ([0,1];H r x (L 2 v )) ≤ 64C 2 0 e 3C8 × 2ǫ 2 0 F δ,0 w n-1 2 L ∞ ([0,1];H r x (L 2 
v )) , because of (5.8) and 16ε 0 C 0 < 1. Letting δ ′ → 0, we see that there exists a 0 < λ < 1 such that

F δ,0 w n 2 L ∞ ([0,T ];H r x (L 2 v )) ≤ λ F δ,0 w n-1 2 L ∞ ([0,T ];H r x (L 2 v ))
if ǫ 0 > 0 is small enough so that 128C 2 0 e 3C8 ǫ 2 0 ≤ λ. By taking δ → 0 we see that there exists a local solution g

∈ L ∞ ([0, T ]; H r x (L 2 v )) of the Cauchy problem (1.4) such that e Ψ (g n -g) L ∞ ([0,1];H r x (L 2 v )) → 0 as n → ∞, and 
e Ψ g 2 L ∞ ([0,1];H r x (L 2 v )) + 1 0 |||e Ψ g(s)||| 2 r,0 ds ≤ C 9 g 0 2 H r x (L 2 v ) ≤ ǫ 2 0 .
By means of Lemma 2.1, we get the desired estimate (5.6).

5.2. The stability and uniqueness of time-local solution.

Proposition 5.3 (Stability and uniqueness). Let r > 3/2, 0 < c 0 ≪ 1 and let

ǫ 0 > 0 satisfy 16C 0 ǫ 0 < 1 for the constant C 0 in Proposition 4.1. Let 0 < T ≤ 1 and let g j (t) ∈ L ∞ ([0, T ]; H r x (L 2 v )), j = 1, 2 be two solutions of the Cauchy problem (1.4) with initial data g 1,0 , g 2,0 ∈ H r x (L 2 v ), respectively. Assume that e Ψ g 1 L ∞ ([0,T ];H r x (L 2 v )) ≤ ǫ 0 ,
and there exists M > 0, such that

e Ψ g 2 2 L ∞ ([0,T ];H r x (L 2 v )) + T 0 |||e Ψ g 2 (s)||| 2 r,0 ds ≤ M.
Then there exists a C M > 1 independent of c 0 such that

e Ψ (g 1 -g 2 ) 2 L ∞ ([0,T ];H r x (L 2 v )) (5.9) 
+ T 0 |||e Ψ (g 1 -g 2 )(s)||| 2 r,0 ds ≤ C M g 0,1 -g 0,2 2 H r x (L 2 v ) .
Remark 5.4. It is easy to see that this proposition holds in the case where c 0 = 0, that is, e Ψ is replaced by 1. Therefore the uniqueness of solutions belonging to L ∞ ([0, T ]; H r x (L 2 v )) holds under above conditions with e Ψ = 1. Proof. Putting w = g 1 -g 2 , we have ∂ t w + v • ∇ x w + Lw = Γ(g 1 , w) + Γ(w, g 2 ) , with an initial datum w| t=0 = g 0,1 -g 0,2 ∈ H r x (L 2 v ). Similar to the proof of Theorem 5.2, we obtain 1 2

d dt δ ′ v -2 F δ,δ ′ w 2 H r x (L 2 v ) + 1 4 ||| δ ′ v -2 F δ,δ ′ w||| 2 r,0 -C 8 δ ′ v -2 F δ,δ ′ w 2 H r x (L 2 v ) ≤ 2C 0 F δ,0 g 1 H r x (L 2 v ) + 1 16 ||| δ ′ v -2 F δ,δ ′ w||| 2 r,0 + δ ′ v -2 F δ,δ ′ w 2 H r x (L 2 v ) + 32C 2 0 F δ,0 w 2 H r x (L 2 v ) × ||| δ ′ v -2 F δ,δ ′ g 2 ||| 2 r,0 + δ ′ v -2 F δ,δ ′ g 2 2 H r x (L 2 v ) , which implies d dt δ ′ v -2 F δ,δ ′ w 2 H r x (L 2 v ) + 1 8 ||| δ ′ v -2 F δ,δ ′ w||| 2 r,0 -3C 8 δ ′ v -2 F δ,δ ′ w 2 H r x (L 2 v ) ≤ 64C 2 0 F δ,0 w 2 H r x (L 2 v ) ||| δ ′ v -2 F δ,δ ′ g 2 ||| 2 r,0 + M .
By integrating from 0 to t ∈ (0, T ], we get Finally, letting δ → 0 we obtain the desired estimate (5.9).

δ ′ v -2 F δ,δ ′ w(t)

5.3.

Time global solution and its analytic smoothing. To show the existence of a global solution and its analyticity smoothing, we refer the following theorem that was first proved by Guo [START_REF] Guo | The Landau equation in a periodic box[END_REF] in the torus T 3

x case and was extended to the whole space R 3

x by Yang-Yu [START_REF] Yang | Optimal convergence rates of the Landau equation with external forcing in the whole space[END_REF]; Theorem 5.5 ([22, 34]). There exist some positive constants ǫ 2 > 0, C 10 > 1 such that if g 0 ∈ H 8 (R 6

x,v ) satisfies g 0 H 8

x,v ≤ ǫ 2 then the Cauchy problem (1.4) admits a unique global solution g(t) ∈ L ∞ ([0, ∞); H 8

x.v (R 6 )) fulfilling sup 0≤t<∞ g(t) H 8

x,v ≤ C 10 g 0 H 8 x,v .

Assume that 0 < ǫ 3 ≤ (c 1 ) 8 /(8!C 9 ) min{ǫ 1 /C 10 , ǫ 2 } and g 0 H r

x (L 2 v ) ≤ ǫ 3 . Let 1 ≤ τ ≤ 2 and apply Theorem 5.2 with the initial time t 0 = τ -1, in view of √ C 9 ǫ 3 < ǫ 1 . Then for any τ ∈ [START_REF] Alexandre | Entropy dissipation and longrange interactions[END_REF][START_REF] Alexandre | Regularizing effect and local existence for the non-cutoff Boltzmann equation[END_REF] we have e c1((-∆x) 1/2 +(-∆v) 1/2 ) g(τ

) H r x (L 2 v )
= e c1(((τ -t0) 2 (-∆x) 1/2 +(τ -t0)(-∆v) For τ > 2, apply again Theorem 5.2 with the initial time t 0 = τ -1. Then we obtain sup τ ≥2 e c1((-∆x) 1/2 +(-∆v) 1/2 ) g(τ

) H r x (L 2 v ) ≤ C 9 sup τ ≥2 g(τ -1) H r x (L 2 v ) ≤ C 9 ǫ 1 .
This together with (5.10) and Theorem 5.2 complete the proof of (1.5).

5.4.

Global stability and uniqueness. It follows from Proposition 5.3 and the stability of global solutions in Theorem 5.5 that the stability of analytic global solutions holds. In fact, for any fixed T > 2, if t ∈ [2, T ] then e c1((-∆x) 1/2 +(-∆v) 1/2 ) (g 1 (t) -g 2 (t)

) H r x (L 2 v ) ≤ C M g 1 (t -1) -g 2 (t -1) H r x (L 2 v )
≤ C M C T g 1 (1) -g 2 (1) H 8

x,v ≤ C M 8!C T (c 1 ) 8 e c1((-∆x) 1/2 +(-∆v) 1/2 ) (g 1 (1) -g 2 ( 1)

) H r x (L 2 v ) ≤ (C M ) 8!C T (c 1 ) 8 g 0,1 -g 0,2 H r x (L 2 v ) .
The case 1 ≤ t ≤ 2 is an easy consequence of Proposition 5.3. Thus the uniqueness of global solutions holds. Now the proof of Theorem 1.1 is complete.

  ) M + |||e Ψ g 2 (τ )||| 2 r,0 dτLet δ ′ → 0 and denote the right hand side by Y δ (t). ThenY ′ δ (t) ≤ 64e 3C8T0 C 2 0 M + e Ψ g 2 (t)||| 2 r,0 Y δ (t), a.e. t ∈ [0, T ],

	2 H r x (L 2 v ) +	1 8	0	t	||| δ ′ v -2 F δ,δ ′ w(τ )||| 2 r,0 dτ
	≤ w(0) 2 H r x (L 2 v ) + 64e 3C8T0 C 2 0	0	t	F δ,0 w(τ ) 2 H r x (L 2
	so that we obtain				
	Y δ (t) ≤ w(0) 2 H r x (L 2 v ) e 64e 3C 8 T 0 C 2 0 (MT + T 0 |||e Ψ g2(s)||| 2 r,0 ds) .

v

  1/2 ) g(τ ) H r ) ≤ C 9 ǫ 3 , which implies the existence of local solution g(t) ∈ L ∞ ([0, 2]; H r ) 8 C 9 ǫ 3 ≤ ǫ 2 .By using Theorem 5.5 with the initial time t 1 = 1, we obtain a global solutiong(t) ∈ L ∞ ([1, ∞[; H 8 x,v (R 6 )) satisfying ) 8 C 9 C 10 ǫ 3 ≤ ǫ 1 .

	(5.10)	x (L 2 v )
	≤ C 9 g(t 0 ) H r x (L 2	
		x (L 2 v )) satisfying
	sup [1,2] (c 1 sup g(t) H 8 8! x,v ≤ [1,∞[ g(t) H r x (L 2 v ) ≤ sup [1,∞[ g(t) H 8 x,v ≤	8! (c 1
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