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Abstract. This paper presents new complexity and non-approximation
results concerning two color propagation problems, namely Power Edge
Set and Zero Forcing Set. We focus on cubic graphs, exploiting their
structural properties to improve and refine previous results. We also give
hardness results for parameterized precolored versions of these problems.
Finally, we give a polynomial-time algorithm for Zero Forcing Set in
proper interval graphs.
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1 Introduction

Motivation. In power networks, synchrophasors are time-synchronized numbers
that represent both the magnitude and phase angle of the sine waves on network
links. A Phasor Measurement Unit (PMU) is an expensive measuring device
used to continuously collect the voltage and phase angle of a single station and
the electrical lines connected to it. The problem of minimizing the number of
PMUs to place on a network for complete network monitoring is an important
challenge for operators and has gained a considerable attention over the past
decade [4,7,8,11,12,14,16,18,21,23,26]. The problem is known as Power Dom-
inating Set [26] and we state it below. We model the network as a graph
G = (V,E) with |V |=: n and |E|=: m. We denote the set of vertices and
edges of G by V (G) and E(G), respectively. We let NG(v) denote the set of
neighbors of v ∈ V in G and dG(v) = |NG(v)| its degree in G. Further, we
let NG[v] = NG(v) ∪ {v} denote the closed neighborhood of v in G, and we
let G[W ] denote the subgraph of G induced by vertices W ⊆ V (G). The prob-
lem is described through monitoring of nodes of the network, corresponding to
monitoring vertices V (G) by PMUs, propagated using the following rules.
Rule R1

∗: A vertex v of G on which a PMU is placed will be called a monitored
vertex, and all its neighbors verticesNG(v) automatically become monitored.



Rule R2: if all but one neighbor of a monitored vertex are monitored, then this
unmonitored vertex will become monitored as well.
Letting ΓP (G) denote the minimum number of PMUs to place on vertices to

obtain a full monitoring of the network (using Rule R2), the decision version
of the problem is described as follows:

Power Dominating Set (PDS)
Input: a graph G = (V,E) and some k ∈ IN
Question: Is ΓP (G) ≤ k?

Power Dominating Set isNP-complete in general graphs [14]. A large amount
of literature is devoted to this problem, describing a wide range of approaches,
either exact such as integer linear programming [11] or branch-and-cut [21], or
heuristic, such as greedy algorithms [16], approximations [4] or genetic algo-
rithms [18]. The problem has also been shown to be polynomial-time solvable
on grids [7], but NP-complete in unit-disk graphs [23].

In this paper, we consider two variants of the problem, called Power Edge
Set (PES) [25,24] and Zero Forcing Set (ZFS) [3], which respectively consist
in placing PMUs on the links, and reducing the monitoring range of a PMU
placed on a node. This leads us to replace Rule R1

∗ in each of these problems
as follows (Rule R2 remains unchanged):
Rule R1 (PES): two endpoints of an edge bearing a PMU are monitored.
Rule R1 (ZFS): only the node bearing a PMU is monitored.

We let pes(G) and zfs(G) denote the minimum number of PMUs to place on
the edges, resp. nodes, ofG to entirely monitorG. Both PES and ZFS can be seen
as a problem of color propagation with colors 0 (white) and 1 (black), respectively
designating the states not monitored and monitored of a vertex of G. As input to
PES or ZFS, we will consider a connected graph G = (V,E). For each vertex v ∈
V , let c(v) be the color assigned to v (we abbreviate

⋃
v∈X c(v) =: c(X)). Before

placing the PMUs, we have c(V ) = {0} and the aim is to obtain c(V ) = {1} using
Rule R1 and Rule R2 while minimizing the number of PMUs. See Figure 1 and
Figure 2 for detailed examples illustrating the differences between PES and ZFS.

Power Edge Set (PES)
Input: a graph G, some k ∈ N
Question: Is pes(G) ≤ k?

Zero Forcing Set (ZFS)
Input: a graph G, some k ∈ N
Question: Is zfs(G) ≤ k?

Related work & our results. Assigning a minimum number of PMUs to monitor
the whole network is known to beNP-hard in general for both PES and ZFS. For
the former, preliminary complexity result and a lower bound on approximation
of 1.12−ε with ε > 0 have been shown by Toubaline et al. [24]. They also present
a linear-time algorithm on trees by reduction to Path Cover. Poirion et al. [20]
propose a linear program with binary variables indexed by the necessary iter-
ations using propagation Rule R1 and Rule R2. Recently, inapproximability
results have been proposed on special graph classes such as planar or bipartite
graphs [5].

In this work, we develop hardness results on complexity and approximation
for special cases of Power Edge Set and Zero Forcing Set.
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Fig. 1. PMU propagation on PES problem: before any PMU placement, all
vertices are white (Figure 1a). A PMU on {b, c} induces c(b) = c(c) = 1 (black)
by Rule R1 (Figure 1b). By applying Rule R2 on b, we obtain c(a) = 1
(Figure 1c). Then Rule R2 on a induces c(d) = 1 (Figure 1d), and Rule R2

on c or d induces c(e) = 1 (Figure 1e). A second PMU is required to obtain
a complete coloring. Placing a PMU on {e, f} gives us c(f) = 1 by Rule R1

(Figure 1f). Finally, Rule R2 on e induces c(g) = 1 (Figure 1g). The set of edges
where PMUs have been placed is S = {bc, ef}, giving (b, c, a, d, e, f, g) as a valid
order for G.
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Fig. 2. PMU propagation on ZFS problem: before any PMU placement, all ver-
tices are white (Figure 2a). Placing one PMU on {b} allows to monitor it. (Fig-
ure 2b). Placing a second PMU on {c} allows to monitor it (Figure 2c), and now
we can apply Rule R2 on b, to obtain c(a) = 1 (Figure 2d). Then Rule R2

on a induces c(d) = 1 (Figure 2e), and Rule R2 on c or d induces c(e) = 1
(Figure 2f). A third PMU is required to obtain a complete coloring. For exam-
ple, placing a PMU on f (Figure 2g) allows to apply Rule R2 on e to obtain
c(g) = 1 (Figure 2h).



Preliminaries. In the following, we will consider a total order σ of vertices of a
graph G as a sequence (v1, v2, . . .) such that vi occurs before vj in the sequence
if and only if vi <σ vj .

Definition 1 (valid order). Let G = (V,E) be a graph, let S ⊆ E (resp.
S ⊆ V ), and let σ be a total order of V , such that for each v ∈ V (G), there is
an edge incident to v in S (resp. v ∈ S) or there is a vertex u ∈ NG(v) which
verifies NG[u] ≤σ v. Then, <σ is called valid for S.

Given a graph G = (V,E), any set S ⊆ V (or S ⊆ E) such that repeated
application of Rule R1 (ZFS) (or Rule R1 (PES)) and Rule R2 leads to G
being completely monitored is called a zero forcing set (or power edge set). Using
Definition 1, we can formally define the propagation process in G. For instance,
in Figure 1, a valid order for S = {bc, ef} is (b, c, a, d, e, f, g).

Observation 1 Let G = (V,E) be a graph and let S ⊆ E (resp. S ⊆ V ). Then,
S is a power edge set (res. a zero forcing set) if and only if there is a valid order
σ on G, with respect to S.

Note that, for a graph G = (V,E), any set S ⊆ E is a power edge set if and
only if

⋃
e∈S e is a zero forcing set for G. It is therefor natural an unambiguous

to also call such an edge set zero forcing set.
Finally, we call a vertex v propagating to x ∈ NG(v) if c(x) = 0 and for all

y ∈ NG[v] \ {x}, we have c(y) = 1. Note that each maximal clique of G can
contain at most one propagating vertex.

Lemma 1. Let G = (V,E) be a graph, let S be a zero forcing set of G, and let
C := {C1, . . . , Cc} be a set of maximal cliques in G covering E. Then |V \S|≤ c.

Proof. Let σ be a valid order for S. We show that each Ci contains at most
one edge uv such that v /∈ S and NG[u] ≤σ v. Since C covers E, this implies
|V \ S|≤ |C|= c. Let C ∈ C and let C contain an edge uv such that NG[u] ≤σ v
and v /∈ S. Then, C ⊆ NG[u], implying C ≤σ v. Thus, v is the last vertex of C
with respect to σ and this vertex is unique. ut

2 Classical Hardness

Most results presented in this section rely on reductions from graph problems
using gadgets for vertices or edges of the original instance. We model the prop-
agation process using the notion of valid order with respect to the solution set,
whatever the nature of it: set of edges for PES, of vertices for ZFS.

We present new lower bounds for Power Edge Set that hold even in the
very restricted case that G is cubic (i.e. all vertices in G have degree three).
Previous results show that the problem is NP-complete even if G is a subgraph
of the grid with bounded degree at most three [5]. In this paper, we show the
problem remains NP-complete if G is cubic and planar. The proof is done by
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reduction from Vertex Cover (see below) on 3-regular, planar graphs, which
is NP-complete [10] but admits a PTAS [1], and a 3/2-approximation [2].

Vertex Cover (VC)
Input: a graph G = (V,E), some k ∈ N.
Question: Is there a size-k set S ⊆ V covering E, i.e. ∀e∈E e ∩ S 6= ∅?

Construction 1 For a given cubic planar graph G = (V,E) with n vertices, we
construct a graph G′ as follows:
– For each v ∈ V , construct Hv (see Figure 3).
– For each v ∈ V with NG(v) = {x, y, z}, connect Hx to Hv with the edge
v1x1, Hy to Hv with v2y2 and Hz to Hv with v0z0.

The graph G′ is clearly cubic and planar and Construction 4 is applied in poly-
nomial time. The construction is linear in n and k.

Lemma 2. The gadget Hv needs at least one PMU to be fully colored: if x1, y2

and z0 are propagating respectively to v1, v2 and v0, then one PMU is sufficient;
otherwise two PMUs are needed to fully color Hv.

Proof. First, if x1, y2 and z0 are propagating respectively to v1, v2 and v0, then,
after application of Rule R2, c(v0) = c(v1) = c(v2) = 1. Thus this is the be-
ginning of a valid order: (v0, v1, v2, v3, v5, v4, v6, v7, v12, v9, v10). There is no more
possible propagation, it is necessary to assign a new PMU. If we place it on the
edge v14v16, the remainder of a valid order forHv is: (v14, v16, v11, v8, v13, v15, v16).

Second, we show that Hv may be colored by two PMUs in every case. If
PMUs are assigned to the edges v11v13 and v15v16, we the following order is
valid: (v11, v13, v15, v16, v7, v8, v9, v14, v4, v6, v10, v3, v12, v3, v12, v1, v2, v5, v0).

Third, we show that even if x1 and z0 are propagating to respectively v1 and
v0, and y2 is not, we need two PMUs to color Hv (the argument for (x1 and y2)
and (y2 and z0) is symmetric). The beginning of the propagation is given by the
following order: (v0, v1, v3, v5). There is no more possible propagation, therefore



we have to put one more PMU. As more than two uncolored vertices remain, so
we have to initiate propagation with this PMU. So the potential edges are v6v12,
v4v2, v6v9 or v10v12. By exhaustive search, we find that it is impossible to color
Hv with only PMU on any one of these edges. ut

Theorem 1. Power Edge Set remains NP-complete on planar cubic graphs.

Proof. Let G′ be the graph obtained by using Construction 4 on G = (V,E), a
cubic planar graph. We show that G has a size-k vertex cover iff Power Edge
Set has a solution of size n+ k on G′. Clearly, Power Edge Set is in NP.

“⇒”: With a size-k vertex cover S for G, we build a power edge set S′ for G′:

S′ :=
⋃
v∈S
{v11v16, v13v15} ∪

⋃
v∈V \S

{v14v16}

Then, |S′|= n+ k and, by Lemma 2, all vertices of G′ are colored by S′.
“⇐”: Suppose that G′ is colored with n + k PMUs. By Lemma 2, there is

at least one PMU on each gadget. Further, if a gadget Hv is colored with a
single PMU, then every Hx with x ∈ NG(v) is colored with two PMUs inside
(by Lemma 2). Then, {v | Hv admits two PMUs} is a vertex cover for G. ut

3 Parameterized Hardness

In what follows, we introduce parameterized versions of our problems and recall
the notion of parameterized reduction. Using known results for Dominating
Set, we deduce hardness results for Power Edge Set and Zero Forcing
Set. First, we recall the parameterized Dominating Set problem.

Dominating Set (DS)
Input: a graph G = (V,E), some k ∈ IN∗

Question: Does G have a size-k dominating set?
Parameter: k

We obtain hardness results for a restricted version of our problems, when a
precoloring exists on a particular set of vertices.

Precolored Zero Forcing Set/Precolored Power Edge Set
Input: a graph G = (V,E), a set B ⊆ V , some c : V → {0, 1} with

c−1(1) = B, and an integer k
Question: Is there a set S′ ⊆ V (resp. S′ ⊆ E) of size k such that

B ∪ S′ (resp. B ∪
⋃
e∈S′ e) is a zero forcing set for G?

Parameter: k

We prove the hardness using a parameterized reduction from Dominating Set.
First, we introduce a gadget which allows to propagate a coloration, but only in
one direction. It is called "check-valve".
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Definition 2 (Check-valve). A check-valve Cx,y from x to y is a graph G =
(V,E), with V = {x, y, x1, x2, x3, x4} and E = {xx1, xx2, x1x3, x1x4, x2x4,
x3y, x4y}, with a coloring function c : V → IN, such that c(x) = c(x1) = 1 and
all other vertices are colored by 0. A check-valve Cx,y is illustrated on Figure 4.

Observation 2 Let Cx,y be a check-valve inserted between two vertices a and
b, depicted by Figure 4. Then:
1. If c(a) = 1 then c(b) = 1 after exhaustive application of Rule R2.
2. If c(b) = 1, and c(a) = 0, then c(a) is still 0 after exhaustive application of

Rule R2, and it is necessary to add a PMU in order to have c(a) = 1.

Construction 2 Let xy be a edge such that c(x) = 1 and c(y) = 0, we construct
the gadget Cxy: we add vertices x1, x2, x3 and x4 and we add edges xx1, x1x2,
x3y, yx4, x4x2 et x2x. Notice that xy is deleted.

Construction 3 For given G = (V,E), construct G′ = (V ′, E′) as follows:
1. For all x ∈ V , build Jx depicted in Figure 5, containing a core graph

({Ex, Rx, Vx, x1, x2, x3, x4}, {Exx3, Exx4, ExVx, x1x3, x2x4, Rxx1, Rxx2, RxVx})
with precolored vertices Vx, x3 and x4, and outgoing check-valves: dG(x)
many Cx1

vi
,x2

vi
connected to Ex, and n many Cx1

si
,x2

si
connected to Rx.

2. For all vi ∈ N(x), add edges x2
viRvi with x2

vi ∈ Jx and Rvi ∈ Jvi .
3. For all si ∈ V , add edges x2

siVs1 with x2
si ∈ Jx and Vs1 ∈ Jsi .

Lemma 3. For all x ∈ V , if c(Ex) = 1 then, after exhaustive application of
Rule R2, c(Jx) = 1 and c(Rv) = 1 for all v ∈ N(x).

Proof. If V = {s1, . . . , sn} and N(x) = {v1, . . . , vt}, then the following sequence
is a valid order: (Ex, x1, x2, Rx, x

2
s1 , . . . , x

2
sn , x

2
v1 , . . . , x

2
vt , Rv1 , . . . Rvt). ut

Lemma 4. Let c(Rx) = 1 for all x ∈ V . Then, after exhaustive application of
Rule R2, G′ becomes fully colored.

Proof. Clearly, all vertices in N(Vx)\{Ex} are colored by Rx for all x ∈ V . Then,
Ex is colored by Vx. By Lemma 3, c(Ex) = 1 leads to Jx being fully colored. As
V ′ =

⋃
z∈V V (Jz), G′ becomes fully colored. ut

Theorem 2. Precolored Zero Forcing Set and Precolored Power
Edge Set are W [2]-hard wrt. the solution size k.
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Fig. 5. The gadget Jx for a vertex x. Note that for sake of clarity, some exter-
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neighbors of x, is included in {Rs1 , . . . , Rsn}.

The proof is really similar for both problems, thus we only mention the minor
changes for Precolored Power Edge Set between parenthesis.

Proof. Let G = (V,E) be a graph and let G′ the product of Construction 3 on
G. We show that G has a size-k dominating set if and only if G′ has a size-k
zero forcing set (power edge set).

“⇒”: Let S be a size-k dominating set for G. A size-k zero forcing set S′ for
G′ is obtained as follows: for all x ∈ S, we place a PMU on Ex, (resp. Exx4). By
Lemma 3 and Lemma 4, G′ is fully colored after applying Rule R2 exhaustively.

“⇐”: Let S′ be a zero forcing set of size k for G′. Let S be the set of vertices
x ∈ V (G) such that Jx has at least one vertex, resp. one edge, in S′ (for each
x, y ∈ V , if there is a PMU on the edge ExRy or RxVy it counts as an edge of
Jx). Suppose that S is not a dominating set for G. So, there is some y ∈ V such
that no u ∈ V (Jy) is in S′ and no v ∈ V (Jx) is in S′ for any x ∈ N(y). (for PES,
there is some y ∈ V such that no u1u2 ∈ E(Jy) is in S′ and no v1v2 ∈ E(Jx) is
in S′ for any x ∈ N(y)). Since Jy is fully colored, this coloration comes from a
vertex (resp. an edge) outside of Jy. Four cases have to be considered:

Case 1: There is some vi ∈ N(y) such that c(y2
vi) = 1 for y2

vi ∈ Jy and this
coloration comes from Rvi ∈ Jvi . By Observation 2, we have c(Ey) = 1 only if
at least one PMU is assigned on the check-valve.

Case 2: There is some si ∈ V such that c(y2
si) = 1,∈ Jy, and this coloration

comes from Vsi ∈ Jsi . By Observation 2, for Ry to be colored, at least one PMU
has to be assigned to the check-valve.

Case 3: Vy be a propagator. But then, S′ is not zero forcing since c(Ey) = 0
and c(Ry) = 0 and they are in N(y).

Case 4: There is some vi ∈ N(y) such that a coloration happens on Ry ∈ Jy
from Evi ∈ Jvi . Then, either there is some t ∈ Jvi ∩ S and so S is a dominating
set, or no PMU is assigned on Jvi , but we already know that Evi cannot be



colored (see Case 1). Consequently, if c(Evi) = 1 then c(w) = 1 for some w ∈ Jvi
contradicting S not being a dominating set.

Thus S is a dominating set of G. Further, Construction 3 can be carried out
in polynomial time and |S|= |S′|, yielding the desired result. ut

4 Hardness according to other complexity hypotheses

4.1 Lower Bounds for Exact and FPT Algorithms

In this section, we propose some negative results for Power Edge Set concern-
ing subexponential-time and parameterized algorithms under ET H (see [15]).

Since the polynomial-time transformation given in Theorem 1 is linear in
the number of vertices and Vertex Cover does not admit a 2o(

√
n)-time algo-

rithm, even on 3-regular, planar graphs, there is also no 2o(
√
n)-time algorithm

for Power Edge Set in cubic planar graphs.
Moreover, since k ≤ n, a 2o(k)nc-time algorithm directly implies a 2o(n)-time

algorithm for Vertex Cover. However, we know Vertex Cover does not
admit such an algorithm (even in the planar case) unless the ET H fails [17].
Therefore, we obtain the following results.

Corollary 1. Assuming ET H, Power Edge Set does not admit a 2o(
√
n)-time

algorithm, even in planar cubic graphs, nor a 2o(k)nO(1)-time algorithm, even on
planar graphs.

Based on the previous complexity result, it is clear that Power Edge Set
parameterized by ∆ (the maximum degree of the graph) is not in XP.

4.2 Hardness according to UGC

In the following, we propose an L-reduction from Vertex Cover in 3-uniform
hypergraphs. An L-reduction (see [19]) between problems Π and Π′ is defined
as follows: let f : Π→ Π′ and g be polynomial-time computable functions such
that, for all x ∈ Π and each feasible solution y′ for f(x), g(y′) is a feasible
solution for x. Moreover, there are constants α1, α2 > 0 such that:
1. OPTΠ′(f(x)) ≤ α1OPTΠ(x) and
2. |valΠ(g(y′))−OPTΠ(x)|≤ α2|valΠ′(y′)−OPTΠ′(f(x))|.
Even on 3-uniform graphs, Vertex Cover is hard to approximate within a
factor less than 2 − ε for all ε > 0 (assuming P 6= NP), even if each vertex
appears in at most three edges [6]. It is also hard to approximate within a factor
less than 3− ε for all ε > 0 (assuming UGC) [22].

Construction 4 Let G = (V,E) be a cubic planar hypergraph. Build G′ by
– for each v ∈ V constructing the gadget Hv (see Figure 3),
– for each xyz ∈ E constructing the gadget Jxyz (see Figure 6), and
– for each e = xyz ∈ E connecting Jxyz to Hx (resp. Hy, Hz) by the edge e0x0

(resp. e1y1, e2z2).
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Fig. 6. The gadget Jxyz for an edge xyz.

Note that xi 6= yi for all i but, for distinct i and j, xi can be equal to xj or yj.

Lemma 5. The gadget Jxyz may be colored with only one PMU if at least one
among x1, y2 or z0 is propagating to respectively e1, e2 or e0. Further, any zero
forcing set contains a vertex of Jxyz.

Proof. By symmetry, we assume w.l.o.g. that x1 is propagating to e1. First,
assigning a PMU to e3e6 we get the following valid order: (e1, e3, e6, e4, e0, e5, e2).
Second, even if e0, e1 and e2 are colored by propagation from outside Jxyz, the
propagation stops unless a PMU is assigned to an edge of Jxzy. ut

Theorem 3. Under UGC, Power Edge Set on cubic graphs cannot be ap-
proximated to within a factor better than 13/11

Proof. Let G′ be the result of applying Figure 4 to a hypergraph G = (V,E).
We show that G has a size-k vertex cover iff Power Edge Set has a solution
of size k + 2n on G′.

“⇒”: Let S be a size-k vertex cover for G. We build a solution S′ for G′:

S′ :=
⋃
v∈S

({v11v16} ∪ {v13v15}) ∪
⋃

v∈V \S

{v14v16} ∪
⋃

xzy∈E


{e3e6} if x ∈ S
{e4e6} if y ∈ S
{e5e6} if z ∈ S

By Lemma 5, S′ is a power edge set for G′ and |S′|= k + 2n.
“⇐”: Assume that G′ possesses 2n+k PMUs such that all vertices are colored.

Lemma 2 and Lemma 5 state that it is impossible to color a gadget without any
PMU inside, so there is at least one PMU on each gadget H and J . If there is
more than one PMU on a gadget J , we count it as if it is inside any adjacent
gadget H. If a gadget Hv is colored by a single PMU, it means that, for each
hyperedge containing v, there is at least one Hx with x in this hyper-edge,
which counts two PMUs. Thus, X := {v | Hv admits two PMUs} is a vertex-
cover. Suppose that more than k gadgets have at least two PMUs. Then, there
is at least one gadget without any PMU, contradicting Lemma 5. Thus, |S|≤ k.

Finally, to show that Figure 4 is an L-reduction, let f be a function trans-
forming any 3-uniform instance I of Vertex Cover into an instance I ′ of
Power Edge Set as above, let S′ be any feasible solution for I ′, and let g be
the function that transforms S′ into a solution S that contains one or two edges
per gadget Hv and one per gadget Jxyz, and then outputs the set of vertices



c

a

d

b

f

e

(a) Interval graph

a
b

c
d

e

f

(b) Interval representation

c
a d a d

b
d

b

e
df

e

(c) Perfect path decomposition

a

d
∅

∅

c

d
a b

∅

eb

d

∅

∅
e

d

∅

f

(d) Bags partitions

Fig. 7. An interval graph (7a), with its interval representation (7b), a perfect
path decomposition of this graph (7c) and its bag partition according to Defini-
tion 4 (7d).

v for which S assigns two PMUs to Hv. First, the above argument shows that
g(S′) is a feasible solution for I ′.

Second, by construction, OPT (I ′) = OPT (I) + n + m. Let S be a solution
to I. Then, we have m ≤

∑
v∈S dG(v), and dG(v) ≤ 3. We obtain m ≤ 3OPT (I)

as |S|= OPT (I). Moreover, m ≤ n. Since each vertex of I appears in at most
three hyperedges of I, at least one in seven vertices has to be in a vertex cover
of G, implying n/7 ≤ OPT (I). Thus, OPT (I ′) ≤ 11OPT (I)

Third, by construction of g, we have

val(g(S′)) ≤ val(S′)− n−m ≤ val(S′)−OPT (I ′) +OPT (I)

Thus, we constructed an L-reduction with α1 = 11 and α2 = 1.
Assuming UGC, Vertex Cover on 3-uniform hypergraphs is hard to ap-

proximate to a factor 3− ε [22], thus yielding to the desired result:

|S′| ≥ |g(S′)|+OPT (I ′)−OPT (I)

≥ (3− ε)OPT (I) +OPT (I ′)−OPT (I)

≥ 13/11OPT (I ′) ut

5 ZFS on Proper Interval Graphs

Preliminaries. A graph G is an interval graph if it is the intersection graph of
a family of intervals on the real line. Each interval is represented by a vertex of
G and an intersection between two intervals is represented by an edge between
the corresponding vertices (see Figure 7). G is called proper interval if it has an
interval representation in which no interval is properly contained in another. In
the following, we use perfect path decompositions to solve Power Edge Set
on proper interval graphs.

Definition 3. A path decomposition D of a graph G = (V,E) is a sequence
(Xi)i=1...` of subsets of V (called bags), verifying the following properties:



(a) for each xy ∈ E, there is some Xi with x, y ∈ Xi (each edge is in a bag),
(b) for i ≤ j ≤ k, Xi ∩Xk ⊆ Xj (bags containing any v ∈ V are consecutive).
D is called perfect if the number of bags and their sizes are minimal under (a)
and (b). The pathwidth of D is the size of the largest Xi minus one.

Lemma 6. If G is connected, then Xi ∩Xi−1 6= ∅ for all i > 1.

Proof. Towards a contradiction, assume that Xi ∩Xi−1 = ∅. Then, by Defini-
tion 3(b), A :=

⋃
1≤k≤i−1Xk and B :=

⋃
i≤lXl are disjoint. Since G is con-

nected, there is an edge xy between A and B, but no bag contains both x and
y, contradicting Definition 3(a). ut

Lemma 7. Let G be an interval graph. A perfect path decomposition D of G
can be computed in linear time and each bag of D is a maximal clique in G.

Proof. Being an interval graph, G admits a linear order of its maximal cliques
such that, for each vertex v, all maximal cliques containing v are consecutive [9]
and this order can be computed in O(n + m) time [13]. Such a “clique path”
naturally corresponds to a perfect path decomposition and we know that vertices
of each bags induce maximal cliques. In a clique path, the size and the number
of bags are minimal. ut

The Algorithm. In the following, G is a connected proper interval graph and
D = (X1, ..., X`) is a perfect path decomposition of G. We show that it is possi-
ble to apply Rule R2 once per maximal clique Xi in interval graphs. The central
concept is a partition of the bags of D into four sets.

Definition 4 (Bag partition, see Figure 7). Let Xi be
a bag in a perfect path decomposition of an interval graph.
– IO (Inside Only) is the set Xi \ (Xi−1 ∪Xi+1).
– LO (Left Only) is the set Xi ∩Xi−1 \Xi+1.
– RO (Right Only) is the set Xi ∩Xi+1 \Xi−1.
– LR (Left Right), contains all remaining vertices of Xi.

ROLO

LR

IO

Note that RO(Xi) and RO(Xj) are disjoint for i 6= j. Further, since G is proper
interval, RO(Xi) 6= ∅ for all i < `. Our algorithm will simply choose any vertex
of RO(Xi) ∪ IO(Xi) for all i. This can clearly be done in linear time and we
show that it is correct and optimal.

Lemma 8. Let G be a connected interval graph and let D = (X1, . . . , X`) be a
perfect path decomposition of G. Let S be a set intersecting each RO(Xi) for all
1 ≤ i < ` in exactly one vertex and intersecting IO(X`) in exactly one vertex.
Then, S := V \ S is an optimal zero forcing set for G.

Proof. For each i, let xi be the ith vertex of S, that is, S∩ (RO(Xi)∪IO(Xi)) =
{xi} for each Xi ∈ D. We show that the order σ consisting of S in any order
followed by (x1, . . . , x`) is valid for S. To this end, let 1 ≤ j < `. Note that
IO(Xj)∪LO(Xj) = ((Xj \Xj+1)∩Xj−1)∪ ((Xj \Xj+1) \Xj+1) = Xj \Xj+1.
Thus, there is some u ∈ IO(Xj)∪LO(Xj) as otherwise,Xj ⊆ Xj+1 contradicting



D being perfect. Towards a contradiction, assume NG[u] 6≤σ xj , that is, there
is some v ∈ NG[u] with xj <σ v. By construction of σ, there is a k > j such
that v = xk. By construction of S, we have xk ∈ IO(Xk) ∪ RO(Xk), implying
xk /∈ Xk−1 by definition of RO and IO. Further, since uxk is an edge of G, there
is a bag Xi containing both u and xk and, since u ∈ IO(Xj)∪LO(Xj) we know
i ≤ j. But then, xk occurs in Xi, not in Xk−1 but again in Xk, contradicting
D being perfect. It remains to treat x`, but since x` is the last vertex of σ,
NG[u] ≤σ x` for all u ∈ NG(x`).

Finally, optimality of S is implied by Lemma 1 as |S|= |D|. ut

Theorem 4. Zero Forcing Set is solvable in O(n + m) time on proper in-
terval graphs.

6 Conclusion and perspectives

In this article, we investigated Power Edge Set and Zero Forcing Set
from the point of view of computational complexity. We obtained a series of
negative results, refining the previous hardness results and excluding certain
exact algorithms. On the positive side, we give a linear-time algorithm in case the
input is a proper interval graph. Further research will be focused on developing
efficient polynomial-time approximation algorithms, as well as considering more
special cases and structural parameterizations.
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