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a  b  s  t  r  a  c  t  

The  impact  and  stopping  of  a  spherical  object  freely  falling  onto  the  surface  of  an  elasto-viscoplastic  material  
(an  aqueous  solution  of  Carbopol  ® Ultrez  10)  is  studied  both  experimentally  and  theoretically.  Accurate  mea-  
surements  of  the  instantaneous  position  of  the  centre  of  mass  of  the  falling  object  allow  one  to  calculate  both  
the  speed  and  acceleration  of  the  object.  To  rationalise  the  experimental  results  we  resort  to  a  simple  1  −  ! toy  
model  initially  proposed  by  Putz  and  Burghelea  [1].  At  early  stages  of  the  motion,  the  deformation  of  the  gel  
is  dominated  by  viscous  effects,  the  model  by  Putz  and  Burghelea  reduces  to  the  well-known  Herschel–Bulkley  
relationship  and  an  equation  of  motion  for  the  sphere  can  be  derived.  By  comparing  the  measured  trajectories,  
speeds  and  accelerations  with  the  “viscous  ” analytical  solution  one  may  estimate  the  yield  stress,  the  consistency  
and  the  power  law  index.  After  long  enough  times,  the  spherical  object  oscillates  around  its  final  stopping  posi-  
tion  and  the  deformation  of  the  material  is  no  longer  viscous  but  elastic.  Within  this  second  asymptotic  limit  the  
model  by  Putz  and  Burghelea  reduces  to  the  Hooke’s  law  and  once  more  an  analytical  solution  for  the  equation  of  
motion  may  be  readily  obtained.  By  measuring  the  period  of  the  oscillatory  motion  observed  during  this  regime  
one  may  estimate  the  elastic  modulus  of  the  gel.  

1.  Introduction  

A  broad  class  of  materials  exhibit  a  dual  response  when  subjected  to  

an  external  stress.  For  low  applied  stresses  they  behave  as  solids  (loosely  

speaking  they  may  deform  but  they  do  not  flow)  but,  if  the  stress  exceeds  

a  critical  threshold  generally  referred  to  as  the  “yield  stress  ”,  they  behave  

as  fluids  (typically  non-Newtonian)  and  a  macroscopic  flow  is  observed.  
This  distinct  class  of  materials  has  been  termed  as  “yield  stress  materials  ”
and,  during  the  past  several  decades  it  attracted  a  constantly  increas-  

ing  level  of  interest  from  both  theoreticians  and  experimentalists.  From  

a  fundamental  standpoint,  yield  stress  materials  continue  triggering  in-  

tensive  debates  and  posing  difficult  challenges  to  both  theoreticians  and  

experimentalists  from  various  communities:  soft  matter  physics,  rheol-  

ogy,  physical  chemistry  and  applied  mathematics.  The  progress  in  un-  

derstanding  the  flow  behavior  of  yield  stress  materials  made  the  object  

of  several  recent  review  papers  [2–5]  .  The  best  known  debate  concern-  

ing  the  yield  stress  materials  is  undoubtedly  that  related  to  the  very  exis-  

tence  of  a  “true  ” yield  stress  behavior  [6,7]  .  During  the  past  two  decades,  
however,  a  number  of  technical  improvements  of  the  rheometric  equip-  

ment  made  possible  measurements  of  torques  as  small  as  0.1  n  Nm  and  

of  rates  of  deformation  as  small  as  10  −7  "  −1  .  Such  accurate  rheological  

measurements  proved  unequivocally  the  existence  of  a  true  yielding  be-  

havior  [1,8,9]  .  The  yielding  transition  of  an  elasto-viscoplastic  material  
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remains,  however,  elusive.  It  has  been  recently  shown  that,  even  in  the  

case  a  “simple  ” yield  stress  fluid,  the  transition  from  a  solid  like  regime  

described  by  the  Hooke’s  law  # =  $% to  a  viscous  regime  is  not  direct  

but  mediated  by  an  intermediate  regime  were  the  elastic  and  viscous  

effects  coexist,  [1]  .  Here  # stands  for  the  applied  stress,  G  for  the  elastic  

modulus  and  % for  the  deformation  of  the  material.  
The  viscous  deformation  regime  has  been  classically  described  by  

the  Herschel-Bulkley  model  [10,11]  :  

# =  #&  +  '  ̇%)  (1)  

where  #y  is  the  yield  stress,  K  the  consistency  and  n  the  power  law  index.  
This  correlation  is  typically  used  to  measure  the  yield  stress  #y  by  fitting  

flow  curves.  
A  minimal  rheological  characterisation  of  an  elasto  -  viscoplastic  

material  requires  two  types  of  rheological  tests  to  be  performed:  small  

amplitude  oscillatory  tests  for  the  assessment  of  the  elastic  moduli  and  

flow  ramps  performed  in  either  a  controlled  stress  or  a  controlled  rate  

of  strain  mode  for  the  assessment  of  the  yield  stress,  consistency  and  

power  law  index.  In  spite  of  an  increased  instrumental  accuracy  of  the  

modern  rotational  rheometers,  the  instrumental  error  of  the  measure-  

ments  of  the  rheological  parameters  detailed  above  remains  rather  large  

reaching  up  to  10%.  These  errors  are  often  related  to  the  protocol  used  

(e.g.  degree  of  steadiness  of  the  response  during  flow  ramps,  range  of  
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frequencies  and  amplitudes  during  dynamic  sweeps),  the  possibility  of  

wall  slip,  inertia  of  geometries.  
Thus,  exploring  new  (and  preferably  simple  from  a  practical  per-  

spective)  ways  of  assessing  the  rheological  parameters  of  an  elasto-  

viscoplastic  material  remains  an  actual  topic.  
One  simple  way  of  assessing  the  yield  stress  of  material  is  the  slump  

test,  [12–15]  .  The  applicability  of  this  method  is  somewhat  limited,  
however,  to  materials  with  a  large  yield  stress  (typically  larger  than  

100  Pa,  such  as  concrete)  when  the  inertial  as  well  as  the  surface  ten-  

sion  effects  may  be  neglected.  Even  within  this  range,  the  repeatability  

and  accuracy  of  the  yield  stress  measurements  does  not  exceed  roughly  

25%  ,  e.g.  see  Fig.  4  in  Ref.  [14]  .  A  second  simple  way  of  estimating  

yield  stress  is  to  monitor  the  startup  flow  of  a  viscoplastic  material  on  an  

inclined  plane,  [16]  .  Using  the  lubrication  approximation  and  neglect-  

ing  both  inertial  and  interfacial  effects,  the  critical  angle  of  the  slope  

corresponding  to  the  flow  start  up  may  be  related  to  the  yield  stress  

of  the  material.  This  method  as  well  is  more  suited  to  materials  with  

a  higher  yield  stress.  We  point  out  that,  to  our  best  knowledge,  using  

the  aforementioned  tests  one  can  only  get  an  estimate  of  the  yield  stress  

and  not  of  the  elastic  modulus  of  the  an  elasto-viscoplastic  material.  A  

third  class  of  simple  but  insightful  experiments  that  could  be  exploited  

to  assess  the  basic  rheological  parameters  of  an  elasto-viscoplastic  fluid  

relate  to  studying  the  dynamics  of  free  fall  and  impact  of  Carbopol  gel  

drops  on  solid  surfaces  [17,18]  ,  on  elasto-viscoplastic  surfaces  [19]  or  

the  spreading  of  elasto-viscoplastic  drops  on  solid  surfaces  of  different  

wettability  [20]  .  
The  simplest  hydrodynamic  experiment  able  to  reveal  valuable  in-  

formation  on  the  rheological  properties  of  a  fluid  relates  to  monitoring  

the  steady  state  motion  of  a  spherical  object  freely  falling  in  the  fluid.  
For  a  Newtonian  fluid  and  in  a  range  of  small  Reynolds  numbers,  this  

classical  hydrodynamic  problem  has  an  analytical  solution  initially  ob-  

tained  by  Sir  Gabriel  G.  Stokes  in  his  seminal  1850  paper,  [21]  .  The  

solution  relates  the  terminal  velocity  of  the  object  to  the  viscosity  of  

the  fluid  providing  a  very  simple  method  to  measure  the  viscosity  of  a  

Newtonian  fluid.  
A  natural  question  one  would  like  to  address  is  to  what  extent  

the  Stoke’s  approach  could  be  used  for  assessing  the  basic  rheolog-  

ical  parameters  (yield  stress,  consistency,  power  law  index  and  elas-  

tic  modulus)  of  an  elasto-viscoplastic  fluid.  Though  somewhat  counter-  

intuitive,  addressing  this  issue  turns  out  to  be  a  daunting  task.  The  

conceptual  difficulty  arises  from  the  fact  that,  unlike  in  the  case  a  

spherical  object  steadily  settling  within  a  Newtonian  fluid,  the  flow  

field  is  no  longer  analytically  solvable  (even  for  vanishing  Reynolds  

numbers)  when  either  a  viscoplastic  or  an  elasto-viscoplastic  fluid  is  

considered.  
The  steady  state  motion  of  a  spherical  object  in  a  Bingham  fluid  

has  been  solved  numerically  by  Beris  and  coworkers,  [22]  .  This  sem-  

inal  work  revealed  a  clear  departure  from  the  Stokes  solution  as  well  as  

distinct  topology  of  the  yield  surface.  More  recently,  the  dynamics  of  a  

drop  steadily  moving  in  a  viscoplastic  fluid  has  been  recently  investi-  

gated  using  a  lattice  Boltzmann  approach  by  Xie  and  coauthors,  [23]  .  
The  experimental  results  presented  in  [24,25]  indicate  that  the  mo-  

tion  of  a  spherical  object  in  an  elasto-viscoplastic  fluid  (e.g.  a  Carbopol  

gel)  is  even  harder  to  describe  theoretically  and/or  numerically  as  the  

presence  of  the  elasticity  brings  additional  features  to  the  flow  patterns:  
a  breakdown  of  the  fore-aft  symmetry  and  the  emergence  of  a  negative  

wake  qualitatively  similar  to  that  observed  two  decades  ago  in  viscoelas-  

tic  fluids  [26]  .  This  hydrodynamic  problem  has  been  solved  numerically  

only  recently  [27]  .  An  excellent  agreement  between  the  simulation  re-  

sults  and  the  experimental  ones  presented  in  Refs.  [24,25]  has  been  

found.  
A  simpler  hydrodynamic  setting  relates  to  the  impact  of  a  spherical  

object  onto  the  free  surface  of  an  elasto-viscoplastic  material.  If  the  ini-  

tial  kinetic  energy  of  the  object  does  not  suffice  for  the  establishment  of  

a  steady  state  motion  within  the  gel  as  in  the  case  of  the  experiments  

Fig.  1.  Schematic  illustration  of  the  experimental  setup  (not  in  scale):  FC  -  flow  
container,  S  -  stainless  steel  sphere,  CCD  -  digital  camera,  LEDP  -  LED  panel.  

reported  in  Refs.  [24,25]  ,  the  object  will  stop  at  a  finite  depth  within  

the  fluid.  
Le  Goff and  her  coworkers  have  studied  the  stopping  of  a  spherical  

object  upon  its  impact  onto  the  free  surface  of  a  foam,  [28]  .  Using  a  

simple  but  yet  insightful  1  D  model  that  is  able  to  capture  the  main  rhe-  

ological  properties  of  the  foam  introduced  by  Marmottant  and  Granet  

[29]  they  are  able  fit  the  experimentally  measured  trajectories  of  the  

spherical  object.  
The  formation  of  craters  upon  the  fast  impact  of  a  spherical  object  

onto  the  free  surface  of  a  Carbopol  gel  was  studied  by  Tabuteau  and  

coworkers  [30]  .  
Here  we  present  a  systematic  experimental  investigation  of  the  stop-  

ping  process  of  a  spherical  object  upon  its  impact  onto  the  free  surface  

of  an  elasto-viscoplastic  material.  Furthermore  we  show  how  the  main  

rheological  parameters  of  the  gel  (  #y  ,  K,  n,  G  )  can  be  inferred  from  the  

kinematics  of  the  stopping  process  and  introduce  for  the  first  time  the  

concept  of  a  “stopping  ball  rheometer  ” for  an  elasto-viscopastic  fluid.  
The  paper  is  organised  as  follows.  The  experimental  methods  are  

described  in  Section  2  .  The  “stopping  ball  ” apparatus,  the  data  acqui-  

sition  and  the  data  analysis  procedures  are  described  in  Section  2.1  .  
Measurements  of  the  rheological  parameters  of  the  solutions  performed  

by  means  of  classical  rotational  rheometry  are  presented  in  Section  2.2  .  
The  rheological  characterisation  is  complemented  by  the  description  of  

a  simple  elasto-viscoplastic  model  initially  introduced  in  Ref.  [1]  able  to  

quantitatively  describe  the  solid-fluid  transition.  The  results  of  the  “stop-  

ping  ball  ” experiments  are  presented  in  Section  3  .  Several  approaches  of  

inferring  the  relevant  rheological  parameters  of  the  elasto-viscoplastic  

fluid  from  the  analysis  of  the  kinematics  of  the  stopping  process  are  

presented.  The  paper  closes  with  a  summary  of  the  main  conclusions,  
Section  4  .  

2.  Experimental  setup  and  methods  

2.1.  Experimental  setup  and  measurement  techinque  

The  experimental  setup  is  schematically  illustrated  in  Fig.  1  .  A  stain-  

less  steel  sphere  of  radius  *  =  5  .  55  mm  and  mass  +  =  5  .  71  g  (thus  the  

density  is  , =  7973  .  9  kg.m  −3  )  is  released  against  the  free  surface  of  a  

Carbopol  ® gel  contained  in  fluid  container  FC  with  rectangular  cross  

section  (  -  =  20  cm,  .  /  =  15  cm)  and  flat  transparent  walls.  The  size  of  

the  container  is  significantly  larger  than  the  diameter  of  the  spherical  

object,  W  /  R  ≈36.36.  
The  fluid  container  is  illuminated  from  the  back  by  a  LED  panel  LEDP  

and  visualised  from  the  front  by  a  digital  camera  CCD  that  records  a  

sequence  of  images  at  a  speed  of  200  fps.  The  total  image  acquisition  

time  was  2  s.  The  trajectory  of  the  object  is  reconstructed  by  identifying  

its  centre  of  mass  via  a  standard  image  processing  algorithm  written  

in  Matlab.  As  a  post-processing  step,  each  trajectory  is  interpolated  by  

a  smoothing  spline  function  which  allows  one  to  reliably  compute  the  

first  and  second  order  numerical  derivatives  and  ultimately  provide  the  

full  kinematic  picture  of  the  stopping  process.  
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Fig.  2.  (a)  Dependence  of  the  absolute  value  of  the  rate  of  shear  |%̇| on  the  applied  stress.  The  full  line  is  a  best  fit  obtained  using  the  elasto-viscoplastic  model  
introduced  in  Ref.  [1]  .  The  dash-dotted  line  is  a  best  fit  obtained  using  the  Herschel–Bulkley  model  defined  by  Eq.  (1)  .  The  red  dot  marks  the  point  when  an  elastic  
recoil  is  observed  on  the  decreasing  branch  of  the  applied  stress.  (b)  Elastic  moduli  (circles)  and  viscous  moduli  (squares)  measured  during  oscillatory  stress  sweeps.  
In  each  panel  the  empty/full  symbols  refer  to  the  increasing/decreasing  branch  of  the  stress  sweep.  The  measurements  were  performed  with  a  0.8%  (wt)  Carbopol  
solution  (the  solution  3  listed  in  Table  1  ).  (For  interpretation  of  the  references  to  colour  in  this  figure  legend,  the  reader  is  referred  to  the  web  version  of  this  article.)  

2.2.  Choice  of  the  elasto-viscoplastic  materials  and  their  rheological  
characterization  

As  working  fluids  we  have  used  various  aqueous  solutions  of  

Carbopol  ® Ultrez10  prepared  using  the  same  batch  of  polymer.  To  in-  

sure  the  reproducibility  of  the  results,  each  solution  has  been  prepared  

according  to  the  same  protocol  as  follows.  First,  the  right  amount  of  

anhydrous  Carbopol  ® has  been  dissolved  in  deionised  water.  To  en-  

hance  the  mixing/dissolution  process,  the  solution  has  been  stirred  at  

a  speed  of  1000  rpm  with  a  commercial  propeller  mixer.  The  degree  of  

mixing/dissolution  has  been  assessed  visually  by  monitoring  the  optical  

isotropy  of  the  solution.  Next,  the  pH  of  the  solution  has  been  gradually  

increased  from  3.2  to  7  by  titration  with  small  amounts  of  a  10%  (wt)  

aqueous  NaOH  solution  gradually  pipetted  while  gently  mixing  the  so-  

lution.  The  final  mixing/neutralisation  process  never  exceeded  1  h.  The  

average  density  of  the  Carbopol  ® solutions  was  ,0  ≈ 1100  kg  m  −3  .  
The  rheological  characterisation  of  the  solutions  was  performed  us-  

ing  a  controlled  stress  rotational  rheometer  (Mars  III  ,  Thermofischer  Sci-  

entific)  controlled  stress  flow  ramps  and  oscillatory  stress  sweeps  (with  

a  frequency  0  =  1  Hz  ).  To  prevent  the  wall  slip,  a  serrated  parallel  plate  

geometry  with  a  gap  1  =  1  mm  has  been  used.  The  absence  of  any  signif-  

icant  wall  slip  effects  during  the  macroscopic  rheological  measurements  

has  been  proved  by  checking  that  the  steady  state  flow  curves  measured  

for  several  distinct  gaps  perfectly  overlap  (see  the  Supplemental  Mate-  

rial).  
To  test  the  reproducibility  and  quantitatively  assess  the  instrumental  

error,  each  rheological  measurement  was  repeated  three  times  with  a  

fresh  sample.  Last,  to  prevent  the  evaporation  of  the  solvent  during  the  

rheological  measurements  a  thin  layer  of  commercial  oil  has  been  added  

to  the  free  meniscus  of  the  sample.  
A  sample  flow  curve  measured  during  an  increasing/decreasing  

stress  ramp  (the  averaging  time  per  step  stress  was  2  0  =  10  "  )  is  illustrated  

in  Fig.  2  (a).  Three  distinct  deformation  regimes  can  be  distinguished.  
Corresponding  to  low  values  of  the  applied  stress,  the  material  behaves  

as  an  elastic  solid,  the  region  (S)  in  Fig.  2  (a).  Corresponding  to  values  of  

the  applied  stress  significantly  larger  than  the  yield  stress  #y  a  viscous  

deformation  regime  is  observed,  the  region  (F)  .  Within  this  deformation  

regime,  the  rheological  data  can  be  accurately  fitted  by  the  Herschel–
Bulkley  correlation,  the  dash-dotted  line  in  Fig.  2  (a).  The  transition  from  

a  solid  to  a  viscous  deformation  regime  is  gradual,  i.e.  it  occurs  within  

a  band  of  the  applied  stresses,  the  region  (S+F)  .  An  additional  distinc-  

tive  feature  of  the  solid-fluid  transition  relates  to  the  lack  of  reversibil-  

ity  of  the  deformation  states  upon  increasing/decreasing  the  applied  

stresses.  The  cusp  observed  on  the  unloading  branch  of  the  flow  curve  

(the  red  full  circle  in  Fig.  2  (a))  relates  to  an  elastic  recoil  effect.  The  

elasto-viscoplastic  nature  of  the  solid-fluid  transition  together  with  the  

weak  thixotropy  manifested  through  a  hysteresis  of  deformation  states  

have  been  observed  systematically  for  various  grades  of  Carbopol  and  

with  different  rheometers  in  a  sequence  of  previous  publications,  [1,31–
37]  .  

To  get  further  insights  into  the  elastic  properties  of  the  Carbopol  gel,  
we  have  performed  controlled  stress  oscillatory  sweeps  at  a  frequency  

0  =  1  Hz  ,  Fig.  2  (b).  Corresponding  to  the  solid  deformation  regime  (S)  

the  elastic  modulus  G  ′  is  significantly  larger  than  the  viscous  modu-  

lus  G  ′′  indicating  that  the  material  behaves  like  an  elastic  solid.  Upon  

an  increase  of  the  applied  stress  past  the  yield  point,  the  two  moduli  

become  comparable  in  magnitude  indicating  that  the  material  gradu-  

ally  yields  to  stress.  As  for  the  case  of  the  controlled  stress  flow  ramps,  
the  oscillatory  measurements  are  not  fully  reproducible  upon  increas-  

ing/decreasing  applied  stresses  which  is  an  intrinsic  feature  of  the  solid-  

fluid  transition.  
To  describe  the  main  features  of  the  solid-fluid  transition,  we  resort  

to  a  simple  1  D  model  initially  introduced  in  Ref.  [1]  .  The  model  consid-  

ers  a  scalar  structural  parameter  Φ̄ described  by  an  evolution  equation  

1  Φ̄
12  

=  *  1  +  *  4  +  5 (2)  

Here  R  d  ,  R  r  are  smooth  functions  describing  the  rate  of  destruction  of  

gel  and  the  rate  of  reconstruction  defined  according  to:  

*  1  =  −  '  d  

[  

1  +  tanh  

(  
#∕  #6  −  1  

-  

)  ]  

Φ̄ (3)  

*  4  =  '  4  

[  

1  −  tanh  

(  #∕  #&  −  1  

-  

)  ]  (
1  −  Φ̄

)
(4)  

and  5 is  a  thermal  noise  term.  The  evolution  equation  for  the  micro-  

structural  parameter  Φ̄(  2  )  is  complemented  by  a  Maxwell  type  thixoelas-  

tic  constitutive  equation  inspired  from  the  work  of  Quemada  [38–40]  :  
7(  ̇%)  

$  
Φ̄1#

12  
+  # =  7(  ̇%)  ̇% (5)  
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Table  1  
Summary  of  the  Carbopol  solutions  used  in  the  study  and  their  main  rheological  
parameters  obtained  via  conventional  rotational  rheometry  in  conjunction  with  the  
model  introduced  in  Ref.  [1]  .  The  uncertainties  were  obtained  by  repeating  each  
rheological  test  at  least  three  times.  
Solution  Concentration  (  %  wt  )  #y  (Pa)  K  (  Pas  n  )  n  G  ′  (Pa)  

1  0.5  48  ±  5  34  ±  3  0.37  ±  0.05  210  ±  20  
2  0.65  60  ±  10  50  ±  6.5  0.35  ±  0.06  352  ±  25  
3  0.8  100  ±  18  60  ±  9  0.38  ±  0.04  447  ±  18  
4  1  200  ±  15  103  ±  8.24  0.39  ±  0.04  530  ±  30  
5  1.5  300  ±  16  124  ±  7.56  0.35  ±  0.08  620  ±  35  

where  G  is  the  elastic  modulus,  %̇ the  rate  of  shear  and  7(  ̇%)  =  '  %̇)  −1  +  

#&  
1−  8  −  9  |%̇|

|%̇| is  a  Papanastasiou  regularised  Herschel–Bulkley  viscosity  

function.  
In  order  to  find  the  best  set  of  parameters  that  accurately  fit  the  

controlled  stress  ramps  data  with  the  model  we  have  written  a  nested  

function  program  in  Matlab.  The  main  function  uses  the  built-in  func-  

tion  lsqnonlin  in  Matlab  which  solves  nonlinear  least-squares  data  fitting  

problems  using  a  trust-region-reflective  algorithm.  As  input  we  provide  

an  initial  guess  for  the  parameters  vector,  the  target  data  (see  the  sym-  

bols  in  Fig.  2  (a))  and  a  function  which  first  solves  the  Eq.  (2)  for  Φ̄ using  

the  built-in  function  ode  15s  in  Matlab  and  then  solves  Eq.  (5)  for  %̇ using  

the  built-in  function  fzero  in  Matlab.  The  output  of  the  main  function  is  

a  vector  with  the  optimal  parameter  values.  We  note  that  the  increas-  

ing/decreasing  branches  of  the  flow  ramp  were  fitted  separately  in  order  

to  properly  capture  the  hysteresis  behavior  visible  in  Fig.  2  (a)  within  the  

(S)  and  (S+F)  deformation  regimes.  The  best  fitting  functions  obtained  

according  to  this  procedure  are  shown  in  Fig.  2  (a)  as  full  lines.  Due  to  

its  ability  to  fit  very  well  the  loading/unloading  ramps,  we  will  resort  

to  this  model  later  through  the  paper  in  order  to  describe  the  stopping  

process  of  the  spherical  object.  
Through  our  study  we  have  used  five  distinct  Carbopol  solutions.  

The  rheological  behavior  of  each  solution  can  be  accurately  described  

by  the  simple  model  described  above.  The  yield  stress  #y  ranging  in  be-  

tween  49  Pa  and  300  Pa  and  the  elastic  modulus  G  ′  ranging  in  between  

210  Pa  and  620  Pa  .  The  relevant  rheological  parameters  of  each  solu-  

tion  obtained  by  fitting  the  flow  curves  according  to  the  procedure  de-  

scribed  above  together  with  the  uncertainty  are  given  in  Table  1  .  Note  

that  the  concentrations  listed  in  Table  1  are,  most  probably,  smaller  

than  the  actual  ones  as,  prior  to  each  rheological  test,  the  solution  has  

been  degassed  to  eliminate  air  bubbles  which  lead  to  a  fair  amount  of  

evaporation  of  the  solvent.  The  full  description  of  the  rheological  mea-  

surements  performed  with  all  the  solutions  listed  in  Table  1  is  given  in  

the  Supplemental  Material.  

2.3.  Range  of  dimensional  and  non-dimensional  parameters  

The  rheological  characterisation  of  the  elasto-viscoplastic  material  

presented  in  Section  2.2  allows  one  to  compute  the  bounds  of  the  rele-  

vant  non-dimensional  parameters  governing  the  impact  and  stopping  of  

the  spherical  object.  
A  systematic  discussion  on  the  definition  of  the  non-dimensional  

numbers  governing  the  flows  of  viscoplastic  materials  is  presented  in  

Ref.  [41]  .  
By  varying  the  release  height  of  the  sphere  and  the  Carbopol  ® con-  

centration,  the  maximal  generalised  Reynolds  number  defined  using  the  

speed  at  impact  U  0  as  *8  =  
,:  2  

0  
'  
( :  0  

*  
))  varied  in  the  interval  [3.5,  13].  The  

Bingham  number  defined  as  ;)  =  
#&  

'  
( :  0  

*  
))  varied  in  the  interval  [0.13,  

0.4].  The  yield  number  defined  as  6  =  
3  #&  

2  *<  
(
,−  ,0  

) varied  in  the  interval  

[0.21,  0.34].  

The  impact  phenomenon  may  be  characterised  by  the  inverse  Froude  

number  =  4  −1  =  <*  ∕  :  2  .  During  our  experiments,  =  4  −1  was  varied  in  the  

interval  =  4  −1  ∈ [7  .  9  ⋅ 10  −3  ,  7  .  92  ⋅ 10  −2  ]  .  If  one  estimates  the  surface  ten-  

sion  % of  the  gel  by  % ≈0.063  mN.  m  [42]  we  find  the  Weber  number  

-  >  =  
2  ,0  *:  2  

%
(6)  

in  the  range  Wb  ∈ [1.33  · 10  2  ,  1.33  · 10  3  ]  which  indicates  that  the  effects  

of  the  surface  tension  are  negligible  during  our  experiments.  

3.  Results  

3.1.  Kinematics  of  the  stopping  process  

A  sequence  of  images  of  the  spherical  object  acquired  prior  and  after  

its  impact  on  the  free  surface  of  the  gel  is  illustrated  in  Fig.  3  .  Upon  its  

impact  at  2  =  0  (panels  (b–c))  the  spherical  object  generates  a  crater  

into  the  surface  of  the  Carbopol  ® gel.  This  observation  is  consistent  

with  the  previous  experimental  observations  by  Tabuteau  and  cowork-  

ers,  [30]  .  At  later  stages  of  the  motion,  an  air  drop  is  entrapped  into  the  

gel  (panel  d)  and  the  spherical  object  oscillates  around  a  final  resting  

position  (panel  (e)).  As  explained  in  Section  2.1  ,  the  subsequent  images  

of  the  spherical  object  allow  one  to  determine  the  trajectories  of  the  ob-  

ject  and,  consequently,  its  speed  and  acceleration.  Thus,  we  obtain  the  

full  kinematic  picture  of  the  stopping  process.  
The  kinematic  of  the  stopping  process  of  the  object  upon  impacting  

the  free  surface  of  the  gel  is  illustrated  in  Fig.  4  .  As  the  initial  kinetic  

energy  of  the  particle  is  insufficient  for  the  establishment  of  a  constant  

speed  settling  regime  as  was  the  case  of  the  experiments  reported  in  

Ref.  [1,25]  ,  the  particle  bounces  with  a  period  T  and  finally  stops  at  a  

finite  depth  H  0  ,  panel  (a).  The  measurement  of  the  particle  trajectory  

allows  one  to  compute  the  speed  by  numerical  differentiation,  :  =  1?  
12  

and  consequently  to  estimate  a  scale  for  the  shear  rate  as  %̇ ≈ :  
*  ,  [28]  .  To  

support  the  choice  of  the  scale  for  the  shear  rate,  Le  Goff and  coworkers  

resorted  to  an  ingenious  method  of  visualising  the  deformation  field  by  

seeding  the  foam  with  dark  particles,  Fig.  7  in  Ref.  [28]  .  Although  we  

did  not  perform  such  visualisation  experiments,  we  believe  the  assump-  

tion  that  the  yielded  region  is  comparable  in  size  to  the  diameter  of  the  

sphere  is  reasonable  in  our  case  too.  This  is  supported  by  the  systematic  

measurements  of  the  flow  fields  around  a  sphere  moving  at  a  constant  

speed  in  a  Carbopol  gel  performed  by  Putz  et  al.  [24]  (see  Fig.  8  therein).  
Upon  the  impact,  the  average  shear  rate  first  decays  rapidly  from  a  

rather  large  value  %̇ =  178  .  5  s  −1  to  zero  and  then  oscillates  around  its  fi-  

nal  stopping  value  %̇ =  0  s  −1  .  The  early  stage  of  the  motion  characterised  

by  a  shear  rate  significantly  larger  than  unity  %̇ >  1  s  −1  corresponds  to  a  

fully  yielded  or  viscous  deformation  regime  (VR)  described  by  the  Her-  

schel  constitutive  relationship  (the  highlighted  region  (F)  in  Fig.  2  (a)).  
During  the  final  stages  of  the  motion,  %̇ <  1  s  −1  which  corresponds  to  an  

unyielded  or  elastic  solid  regime  (ER)  characterised  by  Hooke’s  law  (the  

highlighted  region  (S)  in  Fig.  2  (a)).  
The  acceleration  during  the  stopping  process  is  computed  by  numer-  

ical  differentiation  of  the  speed,  @  =  1:  
12  .  
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Fig.  3.  Sequence  of  images  of  the  spherical  object.  The  time  instants  are  indicated  in  the  inserts.  The  time  of  impact  is  2  0  =  0  s  .  

Fig.  4.  (a)  Trajectory  of  the  particle  after  its  impact  onto  the  gel  surface.  (b)  
Temporal  evolution  of  the  rate  of  shear:  (VR)  -  viscous  regime,  (ER)  -  elastic  
regime.  (c)  Temporal  evolution  of  the  particle  acceleration  during  the  stopping  
process.  The  dashed  line  points  to  the  acceleration  of  the  gravity.  

The  computed  speeds  and  accelerations  allow  one  to  associate  to  

each  experimental  test  performed  with  various  Carbopol  solutions  for  

different  release  heights  H  0  a  phase  portrait  (  U,  a  ).  

3.2.  Description  of  the  stopping  process  in  the  framework  of  a  simple  

elasto-viscoplastic  model,  [1]  

The  equation  of  motion  of  the  sphere  during  the  stopping  process  

within  the  Carbopol  gel  may  be  written:  
+  

1:  

12  
=  =  +  =  >  (7)  

where  F  is  the  total  force  acting  on  the  sphere  and  =  >  =  
(
+  −  +  A@284  

)
<  =  

4  B*  3  ∕3  
(
, −  ,A@284  

)
< is  the  buoyancy  corrected  gravity  force.  Following  

Goff et  al.  [28]  ,  the  total  force  acting  on  the  sphere  may  be  written  in  

terms  of  the  characteristic  scales  of  the  stresses  exerted  by  the  sphere  as:  
=  =  −  CB*  2  # with  C a  geometric  parameter  characterising  the  effective  

contact  area  between  the  sphere  and  the  gel  and  # the  stress  exerted  

on  the  moving  sphere.  Unlike  for  the  case  of  the  low  Re  settling  of  a  

spherical  object  in  a  Newtonian  fluid,  this  parameter  is  not  known  a-  

priori  and  will  be  obtained  by  fitting  the  experimental  data.  
The  equation  of  motion  reduces  to:  

1:  

12  
=  −  

CB*  2  #
+  

+  

(  

1  −  
,A@284  
,

)  

<  (8)  

As  discussed  in  Section  3.1  ,  the  scale  for  the  rate  of  shear  may  be  

estimated  as  %̇ =  :∕  *  .  
As  a  constitutive  framework  we  use  the  simple  elasto-viscoplastic  

model  initially  proposed  by  Putz  and  Burghelea  in  Ref.  [1]  and  

briefly  introduced  in  order  to  describe  the  rheological  measurements  

in  Section  2.2  .  
According  to  Gonzalez  et  al.  [32]  this  simple  scalar  model  may  be  

written  in  a  tensorial  form  as:  

Φ̄
▽
! =  −  

$  

7(  ̇"  )  
! −  $  ̇"  (9)  

where  Φ̄ is  the  average  volume  fraction  of  the  un-yielded  gel  around  the  

sphere,  G  is  the  elastic  modulus  of  the  gel,  "̇  is  the  rate  of  strain  tensor  

and  
▽
! is  the  upper-convected  derivative  of  the  stress  tensor:  

▽
! =  

!  !
!2  

−  (  !  :  )  D  ⋅ ! −  ! ⋅ (  !  :  )  (10)  

Here  D  · /  Dt  is  the  material  derivative:  
!  !
!2  

=  
E  !
E2  

+  $  ⋅ !  ! (11)  

The  contribution  of  the  convective  terms  −  (  !  :  )  D  ⋅ ! −  ! ⋅ (  !  :  )  may  be  

crudely  approximated  by  −2  #%̇.  During  an  infinitesimal  time  5t  ,  a  vol-  

ume  of  fluid  |$  |52  × B(  1  +  *  )  2  enters  the  yielded  zone  Ω while  the  same  

amount  exits.  Here  d  stands  for  the  characteristic  size  of  the  yielded  

region  whose  scale  is  set  by  the  radius  of  the  sphere,  d  ≈R  .  After  inte-  

gration  over  the  yielded  zone,  the  convective  term  U  ·!  ! may  be  ap-  

proximated  by:  

$  ⋅ !  ! ≈ |:  |B(  1  +  *  )  2  

F  1  
# (12)  

where  V  d  is  the  volume  of  the  yielded  zone.  
Finally  by  plugging  Eq.  (9)  in  Eq.  (12)  one  obtains:  

1#
12  

≈ 1  

Ḡ

[  

−  
$  

7
(
Φ̄,  %̇

)# −  $  ̇%

]  

−  
3  |:  |

4  (  1  +  *  )  
# −  2  ̇%# (13)  
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In  Eq.  (13)  ,  the  viscosity  7
(
Φ̄,  %̇

) depends  on  the  characteristic  strain  

rate  in  the  fluid  phase.  Corresponding  to  a  fluid  state,  we  define  the  

strain  rate  %̇HI"  :  
%̇HI"  =  

(
1  −  Φ̄

)
× %̇

such  that  when  fully  solid  (  ̄Φ =  1  ),  there  exists  no  viscous  strain  rate  

and  in  a  fully  liquid  state  the  viscous  strain  rate  equals  the  total  strain  

rate.  Thus  the  viscosity  7 can  now  be  expressed  using,  for  instance,  a  

regularized  visco-plastic  formulation  [43]  

7
(
Φ̄,  %̇

)
=  7

(
%̇HI"  

)
=  #&  

1  −  8  −  9  ̇%HI"  

%̇HI"  +  J
+  '  

(
%̇HI"  +  J

))  −1  (14)  

where  J ≪  1  is  a  stabilization  parameter  and  m  is  the  regularisation  pa-  

rameter.  When  9  → +∞,  this  law  approximates  the  Herschel–Bulkley  

fluid  behavior.  
Following  Putz  and  Burghelea  [1]  ,  the  evolution  of  volume  fraction  

of  the  solid  phase  Φ̄ can  be  modelled  by:  
!  ̄Φ
!2  

=  −  *  1  ⏟⏟⏟
18"24O/2IP)  

+  *  4  ⏟⏟⏟
48/  P)"24O/  2IP)  

+  5⏟⏟⏟
"2@>IQI?@2IP)  

.  (15)  

Finally,  integrating  the  destruction  and  reconstruction  terms  R  d  ,  R  r  
given  by  Gonzalez  et  al.  [32]  ,  the  evolution  equation  for  the  average  

solid  fraction  Φ̄ may  be  written:  
1  ̄Φ
12  =  −  '  d  

[
1  +  tanh  

( |#|∕  #6  −1  
-  

)]
Φ̄

+  '  4  

[
1  −  tanh  

( |#|∕  #&  −1  
-  

)](
1  −  Φ̄

)

+  5
+  3  |:  |

4  (  1+  *  0  )  

(
1  −  Φ̄

)
(16)  

In  order  to  solve  the  coupled  problem  given  by  Eqs.  (9),  (16)  and  

(8)  ,  the  unknown  vector  X  is  defined  as  the  concatenation  

%  =  

⎧  
⎪  
⎪  
⎨  
⎪  
⎪  ⎩  

Φ̄
#
F  

?  

⎫  
⎪  
⎪  
⎬  
⎪  
⎪  ⎭  

.  (17)  

The  evolution  of  X  is  described  by  the  system  of  first  order  non-linear  

ordinary  differential  equations:  

1  %  

12  
=  

⎧  
⎪  
⎪  
⎨  
⎪  
⎪  ⎩  

1  Φ̄∕  12  

1  #∕  1  2  

1  :∕  1  2  

:  

⎫  
⎪  
⎪  
⎬  
⎪  
⎪  ⎭  

(18)  

where  the  first  three  columns  are  given  by  Eqs.  (9),  (16)  and  (8)  .  Con-  

sidering  2  =  0  the  time  of  impact,  initial  conditions  are  as  follow.  
1.  The  material,  initially  at  rest  is  fully  solid:  

Φ̄(  2  =  0  )  =  1  .  (19)  

2.  The  elasto  viscoplastic  material  is  initially  relaxed:  
#(  2  =  0  )  =  0  (20)  

3.  The  velocity  at  impact  is  set  by  the  release  height  H  0  

:  
|||2  =0  =  −  

√
2  <.  0  (21)  

4.  The  initial  position  is  

?  ||2  =0  =  0  (22)  

The  initial  conditions  thus  write  

%  |2  =0  =  

⎧  
⎪  
⎪  
⎨  
⎪  
⎪  ⎩  

1  

0  

−  
√
2  <.  0  
0  

⎫  
⎪  
⎪  
⎬  
⎪  
⎪  ⎭  

(23)  

Fig.  5.  Comparison  between  the  experimental  measurements  (symbols)  using  
the  solution  4  (see  Table  1  )  and  the  predictions  of  the  model  (full  lines).  The  
symbols  refer  to  different  release  heights:  circles  -  .  0  =  6  .  5  cm  ,  squares  -  .  0  =  
13  .  5  cm  ,  diamonds  -  .  0  =  21  cm  .  

After  turning  it  dimensionless  using  characteristic  magnitudes  of  the  

problem,  Eq.  (18)  is  solved  using  an  explicit  fourth  order  Runge–Kutta  

numerical  method  in  Matlab.  As  the  spatial  field  is  not  taken  into  ac-  

count,  the  problem  depends  only  on  time  and  has  four  scalar  unknown.  
The  computation  is  very  fast  (less  than  a  second)  and  enables  quick  test-  

ing  of  various  parameters.  
In  addition,  the  direct  problem  presented  above  can  provide  a  char-  

acterisation  tool  for  material  or  physical  properties.  An  inverse  method  

consisting  of  an  optimisation  loop  is  implemented.  The  error  is  defined  

as  the  norm  two  of  the  residuals  between  the  experimentally  measured  

depth  versus  time  and  the  simulation  result.  This  error  is  minimised  via  

a  mean  square  regression  algorithm  (the  built-in  gradientless  Nelder-  

Mead  Simplex  Method  in  Matlab).  
In  Fig.  5  we  compare  the  predictions  of  the  model  with  the  experi-  

mental  measurements.  The  data  was  acquired  using  the  solution  4  (see  

Table  1  ).  The  early  stages  of  the  motion  are  rather  well  described  by  the  

model.  The  periodic  motion  observed  in  the  late  stages  of  the  motion  is  

recovered,  though  a  phase  shift  with  respect  to  the  data  is  systematically  

observed.  
A  possible  reason  for  this  discrepancy  may  be  understood  as  fol-  

lows.  We  have  reduced  the  details  of  the  complex  flow  field  to  a  limited  

number  of  coefficients  in  a  lumped  parameters  model.  In  the  simpli-  

fied  derivation  of  Eq.  (13)  we  did  not  account  for  the  topology  of  the  

flow  field  around  the  stopping  object  and  artificially  introduced  a  space  

scale  associated  to  the  ”flowing  ” region,  d  ≈R  .  The  experimental  mea-  

surements  of  the  flow  field  around  an  object  moving  through  a  Carbopol  

gel  reported  in  Ref.  [24]  reveal,  however,  a  rather  complex  flow  topol-  

ogy.  A  distinctive  feature  of  the  flow  pattern  relates  to  the  negative  wake  

observed  behind  the  moving  object  which  is  associated  to  the  genera-  

tion  of  extensional  stresses.  The  simplified  derivation  presented  above  

did  not  account  for  this  effect  which,  during  the  intermediate  stages  of  

the  stopping  process,  might  bring  a  significant  contribution  to  the  total  

stress.  In  the  absence  of  an  analytical  solution  for  the  flow  field,  this  defi-  

ciency  of  the  approach  can  not  be  corrected  and  the  agreement  between  

experiments  and  numerical  simulations  will  always  remain  partial.  

3.3.  A  simplified  assessment  of  the  rheological  properties  of  the  material  

Though  reasonably  reliable,  the  approach  described  in  Section  3.2  re-  

mains  rather  difficult  to  implement  as  it  requires  solving  iteratively  a  

strongly  nonlinear  coupled  optimisation  problem.  We  propose  in  the  fol-  
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Fig.  6.  Dependence  of  the  period  of  oscillations  measured  from  the  stopping  ball  
experiments  on  the  elastic  modulus  measured  via  small  amplitude  oscillatory  
tests.  The  full  line  is  the  fit  according  to  the  theoretical  prediction,  Eq.  (25)  .  
The  shaded  region  highlights  the  error  bounds  of  the  nonlinear  fit  computed  
using  the  error  of  the  fit  parameters.  The  horizontal  error  bars  are  defined  by  
the  uncertainties  of  the  classical  rheological  measurements  of  the  yield  stress  
and  consistency  (see  Table  1  ).  

lowing  a  simpler  method  of  inferring  the  main  rheological  parameters  

of  the  solution  from  measurements  of  the  trajectories  of  the  stopping  ob-  

ject.  The  main  idea  behind  is  to  notice  that  the  motion  of  the  object  may  

be  decoupled  in  two  parts.  As  already  emphasised  in  Section  3.1  and  il-  

lustrated  in  Fig.  4  (b),  at  early  stages  of  the  stopping  process  the  fluid  de-  

formation  is  predominantly  viscous  whereas  at  the  latest  stages  it  may  

be  considered  purely  elastic.  Through  the  rest  of  this  section,  we  will  

study  each  regime  separately,  derive  analytical  solutions  for  the  equa-  

tion  of  motion  and  provide  a  strategy  for  assessing  the  main  rheological  

parameters  of  the  material  from  measurements  of  the  kinematics  of  the  

stopping  process.  

3.3.1.  The  elastic  regime  

Within  the  asymptotic  limit  Φ̄ → 1  that  corresponds  to  the  elastic  de-  

formation  regime  the  constitutive  equation  reduces  to  Hooke’s  law  and  

the  stress  acting  on  the  sphere  becomes  # =  C$% where  G  is  the  elas-  

tic  modulus  and  % is  the  strain.  Consequently,  by  neglecting  the  viscous  

damping,  the  equation  of  motion  of  the  spherical  object  reduces  to:  
1  2  :  

12  2  
=  −  

BC*$  

+  
:  (24)  

The  equation  above  has  been  obtained  by  differentiating  the  second  law  

of  dynamics  given  by  Eq.  (8)  with  time  and  bearing  in  mind  that  buoy-  

ancy  term  is  time  independent.  Eq.  (24)  is  the  equation  of  a  harmonic  

oscillator  with  the  period  of  oscillations  given  by:  

D  =  2  B*  

√  
4  ,
3  C

$  −1∕2  (25)  

The  elastic  modulus  G  of  each  gel  has  been  measured  via  conven-  

tional  small  amplitude  oscillatory  measurements,  see  Fig.  2  (b).  We  note  

that  for  each  gel,  the  measured  period  of  oscillations  did  not  depend  

on  the  initial  release  height  H  0  of  the  object  which  corroborates  with  

the  assumption  that  the  early  viscous  stage  and  late  elastic  stage  of  mo-  

tion  may  be  indeed  de-coupled.  Measurements  of  period  of  oscillation  of  

the  position  of  spherical  object  around  its  equilibrium  value  .  max  per-  

formed  for  several  gels  are  presented  in  Fig.  6  .  The  full  line  is  the  best  

fit  to  the  theoretical  prediction  given  by  Eq.  (25)  performed  using  the  

built  in  Matlab  fitnlm  routine  together  with  the  Levenberg–Marquardt  

algorithm.  We  note  that  the  measured  period  of  oscillation  is  fairly  well  

Fig.  7.  Instantaneous  velocity  of  the  spherical  object  measured  from  the  mo-  
ment  of  its  impact  with  the  surface  of  a  Carbopol  gel  (  #&  =  300  Pa  )  for  three  
distinct  heights  of  release:  squares  -  .  0  =  28  .  5  cm  ,  circles  -  .  0  =  16  .  5  cm  ,  stars  -  
.  0  =  11  cm  .  The  full  lines  are  implicit  hypergeopmetric  fit  functions  according  
to  Eq.  (29)  .  

Fig.  8.  Phase  portrait  of  the  stopping  process  in  a  solution  with  #&  =  
300  Pa  (±16  Pa  )  .  The  symbols  refer  to  the  release  height  H  0  :  orange  squares  
-  .  0  =  11  cm  ,  yellow  left  triangles  -  .  0  =  13  .  5  cm  ,  magenta  right  triangles  -  
.  0  =  15  cm  ,  green  stars  -  .  0  =  16  .  5  cm  ,  blue  circles  -  .  0  =  18  cm  ,  orange  dots  
-  .  0  =  19  .  5  cm  ,  blue  pluses  -  .  0  =  21  cm  ,  light  blue  stars  -  .  0  =  24  cm  ,  dark  red  
stars  -  .  0  =  25  .  5  cm  ,  yellow  squares  -  .  0  =  27  cm  .  (For  interpretation  of  the  ref-  
erences  to  colour  in  this  figure  legend,  the  reader  is  referred  to  the  web  version  
of  this  article.)  

fitted  by  the  theoretical  prediction  except  for  the  smallest  value  of  the  

elastic  modulus  (the  smallest  yield  stress).  
The  deviation  of  this  value  from  the  theoretical  prediction  may  be  

explained  as  follows.  The  yield  stress  of  this  Carbopol  gel  was  too  small  

and  unable  to  fully  stop  the  spherical  object  even  for  the  smallest  value  

of  the  release  height.  Thus,  a  small  viscous  drift  always  existed  in  the  

case,  making  a  proper  decoupling  of  the  viscous  and  elastic  stages  of  

motion  impossible.  The  slow  viscous  drift  effect  was  not  observed  for  

the  rest  of  the  gels  we  have  tested.  
The  curve  defined  by  Eq.  (25)  may  be  used  as  a  first  calibration  curve  

of  the  “stopping  ball  ” rheometer.  Once  the  value  of  the  parameter  C is  

obtained  by  fitting  a  set  of  data  with  known  elastic  moduli,  the  elastic  
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modulus  of  any  new  solution  may  be  obtained  by  measuring  the  period  

of  oscillations  of  the  stopping  object.  This  simple  procedure  provides  es-  

timates  of  the  elastic  modulus  with  an  accuracy  of  roughly  20%  provided  

that  spherical  object  reaches  a  full  stop  (no  viscous  drift  is  observed).  

3.3.2.  The  viscous  regime  

During  the  early  stages  of  the  motion  when  %̇ >  1  s  −1  the  response  

of  the  material  is  dominantly  viscous  (  ̄Φ → 0  )  and  the  stress  is  related  

to  the  rate  of  deformation  via  the  Herschel-Bulkley  constitutive  law,  
# =  #&  +  '  

( |: |
*  

))  .  Consequently,  the  equation  of  motion  reduces  to:  
:̇  +  R  |: |)  =  ;  (26)  

with  

R  =  
CB
*  )  −2  

'  

+  
=  

3  C'  

4  *  )  +1  ,
(27)  

;  =  

(  

1  −  
,
,0  

)  

<  −  
B*  2  C
+  

#&  =  

(  

1  −  
,
,0  

)  

<  −  
3  C
4  ,*  

#&  (28)  

The  general  solution  of  Eq.  (26)  is:  

2  =  1  

[
1  ,  1  

)  
,  1  +  

1  

)  
;  
R  

;  
:  )  

]
: |:  

:  0  
=  ;(  2  −  2  0  )  (29)  

where  :  0  =  
√
2  <.  0  is  the  initial  speed  of  the  sphere  at  the  moment  of  

impact  (  2  0  =  0  )  and  2  F  1  is  the  Euler  hypergeometric  function  defined  by:  

2  =  1  (  @,  >  ;  /;  ?  )  =  

∞∑
S  =0  

(  @  )  S  (  >  )  S  
(  /)  S  

?  S  

S  !  
(30)  

where  (  T  )  S  =  Γ(  T  +  S  )  
Γ(  T  )  stands  for  the  Pochammer  symbol.  

Several  times  series  of  the  velocity  of  the  spherical  object  mea-  

sured  after  its  impact  onto  a  Carbopol  gel  with  #&  =  300  Pa  together  

with  the  nonlinear  fitting  functions  using  the  implicit  analytical  solu-  

tion  Eq.  (29)  are  illustrated  in  Fig.  7  .  We  note  that  corresponding  to  

each  release  height  H  0  explored  in  Fig.  7  ,  the  analytical  solution  fits  

very  well  the  experimental  data.  Note  that,  as  the  hypergeometric  Eu-  

ler  function  becomes  complex  valued  for  negative  arguments,  only  the  

positive  parts  of  the  velocity  are  fitted.  The  yield  stress  obtained  from  

the  three  fitting  functions  shown  in  Fig.  7  is  #&  =  270  ±  20  Pa  which  is  

reasonably  close  to  the  value  obtained  via  conventional  rheometry.  The  

consistency  obtained  from  the  three  fits  is  '  =  150  ±  30  U  @  "  )  and  the  

power  law  index  is  )  =  0  .  5  ±  0  .  2  .  We  note  that  the  values  obtained  for  

the  power  law  index  and  the  consistency  are  less  accurate,  within  30%  

different  from  the  ones  obtained  via  conventional  rheometry.  
The  computed  speeds  and  accelerations  of  the  stopping  object  allow  

one  to  build  a  phase  portrait  of  the  stopping  process.  This  phase  portrait  

represents  a  unique  kinematic  fingerprint  of  the  stopping  process  and  

it  encodes  the  main  rheological  parameters  of  the  gel:  yield  stress,  con-  

sistency,  power  law  index  and  elastic  modulus.  Such  a  phase  portrait  is  

presented  in  Fig.  8  for  a  Carbopol  gel  with  #&  =  300  U  @  (±10  Pa  )  .  
According  to  Eq.  (26)  ,  the  acceleration  at  the  moment  when  the  

speed  :  =  0  m/s  is  given  by:  @  0  =  @  |:=0  =  ; which  is  independent  on  

the  release  height  H  0  .  This  is  qualitatively  visible  in  Fig.  8  :  all  phase  

portraits  cross  the  vertical  axis  at  the  same  @  0  ≈ −60  m/s  2  .  Quantita-  

tively,  one  obtains  #&  =  330  Pa  whereas  we  have  measured  #&  =  300  Pa  

via  conventional  rheometry.  This  very  simple  approach  based  on  plot-  

ting  the  phase  portrait  is  only  able  to  give  a  very  crude  estimate  for  the  

yield  stress  but  is  unable  to  provide  reliable  values  for  the  consistency  

and  the  power  law  index.  
Yet  an  even  simpler  way  to  obtain  a  crude  estimate  of  yield  stress  

the  from  the  analysis  of  the  stopping  ball  trajectory  comes  from  writing  

the  energy  conservation  equation:  

+<.  0  +  (  +  −  +  0  )  <.  9@T  =  CB*  2  #&  .  9@T  +  CB*  2−  )  '  ∫
.  9@T  

0  
|: |)  1?  

(31)  

Fig.  9.  Dependence  of  the  maximum  penetration  depth  H  max  on  the  initial  re-  
lease  height  H  0  measured  for  several  values  of  the  yield  stress:  The  full  lines  are  
linear  fitting  functions  .  max  =  V.  0  .  The  insert  presents  the  same  data  rescaled  
by  the  yield  stress  #y  .  

Note  that  in  the  equation  above  we  have  neglected  the  elastic  dissipative  

term.  The  integral  term  in  the  right  hand  side  of  Eq.  (31)  is  rather  diffi-  

cult  to  compute  using  the  implicit  solution  for  the  sphere  velocity  given  

by  Eq.  (29)  .  A  reasonable  approximation  would  be  to  assume  instead  a  

classical  viscous  damping  solution  for  the  speed  in  the  form  :  =  :  0  8  −  2  W

where  W is  a  damping  time  scale  related  to  the  viscous  damping.  The  

characteristic  damping  time  may  be  estimated  as  W ≈ 2  ,0  *  2  

9  7800  
where  the  

scale  of  the  effective  viscosity  7eff is  set  by  the  maximal  rate  of  shear  at  

the  impact,  7800  ≈ '  
(
:  0  
*  

))  −1  .  
With  these  assumption  it  is  straightforward  to  derive  the  relationship  

between  the  maximum  penetration  depth  .  max  and  the  initial  release  

height  H  0  :  

.  9@T  ≈
+<  .  0  −  CX  

√
.  0  

CB*  2  #&  −  (  +  −  +  0  )  <  
(32)  

where  X  =  B*  4  
9  )  

√
8  <  ≈ 10  −6  Jm  −2  .  Thus,  to  a  leading  order  in  

√
.  0  ,  the  

maximal  penetration  depth  may  be  written:  
.  9@T  ≈

+<.  0  

CB*  2  #&  −  (  +  −  +  0  )  <  
(33)  

To  test  this  proportionality  relation,  we  plot  in  Fig.  9  the  dependence  

of  the  maximum  penetration  depth  .  max  on  the  release  height  H  0  mea-  

sured  for  various  values  of  the  yield  stress.  
Regardless  the  yield  stress  of  the  Carbopol  ® gel,  the  dependencies  

observed  in  Fig.  9  are  linear  and  their  slopes  S  decrease  monotonically  

with  the  yield  stress  #y  which  is  a  first  validation  of  the  approximation  

expressed  by  Eq.  (33)  .  The  apparent  power  law  scaling  V  ∝ +<  
CB*  2  #−1  

&  of  

the  slopes  of  the  linear  dependencies  with  the  yield  stress  suggested  

by  the  Eq.  (33)  is  confirmed  by  plotting  #&  .  max  versus  H  0  ,  the  inset  in  

Fig.  9  .  When  rescaled  by  #y  all  data  collapse  onto  an  universal  curve.  
The  dependence  of  the  linear  slope  S  on  the  yield  stress  is  illus-  

trated  in  Fig.  10  (a).  The  full  line  is  a  power  law  fit  V  =  Y#−  9  
&  with  Y  =  

38  .  3  ±  5  .  3  (  Pa  )  ,  9  =  1  .  1  ±  0  .  3  .  The  power  law  fit  has  been  computed  using  

the  built  in  Matlab  function  fitnlm  in  conjunction  with  the  Levenberg–
Marquardt  algorithm.  The  error  bounds  computed  using  the  errors  of  

the  nonlinear  fit  parameters  are  highlighted  by  shaded  area.  This  depen-  

dence  may  be  understood  as  a  second  calibration  curve  of  the  ”stopping  

ball  rheometer  ” for  an  elasto-viscoplastic  fluid  and  provides  a  simple  way  

of  assessing  the  yield  stress  solely  from  measurements  of  the  maximal  

penetration  depths  performed  for  several  release  heights  H  0  .  
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Fig.  10.  (a)  Dependence  of  the  slope  S  of  the  linear  dependence  of  .  max  on  the  initial  release  height  H  0  on  the  yield  stress  of  the  gel  #y  .  The  full  line  is  a  power  

law  fit,  V  ∝ +<  
2  CB*  2  #−1  

&  .  (b)  Dependence  of  the  slope  S  of  the  linear  dependence  of  .  max  on  the  initial  release  height  H  0  on  the  consistency  of  the  gel  K  .  The  full  line  is  

a  power  law  fit,  V  ∝ 23  K  −1  .  2  .  In  both  panels  the  shaded  regions  highlight  the  error  bounds  of  the  nonlinear  fit  and  the  vertical  error  bars  are  defined  via  the  error  
of  the  linear  fitting  of  the  data  presented  in  the  main  plot  of  Fig.  9  .  The  horizontal  error  bars  are  defined  by  the  uncertainties  of  the  rheological  measurements  (see  
Table  1  ).  

The  dependence  of  the  slope  S  on  the  consistency  of  the  Carbopol  ®
gel  is  illustrated  in  Fig.  10  (b).  Unlike  for  the  case  of  the  dependence  

V  =  V  
(
#&  
) illustrated  in  Fig.  10  (a)  we  could  not  derive  an  analytical  

scaling  for  the  dependence  V  =  V(  ')  .  However,  we  noted  that  the  data  

presented  in  Fig.  10  (b)  may  be  fitted  by  a  power  law  as  well,  though  the  

confidence  interval  (the  highlighted  region)  is  significantly  broader.  

4.  Conclusions,  outlook  

A  simple  method  of  simultaneously  assessing  all  main  rheological  

parameters  (  #y  ,  K,  n,  G  ′  )  of  an  elasto-viscoplastic  was  presented.  
Whereas  a  spherical  object  steadily  moving  at  low  Re  through  a  

elasto-viscoplastic  material  is  a  rather  difficult  to  use  as  one  needs  to  

numerically  solve  the  full  hydrodynamic  problem  coupled  to  an  appro-  

priate  elasto-viscoplastic  model,  monitoring  the  stopping  process  of  a  

spherical  object  provides  a  number  of  relatively  simple  ways  of  assessing  

the  main  rheological  parameters  of  the  gel.  From  a  technical  perspec-  

tive,  the  idea  is  rather  simple  as  it  only  requires  imaging  the  stopping  

object  (in  most  cases  an  imaging  speed  of  200  fps  does  suffice,  meaning  

that  a  regular  smartphone  may  be  used),  measuring  the  time  series  of  

its  position  and  computing  the  time  series  of  speeds  and  accelerations.  
By  coupling  the  equation  of  motion  of  the  spherical  object  to  the  

micro-structural  model  initially  proposed  by  Putz  and  Burghelea,  [1,32]  ,  
we  derive  an  approximate  form  for  the  equation  of  motion  and  solve  it  

numerically.  The  optimal  numerical  solution  obtained  via  a  nonlinear  

optimisation  algorithm  is  in  a  fair  agreement,  though  discrepancies  are  

systematically  visible,  Fig.  5  .  We  believe  that  these  discrepancies  orig-  

inate  in  the  nontrivial  features  of  the  flow  pattern  (such  as  the  emer-  

gence  of  a  negative  associated  with  elasticity  of  the  gel  and  the  exten-  

sional  stresses)  not  accounted  for  in  the  simplified  approach  presented  

in  Section  3.2  .  
A  further  simplification  of  the  problem  comes  from  noticing  that  the  

early  stages  of  the  motion  are  dominated  by  viscous  effects  whereas  the  

late  stages  by  purely  elastic  ones.  The  two  types  of  behaviors  can  thus  

be  fully  de-coupled  and  one  may  study  the  asymptotic  limits  Φ̄ → 1  and  

Φ̄ → 0  separately.  Corresponding  to  each  asymptotic  limit  the  equation  

of  motion  is  analytically  solvable  allowing  a  direct  comparison  with  the  

experimentally  observed  flow  kinematics.  
In  the  first  asymptotic  limit,  the  equation  of  motion  reduces  to  that  of  

an  harmonic  oscillator  with  the  period  related  to  the  elastic  modulus  of  

the  gel  via  Eq.  (25)  .  This  result  provides  a  quick,  cheap  and  technically  

simple  method  of  estimating  the  elastic  modulus  of  a  gel  by  measuring  

the  period  of  oscillations  of  the  stopping  object  around  its  equilibrium  

position,  Fig.  6  .  
In  the  second  asymptotic  limit  the  equation  of  motion  has  an  an-  

alytical  solution  given  implicitly  by  Eq.  (29)  which  fits  very  well  the  

viscous  part  of  the  velocity  time  series,  Fig.  7  .  The  yield  stress  obtained  

from  the  fit  procedure  is  close  (within  3.5  %)  to  the  value  obtained  via  

conventional  rheometry.  A  simpler  way  of  obtaining  an  estimate  for  the  

yield  stress  that  requires  no  sophisticated  fitting  by  an  implicit  equation  

that  involves  a  special  function  is  to  plot  the  phase  portraits  (  U,  a  )  cor-  

responding  to  different  release  heights,  Fig.  8  .  The  intersection  of  each  

phase  portrait  with  the  vertical  axis  :  =  0  provides  a  reliable  estimate  

for  the  yield  stress  via  Eq.  (28)  .  
The  maximum  penetration  depth  .  max  of  the  object  is  found  to  de-  

pend  linearly  (to  a  leading  order  in  
√
.  0  )  on  the  release  height  H  0  ,  

Eq.  (33)  .  This  theoretical  result  is  rather  well  supported  by  the  exper-  

imental  measurements,  Fig.  9  .  This  allows  one  to  build  a  calibration  

curve  for  the  “stopping  ball  rheometer  ” by  plotting  the  value  of  the  slope  

S  versus  the  yield  stress,  Fig.  10  (a).  
In  closing  we  note  that  although  the  accuracy  of  this  method  can-  

not  compete  with  that  of  the  classical  rheological  tests,  its  simplicity  

might  appeal  in  cases  estimates  for  the  main  rheological  parameters  of  

an  elasto-viscoplastic  material  do  suffice.  
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