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Abstract: Luminescent concentrators (LC) enable breaking the limit of geometrical 
concentration imposed by the brightness theorem. They enable increasing the brightness of 
Lambertian light sources such as (organic) light-emitting diodes. However, for illumination 
applications, light emitted in the high-index material needs to be outcoupled to free space, 
raising important light extraction issues. Supported by an intuitive graphical representation, 
we propose a simple design for light extraction: a wedged output side facet, breaking the 
symmetry of the traditional rectangular slab design. Angular emission patterns as well as ray-
tracing simulations are reported on Ce:YAG single crystal concentrators cut with different 
wedge angles, and are compared with devices having flat or roughened exit facets. The wedge 
output provides a simple and versatile way to simultaneously enhance the extracted power (up 
to a factor of 2) and the light directivity (radiant intensity increased by up to 2.2.) 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Light-emitting diodes (LEDs) are not only the new reference for general lighting, they have 
also proved to be reliable and economically-viable alternatives to halogen or arc lamps for 
more specific, bright illumination sources useful for e.g. automotive [1] or medical 
applications [2]. LEDs have also recently shown their potential as lower-cost alternatives to 
lasers or laser diodes for laser pumping [3–5]. More recently, Organic Light-emitting diodes 
have also emerged as flat, potentially flexible, large-area lighting devices with high potential 
in lighting, optical communications [6] or medical care [7]. Many of those novel applications 
triggered by the availability of these sources require the beam to be not only intense but also 
directional, which enables for example the light beam to be tightly focused. This is 
challenging with LED chips or OLED panels as their emission is not directional but quasi-
Lambertian: their radiance ― also referred to as “brightness”, that is power per unit apparent 
area and solid angle ― is independent of observation angle. The brightness theorem [8] 
indeed states that the irradiance (in W/m2) produced at some remote location by a Lambertian 
source, will be always lower than the irradiance measured directly onto the exit surface of the 
emitter (i.e., the source power density). This is important pointing out that this result remains 
true whatever the nature (imaging or non-imaging) of the optical system between the source 
and detector, and no matter the number of individual emitters that one could possibly imagine 
to combine alongside. However, if light is not just refracted or reflected but instead absorbed 
and reemitted at a lower energy, through a luminescence process, overcoming the brightness 
theorem becomes possible: this is the key idea behind Luminescent Concentrators (LC). LCs 
have been proposed in 1976 in the context of photovoltaics to concentrate sunlight with a 
wide field of view and no need for tracking [9–11]. They consist in a slab of a solid-state 
fluorescent material surrounded by air (or more generally a lower index material) in which 
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luminescence is guided by Total Internal Reflection (TIR) towards the edges, where the 
irradiance can reach values higher than the irradiance of incoming radiation by typically one 
order of magnitude in most practical cases. More recently, LCs have been used in association 
with LEDs disposed on the top largest surface to produce irradiances that could not be 
accessible with LEDs alone: this for instance enabled Ti-Sapphire lasers to be pumped for the 
first time by LEDs [12]. This example shows that the association of planar Lambertian LED 
light sources with LCs opens a novel route for high-brightness illumination sources that 
furthermore extends the wavelength capabilities of available LEDs. However, using LED + 
LC combinations to build bright directional sources requires that the radiation emitted in a 
high-index material is eventually outcoupled to air, which raises the important issue of light 
extraction, a long-studied issue in other contexts like device design of LEDs [13], OLEDs 
[14] or scintillators [15]. 

In planar light-emitting devices, classical strategies for light extraction include e.g. surface 
texturing [16], or surface modification with microlens arrays [17], networks of inverted 
micropyramids [18] or photonic crystal nanostructures [19]. For LCs based on plastic or 
crystalline slabs, the realization of such micro or nanostructures is both complicated and 
costly. The idea to change the geometry of the LC on the macroscopic scale has been 
investigated by De Boer et al. [20] who proposed to use a Compound Parabolic Concentrator 
(CPC) attached to the edge: the CPC both increases the emitting area and decreases the 
emission solid angle (as the étendue is conserved in a passive optical device) but it offers a 
way out for trapped rays (defined in following section): in the end, the outgoing radiation has 
a reported brightness that is 4.5 times higher than the brightness of LED illumination, and is 
more directional. 

In this paper we study how more cost-effective and universal techniques can be used to 
improve the extraction capabilities and beam characteristics of concentrators that are used in 
the context of illumination. Firstly (section 2), we present a simple graphical representation in 
k space that enables an easy classification of rays inside a concentrator, offering a convenient 
tool for making rapid estimates but also understanding what happens in situations where the 
concentrator loses some of its symmetries. We then present the experimental methods and 
compare the measurements of concentration factors of a simple rectangular polished slab 
concentrator with a concentrator in which the output facet is simply frosted (section 3). In 
section 4, we investigate an original and simple way to improve light extraction from 
luminescent concentrators, applicable to any material, consisting in cutting the exit facet with 
a wedge. We studied Ce:YAG single crystals, chosen for their attested very good efficiency 
as luminescent concentrators under blue LED excitation [21]. The impact of the design on the 
achievable gain in extracted power, intensity and radiance (brightness) will be finally 
discussed. 

2. Light extraction in luminescent concentrators: representation of internal 
rays in k space 

It is first instructive to gain some insights in the light extraction issue in the “classical” 
symmetric rectangular slab design, considered polished on its 6 orthogonal faces, to 
investigate how this design can be further modified to improve extraction. In this respect, an 
elegant and insightful picture consists in representing rays only by their direction (in k space). 
Usually the problem of extraction is considered in planar light sources (LEDs, OLEDs…), 
where one dimension is much smaller than the others: in this case, all internal rays that fall 
within the escape cones (and only 2 cones are considered, with axes normal to the source 
plane) are directly outcoupled without undergoing any total internal reflection before exiting, 
while all the others are referred to as “guided rays”, and are subsequently either absorbed, 
scattered, or coupled to other surface modes. In a 3D macroscopic geometry all 6 faces can 
contribute to TIR, and escape cones have to be considered on every face of the concentrator. 
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the sphere is not totally paved by escape caps, that is when the diagonal of the extraction cube 

is longer than the sphere diameter — that is, for 3 / 2 1.22n > =  

For non-overlapping caps ( 2 1.41n > = ), they represent a fraction 
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for YAG, ηtrapped = 52%. 
Each Total Internal Reflection (TIR) changes sign of kx, ky or kz: the trajectory of a 

“trapped ray” in k-space is therefore figured by the 8 apices (blue dots in Fig. 1) of a 
parallelepiped inscribed in the sphere. When considering a ray that belongs to an escape cone 
(let’s say the cone with ky<0, see red dots in Fig. 1), the kx and kz components can change 
sign many times when the ray is travelling but ky is conserved. The trajectory is then 
represented in k-space by a dot bouncing between 4 points with the same ky component, 
always remaining within the same escape cap, before the ray can eventually exit — the 
number of reflections undergone by a ray will obviously depend on the position of the 
luminophore with respect to the exit surface. 

In practice, scattering and reabsorption complicates this simple sketch: rays that 
experience propagation paths that are longer than the reabsorption length will not necessarily 
escape by the facet defined by the initial ray direction. Trapped rays will acquire a finite 
lifetime and will not bounce “forever”. In high-quality crystals with large Stokes shift, the 
reabsorption length can however be quite high. In the Ce:YAG samples used in our study (see 
next section), the reabsorption length, which is simply estimated here from the inverse of the 
average absorption coefficient weighted by the fluorescence spectrum, is 3.4 cm, while the 
typical slab dimensions are in the mm to cm range. As a general rule of thumb, this 
framework for representing concentrators is useful in cases where the reabsorption length is 
longer than the typical dimensions of the concentrators. 

The concept is here introduced in the simplest case of a symmetric (3 pairs of mutually 
parallel facets) optically-isotropic medium surrounded by a homogeneous isotropic medium. 
It can be especially useful however in more complex situations: for instance, the sphere 
becomes ellipsoids in anisotropic media; the caps may also have different dimensions if the 
surrounding medium is not homogeneous, which is the case if the concentrator slab sits on top 
of a substrate, for example. 

In these non-trivial cases, the “trapped ray” area is determined by mapping the zones that 
are not covered by any cap and by any cap mirror-image: indeed, one has also to remove from 
the trapped ray region all the rays that will find themselves into an escape cap after one or 
several reflections. This means that one has to pave the sphere with all the mirror images of 
the caps through all the symmetry planes (where TIR can occur) to determine what is finally 
the ‘trapped ray’ (uncovered) region. 

From this example, one can see that breaking the symmetry is a simple and efficient 
strategy to eliminate the existence of trapped rays, and hence improve the fraction of rays that 
can potentially be outcoupled. 

In this paper, we investigated how a simple wedge in one direction, appended to the small 
exit facet, can significantly improve light extraction. 

In this graphical representation in k space, tilting the output facet by an angle β consists in 
sliding the escape “cap” of the side edge towards the “pole” (top face escape cone), as 
represented in Fig. 2. Not only will the rays belonging to this tilted escape cap emerge, but 

also all those which find themselves in this cap after TIR. As the faces perpendicular to zk  

are the largest — so that most of TIR events occur on those facets — the new escape cone has 
to be completed by its mirror image across z axis: tilting the facet therefore increases notably 
the surface of the sphere that is paved by escape cones. Note that the tilted facet is also still a 
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previous section, we estimated the fraction of photons outcoupled by the side facet to be 8% 
of the total number of photons generated inside a perfect lossless concentrator. As all incident 
photons are not absorbed and as all absorbed photons are not reemitted as fluorescence (i.e. 
pump absorption efficiency and fluorescence Quantum yield are below unity), we can expect 
a theoretical ratio of outcoupled photons over incident photons slightly lower than 8%: in 
fact, the quantum yield is as high as 97% in Ce:YAG and absorption is 97.5%, which does not 
make so much difference. However, the experimental value is almost twice higher than the 
expectation from these simple considerations. This can be attributed for some part to 
reabsorption, which reduces the number of trapped rays and redirects them in all extraction 
cones. It is also due for another part to scattering on defects on the surfaces and to diffraction 
around sharp corners and edges. It is possible to evaluate the relative importance of 
reabsorption and diffraction/scattering effects, by resorting to ray-tracing simulations, which 
can include the effect of reabsorption but do not go beyond ray propagation considered within 
the limits of geometrical optics. We used Light Tools software to model a perfectly polished 
LC with a refractive index n = 1.84, having passive losses corresponding to a measured 97% 
transmission over 100 mm of propagation in Ce:YAG. Reabsorption was taken into account 
by considering the medium as homogeneously doped with an isotropic emitter whose 
absorption and emission spectra were those experimentally measured, while the luminophore 
concentration was calculated from the experimental absorption at 450 nm. The simulation 
yields a photonic extraction efficiency of 11.3% (9.6% in power ratio), meaning that starting 
from the rough estimate of 8% based only on geometrical considerations, reabsorption 
accounts for an additional 3.3%. The remaining difference of 2.8% between the experimental 
14.1% efficiency and the simulated value of 11.3% is accounted by all phenomena that are 
not taken into account by ray tracing simulations, i.e. scattering and diffraction. Adding some 
further scattering seems to be a straightforward and simple idea to increase the light 
extraction, an idea that we explored in order to compare it with the wedge structure presented 
in the next section. The symmetric polished slab of 49 × 9 × 1 mm dimensions was left 
polished on 5 sides and frosted on one of the smallest facets of dimension 9 × 1 mm. The exit 
facet was roughened using abrasive grinding over a brass tool in order to obtain a RMS 
roughness of 430 nm, measured using Atomic Force Microscopy. An increase in the extracted 
power of up to 50% was observed, corresponding to a concentration factor of 8. The intensity 
indicatrix was measured in one angular dimension with a simplified version of the experiment 
described by Parel et al. [23] that is shown in Fig. 3a. 

                                                                                            Vol. 27, No. 8 | 15 Apr 2019 | OPTICS EXPRESS 11835 



Fig. 3
power
centra
profile
sterad
i) with
law ap

Intensity p
grinded one h
frosted sampl
concentrator, 
explanation o

4. Light extr

We then inve
paths that are
significant pe

In order to
the reference 
20°, 40°, and
Figs. 4 and 5)

3. a) experimental
r-meter (fiber cor
al point of the edg
es (the radius in 

dian in this given d
h polished emissio
ppears in dotted lin

profiles (see F
have an angle
le is however 

in which som
f these ripples 

raction in we

stigated the inf
e stable upon s
rcentage of tra
o experimental
Ce:YAG cryst
60° around a 

). 

l set up for radian
re diameter: 1 mm
ge emitting area o

the polar diagram
direction) of a Ce:Y
on facet ; ii) with 
nes on i) and ii). 

Fig. 3b) reveal
-dependent int
much closer f

me smooth rip
is detailed in t

edged lumine

fluence of a we
successive TIR
apped rays prop
ly investigate t
tal and fabrica
rotation axis d

nt intensity indica
m) rotates at a fix
f the Ce:YAG lum
m is set proporti
YAG luminescent 
frosted output sur

 that both the 
tensity that is 
from an ideal 
pples can be 
the Appendix

escent conce

edge on the ex
R processes (se
pagating in a hi
the role of wed
ated different s
defined as the 

atrix measurement
xed distance of 7
minescent concent
onal to the inten
concentrator excit

urface. Theoretical 

‘polished’ ref
close to Lam
Lambertian so
observed. Th

x. 

entrators 

xit facet, a way
ee Fig. 2) and 
igh index med
dging in a real 
samples with th

longest edge 

t. A fiber-coupled
0 mm around the
trator. b) Intensity

nsity in Watts per
ted at λ = 450 nm:
 Lambert’s cosine

ference sample
mbert’s cosine 
ource than the 
he origin and 

y to eliminate c
are responsibl

dium surrounde
device, we sta
hree wedge an
of the exit sur

 

d 
e 
y 
r 
: 
e 

e and the 
law. The 
 polished 
physical 

closed ray 
le for the 

ed by air. 
arted from 
ngles β of 
rface (see 

                                                                                            Vol. 27, No. 8 | 15 Apr 2019 | OPTICS EXPRESS 11836 



Fig. 4
(linke
extrac
base 
emitte
the co
on the

The extrac

tilted surface 
extent from 

contribution 
compromising
simulations (u
surface. 

The measu
angle results 
between simu
simulation ten
account. As d
polishing defe
also be seen th
fact that as far
trapped rays 
using simulat

sideways. Fro
associated to 
is, 1.3 times m

4. Power extractio
ed crosses) for we
cted through the ti
of the slab insert
ed by the portion o
oncentrator was in
e top surface to ens

cted measured 

(denoted as P
the side facet

from the sol
g the TIR pro
using LightTo

ured and simul
in a net high

ulated and exp
nds to undere

discussed in se
ects, especially
hat close to β =
r as β ≠ 0 there
in a perfectly 

tion to evaluate

om Fig. 4, on
a maximum ex
more than the 

on efficiency η m
edged concentrato
ilted output surfac
ted into the integ
of small side facet

ntroduced in the in
sure that all light c

total power P

Pup), but also 
ts (noted Presi

le wedged to
operties of the 
ols software) t

lated extracted 
her total extrac
perimental data
estimate the ex
ction 3, this ca

y along the line
= 0, the depend
e is mathematic
lossless medi

e the fractions

ne can clearly 
xtraction effici
ratio obtained

measured (black d
ors with different 
ce and Pdown is the
grating sphere. Pre

ts inserted into the
ntegrating sphere u
coming from the w

 totP  not only co

from the botto

idue) so that toP

p side is ex
whole device

to assign the r

powers are rep
cted power Pto

a for Ptot with
xtraction, altho
an be attributed
es, which reduc
dence with ang
cally no more 
um. Excellent 

s of   totP  that a

see an optim
iency Pup/Pinc =

d from the refe

dots) and simulate
wedge angles β. 

e power emitted th
esidue represents th
e sphere. Inset: Ex
up to 1 mm behin

wedge is efficiently

onsists in the p

om base end (

tot up downP P P= +
xperimentally 
e: we therefore
relative contrib

ported in Fig. 4
ot. Very good 
h a slight devi
ough reabsorp
d to scattering
ces the fraction

gle β is steeper:
endless closed

t agreement at 
are extracted up

mum angle for
= 16% through

erence non-wed

ed by ray tracing
 Pup is the power
hrough the bottom
he remaining light
xperimental setup
nd the wedge limit
y collected. 

power emitted 

(Pdown), and to

residueP+ . Isol

very difficult
e relied on ra
bution of each

4. Increasing th
agreement is 

iation for β = 
tion is here ta

g on sharp edge
n of trapped ra
: this correspon

d paths correspo
t higher angles
pwards, downw

r Pup close to 
h the tilted sur
dged polished 

 

g 
r 

m 
t 
: 
t 

from the 

o a lesser 
ating the 

t without 
ay tracing 
h emitting 

he wedge 
obtained 
0 where 

aken into 
es and on 
ays. It can 
nds to the 
onding to 
s justifies 
wards, or 

β = 50° 
rface, that 
slab (β = 

                                                                                            Vol. 27, No. 8 | 15 Apr 2019 | OPTICS EXPRESS 11837 



0). The whole
For wedge an
with an incide
33°, redirectin

angles. 
In order t

intensity prof
obtained usin
with simulate
quasi-Lamber
good matchin
slightly smoo
above (diffra
interesting to 
bottom emissi
cone is narrow

Fig. 5
simula
wedge

The highe
angle γmax = 5
the reference 
a “Lambertia
normal incide
also concentra
applications. I

e extracted pow
ngles > 50°, ra
ent angle that i
ng them to the 

to be able to 
file angular m

ng the setup de
ed intensity pro
rtian profiles p
ng can be see
other in experim
action and po

note that the l
ion in terms of
wing as wedge 

5. Intensity profile
ations (right). The
e rotation axis. 

er intensity is o
52°: it is 2.2 ti
sample (as the

an approximati
ence). Wedgin
ates the radiati
If we define Δγ

wer reaches 25
ays coming fro
is in average h
bottom base, w

characterize 
measurements o
escribed previo
ofiles. The inte
previously repo
en between sim
mental profiles
lishing defect
light emitted th
f total power, b
angle is increa

s measured for eac
ese profile section

obtained for th
imes higher tha
e non-wedged L
ion” was used
g the LC not 
ion in angle sp
γFWHM as the an

5% for large an
om the concent
higher than the
which explains

the brightness
on the various
ously (see Fig.
ensity is strong
orted (Fig. 3), 
mulated and e
s for allegedly
ts having been
hrough the top 
but also shows 
ased. 

 

ch wedge angle (le
ns correspond to o

he wedged sam
an the average
LC shows ripp
d by taking th
only enhances
ace, which can
ngular width a

ngles, twice as
trator volume 

e TIR limit ang
s the relative in

s of the wedg
s wedged con
. 3 left) are sh
gly angle-depe
especially for 

experimental v
y the same reas
n ignored in 
 surface is bot
angle concent

eft) and calculated
one angular coord

mple with β = 
e intensity mea
ples around γ =
he average val
s intensity in p
n be a useful fe
at half maximu

s much as the r
will hit the to

gle θlim = Arcsi
ncrease of downP

ge LCs, we p
ncentrators. Th
hown in Fig. 5
endent and far 

large wedge a
values: the pat
sons already m

the simulatio
th predominant
tration, i.e. the 

d using ray tracing
dinate γ about the

60° and an ob
asured around 

= 0° as discusse
lue of intensit
particular direc
eature for some

um, it shrinks fr

reference. 
p surface 
in (1/n) = 

n  at large 

performed 
he results 
5 together 

from the 
angles. A 
tterns are 

mentioned 
on). It is 
t over the 
emission 

g 
e 

bservation 
γ = 0° in 

ed earlier, 
ty around 
ctions but 
e lighting 

from 100° 

                                                                                            Vol. 27, No. 8 | 15 Apr 2019 | OPTICS EXPRESS 11838 



for the reference down to 52° for the LC with β = 60°. Table 1 summarizes the gain in terms 
of total extracted power and maximum intensity with respect to the reference unwedged 
concentrator. 

Table 1. Summary of photometric properties of wedged concentrators compared to the 

reference polished symmetric slab. maxγ  is the value of γ  corresponding to the 

maximum intensity. 

 β = 0° β = 0°, 
frosted 

edge facet 

β = 
20° 

β = 
40° 

β = 
60° 

Gain in extracted power: Ptot(β)/Ptot(β = 0): from all 
faces (measured) Pup(β)/Pup(β = 0): from top face only 
(simulated) 

1 1.5 1.5 
1.37 

1.75 
1.86 

1.96 
1.78 

Maximum gain in Intensity: 
g (γmax) = I (γmax) / Iref (γ~0°) experimentally measured 
g (γmax) simulated 

1 1.5 1.2 
1.1 

1.64 
1.8 

2.2 
2.2 

Brightness Concentration factor at γmax (see text 
for definition) computed from exp. data 

5.3 8 6.5 7.1 5.9 

In Table 1 is also reported the ‘Brightness concentration factor’, calculated as follows. 
The standard ‘concentration factor’ C defined as a ratio of irradiances at the output and input 
area is not an adequate metric when radiation is directional and detected after free-space 
propagation. It should be replaced by a brightness (or radiance) ratio of output and input 
radiation fields, or CB = Bout/Bin. In general, this brightness enhancement factor will depend 
on the direction of observation, except of course in the case of an angle-independent 
brightness, that is for a Lambertian source. When both input and output fields are Lambertian, 
the brightness concentration factor simply equals the classical concentration factor C. It is the 
case for our reference sample, so that Bout, ref = Cref x Bin, ref. The incident brightness for a 
typical Lambertian source such as LEDs (we write LEDP  the power of this source) is Bin, ref = 

BLED = PLED / (π.S) where S is the illuminated surface of the concentrator. For wedged 
concentrators, BC  will be a more complex function of observation angle: 

 ( ) ( ) ( ) [ ]
cos

cos
out

B ref
LED

B
C C g

B

γ βγ γ
β γ

= = × ×
−

 (3) 

where Cref is the usual concentration factor for the unaltered symmetric slab, g(γ) the gain in 
intensity at observation angle γ compared to the reference rectangular slab at normal 
incidence, and the last term a tilting term that takes into account the modification of apparent 
area. Table 1 reveals that highest brightness is obtained for β = 40° as a compromise between 
gain in intensity and increase of apparent area. It however remains slightly lower than the 
brightness achievable with the frosted device of maximal RMS roughness. Hence, depending 
on the parameter that one wishes to optimize (total extracted power, intensity in a specific 
direction or brightness), the optimal design will not be the same. 

It has also to be noticed that a simple wedge in one direction obviously sharpens the beam 
in only one direction while keeping the emission pattern in the perpendicular direction 
coarsely Lambertian. It is illustrated by the simulation of the 3D emission pattern for the 60°-
wedged LC reported in Fig. 6. 

It is interesting to note that the apparently complex 3D intensity profile is indeed 
straightforward to interpret when looking back at the angular 3D representation. As soon as 
the wedge angle is higher than the critical angle, escape cones overlap. Rays that belong to 
the intersection of two different cones will statistically preferentially exit through the largest 
surface. Here, the small tilted edge facet and the large top surface respective escape cones 
have a strong overlap (for α > −3° using notations of Fig. 6 as β = 60° > θcrit = 33°) whose 
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