
HAL Id: hal-02358647
https://hal.science/hal-02358647

Submitted on 12 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-local extraction of ring structures in images of
biological hard tissues: application to the Bayesian
interpretation of fish otoliths for age and growth

estimation
Ronan Fablet

To cite this version:
Ronan Fablet. Semi-local extraction of ring structures in images of biological hard tissues: application
to the Bayesian interpretation of fish otoliths for age and growth estimation. Canadian Journal of
Fisheries and Aquatic Sciences, 2006, 63 (7), pp.1414 - 1428. �hal-02358647�

https://hal.science/hal-02358647
https://hal.archives-ouvertes.fr


Semi-local extraction of ring

structures in images of biological

hard tissues: application to the

Bayesian interpretation of fish otoliths

for age and growth estimation.

Ronan Fablet

Abstract: This paper deals with the analysis of images of biological tissue that involves ring

structures, such as tree trunks, bivalve seashells or fish otoliths, with a view to automating the

acquisition of age and growth data. A bottom-up template-based scheme extracts meaningful

ridge and valley curve data using growth-adapted time-frequency filtering. Age and growth

estimation is then stated as the Bayesian selection of a subset of ring curves, combining a

measure of curve significativity and an a priori statistical growth model. Experiments on real

samples demonstrate the efficiency of the proposed extraction stage. Our Bayesian framework

is shown to significantly outperform previous methods for the interpretation of a dataset of

200 plaice otoliths and compares favorably to inter-expert agreement rates (88% of agreement

to expert interpretations).
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Résumé : Cet article traite de l’analyse des images de tissus biologiques à des fins

d’automatisation de l’acquisition des données d’âge et de croissance. Nous développons

une approche générale pour l’extraction et l’interprétation des structures géométriques

concentriques dans les images de tissus biologiques. La première étape permet d’identifier

des courbes signficatives correspondant aux crêtes et aux vallées dans l’image. Elle intègre un

filtrage adapté, fonction d’un a priori sur la croissance. Dans un second temps, l’estimation

de l’âge et de la croissance est formulée comme un problème de sélection bayésienne

d’un sous-ensemble pertinent de courbes parmi l’ensemble des courbes extraites. Des

résultats obtenus sur des images de différents tissus démontrent l’efficacité de notre méthode

d’extraction des structures d’intérêt. De plus, l’évaluation du schéma bayésien d’interprétation

pour un ensemble de 200 otolithes de plie valide notre approche en termes d’amélioration des

résultats antérieurs obtenus par des approches automatiques et en termes de comparaison aux

taux d’agrément inter-experts.

Mots clés : Tissus durs, otolithe, extraction automatique des marques de croissance, estimation automa-

tique de l’âge et de la croissance, approche bayésienne..



Problem statement and related work

Age and growth data provide key information for a broad range of scientific issues: for instance, 

the computation of daily temperature series for paleoclimatology from the analysis of daily increments 

on the shell of sea scallops (Chauvaud 2004), the determination of age-length keys from the inter-

pretation of fish otoliths for marine stock assessments (Panfili et al. 2003), the analysis of fish otolith 

growth patterns for marine ecology (Hare and Cowen 1997; Panfili et al. 2003) or tree-ring dating for 

archeology (Baillie 1982). All of these applications initially rely on the interpretation of growth rings

observed on biological materials such as tree trunks, corals, shells of seashells, fish otoliths, fish scales,

which will be subsequently referred as biological hard tissues (Fig. 1). The presence of concentric ring

structures is due to the variations in chemistry during the accretionary formation of these structures.

The deposit of the rings is often associated with a biological periodicity (either seasonal or daily, de-

pending on the species and the tissue). Counting growth rings then leads to an estimation of the age of

the analyzed tissue, whereas growth increments can be estimated from the distance between successive

rings (Fig. 2), however, not all the observed ring structures are relevant for aging (Campana 2001).

The previously mentioned biological applications require large collections of age and growth data

for a consistent analysis. The acquisition of this data is generally performed by expert readers (typi-

cally, for marine stock assessment issues, several thousands of fish otoliths per year). The development

 of digital imaging systems and computer-aided tools brings new solutions to this field, (Small and 

Hirschhorn 1987; Guay 1997; Morison et al. 1998). Our work focuses on the automation of age and 

growth estimation from the analysis of ring structures within the images of biological hard tissues. As 

detailed below, the key issues lie in the use of growth information to design a ring extraction frame-

work that takes into account growth non-linearity (Fig. 2.b), and to discriminate actual growth rings

 from irrelevant ones (Campana 2001). Our approach is tested on fish otoliths, which provide repre-

sentative samples in terms of complexity of the interpretation task as well as a mean for a quantitative 

comparison to previous work (Welleman and Storbeck 1995; Troadec et al. 2000; Guillaud et al. 2002). 



 There are two broad categories of approaches for the analysis of growth ring structures within the images 

of biological hard tissues. One the one hand, 1D (one-dimensional) methods restrict their anal-

5 ysis to an intensity profile which is extracted along a given reading axis. Different schemes have been 

proposed, using filtering techniques (Welleman and Storbeck 1995; Guay 1997) or time-frequency 

analysis (Lagardère and Troadec 1997; Fablet et al. 2003). The main drawback lies in the absence of 2D 

(two-dimensional) perception of ring continuity, which makes the method sensitive to local arti-facts 

resulting in the low aging performances reported in Guillaud etal. (2002). However, despite the

6 large research effort devoted to the detection of ridges and valleys in generic images (Cohen 1991; 

McInerney and Terzopoulos 1996; Lindeberg 1998), more efficient algorithms are needed to achieve 2D 

ring segmentation in the images of biological hard tissues. Two main features need to be further 

investigated: the geometric properties of concentricity of the growth rings and the irregularity of im-age 

features due to the underlying non-linear growth pattern. Several solutions have been developed to

tackle these issues: deformable templates deduced from the external shape of the hard tissues (Troadec 

et al. 2000), a graph framework (Rodin et al. 1996), locally deformable spline-based models (Benzinou et 

al. 1997) and multi-agent systems (Guillaud et al. 2002). The quantitative evaluation carried out for

fish age estimation in Guillaud etal. (2002) point out that important improvements were obtained com-

pared to 1D approaches, however, important difficulties still remain. Whereas different 2D approaches

search for closed 2D rings, growth rings are often only partially seen (Fig. 3). In addition, while these 1D 

and 2D techniques perform age and growth estimation by selecting all the detected rings, for val-idated 

ageing protocols, the interpretation step is a complex task (Campana 2001). Two main issues arise: the 

discrimination of actual growth rings from local artifacts, false rings or checks (Fig. 3), and the high 

biological variability, in terms of ring appearance and shape, as well as in growth patterns (Fig.

4). The presence of false rings is often due to biological or environmental events (for instance, sexual 

maturity, environmental stress, etc.). Both ring strength (in terms of image contrast), ring length and 

inter-ring distances are implicitly exploited by expert readers. However, using current ageing protocols, 



 it remains difficult to define the objective and quantitative criteria of ring appearance and growth 

incre-ment that permit actual growth rings to be distinguished from false rings or checks. These 

important

issues demonstrate that only expert readers with a broad experience for given species and stocks can

precisely and accurately estimate ages, since they have observed several tens of thousands of otoliths

before becoming consistent in their interpretation. The difficulty in defining well-formalized criteria

for the interpretation of growth rings has been emphasized by the results of a European workshop

on plaice otolith reading held in 2003 (Easy 2003): inter-reader agreement rates range from 40% to

95% depending on the readers’ experience for fish samples from age groups one to six, with between

85% and 95% agreement among expert readers. These results illustrate the complexity of the otolith

interpretation even for “easy-to-read” samples.

Discriminating realistic growth patterns from irrelevant ones is a crucial step in designing an au-

tomated approach for fish age and growth estimation and was recently investigated using statistical

learning (Robertson and Morison 1998; Fablet and Josse 2005). In both studies, age estimation is

stated as a classification issue which resorts to mapping a vector of features of the content of otolith

images (e.g., the vector formed by the Fourier coefficients of a 1D intensity signal along a given axis in

Robertson and Morrison (1998)) to an age class. Although results appear promising results have been

reported, these schemes only perform age estimation and cannot be extended to growth estimation. In

particular, they cannot deliver an iconic interpretation of the image depicting the structures selected as

the growth rings (for instance, by drawing markers on the image structures selected as growth rings

(Fig. 3)).

To bring new solutions to these issues, a novel two-stage approach is developed in this paper. The

first stage of this approach aims at extracting 2D growth rings within images of biological hard tissues.

This segmentation issue is stated as the detection of concentric ridge and valley structures. Because 

the assumption that 2D growth rings are closed, as previously considered (Rodin et al. 1996; Troadec

et al. 2000; Guillaud et al. 2002), is often violated, a bottom-up strategy is adopted, which initially 



 

extracts elementary ridge and valley segments. To ensure robust detection, a template-based scheme, 

based on the deformation of local templates issued from the external shape of the hard tissue, is cou-

 pled with a growth-adapted filtering. Elementary ring segments are then grouped to form meaningful

ring curves, exploiting ring concentricity and the alternation of opaque and translucent rings. The sec-

ond stage of the proposed technique tackles the actual interpretation of growth ring structures. Given

candidate ring curves, age and growth estimation resorts to the selection of a relevant curve subset.

The proposed Bayesian setting formally models the protocols followed by expert readers. Using the

 MAP (Maximum A Posteriori) criterion (Geman and Geman 1984), the proposed likelihood function

combines both of the ignificativity measures evaluated for each extracted ring curve, a priori growth

information to discriminate realistic growth patterns from irrelevant ones and hard constraints on the

spatial arrangement of the selected ring curves. In particular, an a priori growth model is defined from

examples of actual growth patterns. To our knowledge, this work is the first attempt to explicitly rely on

 experts’ protocols and a priori growth information to constrain the automated interpretation of growth

rings within images of biological hard tissues. The different steps of our approach for 2D ring segmen-

tation and image interpretation are described and illustrated for a four year old plaice otolith (Fig. 5).

The set of detected elementary ridge segments (Fig. 5b), the ridge curves resulting from the grouping

of the elementary segments (Fig. 5c) and the selected subset of ridge curves (Fig. 5d).The parameter

 setting used to process this example is detailed below.

Semi-local extraction of elementary ring segments

Local template-based framework

As a result of the accretionary formation of biological hard tissues, the alternated translucent and 

opaque rings are concentric with respect to the growth center. In addition, ring shapes can be roughly

 be approximated (at least locally) as scaled versions of a given template. This key feature was exploited 

in Benzinou etal. (1997), where the detection of closed 2D rings is reliant on the scaling of the external 



shape of the hard tissue relative to the growth center. While promising, this technique results in poor 

detection of the rings close to the edge. This is partly due to the sensitivity of this template-based 

approach to the accuracy of locating the growth center, as well as to ring discontinuities. On the other

hand, purely local techniques for ridge and valley detection (Haralick 1983; Chalmond et al. 1995;

Lindeberg 1998) are outperformed by parametric ones if accurate parametric models of ridge and

valley shapes within the processed images are available.

Hence, the use of the external shape as the parametric model of ridge and valley structures is 

further investigated, and the global template approach is extended to a semi-local framework. Within

 predetermined angular sectors, scaled versions of a semi-local template model are fitted to local ridge

or valley image segments (Fig. 6). The semi-local template model is still derived from the external

shape. This semi-local parametric framework is a good compromise between the ability to adapt to

local ridge and valley shape, and the resistance to noise within images. In particular, as shown below,

it is more resistant to errors in identifying growth centers than the template-based approach described

in Troadec etal. (2000), which permits the use of algorithms aimed at the automatic detection of the

growth center (Guillaud et al. 2002; Cao and Fablet 2004).

More precisely, the extraction of local elementary ridge or valley segments proceeds as follows.

Given an image and the position (xO, yO) of the growth center O, its external shape is initially ex-

tracted. The number of sampling points of the external shape is denoted by NC and their polar co-

ordinates by {(ρkC , θkC = 2kπ/NC)}k∈[1,NC ], in the framework of the two principal axes centered in

the growth center. The semi-local detection of ridge and valley structures is performed within NSL

overlapping angular sectors, referenced by their angular coordinate {θnSL = 2nπ/NSL}n∈[1,NSL] and

their angular width 2 ∗ ∆θSL. To ensure overlapping of the angular sectors, ∆θSL is set such that

∆θSL > π/NSL. Given an angular sector θnSL ± ∆θSL, the associated semi-local template model is

defined by its polar coordinates {(ρkC , θkC = 2kπ/NC)}k∈Kn .

Our goal is to determine the scaling factors α ∈ [0, 1] such that the scaled template, defined by



the polar coordinates {(αρkC , θkC)}k∈Kn with Kn = {[1, NC ] / |θkC − θnSL| < ∆θSL[2π]}, fit the local

ridge and valley segments within the angular sector θnSL ± ∆θSL. Different features computed from

the derivatives of the intensity function along and normal to the local template (Lindeberg 1998) can

be used as the measure of the strength of local ridges or valleys. However, a simpler and more robust

feature is preferred: the median value of the intensity along the scaled local template. It comes to define

the following intensity function snSL(α) for given angular sector (θnSL,∆θSL) and scaling factor α:

(1) snSL(α) = med({I(x0 + αρkC cos θkC , x0 + αρkC sin θkC)}{k∈Kn)

where med() is the median estimator and I the image intensity function. The extraction of the ele-

mentary ridge and valley segments then resorts to the detection of the extrema of the intensity function

snSL. Thus, one aims at computing the scaling factors α verifying:

(2)
dsnSL(α)

dα
= 0

Ridges and valleys detection

Solving for Eq2 requires computing the derivatives dsSnL(α)/dα at relevant scales (Lindeberg 

1998). In addition, specific time-frequency features of the images of biological hard tissues have to 

be considered. First, smooth variations of material density (for instance, otolith are usually thicker

 close to the edge) might result in a continuous evolution of the mean intensity values from the growth 

center to the edge. Second, the width of translucent and opaque rings is directly related to the under-

lying growth pattern. Growth patterns are mainly non-linear. Images of biological hard tissues then 

involve a frequency modulation applied to the ring structures. The actual growth pattern is obviously 

unknown, but a mean a priori growth model can be used for demodulation purposes. This idea was

 first applied to 1D intensity signals using an exponential model (Lagardère and Troadec 1997). Here, a 



mean growth model is derived from the growth patterns associated to images interpreted by an expert.

Mathematically, the mean growth model is defined by the function L = Φ(t), where L is the distance

to the otolith center, and t the time variable in years.

The framework used to solve for Eq2 then initially demodulates snSL w.r.t. the growth model Φ.

The resulting demodulated signal snDM (t) is given by:

(3) snDM (t) = snSL

(
ρnC
ρn
∗
C

Φ(t)

)
,

where n∗ refers to the point of the external shape on the main reading axis (for instance, θn
∗
C = π

for plaice otoliths). Let us point out that Φ(t) is normalized w.r.t. ρn
∗
C since the mean growth model is

learned along the main reading axis.

To remove the trend snTDM from the intensity signal snDM , snTDM is estimated using a convolution

to a Gaussian kernel gσTDM with a large variance σ2
T : snTDM = gσT ∗ snDM . Then, the detection of

the positions of the local ridges and valleys involves the computation of the derivative dtsnDM of the

intensity function snDM − snTDM . dtsnDM is estimated using a Gaussian kernel gσD with a low variance

σ2
D:

(4) dts
n
DM =

d [gσD ∗ (snDM − snTDM )]

dt
.

To actually determine the extrema of snDM − snTDM , the zero crossings of its first derivative

dts
n
DM are detected for time values uniformly sampled within [0, tmax], with tmax computed such

that Φ(tmax) = ρn
∗
C . The scaling factors solving for Eq2 are then computed from the inverse transform

Φ−1. Typically, the sampling rate is set to 0.01, σD to 0.1 and σTDM to 1.5 (all these values are given

in years since they are used in the demodulated domain).

The detection of the elementary ridge and valley segments arose from the adapted filtering of

the semi-local template-based function snSL is shown (Fig. 7). This example stresses that the growth-



adapted demodulation eases the detection of ridge and valley structures close to edge and avoids over-

detections close to the center. Applied to the whole set of angular sectors {θnSL = 2nπ/NSL}n∈[1,NSL]

, the growth-adapted framework finally results in the detection of elementary ridge and valley segments

(Fig. 5b).

Extraction of 2D ridge and valley curves

Given the set of extracted elementary ridge and valley segments (as depicted in Fig. 5), the aim

is to merge these elementary segments to form meaningful curves. Numerous perceptual grouping

algorithms have been developed to form segments from candidate points or elementary segments (Guy

and Medioni 1996; Jacobs 1996; Cao 2003). Mainly, these techniques rely on general geometric criteria

such as good continuations (Cao 2003) or curve smoothness (Guy and Medioni 1996; Jacobs 1996).

When dealing with the analysis of growth rings within hard tissue images, three geometric features are

of key interest: the growth rings are concentric, there is an alternation of opaque and translucent rings,

opaque and translucent rings never cross each other.

The proposed grouping procedure exploits these features. More precisely, it proceeds as follows for

elementary ridge segments (and, conversely for valley ring structures). For a given pair of elementary

ridge segments associated to two neighboring angular sectors (θnSL,∆θSL) and (θn+1
SL ,∆θSL), the

decision rule used to merge this pair of segments evaluates whether or not elementary valley segments

within the neighboring angular sectors {(θkSL,∆θSL)}k∈{n−1,...,n+2} lie between the pair of tested

segment in terms of distance to the growth center. This decision rule is illustrated (Fig. 8) for two

cases: one where the merging is validated and the other one where it is rejected. A ridge curve is finally

formed by the set of elementary ridge segments which can be linked by a path going through merged

segments.

An example of the extraction of ridge curves from a set of elementary segments is displayed (Fig.

5c). It should be pointed out that the length of resulting curves depend both on the actual length of the 



rings present in the image, and on noise or local occlusions in the image. Depending on these features,

the extracted ring curves can be closed curves as well as only partial ring curves.

Image interpretation for age and growth estimation

From a set of extracted 2D ridge and valley curves, the actual interpretation of the image content

in terms of age and growth estimation depends on the selection of a curve subset corresponding to

the actual growth rings. Several curve subsets might correspond to the correct interpretation, since an

actual growth ring might be covered by several partial curves, and some detected curves might not

correspond to actual rings, but to false rings, or due to noise patterns. The proposed framework relies

on the protocols followed by expert readers. Mainly, it involves four different aspects: the focus on

an a priori image region around a predefined axis, along which the considered images are known to

convey more reliable and more relevant information; the detection of candidate ring-like structures; the

evaluation of the significativity of any possible rings with respect to length and contrast information;

the analysis of the spatial arrangement of the selected ring structures, which needs both to correspond

to an alternation of translucent and opaque rings, and to conform to some a priori growth features.

To satisfy these protocols, a mathematically-sound Bayesian framework is developed. The asso-

 ciated data-driven term evaluates the significativity of the extracted candidate ring segments, whereas

the a priori model integrates both some knowledge on growth variability as well as hard constraints

set on the spatial arrangement of the selected rings. As pointed out previously, the discrepancies in

disagreement rates in the interpretations of hard tissues for validated ageing protocols prove that it is

crucial to benefit from the experience of expert readers (Easy 2003; Panfili et al. 2003). The key point

is to define a relevant representation of the a priori growth information, which is addressed by deriving

our a priori growth model from examples of actual growth patterns estimated by experts.

Our Bayesian setting states the selection of a relevant curve subset as a labeling issue, where each

extracted ridge or valley curve is assigned a binary label, “selected” or “rejected”. Let C denote the set



of extracted ridge and valley curves as described in the previous section. Let L be the binary label set

{“selected”, “rejected”}, eC the set of labels {ec}c∈C for a given labeling configuration, oC = {oc}c∈C

the features computed for all ring curves c ∈ C to evaluate their significativity. The selection of the

relevant curve subset then comes to retrieve the best labeling configuration êC maximizing the MAP

criterion:

(5) êC = arg max
eC∈L|C|

P (eC|oC) = arg max
eC∈L|C|

P (oC|eC)P (eC)

where P (oC |eC ) is the data-driven term described in the subsequent and P (eC) integrates an a priori  

knowledge on growth variability and on the spatial arrangement of the relevant labeling configurations.

Given geC the growth pattern associated to the label configuration eC (i.e., the growth pattern computed

for the selected ring curves S(eC){c∗ ∈ C/ec∗ = selected}), and ΘS(eC) the set of angular sectors

covered by the selected ring curves S(eC), the a priori model P (eC) is formally defined by:

(6) P (eC) = P (geC ,ΘS(eC)) = P (geC |ΘS(eC))P (ΘS(eC))

The likelihood P (geC |ΘS(eC)) measures the relevance of the growth pattern geC w.r.t. a priori growth

 information. Since this model does not depend on direction information, P (geC |ΘS(eC )) simplifies to P 

(geC ). As a complementary stage, the second term P (ΘS(eC )) evaluates whether or not the considered 

labeling configuration conforms to the hard constraints set on the spatial arrangement of the ring curves.

Our Bayesian setting finally comes to solve for:

(7) êC = arg max
eC∈L|C|

P (oC|eC) · P (geC ) · P (ΘS(eC))

Further details regarding the associated likelihood functions are given in the subsequent.



Data-driven term

The data-driven likelihood P (oC|eC) evaluates the significativity of each ring curve given a labeling

configuration eC:

(8) P (oC|eC) =
∏

c∈C
P (oc|ec)

As previously mentioned, experts mainly rely on the perception of contrast and ring continuity. Since

contrast information is already implicitly used to extract ring curves, the likelihood P (oc|ec) is de- fined

from the angular length Lc of the curve c. Using an energy setting, P (oc|ec) is expressed as:

P (oc|ec) ∝ exp[−U1(Lc, ec)]. The energy function U1 favors the selection of ridge and valley curves

with a high length value:

(9)





U1(Lc, ec) = 1− s1(Lc − ν1), if ec = “selected”

U1(Lc, ec) = s1(Lc − ν1), if ec = “rejected”

,

where s1() is a smooth step function rescaled between 0 and 1 and ν the length threshold. This param-

eter value is easy to set since it simply expresses from which length value a ring curve is regarded as

visually significant. Typically, this significativity threshold in terms of angular length is set to π/8 (in

radian).

A priori growth information

The interpretation of growth rings on hard tissues implicitly relies on growth information, although

expert readers do not generally exploit explicit measurements. As highlighted for plaice otolith samples

(Fig. 4), biological growth phenomena usually involve a very high variability. For instance, for this 

dataset, the distance between the first translucent ring and the growth center is between 0.7 mm and 2.7 

mm, while this distance for the second translucent ring is between 2.2 and 5mm. This huge overlapping



between successive year classes prevent the use of a mean growth model to predict the position of

each translucent ring. More complex representations are therefore required. Besides, in our Bayesian

 setting, labeling configurations {eC} can correspond either to actual or to erroneous growth patterns. 

Consequently, rather than determining an accurate representation of the statistical distribution of the

growth patterns for each year class, one is interested in designing a decision function which permits

discrimination between realistic and irrelevant growth patterns.

An exemplar-based strategy is adopted to tackle this pattern recognition issue. It is assumed that a

 set of growth patterns representative of the actual biological variability is available. Let us denote by

{gi}i∈{1,..,n} the set of n examples of growth patterns for the year class k. The a priori growth model

is then defined from the lower and upper envelopes of {gi}i∈{1,..,n} and of their derivatives. The lower

envelope gkmin is given by:

(10) gkmin(t) = min
i∈{1,..,n}

gi(t), for t ≤ k,

and the upper one gkmax is given by:

(11) gkmax(t) = max
i∈{1,..,n}

gi(t), for t ≤ k,

where t is the time variable in years. Similarly, the lower and upper envelopes dgkmin and dgkmax

of the first-order derivative of the growth functions {gi} are computed. The envelope of the first-

order derivatives is considered, since growth increments also provide meaningful cues to characterize

realistic growth patterns. The computation of these envelopes for a set of examples of plaice growth

patterns for the year class k = 4 is depicted (Fig. 9). These min/max features are often implicitly

 used by expert readers to check the reliability of growth increments given their knowledge of growth

variability.

From these envelopes, a probabilistic decision function P (geC ) is designed to evaluate whether 



or not the growth pattern geC associated to a given labeling configuration eC is relevant. More pre-

cisely, the labeling configuration eC is assumed to refer to a realistic growth sample if geC and dgeC

respectively remain within the variability range defined by (gkmin, g
k
max) and (dgkmin, dg

k
max). Fig. 10

provides an illustration of this statement. Formally, P (geC ) is written as:

(12) P (geC is relevant for age class k) = min(P (geC , g
k
min, g

k
max), P (dgeC , dg

k
min, dg

k
max))

where P (geC , g
k
min, g

k
max) is defined by:

(13) P (geC , g
k
min, g

k
max) = min

[
min

0≤t≤k
s2

(
geC (t)− gkmax(t)

)
, min
0≤t≤k

1− s2

(
geC (t)− gkmin(t)

)]

with s2 is the opposite of a smooth step function rescaled between 0 and 1. P (dgeC (t), dg
k
min, dg

k
max)

is defined in the same way. The introduced growth model can be viewed as a binary classifier (realistic

vs. non-realistic) of growth patterns defined by the probabilistic decision function P (geC ).

The evaluation of the likelihood P (geC is relevant for age class k) requires normalizing the growth

pattern geC w.r.t. the reference growth axis exploited to estimate gkmin, dgkmax, dgkmin and gkmax. This

normalization issue comes to define the normalized positions of the extracted ring curves in C along the

reference growth axis. It is iteratively performed as follows. Ring curves in C intersecting the reference

axis initially form the set of curves CNorm with known normalized positions. Iteratively, the curve

c∗ in C \ CNorm the closest to the reference axis in the direction normal to the axis is selected. The

two curves (c1, c2) in CNorm, angularly overlapping c∗ and the closest to c∗, are then retrieved, and

the normalized position of c∗ is lineally interpolated from the normalized positions of c1 and c2. This

normalization procedure does not assume neither an assumption that the reference axis is a straight line

nor that the growth is angularly isotropic. It can then be applied to complex growth situations, given

that the reference growth axis can be automatically extracted for all samples.



Constraints on the spatial arrangement of rings

In addition to a priori growth information, hard constraints on the spatial arrangement of rings are

set to help in the minimization of Eq(7). These constraints are introduced in the proposed Bayesian

setting through the evaluation of the likelihood P (ΘS(eC)). The likelihood is set to zero if any of

the constraints described below are not verified. The three hard constraints are as follows. As men-

tioned previously, expert readers perform the interpretation of growth rings along a main reading axis,

therefore, the analysis is restricted to a predefined angular sector of interest, and selected ring curves

S(eC ) are required to intersect this angular sector. Any relevant interpretation S(eC ) must conform  to 

the studied biological structures, which involve an alternation of translucent and opaque growth

rings, consequently, S(eC) is required to depict an alternation of valley and ridge curves. Examples are

shown to illustrate this second hard constraint (Fig. 11). Finally,successive ring curves within S(eC)

must angularly overlap, which will lead to visually consistent interpretation.

Energy minimization

Given a curve set C, the interpretation comes to solve for Eq7. Since C typically involves about 50

curves, one cannot test over the whole set of 2|C| possible configurations. One might stress that not all

of the 2|C| configurations are relevant ones. However, the number of relevant configurations cannot be

determined analytically from |C|, since it depends on the relative positions of the extracted curves. Its

evaluation would require testing over all possible configurations. In practice, it has been determined

 that the total number of relevant configurations was greater than 1000 for about 50 extracted curves.

Consequently, the minimization issue is carried out in a causal manner by introducing one-by-one

ring curves c ∈ C and retaining only the Nmax best configurations w.r.t. likelihood values P (ec|oc)

(see as detailed in appendix).



Experiments

For all the experiments reported in this Section, the same parameter setting is used. The external shape of 

the hard tissue is represented by NC = 500 points, and smoothed by a Gaussian kernel of variance 0.01. 

The extraction of elementary ring segments is performed for NSL = 75 local axes sampled uniformly. The 

angular sector used for each local template is ∆θSL = π/90. The growth-adapted filtering is performed 

with σT = 1.5 and σD = 0.05 (these values are given w.r.t. time in years

or in days depending on the periodicity of the observed ring structures). Concerning the Bayesian

labeling of the set of extracted ring curves, the analysis is restricted to an angular sector of S =

{θ, |θ − π| ≤ π/8[2π]} around the first principal axis of the otolith. The threshold ν1 is set to π/8, β

to 10.

All images used in the experiments have been acquired with a 1000 x 1000 digital video cam-

 era under a binocular. A polarized light was used to better separate biological hard tissues from the

background. No other preprocessing step was performed.

Extraction of meaningful ring curves

Three examples of the extraction of meaningful ring curves within images of biological hard tissues

are first reported (Fig. 12): a plaice otolith, the shell of a bivalve seashell, and the section of a tree trunk.

All these images share common characteristics in terms of rather concentric ridge and valley structures

associated to a growth-based modulation. As expected, the proposed template-based growth-adapted

scheme extracts meaningful ring curves mainly corresponding to the actual growth rings.

The extraction scheme is also applied to structures depicting ontogenetic changes in the shape of

the rings (Fig. 13). Using a global template approach (Troadec et al. 2000), poor detection results

are reported (Fig.14). On contrast, the proposed local template-based approach is able to successfully 

identify meaningful partial ring curves. It demonstrates first that fitting local scaled versions of the 

external shape provides a mean to adapt to non-radial growth. Second, it also stresses that growth-



adapted detection of ridges and valleys only require a rough knowledge of the scales relevant to solve 

for Eq2. In other words, as used by the proposed demodulation scheme, the distance to the otolith

center is a sufficient cue to approximate the width of the structures to be extracted.

Interpretation examples

To evaluate the performance of the proposed Bayesian interpretation scheme, fish otolith analysis is

emphasized. The design of the a priori growth model requires building a large growth data collection

(typically, several hundreds of samples). Our evaluation set consists of 400 plaice otoliths from the

fourth quarter collected by Ifremer at the fish-market of Boulogne/Mer in 1993 and 2000. Note that age 

determination from plaice otoliths has been validated and confirmed (Campana 2001; Easy 2003). The 

processed otolith collection does not contain known-age material, but has been interpreted and annotated 

by an expert from Ifremer according to the agreed and validated plaice ageing protocol (Easy 2003). All 

the images have been acquired using transmitted light with the same magnification. Half of

these interpretations are used to train the a priori growth model, and the other half are used as a control

for the evaluation of our approach.

Three images of plaice otoliths have been chosen to illustrate the behavior of the different stages

of our approach (Fig. 15): the first two belong to the age group six (seven translucent rings) and the

third one to the age group four (five translucent rings). For these three examples, the age and growth

estimation was performed by an expert reader, whose interpretation is used as the control. Reported

results include both the extracted ridge curves, the selected ridge curve subsets using the Bayesian

framework, and the estimated growth pattern compared to the control.

The first example is a six year old plaice otolith (seven translucent rings). Relevant ridge curves

are extracted, and the selected interpretation is the same as the expert one. This example was chosen

 to illustrate the ability of our approach to extract ridge and valley structures close to the otolith edge

thanks to the growth-adapted filtering used within the semi-local template framework.



A plaice otolith also assigned to the age group six is considered for the second example. It empha-

sizes the need for an approach capable of extracting non-closed curves, such as the second translucent

ring. The proposed approach extracts meaningful ridge and valley curve both for closed and non-closed 

seasonal rings, and retrieve the correct otolith interpretation.

The third example points out the requirement for formulating the otolith interpretation as a selec-

tion/rejection issue of extracted candidate ridge and valley curves. The expert has regarded the second

and third translucent rings as belonging to a single translucent area. Given an accurate extraction of

ridge and valley curves, the use of a statistical growth model within the introduced Bayesian frame-

 work results in discarding configurations which select ridge curves for the two rings of the second

translucent area. Compared to the expert interpretation, the selected subset of ridge curves only differ

in the position of the second translucent area: the expert has taken the middle of this area, whereas the

automated approach has selected a ridge curve associated to the third translucent ring. Therefore, the

age is correctly estimated, and the growth patterns just show a minor difference at between years one

and two, due to the position chosen for the second translucent ring.

Computational time for our approach under Matlab 7 (The Mathworks Inc, Natide, Massachussetts)

for the extraction of 2D ring curves runs about 30 seconds on a 2.4GHz Pentium IV, whereas the

Bayesian labeling needs a few seconds.

Quantitative evaluation

A quantitative evaluation of the proposed approach has been carried out using the second half of 

the collected set of plaice otoliths (i.e., a database of 200 otoliths). The age distribution of this database

is reported (Fig. 16a). Age groups one and two are the most frequent with more than fifty elements, 

whereas age groups five and six just comprise fifteen and twenty samples. This age distribution is 

representative of the estimates from commercial landings, where samples of age group six and less

usually represent more than 90% of the total. Otoliths older than six can also be found, however, the 



 number of samples is not sufficient to train a relevant growth model. Consequently, they were not 

considered during our evaluation.

The interpretations provided by the expert are used as the control to compute the class-by-class and 

overall age estimation errors (results are given in Fig. 16). The agreement rate is comprised of between

84% for age group five and 94% for age group two. The overall agreement rate of 89% shows that

the proposed approach outperforms previous work, since the maximum overall agreement rate for the

different 2D methods evaluated in Guillaud etal. (2002) was below 80% for a similar test set. These

results stress the need for the Bayesian interpretation stage combined to the extraction of candidate

ring curves. For the whole set of 200 otoliths, the estimation error is never greater than one.

The mean values and the associated squared-root variance for the distances between the ring po-

sitions determined by the automatic scheme and those given by the expert, as a function of the ring

number, are reported (Table 1). The analysis is carried out only with the samples for which the two age

estimates are equal. The overall accuracy is satisfactory, with mean distance values and squared-root

variances below 0.15mm. The discrepancies are more important for the first two rings, in fact, the first

rings often involve a wide area, presenting several extrema. The expert usually selects the middle of this

area to set the ring position, whereas the automatic ring segmentation chooses one of these extrema,

nevertheless, this evaluation shows that the two interpretations almost always agree both in terms of

age estimates and in terms of estimated growth patterns.

Sensitivity to errors in pointing the growth center

Concerning the robustness of the extraction of ring curves to errors in locating the actual growth

center, the results of the extraction of ridge curves are reported for two different positions of the nu-

cleus: the actual position of the growth center (Fig.17a) and a position given by the translation of

0.4mm to the left and 0.25 upward of the actual growth center (Fig. 17b). Very few differences are

observed in the accuracy of the detection of meaningful ring curves.



To carry out a quantitative evaluation of the robustness to errors in locating the growth center, the

effect of using a biased position of the growth center on age estimations has been investigated for the

set of 200 plaice otoliths. Fewer than 5% of the images are interpreted differently than with the actual

position of the growth center (given the translated position of the growth center). These results stress

the robustness of the proposed scheme to errors in locating otolith nucleus, given that the automated

techniques for nucleus detection (Guillaud et al. 2002; Cao and Fablet 2004) were shown to perform

with a squared-root variance below 0.15mm.

Subjectivity in age reading

Age estimation errors mainly occur with otoliths, for which the interpretation is difficult even for 

experts. Two representative examples are reported (Fig. 18). The first one involves an otolith aged as

two by the expert, whereas the age estimated by the automatic approach is three. These two estimations

differ in the interpretation of the area close to the edge: the expert considers only one very large third

ring, whereas the automatic approach detects and selects a third ridge curve and a fourth one. Both

interpretations are realistic in terms of growth patterns, but the expert has considered that the last ring

was not sufficiently contrasted to be selected. The second case is an otolith aged as five by the expert,

and six by the Bayesian approach. These two interpretations differ in the selection of an additional

translucent ring before the first translucent ring selected by the expert. Whereas this potential translu-

cent ring is slightly less contrasted compared to other translucent rings, its selection results in a more

likely growth pattern, hence, it remains difficult to favor one or the other of these two interpretations.

These two examples of disagreement in otolith interpretations point out the difficulty in balancing

between the likelihood of the growth pattern, and the perceptibility of translucent and opaque rings. 

Expert interpretation remains subjective for complex cases. For instance, for routine activities, inter-

expert or intra-expert agreement rates in age reading greater than 90% are considered as satisfactory. In 

addition, inter-expert agreement rates range between 85% and 95% (Easy 2003), which demonstrates 



 the relevance of the Bayesian approach for the automated interpretation of growth ring structures. It

also demonstrates that this scheme can be used for routine ageing, either as an alternative to expert

readings or as a low-cost double reading for verification purposes.

Discussion and future work

In this paper a new technique has been presented for the segmentation of 2D ridge and valley curves 

applied to the analysis of growth ring structures within images of biological hard tissues. It relies

on a semi-local template-based scheme using a priori information on ring structures to detect ridges

and valleys from an adapted filtering. The Bayesian selection of the extracted ridge and valley curves

is proposed to perform the actual interpretation of the growth structures. The considered Bayesian

modeling combines a measure of curve significativity and a statistical model of individual growth

patterns of the considered species.

Good performances have been reported for the extraction of meaningful ring curves within images of 

biological hard tissues. Giving the emphasis on the interpretation of fish otolith images, the quantita-tive 

evaluation carried out for plaice samples stress that the proposed Bayesian framework significantly 

outperform previous work. The agreement rate w.r.t. expert interpretations can be favorably compared

to inter-expert agreement rates, which demonstrates the feasibility of using this Bayesian scheme for

routine analysis. Different issues then arise. First of all, a fully automated scheme requires combining the 

technique proposed in this paper to the automation of the acquisition of otolith images and of the de-

tection of the otolith nucleus as proposed in Cao and Fablet (2004). For routine aging, the cost-benefits 

analysis of such automated systems need to balance the accuracy of the system compared to readers 

vs. the gain in terms of processing time. As stressed by our results, for an “easy-to-read” species, such

as plaice, the potential gain is huge, since the accuracy levels of the automated system should be in the 

range of the inter-expert agreement rates, and greater than those observed for in-training readers. Even

if the proposed automated system consider only the youngest age groups (up to 6), they represent more 



than 90% of the aged data for the considered species and stock. Hence, the use of the proposed scheme 

for the most important age groups should highly reduced the workload of expert readers. Since the

proposed Bayesian scheme exploits an a priori growth model, its robustness in spite of variations in

growth patterns should be investigated. The considered min/max model is potentially more stable over

time than a mean model. This aspect is also highly species-dependent since not all species are known

to show high dynamics in terms of growth patterns. In any case, the growth model could be trained on

a yearly basis on about one or two hundred samples to reduce the number of samples to be interpreted

by the expert (by a factor of two or more).

Apart from routine aging, the proposed approach can be used in a number of different ways to assist

the experts in the acquisition of age and growth data. As an illustration, one could use it as a low cost

solution for a second reading of the samples to detect unrealistic interpretation or to evaluate confidence

measures of the age estimation (Fablet 2005). Such measures are of great interest for assessment models

(Reeves 2003). Another potential application consists of helping in the acquisition of the interpretation:

given the age estimate provided by the expert, the Bayesian system could detect the most likely ring

positions. These examples stress that the proposed system is not strictly limited to the automation of

age and growth estimation, but it can bring a wide range of new computer-assisted tools for aging

issues in the context of quality assurance and quality control (Morison et al. 1998).

In future work, the application of the proposed scheme to more complex structures and longer-lived 

species will be investigated. Our approach involves two main steps: the extraction of ring structures 

and the Bayesian interpretation step. The latter is generic, given that a subset of candidate ring curves is 

initially extracted. Therefore, it provides a strong basis for an application to more complex situations. 

Potential improvements mainly concern the statistical growth model. The use of statistical learning

 techniques (Fablet and Josse 2005) could be investigated. Besides, for longer-lived species or micro-

structures analysis, model training needs to be adapted to deal with a large number of age classes. 

On the other hand, the extraction step is a challenging task for highly complex structures. The two 



 

 examples reported for a pollock and a cod otolith stress the ability of our approach to cope with mid-

level complexity structures. Improvements could enable the analysis of highly complex samples (e.g.,

 hake or tunus otoliths): for instance, from the estimation of the local direction of the growth rings in

the images. As well, whereas the analysis of annual growth rings usually relies on the analysis of the

hard tissue in a single focal plane, the interpretation of daily increments often requires observing the

ring structures in several focal planes. To this end, one might rely on the analysis of the sequence of

images acquired in successive focal planes. An additional fusion scheme will then be needed either

 to stack this sequence of images into a single image using the magnitude of the image gradient or to

combine the results of the extraction step carried out within each image of the sequence. In both cases,

the semi-local template-based approach presented in this paper would be a fundamental block.
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The algorithm ussed to solve for the minimization issue (7) proceeds proceeds as follows:

• Step 1:

1. k = 0

2. Sort curves within C according to their normalized distance to the nucleus: C = {c1, .., c|C|}

3. Initialize the set of current label configurations E 0 to the empty set

• Step 2:

1. k = k + 1

2. Define Ck = {c1, .., ck}

3. For any eCk−1 within the configuration set Ek−1, add the two new labeling configurations

{eCk−1 , ek = ”rejected”} and {eCk−1 , ek = ”selected”} to the set of current configurations

Ek

4. Compute the likelihood values P (oCk |eCk)·P (geCk )·P (ΘS(eCk)) for all the configurations

eCk ∈ Ek

5. Sort these likelihood values

6. Keep only the Nmax best configurations within Ek

• Step 3: repeat step 2 until k = |C|



Table 1. Accuracy of the estimation of the otolith growth pattern for the processed 200 plaice (Pleuronectes 

Platessa) otoliths from age classes 1 to 6: the mean values and the associated squared-root variances, with 

respect to the ring number, of the distances between the ring positions determined by the Bayesian scheme and 

those provided by expert interpretations, when the two age estimates agree, are evaluated.

1st ring 2nd ring 3rd ring 4th ring 5th ring 6th ring 7th ring

Mean value (mm) 0.10 0.09 0.07 0.06 0.07 0.06 0.05

Squared-root variance (mm) 0.15 0.11 0.06 0.05 0.05 0.03 0.06



List of Figures

Examples of images of biological hard tissues involving periodical ring structures ex-

ploited for age and growth analysis. (a) Image of the shell of a bivalve (spisule). Bar

= 0.5 cm; (b) image of a plaice otolith. Bar = 1 mm; (c) image of the section of a tree

trunk. Bar = 10 cm. . 

Illustration of plaice otolith interpretation for a 4 year old individual: (a) Image of a

plaice (Pleuronectes Platessa) otolith acquired under a binocular with transmitted light.

The interpretation of the winter translucent rings is displayed by the markers set on the

radial drawn on the main reading axis. Bar = 1 mm; (b) Associated growth pattern

(distance from the otolith center to the last ring as a function of the age).

Difficulties in otolith ring interpretation: this otolith presents false rings between the

first and second rings, and between the second and the third ones. Besides, due to the

non-linearity of the associated growth pattern, the last rings tend to be closer and hard

to distinguish. The positions of validated rings is depicted by markers set on the radial 

drawn from the otolith center to the edge along the main reading axis. Bar = 1 mm. 

Illustration of biological growth variability for a set of plaice (Pleuronectes Platessa)

otoliths. 

Illustration of our approach dedicated to the analysis of growth rings within images of 

biological hard tissues: (a) image of the observed hard tissue (here, a plaice (Pleu-

ronectes Platessa) otolith), (b) extracted elementary “ridge” ring segments, (c) ex-

tracted “ridge” ring curves from the merging of elementary ring segments, (d) subset

of the selected ridge ring curves using the developed Bayesian framework. Bar = 1 mm. 



Local template-based scheme for the detection of elementary ring segments: (a) extrac-

tion of the external shape using polar coordinates in the framework of the two principal

axis of the hard tissue and centered in the growth centerO, (b) scaling of the local tem-

plate for a given angular sector θnSL± ∆θSL. 

Detection of elementary ridge segments: (a) the processed image with the extracted

elementary ridge segments (thick line) within the angular sector θnSL = π (Bar = 1

mm); (b) the intensity function snSL, c) the demodulated version (red dashed line) using

the mean growth law, the estimated tendency (blue dashed-dotted line), the filtered

signal (magenta solid line) and the estimated extrema positions (◦ symbols)

Decision rule for merging a pair of neighboring elementary ridge segments: (a) vali-

dated merging, (b) rejected merging. The pair of tested segments is displayed by a solid line, 

while neighboring elementary valley segments are depicted by dashed lines.

Illustration of the computation of the envelope growth model from a set of examples of 

plaice (Pleuronectes Platessa) growth patterns for the year class k = 4: (a) envelope

(black dashed plots) computed from the growth patterns, (b) envelope (black dashed

plots) computed from their first-order derivative. 

Illustration of the evaluation of the relevance of growth pattern examples given a vari-

ability range set by the envelope gkmin ,gkmax for the age class k = 4: (a) relevant

growth pattern, (b) irrelevant growth pattern. 

Constraint on the spatial arrangement of the selected rings curve: relevant (a) vs. ir-relevant 

(b) configurations. Pair of successive ring curves are required to depict valley and ridge 

curves since the interpretation of growth rings has to refer to an alternation

of opaque and translucent rings. 



 Extractions of meaningful ring structures within images of biological hard tissues de-

picting growth ring structures. The first row displays an application to a fish otolith

(Bar = 1 mm), the second to the shell of a bivalve seashell (Bar = 0.5 cm) and the third

one to the section of a tree trunk (Bar = 10 cm). The first column provides the orig-

inal images, the second one the extracted elementary ridge and valley segments, and

the third one the detected ring curves resulting from the grouping of the elementary

segments. 

 Extractions of meaningful ring structures within images of otolith images depicting 

ontogenetic changes in the shape of the rings: the first row displays an application to 

a pollock otolith, and the second one to a cod otolith. The first column displays the 

original images, the second one the extracted elementary ridge and valley segments, 

and the third one the detected ring curves resulting from the grouping of the elementary

segments. Bar = 1 mm. 

 Extraction of closed ring curves using a global template-based scheme (Troadec et al. 

2000) for the two images processed using our semi-local template-based approach in

Fig.13: (a) pollock otolith, (b) cod otolith. Bar = 1 mm. 

 Interpretation of images of plaice (Pleuronectes Platessa) otoliths for three examples: the 

first row depicts the otolith images and the associated expert interpretations, the second one 

the extracted ridge curves, the third one the curve subsets selected for age and growth 

estimation and the fourth one the estimated growth patterns (solid line) compared to the 

ground truth ones (dashed line). For each example, the ground truth is provided by the 

interpretation of an expert in plaice (Pleuronectes Platessa) otolith

reading. Bar = 1 mm. .



 Age estimation errors for the test set of 200 images of plaice (Pleuronectes Platessa)

otoliths: (a) age composition of the processed otolith dataset, (b) rates of the age esti-

mation error for age class 1 to 6, (c) mean rate of the age estimation error. 

 Influence of errors in pointing the actual growth center for the extraction of ridge and 

valley curves (we only display the extracted ridge curves): on the left, the actual posi-

tion of the otolith center is used; on the right, the center is translated of 30 pixels to the

left and 20 to the top w.r.t. the actual growth center. Bar = 1 mm. 

 Examples of two disagreements in age reading between the expert and the proposed

approach. The first row displays the processed otolith image with the markers (◦) asso-

ciated to the interpretation of the expert. The second row depicts the otolith interpreta-

tion resulting from the Bayesian selection of the extracted ridge and valley curves (we

only display the selected ridge curves).
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