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ABSTRACT 

Multicomponent Density Functional Theory (MDFT) is a promising methodology to incorporate nuclear 

quantum effects, such as zero-point energy or tunneling, or to simulate other types of particles such 

as muons or positrons using particle densities as basic quantities. As for standard electronic DFT, a still 

ongoing challenge is to achieve the most efficient implementations. We introduce a multicomponent 

DFT implementation within the framework of auxiliary density functional theory, focusing on 

molecular systems comprised of electrons and quantum protons. We introduce a dual variational 

procedure to determine auxiliary electron and proton densities which leads to a succession of 

approximate energy expressions. Electronic and protonic fitted densities are employed i) in electron-

electron, proton-proton and electron-proton classical Coulomb interactions, ii) in electron exchange-

correlation, proton-proton exchange, and electron-proton correlation potentials. If needed, exact 

exchange among electrons or among protons are computed by the variational fitting of the 

corresponding Fock potential. The implementation is carried out in deMon2k. We test various electron 

proton correlation functionals on proton affinities. We find that auxiliary densities can be safely used 

in electron-electron, proton-proton, and electron-proton classical Coulomb interactions as well as in 

electron-proton correlation, albeit with some precautions related to the choice of the electronic 

auxiliary basis set that must be flexible enough. Computational tests reported in the last section 

indicate that introduction of density fitting in MDFT is clearly advantageous in terms of computational 

effort with good scaling properties with respect to the number of electron and protons treated at the 

DFT level. 

 

 

 



2 
 

I. INTRODUCTION 

The Born-Oppenheimer (BO) approximation, by which one decouples the motion of light electrons 

from that of heavy nuclei, lies at the heart of our understanding of molecular structure or of chemical 

reactivity. The BO approximation (BOA) allows one to dramatically simplify the electronic-nuclear 

problem by building electronic Hamiltonians in which nuclear positions enter as parameters. The 

electronic energy obtained from electronic structure theory calculations then gives access to the 

potential energy surface which is obviously of prime importance for the understanding of reactivity or 

conformational changes of molecules. However, many interesting physical chemical problems require 

an account of the coupling with nuclei. This is, for example, the case of electron transfers1 or coupled 

electron-proton transfers2. Tunneling corrections to proton transfer reaction barriers taking place in 

various media (solids, solutions, enzymes…) is another class of phenomena where non-BO corrections 

are needed3, 4.  

Various methodologies going beyond the BOA emerged in the literature after the pioneering work of 

Thomas in the late 1960s5, 6. Thomas computed the energy of ammonia, water, and hydrogen fluoride, 

expressing the proton wave functions as Slater determinants7. This original idea found flourishing 

developments in the following decades with the DEMO (Dynamical Extended Molecular Orbital)8, 9, the 

NOMO (Nuclear Orbital Molecular Orbital)10, 11, the MCMO (Multicomponent Molecular Orbital)12, the 

NEO (Nuclear-Electronic-Orbital)13, 14, 15, 16 or the APMO (All Particle Molecular Orbital) frameworks. The 

intrinsic appeal of these methods is that once an adequate ansatz for the total wave function is 

defined, one can reuse, mutatis mutandis, the algorithms developed for the electronic problem. As a 

good illustration of this strategy we shall mention, non-exhaustively, the coupling with Hartree-Fock 

(NOMO-HF17 or NEO-HF13), Multi-Configuration Self-Consistent Field (NEO-MCSCF)13, Configuration-

Interaction (NOMO-CI18 or NEO-CI19, DFT (NOMO-DFT20 or NEO-DFT21), Time-Dependent DFT (NEO-

TDDFT)22 frameworks.  

We are interested in multicomponent DFT (MDFT) which relies on a generalization of the Hohenberg 

and Kohn theorems to assemblies of quantum particles of different masses, charges or spins21, 23. MDFT 

is ideally suited to include nuclear quantum effects for a selected subset of nuclei while retaining most 

of the (heavy) nuclei in a classical description for which the BOA applies. MDFT holds great promise to 

include nuclear quantum effects (zero-point energy, tunneling…) within large molecular systems at 

appealing computational cost/accuracy ratio. The objective of this work is to test the reliability of 

MDFT in the context of density fitting24, 25 to reduce computational cost. Indeed, in purely electronic 

DFT a great deal of effort has been spent to devise efficient algorithms to build and solve the Kohn 

Sham equations. Among the important developments made on that line, density fitting (DF) or the 

Resolution-of-the-Identity26 (RI) approaches have been shown to lead to considerable speed-up in the 
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calculation of Coulomb contributions by avoiding the evaluation of four-center Electronic Repulsions 

Integrals (ERIS). The scaling of DFT implementations based on DF or RI is also more advantageous and 

they are now available in many academic or commercial packages. With respect to MDFT, Moncada et 

al. investigated a few years ago the compatibility of DF for multicomponent systems27. In this work, 

the authors employed the electronic auxiliary density to accelerate the calculation of classical electron-

electron Coulomb interaction and the electronic exchange-correlation terms. They did not use auxiliary 

densities for particles other than electrons. In the present work, we assess whether fitted densities for 

protons can also be introduced to further improve the efficiency of the implementations without 

jeopardizing the accuracy of MDFT results. This article is also the occasion to report our first 

implementation of MDFT in deMon2k. 

In Section 2 we present the working equations of MDFT in deMon2k. A few electron-proton correlation 

functionals have been implemented and are reviewed on this occasion. Various levels of 

approximation corresponding to different degrees of involvement of the fitted proton densities are 

introduced in the energy expressions. Optimized nuclear auxiliary basis sets are provided. Details on a 

second order Self-Consistent-Field procedure implemented in deMon2k are also provided. In Section 

3 we validate our implementation on calculations of proton affinities of amines or carboxylates, and 

on the calculation of hydrogen bond energies between organic molecules. We finally provide some 

performance tests showing the applicability of our implementation for a microsolvated coumarine 

molecule.  

 

2. THEORETICAL FRAMEWORK 

2.1 Kohn-Sham Multicomponent DFT 

Our implementation of multicomponent DFT in deMon2k relies on the Kohn-Sham framework 

combined with the LC-GTO (Linear-Combination of Gaussian-Type-Orbitals) formalism. Our approach 

is similar to that found in the literature under various acronyms (e.g. NEO-DFT, APMO-DFT or NOMO-

DFT). The implementation we have carried out is general and allows the treatment of many types of 

quantum particles (protons, deuterons, tritons, muons, positrons…). For the sake of simplicity though, 

we will restrict our attention to ensembles of electrons, quantum protons and classical nuclei of which 

there will be 𝑁𝑒, 𝑁𝑝 and 𝑀, respectively. We invoke the BO separation between the quantum particles 

and the classical nuclei, while non-BO effects between quantum protons and electrons are to be 

captured by density functional approximations. In Hartree atomic units the full Hamiltonian for such a 

composite system reads: 
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(1) 

 

In Eq. 1 𝑚𝑝 is the mass of the proton, 𝑍𝐴 the charge of nucleus A, 𝐫𝑒, 𝐫𝑝and 𝐑𝐴 are the positions of 

electrons (indices i, j), of quantum protons (indices a, b) and of classical nuclei, respectively (index A). 

The first two terms on the r.h.s. of eq. 1 are the kinetic energy operators for the electrons and the 

quantum protons, respectively. The third and fourth terms are the Coulomb operators between the 

electrons and the nuclei, and between the quantum protons and the nuclei, respectively. The fifth and 

sixth terms refer to the repulsion between electrons and between protons. Finally, the last term is the 

Coulomb attraction between electrons and quantum protons. Other terms can be added to this 

Hamiltonian, for instance, the electric field created by sets of external charges as customarily done in 

hybrid QM/MM (Quantum Mechanical/Molecular Mechanical) approaches28, 29.  The total energy of 

such a composite system can be written as30  

𝐸 = ∫𝜌𝑒(𝐫𝑒)𝑣𝑒(𝐫𝑒)𝑑𝐫𝑒 +∫𝜌𝑝(𝐫𝑝)𝑣𝑝(𝐫𝑝)𝑑𝐫𝑝 + 𝐹[𝜌𝑒 , 𝜌𝑝] 
(2) 

 

where 𝜌𝑒 and 𝜌𝑝  are the electron and proton densities respectively and 𝐹 is the universal 

multicomponent density functional. 𝑣𝑒(𝐫𝑒) and 𝑣𝑝(𝐫𝑝) are the external potential felt by the electrons 

and by the quantum protons, respectively. In the absence of external electromagnetic fields, they are 

defined as: 

𝑣𝑒(𝑟𝑒) = −∑
𝑍𝐴

|𝐑𝐀 − 𝐫
𝑒|

𝑀

𝐴

 
(3) 

𝑣𝑝(𝑟𝑝) =∑
𝑍𝐴

|𝐑𝐴 − 𝐫
𝑝|

𝑀

𝐴

 
(4) 

In this setup, since 𝑣𝑒(𝐫) = −𝑣𝑝(𝐫) one could use the simple 𝑣 symbol for both electrons and protons. 

However, we keep distinct the more general 𝑣𝑒 and 𝑣𝑝notations. 

The Hohenberg-Kohn universal functional in MDFT is given by: 

𝐹[𝜌𝑒 , 𝜌𝑝] = min
Ψ→𝜌𝑒,𝜌𝑝

⟨Ψ|�̂� + �̂�|Ψ⟩ (5) 

where  
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(7) 

 

Importantly, it must be emphasized that in absence of any other external potential the MDFT approach 

developed in this article would not be appropriate. In such case the densities would become constant 

due to the translational invariance of the resulting Hamiltonian. We therefore assume here that 

𝑣𝑒(𝐫𝑒) ≠ 0, 𝑣𝑝(𝐫𝑝) ≠ 0, and not constant. The electron-proton attraction is included in the definition 

of the universal functional 𝐹 and, therefore, not present in 𝑣𝑒(𝐫𝑒) and 𝑣𝑝(𝐫𝑝). The ground state 

energy is obtained by minimization of this energy functional under the constraints that the total 

number of quantum particles are preserved, i.e.  𝑁𝑒 = ∫𝜌
𝑒(𝐫𝑒)𝑑𝐫𝑒 and 𝑁𝑝 = ∫𝜌

𝑝(𝐫𝑝)𝑑𝐫𝑝. Applying 

this procedure within the Kohn-Sham scheme, by defining a (fully) non-interacting auxiliary system, 

leads to a set of coupled electron-proton Kohn-Sham equations 

(−
1

2
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𝑒 = 𝜀𝑖
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1
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𝜓𝑖
𝑒 and 𝜓𝑖

𝑝
 are the Kohn-Sham MOs for the 𝑁𝑒  electrons and 𝑁𝑝 protons, respectively. In deMon2k 

these are expanded over atom-centered basis functions (LC-GTO framework) as: 

𝜓𝑖
𝑒(𝐫𝑒) =∑𝑐𝜇𝑖

𝑒 𝜇𝑒(𝐫𝑒)

𝜇

 (10) 

𝜓𝑖
𝑝
(𝐫𝑝) =∑𝑐𝜇𝑖

𝑝
𝜇𝑝(𝐫𝑝)

𝜇

 (11) 

 

The sums run over the number of electron- and proton-atomic basis functions, respectively. We use 

Greek letters to denote both basis functions and to index them. Although sharing similar mathematical 

structures, the electron and proton basis sets are different, owing to the fact that proton densities are 

much more localized than electron densities. Gaussian-type nuclear basis sets have been optimized by 

various groups10, 13  and can be used in deMon2k as well via the BASIS external library file of the 

program. Electron and proton densities are expressed in matrix notation as  
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𝜌𝑒/𝑝(𝐫𝑒/𝑝) =∑𝑃𝜇𝜈
e/p
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𝜇,𝜈

 (12) 

where 𝑃𝜇𝜈
𝑒/𝑝

 is a matrix element of the density matrix for either the electrons or quantum protons. 

These matrices are given by 

𝑃𝜇𝜈
𝑒 = 2 ∑ 𝑐𝜇𝑖
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𝑒

𝑁𝑒 2⁄

𝑖

 

(13) 

𝑃𝜇𝜈
𝑝
=∑𝑐𝜇𝑖

𝑝
𝑐𝜈𝑖
𝑝

𝑁𝑝

𝑖

 

(14) 

where we assume electronic closed-shell densities and high-spin open-shell proton densities; however, 

our code is operative for open-shell electronic structures too. 

We express the total ground state energy of the composite system as  
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(15) 

or, introducing a more compact notation 

𝐸0 = ∑𝑃𝜇𝜈
𝑒

𝜇,𝜈

𝐻𝜇𝜈
𝑒−𝑐𝑜𝑟𝑒 +

1

2
〈𝜌𝑒‖𝜌𝑒〉 + 𝐸𝑥𝑐

𝑒 [𝜌𝑒] +∑𝑃𝜇𝜈
𝑝
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+
1
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〈𝜌𝑝‖𝜌𝑝〉

+ 𝐸𝑥
𝑝[𝜌𝑝] − 〈𝜌𝑒‖𝜌𝑝〉 + 𝐸𝑐

𝑒𝑝[𝜌𝑒 , 𝜌𝑝] + 𝐸𝐶𝑁 

(16) 

 

In these equations, the notation of the two-particle Coulomb integrals is the one used by the deMon2k 

community where the double-bar stands for the Coulomb operator (1 |𝐫1
𝑒/𝑝
− 𝐫2

𝑒/𝑝
|⁄ ): 

〈𝜇𝜈‖𝜎𝜏〉 ≡ ∫∫
𝜇(𝐫1)𝜈(𝐫1)𝜎(𝐫2)𝜏(𝐫2)

  |𝐫1 − 𝐫2|
𝑑𝐫1𝑑𝐫2 

(17) 

 

𝐸𝐶𝑁 is the energy associated with the classical Coulomb repulsion between pairs of nuclei. 𝐻𝜇𝜈
𝑒/𝑝−𝑐𝑜𝑟𝑒

 

are the matrix elements of core Hamiltonians for electrons and protons which collect contributions 

from the kinetic energy operator and the interaction with the external field produced by the classical 
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nuclei. 𝐸𝑥𝑐
𝑒 , 𝐸𝑥

𝑝
 and 𝐸𝑐

𝑒𝑝
 are, respectively, the electron exchange-correlation energy, the proton 

exchange energy and the electron-proton correlation energies. Note that we neglect proton-proton 

correlation as a consequence of the highly local character of proton densities. For 𝐸𝑥𝑐
𝑒 , we use standard 

energy functionals developed in the past for purely electronic DFT calculations, without 

reparameterization31. Standard LDA (Local Density Approximation), GGA (Generalized Gradient 

Approximation), Meta-GGA or hybrids (i.e. including a fraction of exact exchange), already available in 

deMon2k, can therefore be used in MDFT calculations. The 𝐸𝑥
𝑝

 energy functional is taken to be exact 

exchange32. This is necessary to exactly remove self-interaction from the classical Coulomb proton-

proton repulsion energy (〈𝜌𝑝‖𝜌𝑝〉). Exact exchange contributions entering 𝐸𝑥𝑐
𝑒  (in the case of hybrid 

functionals) and 𝐸𝑥
𝑝

 are obtained via the variational fitting of the Fock potentials as proposed in 

Reference 33. Correlation between electrons and protons is critical for reliable MDFT results due to 

the strong attractive nature of their interaction. The development of 𝐸𝑐
𝑒𝑝

 functionals is still in its 

infancy and the current subject of intense research30, 31, 34, 35, 36. We will come back to the different 

functionals implemented in deMon2k. The Kohn-Sham matrix elements are obtained by differentiating 

the total energy with respect to the density matrix elements both for protons and electrons. 𝐾𝜇𝜈
𝑒 ≡

𝜕𝐸0

𝜕𝑃𝜇𝜈
𝑒  and 𝐾𝜇𝜈

𝑝
≡

𝜕𝐸0

𝜕𝑃𝜇𝜈
𝑝  

𝐾𝜇𝜈
𝑒  = 𝐻𝜇𝜈

𝑒−𝑐𝑜𝑟𝑒 +∑𝑃𝜎𝜏
𝑒  〈𝜇𝑒𝜈𝑒‖𝜎𝑒𝜏𝑒〉

𝜎,𝜏

+
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𝑒
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𝑝
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(18) 

𝐾𝜇𝜈
𝑝

 = 𝐻𝜇𝜈
𝑝−𝑐𝑜𝑟𝑒

+  ∑𝑃𝜎𝜏
𝑝

 〈𝜇𝑝𝜈𝑝‖𝜎𝑝𝜏𝑝〉

𝜎,𝜏

+
𝜕𝐸𝑥

𝑝

𝜕𝑃𝜇𝜈
𝑝  −  ∑𝑃𝜎𝜏

𝑒  〈𝜇𝑝𝜈𝑝‖𝜎𝑒𝜏𝑒〉

𝜎,𝜏

+
𝜕𝐸𝑐

𝑒𝑝

𝜕𝑃𝜇𝜈
𝑝  

(19) 

 

2.2 MDFT with fitted densities 

The occurrence of four energy terms involving quadruple loops over atomic orbitals in Eqs. 12-13 

makes the calculation of the KS potential cumbersome. This difficulty can be overcome with density 

fitting techniques24, 25. As mentioned in the Introduction, Moncada et al. tested a few years ago the 

accuracy of MDFT using electronic auxiliary density functions27. We note that electron-proton 

correlation was neglected in this study (𝐸𝑐
𝑒𝑝
= 0). We pursue here the road opened by Moncada et al. 

by introducing both auxiliary electron and proton densities. A series of successive approximations can 

be made in the expression for the total energy. They correspond to different degrees of involvement 

of auxiliary electron or proton densities in the energy expressions. Table 1 summarizes these 

alternatives. The notation (X)a means that the energy term X entering the MDFT energy is calculated 

with a fitted density for particles a. The different levels of approximations will now be detailed together 

with the expressions for the energies and Kohn-Sham potentials. 
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Table 1: Introduction of electron and proton fitted densities in MDFT calculations. A cross indicates that the corresponding 
energy term and related potential are calculated with the help of auxiliary densities.  

 𝐽𝑒𝑒 𝐽𝑝𝑝 𝐽𝑒𝑝 𝐸𝑥𝑐
𝑒  𝐸𝑥

𝑝
 𝐸𝑐

𝑒𝑝
 

𝐸0 - - - - - - 

𝐸1 X - - - - - 

𝐸2 X - - X - - 

𝐸3 X X - X X - 

𝐸4 X X X X X - 

𝐸5 X X X X X X 

 

Starting from 𝐸 given by Eq. 9 or 10, a first step is to introduce electronic fitted densities in the 

calculation of 𝐽𝑒𝑒 alone or in 𝐽𝑒𝑒 and 𝐸𝑥𝑐, in the spirit of Ref.  27, leading to the energy expression  

𝐸1 and 𝐸2, respectively. To write down these energies we need first to recall the working equations of 

DF. For electrons, the auxiliary density function �̃�𝑒 is expressed as a linear combination of auxiliary 

basis functions  �̅�𝑒: 

�̃�𝑒(𝒓𝑒) =∑𝑥�̅�
𝑒 �̅�𝑒(𝐫𝑒)

�̅�

 (20) 

where the 𝑥�̅�
𝑒  are the so-called Coulomb fitting coefficients. In deMon2k, the �̅� are primitive Hermite 

GTOs37. The 𝑥�̅�
𝑒 are obtained upon minimization of the self-interaction-energy 𝜀2 = 

1

2
〈𝜌𝑒 −

�̃�𝑒‖𝜌𝑒 − �̃�𝑒〉.25 This procedure leads to a set of homogeneous equations: 

𝑿𝑒 = 𝑮−1𝑱𝑒 (21) 

 

where 𝑱𝑒 is the so-called Coulomb vector,  

𝑱𝑒 =

(

 
 
 
 
 
 

∑𝑃𝜇𝜈
𝑒  〈𝜇𝑒𝜈𝑒‖ 1̅𝑒〉

𝜇,𝜈

∑𝑃𝜇𝜈
𝑒  〈𝜇𝑒𝜈𝑒‖ 2̅𝑒〉

𝜇,𝜈

⋮

∑𝑃𝜇𝜈
𝑒  〈𝜇𝑒𝜈𝑒‖ �̅�𝑒〉

𝜇,𝜈 )

 
 
 
 
 
 

 

(22) 

and,  

𝐺 = (

〈1̅𝑒‖ 1̅𝑒〉 … 〈1̅𝑒‖ �̅�𝑒〉

⋮ ⋱ ⋮
〈�̅�𝑒‖ 1̅𝑒〉 … 〈�̅�𝑒‖ �̅�𝑒〉

) 

(23) 
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is the matrix of Coulomb repulsion integrals between auxiliary functions. Because 𝜀2 is positive 

semidefinite, the inequality 
1

2
〈𝜌𝑒‖𝜌𝑒〉 ≥ 〈𝜌𝑒‖�̃�𝑒〉 −

1

2
〈�̃�𝑒‖�̃�𝑒〉 always holds and the classical Coulomb 

repulsion among electrons appearing in Eq. 9  can be substituted by the r.h.s of the inequality, thereby 

eliminating the need of four center integrals.  

𝐸1 = ∑𝑃𝜇𝜈
𝑒

𝜇,𝜈

𝐻𝜇𝜈
𝑒−𝑐𝑜𝑟𝑒 +∑𝑃𝜇𝜈

𝑝

𝜇,𝜈

𝐻𝜇𝜈
𝑝−𝑐𝑜𝑟𝑒

+ 〈𝜌𝑒‖�̃�𝑒〉 −
1

2
〈�̃�𝑒‖�̃�𝑒〉 +

1

2
〈𝜌𝑝‖𝜌𝑝〉 − 〈𝜌𝑒‖𝜌𝑝〉

+ 𝐸𝑥𝑐
𝑒 [𝜌𝑒] + 𝐸𝑥

𝑝[𝜌𝑝] + 𝐸𝑐
𝑒𝑝[𝜌𝑒 , 𝜌𝑝] 

(24) 

 

This is a variational procedure that removes the quartic scaling factor over the number of electronic 

atomic orbitals. Density fitting has been proved to be a very robust approximation in electronic DFT 

calculations38. In deMon2k, significant supplementary computational saving is obtained by introducing 

fitted densities in the evaluation of the XC contribution39, i.e. replacing 𝐸𝑥𝑐
𝑒 [𝜌𝑒] by 𝐸𝑥𝑐

𝑒 [�̃�𝑒]. This 

scheme is usually referred as Auxiliary DFT in the framework of electronic DFT38, 39.  

𝐸2 =∑𝑃𝜇𝜈
𝑒

𝜇,𝜈

𝐻𝜇𝜈
𝑒−𝑐𝑜𝑟𝑒 +∑𝑃𝜇𝜈

𝑝

𝜇,𝜈

𝐻𝜇𝜈
𝑝−𝑐𝑜𝑟𝑒

+ 〈𝜌𝑒‖�̃�𝑒〉 −
1

2
〈�̃�𝑒‖�̃�𝑒〉 +

1

2
〈𝜌𝑝‖𝜌𝑝〉

− 〈𝜌𝑒‖𝜌𝑝〉 + 𝐸𝑥𝑐
𝑒 [�̃�𝑒] + 𝐸𝑥

𝑝[𝜌𝑝] + 𝐸𝑐
𝑒𝑝[𝜌𝑒 , 𝜌𝑝] 

(25) 

 

The Kohn-Sham matrix elements read (in case of 𝐸2 MDFT energy expression): 

𝐾𝜇𝜈
𝑒 = 𝐻𝜇𝜈

𝑒−𝑐𝑜𝑟𝑒 +∑  〈𝜇𝑒𝜈𝑒‖�̅�𝑒〉(𝑥�̅�
𝑒 + 𝑧�̅�

𝑒)

𝑘

−∑𝑃𝜎𝜏
𝑝

 〈𝜇𝑒𝜈𝑒‖𝜎𝑝𝜏𝑝〉

𝜎,𝜏

+
𝜕𝐸𝑐

𝑒𝑝[𝜌𝑒 , 𝜌𝑝]

𝜕𝑃𝜇𝜈
𝑒  

(26) 

𝐾𝜇𝜈
𝑝
= 𝐻𝜇𝜈

𝑝−𝑐𝑜𝑟𝑒
+
1

2
 ∑𝑃𝜎𝜏

𝑝
 〈𝜇𝑝𝜈𝑝‖𝜎𝑝𝜏𝑝〉

𝜎,𝜏

−∑𝑃𝜇𝜈
𝑒  〈𝜇𝑝𝜈𝑝‖𝜎𝑒𝜏𝑒〉

𝜎,𝜏

+
𝜕𝐸𝑥

𝑝[𝜌𝑝]

𝜕𝑃𝜇𝜈
𝑝

+
𝜕𝐸𝑐

𝑒𝑝[𝜌𝑒 , 𝜌𝑝]

𝜕𝑃𝜇𝜈
𝑝  

(27) 

 where39 

𝑧�̅�
𝑒 =∑𝐺𝑘𝑙

−1

𝑙

 ⟨𝑙�̅�|𝑣𝑥𝑐⟩ 
(28) 

 

Analogously, we now further introduce an auxiliary proton density. The repulsion energy term 

1

2
〈𝜌𝑝‖𝜌𝑝〉 of Eq. 19 can be substituted by 〈𝜌𝑝‖�̃�𝑝〉 −

1

2
〈�̃�𝑝‖�̃�𝑝〉, leading to the energy expression 𝐸3.  
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𝐸3 = ∑𝑃𝜇𝜈
𝑒

𝜇,𝜈

𝐻𝜇𝜈
𝑒−𝑐𝑜𝑟𝑒 +∑𝑃𝜇𝜈

𝑝

𝜇,𝜈

𝐻𝜇𝜈
𝑝−𝑐𝑜𝑟𝑒

+ 〈𝜌𝑒‖�̃�𝑒〉 −
1

2
〈�̃�𝑒‖�̃�𝑒〉 + 〈𝜌𝑝‖�̃�𝑝〉 −

1

2
〈�̃�𝑝‖�̃�𝑝〉

− 〈𝜌𝑒‖𝜌𝑝〉 + 𝐸𝑥𝑐
𝑒 [�̃�𝑒] + 𝐸𝑥

𝑝[�̃�𝑝] + 𝐸𝑐
𝑒𝑝[𝜌𝑒 , 𝜌𝑝] 

(29) 

 

We also introduce a variational density fitting procedure to evaluate exact exchange among protons 

(𝐸𝑥
𝑝[�̃�𝑝]) like the one followed for exact exchange among electrons33. The KS matrix elements for 

electrons remain the same as those derived from of 𝐸2 MDFT energy expression but the expression 

for the KS matrix elements for protons now simplify to: 

𝐾𝜇𝜈
𝑝
= 𝐻𝜇𝜈

𝑝−𝑐𝑜𝑟𝑒
+∑  〈𝜇𝑝𝜈𝑝‖�̅�𝑝〉𝑥�̅�

𝑝

𝑘

−∑𝑃𝜎𝜏
𝑒  〈𝜇𝑝𝜈𝑝‖𝜎𝑒𝜏𝑒〉

𝜎,𝜏

+
𝜕𝐸𝑥

𝑝[�̃�𝑝]

𝜕𝑃𝜇𝜈
𝑝 +

𝜕𝐸𝑐
𝑒𝑝[𝜌𝑒 , 𝜌𝑝]

𝜕𝑃𝜇𝜈
𝑒  

(30) 

 

At this stage, four-center electron-proton attraction integrals (EPAIs) remain present in the energy 

expression, hence in the Kohn-Sham potential of both protons and electrons. To remove these 

cumbersome integrals we seek a simplified way to calculate the attraction energy between electron 

and nuclei using again fitted densities. In this article we consider the possibility of replacing 〈𝜌𝑒‖𝜌𝑝〉 

either by 〈�̃�𝑒‖𝜌𝑝〉, by  〈𝜌𝑒‖�̃�𝑝〉 or by  〈�̃�𝑒‖�̃�𝑝〉. Since in typical applications of MDFT the number of 

electrons, and of electronic basis functions, largely exceeds that of quantum nuclei it seems more 

advantageous to replace 〈𝜌𝑒‖𝜌𝑝〉 by 〈�̃�𝑒‖𝜌𝑝〉. This leads to the 𝐸4  energy expression: 

𝐸4 = ∑𝑃𝜇𝜈
𝑒

𝜇,𝜈

𝐻𝜇𝜈
𝑒−𝑐𝑜𝑟𝑒 +∑𝑃𝜇𝜈

𝑝

𝜇,𝜈

𝐻𝜇𝜈
𝑝−𝑐𝑜𝑟𝑒

+ 〈𝜌𝑒‖�̃�𝑒〉 −
1

2
〈�̃�𝑒‖�̃�𝑒〉 + 〈𝜌𝑝‖�̃�𝑝〉

−
1

2
〈�̃�𝑝‖�̃�𝑝〉 − 〈�̃�𝑒‖𝜌𝑝〉 + 𝐸𝑥𝑐

𝑒 [�̃�𝑒] + 𝐸𝑥
𝑝[�̃�𝑝] + 𝐸𝑐

𝑒𝑝[𝜌𝑒 , 𝜌𝑝] 

(31) 

with 

〈�̃�𝑒‖𝜌𝑝〉 =∑∑𝑃𝜇𝜈
𝑝

 𝑥�̅�
𝑒 〈𝜇𝑝𝜈𝑝‖�̅�𝑒〉

𝑘𝜇,𝜈

 (32) 

The matrix elements entering the proton KS potential are given by: 

𝜕〈�̃�𝑒‖𝜌𝑝〉

𝜕𝑃𝜇𝜈
𝑝 =∑  𝑥�̅�

𝑒 〈𝜇𝑝𝜈𝑝‖�̅�𝑒〉

𝑘

 
(33) 

Following the development proposed in Ref. 39 for expressing XC contributions in the context of 

Auxiliary DFT, we derive the electron KS potential from the density fitting coefficients via repeated 

application of the chain rule: 
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𝜕〈�̃�𝑒‖𝜌𝑝〉

𝜕𝑃𝜇𝜈
𝑒 = ∫

𝛿〈�̃�𝑒‖𝜌𝑝〉

𝛿�̃�𝑒(𝐫𝑒)

𝜕�̃�𝑒(𝐫𝑒)

𝜕𝑃𝜇𝜈
𝑒 𝑑𝐫𝑒 

(34) 

 

The derivative of the electronic fitted density with respect to the density matrix elements is obtained 

from Eq. 14: 

𝜕�̃�𝑒(𝐫𝑒)

𝜕𝑃𝜇𝜈
𝑒 =∑

𝜕𝑥𝑘
𝑒

𝜕𝑃𝜇𝜈
𝑒 �̅�

𝑒(𝐫𝑒)

𝑘

 
(35) 

From Eqs. 15-16: 

𝑥𝑘
𝑒 =∑(𝐺𝑘𝑙

𝑒 )−1𝐽𝑙
𝑒

𝑙

=∑(𝐺𝑘𝑙
𝑒 )−1∑𝑃𝜇𝜈

𝑒  〈𝜇𝑒𝜈𝑒‖ 𝑙�̅�〉

𝜇,𝜈𝑙

 (36) 

therefore: 

𝜕�̃�𝑒(𝐫𝑒)

𝜕𝑃𝜇𝜈
𝑒 =∑(∑〈𝜇𝑒𝜈𝑒‖ 𝑙�̅�〉(𝐺𝑙𝑘

𝑒 )−1

𝑙

) �̅�𝑒(𝐫𝑒)

𝑘

 
(37) 

Inserting this equation into Eq. 25, one obtains 

𝜕〈�̃�𝑒‖𝜌𝑝〉

𝜕𝑃𝜇𝜈
𝑒 =∑〈𝜇𝑒𝜈𝑒‖ 𝑙�̅�〉∑(𝐺𝑙𝑘

𝑒 )−1

𝑘

〈�̅�𝑒‖𝜌𝑝〉

𝑙

 
(38) 

 

Finally, in  𝐸5 the electron-proton correlation potential is further calculated with the help of the 

electron auxiliary density.  

  

𝐸(𝐽𝑋𝐶)
𝑒𝑝
=  = ∑𝑃𝜇𝜈

𝑒

𝜇,𝜈

𝐻𝜇𝜈
𝑒−𝑐𝑜𝑟𝑒 +∑𝑃𝜇𝜈

𝑝

𝜇,𝜈

𝐻𝜇𝜈
𝑝−𝑐𝑜𝑟𝑒

+ 〈𝜌𝑒‖�̃�𝑒〉 −
1

2
〈�̃�𝑒‖�̃�𝑒〉 + 〈𝜌𝑝‖�̃�𝑝〉

−
1

2
〈�̃�𝑝‖�̃�𝑝〉 − 〈�̃�𝑒‖𝜌𝑝〉 + 𝐸𝑥𝑐

𝑒 [�̃�𝑒] + 𝐸𝑥
𝑝[�̃�𝑝] + 𝐸𝑐

𝑒𝑝[�̃�𝑒 , 𝜌𝑝] 

(39) 

 

The matrix elements deriving from 𝐸𝑐
𝑒𝑝

 are obtained as for the classical Coulomb interaction. In the 

proton Kohn-Sham equations the matrix elements are obtained as 𝜕𝐸𝑐
𝑒𝑝[�̃�𝑒 , 𝜌𝑝] 𝜕𝑃𝜇𝜈

𝑝
⁄  assuming fixed 

(auxiliary) electron density. As for Eq. 28, the matrix elements for the electron-proton correlation 

potential felt by the electrons are obtained with the chain rule 

𝜕𝐸𝑐
𝑒𝑝[�̃�𝑒 , 𝜌𝑝]

𝜕𝑃𝜇𝜈
𝑒 =∑〈𝜇𝑒𝜈𝑒‖ 𝑙�̅�〉∑(𝐺𝑙𝑘

𝑒 )−1

𝑘

⟨�̅�𝑒|𝑣𝑐𝑒
𝑒𝑝
⟩

𝑙

 
(40) 

where 
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𝑣𝑐𝑒
𝑒𝑝
≡
𝛿𝐸𝑐[�̃�

𝑒 , 𝜌𝑝]

𝛿�̃�𝑒
 

(41) 

 

2.3 Electron proton correlation functionals 

A key ingredient of MDFT calculation is the inclusion of electron-proton correlation (𝐸𝑐
𝑒𝑝

)21, 34. The 

ability to devise reliable EPC functionals is still an active research field. EPC should correct for the mean-

field approximation made by considering electron-proton attraction with a classical Coulomb 

attraction between the densities of the two types of quantum species. EPC is more difficult to address 

than electron-electron correlation because of the attractive nature of the interaction between 

electrons and protons40. A consequence of the lack of EPC is the over-localization of proton densities, 

hence a strong overestimation of vibrational frequencies involving quantum particles. Some groups 

developed fully non local EPC functionals based on explicitly correlated electron nuclear wave 

functions31, 41, 42.  Another family of EPC functionals relies on adaptations of the Colle-Salvetti model of 

electron-electron correlation43, 44. Such local functionals have been proposed by Nakai and coll.20, 45, 

Tachikawa and coll.46 and by Hammes-Schiffer and co-workers35, 36. The former authors applied the EPC 

functional as a correction on top of the SCF procedure while in the latter authors introduced EPC self 

consistently. As already indicated this a currently active research field and not all functionals provide 

accurate, or even sometimes physically correct, results. However, they have been implemented, self 

consistently, in deMon2k for methodological purposes and the choice of a particular EPC functional 

remains the responsibility of the user. The EPC17-2 correlation energy reads36:  

𝐸𝑒𝑝𝑐17−2 = −∫
𝜌𝑒(𝐫)𝜌𝑝(𝐫)

𝑎 − 𝑏(𝜌𝑒(𝐫))
1 2⁄
(𝜌𝑝(𝐫))

1 2⁄
+ 𝑐𝜌𝑒(𝐫)𝜌𝑝(𝐫)

𝑑𝐫 
(42) 

with 𝑎, 𝑏 and 𝑐 being three parameters set to 2.25, 2.4 and 6.6 by the authors of the original reference. 

The Non-Singular-Form of the Colle-Salvetti functional developed by Inamura et al. reads20: 

𝐸𝑁𝑆𝐹07 = −∫𝜌𝑒(𝐫)𝜌𝑝(𝐫)
𝜋𝑍2[(24 + (−9 + 2√2)𝜋)𝑍 + 4(−4 + 𝜋)√𝜋𝛽]

2𝜋𝛽4 exp [
4𝑍(𝑍 − √𝜋𝛽)

𝜋𝛽2
]

𝑑𝐫 
(43) 

𝛽(𝐫) = 𝑞. (𝜌𝑒(𝐫))
1 3⁄

 (44) 

𝑍 is the nuclear charge, i.e. 1.0 in the present context and 𝛽 defines the correlation length. 𝑞 is a 

parameter that was optimized to the value of 4.971 by the authors of reference 20. Recently Udagawa, 

Tsuneda and Tachikawa proposed an alternative formulation in which the EPC energy is given by46: 

𝐸𝑈𝑇𝑇14 = −∫𝜌𝑒(𝐫)𝜌𝑝(𝐫)(𝐹0(𝛽) + 𝐹1(𝛽) + 𝐹2(𝛽))𝑑𝐫 
(45) 
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𝐹0(𝛽) =
−3𝜋

𝛽3
 (46) 

𝐹1(𝛽) =
32𝛽3 + (8√2 − 32√𝜋)𝑍𝛽2 + 24𝑍2𝛽 + (√2𝜋 − 8√𝜋)𝑍3

64𝛽5
Φ(𝛽) 

 

𝐹2(𝛽) =
384𝛽6 − 192√2𝜋𝑍𝛽5 + 384𝑍2𝛽4 − 196√2𝜋𝑍3𝛽3 + 112𝑍4𝛽2 − 15√2𝜋𝑍5𝛽 + 8𝑍6

1536𝛽8
Φ2(𝛽) 

 

The explicit form of Φ(𝛽) was not specified in 46. We derive it here following the Colle-Salvetti approach 

by requesting that the Jastrow factor ϕ(𝑟, 𝑅) = exp (−𝛽2𝑟2)(1 − Φ(𝑅) (1 − 𝑟 +
1

2
𝑟2 −

1

6
𝑟3)) retains 

the normalization condition, i.e. by solving 4𝜋∫ (𝜙2(𝑟, 0) − 2𝜙(𝑟, 0))𝑟2𝑑𝑟 = 0. This leads to: 

  

Φ(β) =
16(48√2𝜋 − 192√𝜋)𝛽6 + 4608𝛽5 + 16(18√2𝜋 − 144√𝜋)𝛽4 + 1792𝛽3 + 16√2𝛽3√𝑓

35√2𝜋 − 384𝛽 + 420√2𝜋𝛽2 − 2048𝛽3 + 1152√2𝜋𝛽4 − 3072𝛽5 + 768√2𝜋𝛽6
 

(47) 

𝑓 = 18432𝜋𝛽6

+ 18432𝛽5√𝜋(√2 − 5)

+ 1728𝛽4(2√2𝜋 + 15𝜋 + 24)

+ 192𝛽3√𝜋(71√2 − 456)

+ 72𝛽2(34√2𝜋 + 131𝜋 + 448)

+ 2592𝛽√𝜋(√2 − 8)

+ 7(15𝜋(4√2 − 1) + 896)

 

(48) 

 

The UTT14 functional uses a different form of the 𝛽(𝐫) function, which is given in equation 10 of Ref. 

46 and uses information from the exchange hole to improve the description of the correlation hole. 

EPC functional energies and potentials are calculated numerically on a standard fixed-type grid used 

for electronic DFT. This type of grid was found to be surprisingly accurate to integrate the EPC 

potentials based on the Colle-Salvetti model.  

 

2.4 Nuclear auxiliary basis sets  

The formalism described in the previous section supposes to define basis sets to expand the electron 

and proton auxiliary density functions. For electrons, deMon2k uses Hermine Gaussian auxiliary 

functions that are grouped by function sets sharing the same coefficients37. Auxiliary basis sets are 

generated by an automatic procedure implemented in deMon2k that depends on the exponents of 

the atomic orbital basis set. The GEN-An auxiliary function sets contain groups of auxiliary functions 

with s and spd angular momenta. The index n determines the number of auxiliary function sets, i.e. 

the number of these sets increase with increasing n. A star indicates the addition of functions of higher 

angular momenta, namely, f and g functions. For protons, we have optimized various even-tempered 
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(ET) auxiliary basis sets with exponents ranging from twice the minimum to twice the maximum 

exponent in the original nuclear basis sets. We have called this auxiliary function sets ET-8*, ET-10 and 

ET-10* (Table 2). As in the electronic case, the proton auxiliary function sets are grouped by function 

sharing the same coefficients. It is important to note that since customary nuclear basis sets use high 

angular momentum even for the tightest functions, the nuclear auxiliary function basis sets developed 

are grouped in sets of spd- and spdfg-type functions, ie no s-type sets are included. The LMAX denotes 

the maximum angular momentum for a given set. 

Table 2: Exponents for the even-tempered ET-8, ET-8* and ET-10* proton auxiliary basis sets. 

ET-8 (LMAX = 2) ET-8* (LMAX = 4) ET-10* (LMAX = 4) 

37.647578 37.647578 128.000000000 

27.505323 27.505323 90.509667990 

20.095388 20.095388 64.000000000 

14.681689 14.681689 45.254834000 

10.726442 10.726442 32.000000000 

7.836738 7.836738 22.617417000 

5.725520 5.725520 16.000000000 

4.183064 4.183064 11.313708500 

  8.000000000 

  5.656854249 

 

2.5 Resolution of the coupled MDFT Kohn-Sham equations  

Experience from other groups has shown that convergence of the coupled MDFT Kohn-Sham equations 

is hard to achieve, taking sometimes thousands of cycles47, a convergence difficulty presumably 

originating from the non-inclusion of electron proton correlation self-consistently. We decided to 

tackle this problem through three different schemes. The first one is to perform one minimization step 

for the electrons followed by one minimization step for the protons (minimization-after-minimization). 

The second one is to perform one minimization step for the electrons followed by the full convergence 

of the proton MDFT Kohn-Sham equations while leaving the electronic density frozen (convergence-

after-minimization). The last one is to fully converge the electronic Kohn-Sham equations with the 

protonic density frozen followed by the full convergence of the proton Kohn-Sham equations while 

keeping the electronic density frozen (convergence-after-convergence). In practice, the minimization-

after-minimization approach is not stable enough for the majority of cases, while the convergence-

after-minimization and convergence-after-convergence perform rather similar. 
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The electronic SCF can be converged with Pulay’s direct-inversion of iterative subspace (DIIS)48, 49 with 

the fitting coefficients as drivers50, or the approximate second-order SCF (SOSCF) method originally 

proposed by Fischer and Almlöf and extended by others51, 52, 53. If requested, the electronic SOSCF 

method starts when the electronic orbital gradient drops below 10-2 Ha for HF-type calculations or 10-

3 Ha for DFT-type ones. Before the activation of the SOSCF approach, DIIS can be used to accelerate. 

Only the SOSCF scheme is available to accelerate the convergence of the nuclear SCF and it is started 

when the nuclear orbital gradient drops below 5 × 10−3 Ha. Electronic SCF convergence is achieved 

when the MinMax electronic SCF error achieves 10-6 Ha independent of the SCF accelerator chosen, 

while nuclear SCF convergence is achieved when the infinite norm of the nuclear orbital gradient is 

below 10-6 Ha. 

 

III TESTS AND PERFORMANCE  

III.1 Computational details  

All calculations have been carried out with a recent developer version of deMon2k (4.3.4) in which we 

implemented the formalism described in the previous section. The electronic Def2-TZVPP atomic basis 

set54 has been used on all atoms. For protons, unless otherwise stated, we used the even-tempered 

HET-5S5P3D nuclear basis set55 to expand the proton MOs, combined with the ET-8* auxiliary nuclear 

basis set. The electron XC, as well as the electron-proton correlation energies and potentials, have 

been integrated numerically on pruned fixed grids comprising 99 radial shells and 590 Lebedev angular 

points. The B3LYP44, 56, 57 electron XC and EPC17-235, 36 EPC functionals have been used. We also tested 

EPC functionals developed  by Inamura et al20, 45 (NSF07, eq. 43-44) or by Tachikawa and coll. (UTT14, 

eq. 45-48).46 It is important to note that all three EPC functionals were used as part of self-consistent 

calculations. SCF convergence criteria were set to 10-8Ha, 10-6Ha and 10-6Ha for the total MDFT energy, 

proton energy and for the density fitting energies. For each molecule, we first ran a purely electronic 

DFT before switching on the MDFT using the electron KS MOs as the guess for MDFT SCF. The second 

order SCF algorithm described in the previous section was used for both electron and proton SCF. This 

computational set-up permits the SCF procedure to always converge smoothly, although sometimes 

slowly.  

 

III.2 Proton affinities  

We consider in this subsection the set of proton binding affinities recently devised by the Hammes-

Schiffer group in the context of the validation of the EPC17-2 electron-proton correlation functional36. 

The PA23 set contains six amines (NH3, CH3NH2, CH3CH2NH2, CH3CH2CH2NH2, (CH3)2NH and (CH3)3N), 
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three aromatic molecules (C6H5NH2, C6H5O- and C6H5COO-), three inorganic compounds (CN-, HS- and 

NO2-) and finally eleven carboxylates (HCOO-, CH3COO-, CH3CH2COO-, CH3CH2CH2COO-, 

CH3CH2CH2CH2COO-, CH3COCOO-, CH2FCOO-, CHF2COO-, CF3COO-, ClCH2COO-,  ClCH2CH2COO-). 

Experimental PA are available for these molecules. To be consistent with Ref. 36 we have used the 

EPC17-2 functional too. For molecules with more than one proton, only the most acidic is treated at 

the quantum level by MDFT. We optimized each molecule of the PA23 set at the B3LYP/Def2-

TZVPP/GEN-A2* level of theory (Cartesian geometries can be found in SI). The proton affinities are 

defined as PA(A) = −∆E + RT where ∆E is the variation of total energy of the molecule of interest 

upon protonation encompassing electronic, translational, rotational and vibrational contributions. If 

we neglect the change in rotational energy, approximate the change of translational energy to be 

(−3 2⁄ )RT and assume the vibrational states of the molecule but that involving the added proton are 

constant, then36 PA(A) ≈ E(A) − E(AH+) + (5 2⁄ )RT, where E(A) is calculated with purely 

electronic DFT and E(AH+) with MDFT. We report Root Mean Square Errors (RMSE) and Mean Signed 

Error (MSE) and maximum absolute error (MAX) taking experimental values as references. 

Table 3 gathers the results obtained from deMon2k. For this series of calculations, we have chosen the 

very large GEN-A4* electronic auxiliary basis.  Let us first consider the 𝐸1 energies in which auxiliary 

electronic density enters in the electron-electron classical repulsion only. As in Ref. 36 MDFT with the 

EPC17-2 functional gives good values with a global RMSE of 2.2 kcal/mol. This value is slightly larger 

than in Ref. 36 (RMSE 1.4 kcal/mol). Note that different (larger) electronic and nuclear basis sets were 

used in Ref. 36, which explains the different RMSE values.  

Moving to 𝐸2 in which auxiliary electronic densities are also used to integrate electronic XC 

contributions (see Table 1), we don't observe any decrease in accuracy as the RMSE and MUE are 

identical to the 𝐸1 energy based scheme. This conclusion is reminiscent of the work of Moncada et 

al.27 and of the experience gained in purely electronic DFT calculations39. In passing, we confirm that 

neglecting electron-proton correlation leads to very unreliable results with RMSE values around 15 

kcal/mol (𝐸2 column, values in brackets). 

We now move to 𝐸4 MDFT approximation in which we introduce auxiliary proton densities to evaluate 

electron-proton attraction (see Table 1). Note that we don't consider in this sub-section the 𝐸3 MDFT 

energy approximation because only one proton is treated at the DFT level, therefore 𝐸3 = 𝐸2. The 𝐸4 

values are very close to 𝐸2 . This shows that introducing DF for protons using the ET-8* auxiliary nuclear 

basis has no impact on the accuracy of the computed proton affinities.  

We now consider the most optimized 𝐸5 in which auxiliary densities are involved in all the Coulomb 

interaction terms, exchange terms and in the electron-electron or electron-proton correlation (see 
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Table 1). Interestingly 𝐸5 values are getting closer to experiments, suggesting subtle cancellation of 

errors due to the introduction of the electronic auxiliary density in the proton-electron correlation 

term. These are encouraging results that justify a posteriori the objective of this article to combine 

MDFT to density fitting techniques.  

Table 3: Proton affinities (kcal/mol), computed with MDFT as 𝑃𝐴(𝐴) = 𝐸(𝐴) − 𝐸(𝐴𝐻+) + (5 2⁄ )𝑅𝑇. The numbers in 
parentheses corresponds to 𝑀𝐷𝐹𝑇 calculations with no electron-proton correlation.   

 EXP MDFT 

  𝐸1 𝐸2 𝐸4 𝐸5 

  GEN-A4* GEN-A4* GEN-A4* GEN-A4* 

NH3 204.1 205.7 205.7 (188.2) 205.3 205.3 

CH3NH2 214.9 219.1 219.1 (202.2) 218.7 218.7 

CH3CH2NH2 217.9 219.8 219.8 (202.9) 219.4 219.4 

CH3(CH2)2NH2 219.3 221.2 221.2 (204.2) 220.8 220.8 

(CH3)2NH 222.1 223.0 223.0 (206.1) 222.7 222.7 

(CH3)3N 226.9 227.0 227.0 (210.1) 226.7 226.7 

RMSE - 2.17 2.16 (15.4) 2.16 1.86 

MSE - 1.90 1.91 (15.0) 1.91 1.52 

C6H5NH2 211.0 211.3 211.4 (194.4) 211.4 211.0 

C6H5O- 351.4 350.9 350.9 (333.7) 350.9 350.5 

C6H5COO- 340.1 342.8 342.9 (325.6) 342.9 342.4 

RMSE - 1.59 1.60 (16.4) 1.60 1.42 

MSE - 0.84 0.84 (16.3) 0.84 0.45 

CN- 353.1 351.8 351.8 (334.5) 351.8 351.4 

HS- 353.1 355.2 355.3 (338.0) 355.3 354.8 

NO2
- 340.1 343.9 343.9 (326.6) 343.9 343.5 

RMSE - 2.62 2.64 (15.9) 2.64 2.40 

MSE - 1.56 1.59 (15.7) 1.59 1.17 

HCOO- 345.2 346.7 346.7 (329.5) 346.7 346.3 

CH3COO- 348.5 350.6 350.6 (333.4) 350.6 350.2 

CH3CH2COO- 347.5 349.9 349.9 (332.6) 349.9 349.5 

CH3(CH2)2COO- 346.6 349.4 349.4 (332.1) 349.4 349.0 

CH3(CH2)3COO- 346.1 349.1 349.1 (331.9) 349.1 348.7 

CH3COCOO- 333.5 334.6 334.6 (317.4) 334.6 334.2 

CH2FCOO- 339.2 339.8 339.8 (322.6) 339.8 339.4 

CHF2COO- 330.2 332.8 332.8 (315.6) 332.8 332.4 

CF3COO- 322.6 326.0 326.0 (308.8) 326.0 325.6 

ClCH2COO- 336.2 336.6 336.6 (319.3) 336.6 336.2 
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Cl(CH2)2COO- 340.8 338.1 338.1 (320.9) 338.1 337.7 

RMSE - 2.27 2.27 (15.8) 2.27 2.01 

MSE - 1.55 1.56 1.56 1.15 

Global      

RMSE  2.17 2.17 (15.4) 2.17 1.92 

MSE  1.55 1.56 (15.6) 1.56 1.16 

MAX  4.2 4.2(20.0) 4.4 3.8 

 

Figure 1 provides a graphical representation of the dependence of RMSE, MSE and MAXimum error 

with the size of the auxiliary basis sets. Full tables of values can be found in Supplementary Material 

(SM, Table S1). For the electrons we compare results with GEN-A2* and GEN-A4*. For nuclei we test 

the ET8, ET8* and ET10* (Table 2) basis sets. Remember that with 𝐸1 and 𝐸2 schemes no auxiliary 

proton densities are used. With 𝐸2, moving from GEN-A2* to GEN-A4* induces a small decrease of 

RMSE and maximum error of by 0.1 and 0.2 kcal/mol, respectively. With 𝐸5, this same change of 

electronic auxiliary basis results in an improvement is of 0.3 kcal/mol on the RMSE. Figure 1 also shows 

that the nuclear auxiliary basis is well converged even with the smaller ET8 set. 
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Figure 1: Convergence of proton affinities with electronic (A2*=GEN-A2*, A4*=GEN-A4*) and nuclear (ET8, ET8* and ET10*) 
auxiliary basis sets.  

To conclude this section, we compare different electron-proton correlation functionals to calculate 

proton affinities. We report in Table 4 the RMSE, MSE and MAX (complete results can be found in SM 

Table S2). The NSF07 is the least satisfactory functional, with a RMSE of 5.36 kcal/mol, well above the 

RMSE obtained with EPC17-2. On the other hand, UTT14 exhibits the best performance, with RMSE, 

MSE and maximum error of 1.85, 1.0 and 2 kcal/mol. These data indicate that accurate EPC functionals 

start to become available for MDFT calculations with protons. 

Table 4: Influence of electron-proton correlation functional on the proton affinities (kcal/mol) of reference set. The  
𝐸1energy expression is considered with GEN-A2*/ET8* auxiliary sets. 

 EPC17-2 NSF07 UTT14 

RMSE 2.20 5.26 1.85 

MSE 1.55 5.1 1.0 

MAX 4.2 7.9 2.0 

 

III.3 Hydrogen bond energies  

In the second series of tests, we consider hydrogen-bonded dimers of molecules. The geometries are 

extracted from the S66 dataset58. The dimers involve water, methanol, small peptide models, 

methylamine, uracyl, pyridine or acetamide. In these calculations, all the protons are treated as 

quantum particles. Results are gathered in Table 5. Compared to Table 3, we add the supplementary 

Column 𝐸3 which corresponds to MDFT energies for Coulomb repulsion among protons evaluated with 

fitted proton densities. We take as reference MDFT results with 𝐸1/GEN-A4*. We find that application 

of DF to proton densities lead excellent results with RMSE below 0.05 kcal/mol w.r.t. the reference 

values (putting aside the GEN-A2 series). The maximum deviation is also small (0.15 kcal/mol).  
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Table 5: Hydrogen bond energy computed by MDFT/DF with different degrees of approximations. All values are given in 
kcal/mol. References geometries extracted from the S66 data set58. RMSE, MUE and MAX are computed with respect to the 

𝐸(𝐽)
𝑒

GEN-A4* series. 

Partner 1 Partner 2 𝐸1 𝐸1 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 

  GEN-A4* GEN-A2 GEN-A2* GEN-A2* GEN-A2* GEN-A2* GEN-A2* 

Water Water -5.92 -5.90 -5.92 -5.89 -5.89 -5.91 -5.89 

Water MeOH -6.06 -6.07 -6.05 -6.05 -6.05 -6.08 -6.05 

Water MeNH2 -7.88 -7.79 -7.87 -7.88 -7.88 -7.91 -7.87 

Water Peptide -8.18 -8.12 -8.17 -8.18 -8.19 -8.22 -8.20 

MeOH MeOH -6.06 -6.03 -6.06 -6.05 -6.05 -6.06 -6.03 

MeOH MeNH2 -7.73 -7.57 -7.72 -7.75 -7.75 -7.80 -7.76 

MeOH Peptide -8.20 -8.03 -8.19 -8.18 -8.18 -8.23 -8.19 

MeOH Water -5.85 -5.76 -5.84 -5.81 -5.81 -5.84 -5.84 

MeNH2 MeOH -2.31 -2.32 -2.30 -2.33 -2.33 -2.32 -2.30 

MeNH2 MeNH2 -3.13 -3.11 -3.12 -3.11 -3.11 -3.11 -3.06 

MeNH2 Peptide -3.48 -3.38 -3.48 -3.48 -3.48 -3.49 -3.45 

MeNH2 Water -7.84 -7.78 -7.83 -7.86 -7.86 -7.89 -7.85 

Peptide MeOH -5.26 -5.21 -5.25 -5.24 -5.24 -5.23 -5.17 

Peptide MeNH2 -6.53 -6.35 -6.52 -6.56 -6.56 -6.56 -6.48 

Peptide Peptide -6.73 -6.60 -6.72 -6.70 -6.70 -6.68 -6.64 

Peptide Water -5.29 -5.25 -5.29 -5.25 -5.25 -5.22 -5.24 

Uracil Uracil -17.21 -16.17 -17.19 -17.07 -17.07 -17.19 -17.19 

Water Pyridine -7.36 -7.31 -7.35 -7.35 -7.35 -7.38 -7.36 

MeOH Pyridine -7.40 -7.17 -7.39 -7.40 -7.40 -7.45 -7.41 

AcOH AcOH -20.92 -20.31 -20.90 -20.87 -20.87 -21.07 -21.07 

AcNH2 AcNH2 -16.70 -15.94 -16.68 -16.60 -16.60 -16.68 -16.63 

AcOH Uracil -20.46 -19.67 -20.45 -20.37 -20.37 -20.55 -20.55 

RMSE 

MUE 

MAX 

- 0.36 0.01 0.05 0.05 0.05 0.05 

- 0.21 0.01 0.03 0.03 0.04 0.04 

- 1.04 0.02 0.14 0.14 0.15 0.15 

  

We provide in Figure 4 a graphical representation of the difference of absolute energies of the dimers 

between the MDFT 𝐸1 scheme, with GEN-A4* electronic auxiliary basis set, and the various DF based 

approximations. Table S3 in SM gathers the computed values.  𝐸1 obtained with GEN-A2* slightly 

deviate from the reference with an RMSE of 0.07 kcal/mol. Upon introduction of proton fitted densities 

the RMSE and MUE increase to 1.39 and 1.29 kcal/mol, respectively, for 𝐸2 and 𝐸3 with GEN-A2* but 

drops to 0.06 kcal/mol with GEN-A4*. For very accurate absolute energies with 𝐸2 and 𝐸3 compared 
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to 𝐸1 it is therefore recommended to use GEN-A4* which guarantees better energies compared to less 

extended electronic auxiliary basis set. As seen previously the three proton auxiliary basis sets gives 

same RMSE, attesting the completeness of the basis set. Moving to 𝐸4 MDFT energies, where now 

electron-proton classical attraction is calculated from electronic density fitting, we find a RMSE of 0.36 

and 3.3 kcal/mol when using GEN-A2* and GEN-A4*, respectively. A similar trend, although with 

smaller error is obtained with 𝐸5. It is therefore the introduction of electron-proton Coulomb 

attraction with electronic fitted density that deteriorate the accuracy of absolute energy in 𝐸4 and 𝐸5 

schemes. This might be due to the non-variational substitution operated in Eq. 31 that is the source of 

this trend. Research is on-going in our laboratory to improve the 𝐸4 and 𝐸5 energy expressions. Note 

however that we discuss here absolute energies. Relative energies are expected to benefit from 

systematic error cancelations, as was seen for the proton affinities. 

 

Figure 2: Dependence of RMSE with respect to E1/GEN-A4* for absolute energies (in kcal/mol) on electronic (A2*=GEN-A2*, 
A4*=GEN-A4*) and nuclear (ET8, ET8* and ET10*) auxiliary basis sets 

 

III.3 Computational performance  

In this last section, we assess the performance of MDFT calculations in deMon2k using density fitting. 

Toward this end, we consider a microsolvated coumarine molecule (Figure 3). The system 

encompasses a total of 125 atoms, among which 76 are protons, and 436 electrons. We consider seven 

situations for which we successively increase the number of protons treated by DFT, namely 6, 10, 16, 

22, 28, 44 and 68. We have used the 3s3p nuclear basis set optimized by Nakai and co-workers10 in 

combination to the herein developed ET-8* auxiliary basis set, which should yield close to worst-case 

scenario in terms of computational performance. The EPC-1736 and PBE59 functionals are used for the 

electron-proton correlation and for the electron exchange-correlation respectively.  
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Figure 3: microsolvated coumarine molecule used for MDFT performance tests. The number of protons treated at the DFT level 
are progressively increased (see text for details).  

 

Figure 4 depicts the total time to converge the SCF cycle and the time for each nuclear SCF spent i) in 

the proton-proton interaction, summing both contributions for classical Coulomb repulsion and exact 

exchange among protons (Top), ii) in the proton-electron classical Coulomb attraction (Middle), and 

iii) in the integration of the electron-proton correlation energy and potential (Bottom). Four MDFT 

energy expressions are considered, namely, 𝐸2, 𝐸3, 𝐸4and 𝐸5. The overall timing look deceptive has 

for less than 500 nuclear orbitals introduction of proton fitted densities is more time consuming. We 

also remark that when fitted densities are introduced in the electron-proton interaction SCF 

convergence is severely slowed down. In average two more time nuclear SCF cycles are required with 

𝐸4 and 𝐸5. More work will needed to improve SCF convergence, for example by introducing variational 

approach to treat electron-proton Coulomb interaction with density fitting. To go deeper we now 

analyze the computational cost of the different contributions for one SCF cycle.  

We start by considering the proton-proton interactions ("PP potential", Top). The 𝐸1 MDFT based 

calculation (no density fitting to proton densities) shows a rapid increase of the time spent in proton-

proton interaction. For the largest system (816 proton atomic orbitals) proton-proton interactions 

represent 72% of the total time. The introduction of proton fitted densities in MDFT calculation based 

on the 𝐸3, 𝐸4 or 𝐸5 energy expressions permits to drastically alleviate computational cost with a much 

better scaling with the number of quantum protons. Exact exchange among protons remains the main 

time consuming task in proton-proton interactions. One approach that has been successfully used in 

the literature to solve this bottleneck is to completely avoid the calculation of proton-proton 

interactions32, effectively using a Hartree product for the nuclear wave function; such approach has 

also been implemented in deMon2k. We would also like to point out to recent improvements to the 

exact exchange module of deMon2k that can help to diminish the computational effort required for 

this task60. 
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The classical Coulomb repulsion is obtained at negligible computational effort now that proton fitted 

densities are involved (<1% of the total SCF time). Moving to the calculation of electron-proton 

attraction (Figure 4, Middle) we can assess the improvement of the 𝐸4 approximation over the 𝐸3 

since now electron-proton attraction is evaluated from electronic fitted density. First, we note that the 

electron-proton classical interaction is not the most time consuming part compared to calculation of 

the PP potential or of the EPC potential. Yet is satisfactory to see that the introduction of the fitted 

electronic density makes this part of MDFT calculations also negligible in terms of computational 

efforts. We finally move to the numerical evaluation of electron-proton correlation energy and 

potential (Figure 4, Bottom). It is a time consuming part of the MDFT calculation. MDFT relying on 

energy expressions 𝐸2, 𝐸3 or 𝐸4 exhibits very similar trends with the number of proton treated at the 

DFT level. In fact, it is the number of grid points that determines the computational cost for EPC. The 

introduction of electronic fitted density in 𝐸5 permits a reduction of the computational cost by a factor 

of around 2.  
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Figure 4: Average time (s) per nuclear SCF cycle spent for the evaluation of proton-proton interaction (Top, numerical 
integration on a grid of points) and for the evaluation of electron-proton correlation potential (Bottom). Lower panel: total 
SCF time in minuts.Green, violet, blue and red data correspond to MDFT calculations based on energies namely 𝐸2, 𝐸3, 𝐸4and 

𝐸5respectively.  

 

CONCLUSION 

In this article, we have reported an original implementation of multicomponent DFT in deMon2k. The 

implementation has been parallelized using the MPI (Message Passing Interface) protocol. Resolution 

of the coupled electron/proton Kohn-Sham equations is carried out using an approximate second-

order SCF algorithm that we implemented in the program. This algorithm greatly improves SCF 

convergence. We have introduced variationally fitted auxiliary densities for both electrons and 

protons. The ET8, ET8* and ET10* auxiliary basis sets have been optimized to express auxiliary proton 

densities. Five approximate energy expressions using fitted densities have been derived. Our tests 

indicate that all these can be used safely provided that sufficiently flexible auxiliary electronic basis 

sets are used (GEN-A4*). Introduction of fitted densities for electrons and protons completely remove 

the computational demand for classical Coulomb interactions. Exact exchange among protons and 

electron-proton correlation are the most time-consuming parts of MDFT as implemented in deMon2k. 

Further developments are underway in our laboratory to further improve computational efficiency. 

Computational advantages might also be obtained by switching to a standard exchange functional 

instead of using exact-exchange among protons.  
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In summary, the present implementation of MDFT in deMon2k provides a solid basis for our future 

developments of the MDFT methodology, which despite being still in its infancy, holds great promise 

for simulating several physicochemical processes involving nuclear quantum effects or "exotic" 

particles. The efficiency of the code (e.g. SCF stability, computational performance) combined with 

continuous progress on electron‐proton correlation functionals is encouraging for applications to real‐ 

world problems. In this context, we would like to mention that, although we decided not to focus on 

the quality of the proton densities obtained with the EPC functionals, we have preliminary indications 

that EPC17-2 and UTT14 perform rather similar, and that the NSF07 functional does not improve over 

computations without EPC functionals. deMon2k is an open-source computer code under the license 

agreement and is free for academics. Interested users may contact the authors to obtain copies of the 

MDFT routines.  

SUPPLEMENTARY MATERIAL 

Supplementary material (SM) contains Tables gathering proton affinities with different combinations 

of electronic and proton auxiliary basis sets and with different electron proton correlation energy 

functional. These data were used for Figure 1 and Table 4. Optimized geometries (in Cartesian 

coordinates) used to build Table 3 can also be found in SM. We also provide absolute energies of 

hydrogen bond complexes that were used to draw Figure 2.  

ACKNOWLEDGMENTS 

We are grateful to Prof. Flores-Moreno for his help in the first steps of our MDFT project as well as for 

several illuminating discussion. This work was supported by the French Agence Nationale de la 

Recherche (Convention ANR-13-JS08-0010-01). 

 

REFERENCES 

1.  Dogonadze, R. R.; Alexander, M. K.; Chernenko, A. A., THEORY OF HOMOGENEOUS AND 
HETEROGENEOUS ELECTRONIC PROCESSES IN LIQUIDS. Russ. Chem. Rev. 1965, 34 (10), 759. 
2.  Hammes-Schiffer, S.; Stuchebrukhov, A. A., Theory of Coupled Electron and Proton Transfer 
Reactions. Chem. Rev. 2010, 110 (12), 6939. 
3.  Alhambra, C., et al., Canonical Variational Theory for Enzyme Kinetics with the Protein Mean Force 
and Multidimensional Quantum Mechanical Tunneling Dynamics. Theory and Application to Liver 
Alcohol Dehydrogenase. J. Phys. Chem. B 2001, 105 (45), 11326. 
4.  Hwang, J.-K.; Warshel, A., How Important Are Quantum Mechanical Nuclear Motions in Enzyme 
Catalysis? J. Am. Chem. Soc. 1996, 118 (47), 11745. 
5.  Thomas, I. L., Protonic Structure of Molecules. I. Ammonia Molecules. Physical Review 1969, 185 
(1), 90. 
6.  Thomas, I. L., The protonic structure of methane, ammonia, water, and hydrogen fluoride. Chem. 
Phys. Lett. 1969, 3 (9), 705. 
7.  Slater, J. C., The Quantum Theory of the Equation of State. Physical Review 1931, 38 (2), 237. 



26 
 

8.  Tachikawa, M.; Mori, K.; Suzuki, K.; Iguchi, K., Full variational molecular orbital method: Application 
to the positron-molecule complexes. Int. J. Quantum Chem 1998, 70 (3), 491. 
9.  Ishida, M.; Tachikawa, M.; Tokiwa, H.; Mori, K.; Ishii, A., First principles calculation for 
hydrogen/positronium adsorption on an Si(111) surface using the dynamical extended molecular 
orbital method. Surf. Sci. 1999, 438 (1), 47. 
10.  Nakai, H., Nuclear orbital plus molecular orbital theory: Simultaneous determination of nuclear 
and electronic wave functions without Born–Oppenheimer approximation. Int. J. Quantum Chem 2007, 
107 (14), 2849. 
11.  Tachikawa, M.; Mori, K.; Nakai, H.; Iguchi, K., An extension of ab initio molecular orbital theory to 
nuclear motion. Chem. Phys. Lett. 1998, 290, 437. 
12.  Tachikawa, M., Multi-component molecular orbital theory for electrons and nuclei including many-
body effect with full configuration interaction treatment: isotope effects on hydrogen molecules. 
Chem. Phys. Lett. 2002, 360 (5), 494. 
13.  Webb, S. P.; Iordanov, T.; Hammes-Schiffer, S., Multiconfigurational nuclear-electronic orbital 
approach: Incorporation of nuclear quantum effects in electronic structure calculations. J. Chem. Phys. 
2002, 117 (9), 4106. 
14.  Iordanov, T.; Hammes-Schiffer, S., Vibrational analysis for the nuclear–electronic orbital method. 
J. Chem. Phys. 2003, 118 (21), 9489. 
15.  Pak, M. V.; Swalina, C.; Webb, S. P.; Hammes-Schiffer, S., Application of the nuclear–electronic 
orbital method to hydrogen transfer systems: multiple centers and multiconfigurational 
wavefunctions. Chem. Phys. 2004, 304 (1), 227. 
16.  Swalina, C.; Pak, M. V.; Hammes-Schiffer, S., Alternative formulation of many-body perturbation 
theory for electron–proton correlation. Chem. Phys. Lett. 2005, 404 (4), 394. 
17.  Nakai, H., Simultaneous determination of nuclear and electronic wave functions without Born–
Oppenheimer approximation: Ab initio NO+MO/HF theory. Int. J. Quantum Chem 2002, 86 (6), 511. 
18.  Nakai, H.; Sodeyama, K.; Hoshino, M., Non-Born–Oppenheimer theory for simultaneous 
determination of vibrational and electronic excited states: ab initio NO+MO/CIS theory. Chem. Phys. 
Lett. 2001, 345 (1), 118. 
19.  Skone, J. H.; Pak, M. V.; Hammes-Schiffer, S., Nuclear-electronic orbital nonorthogonal 
configuration interaction approach. J. Chem. Phys. 2005, 123 (13), 134108. 
20.  Imamura, Y.; Kiryu, H.; Nakai, H., Colle-Salvetti-type correction for electron-nucleus correlation in 
the nuclear orbital plus molecular orbital theory. J. Comput. Chem. 2007, 29 (5), 735. 
21.  Chakraborty, A.; Pak, M. V.; Hammes-Schiffer, S., Development of Electron-Proton Density 
Functionals for Multicomponent Density Functional Theory. Phys. Rev. Lett. 2008, 101 (15), 153001. 
22.  Yang, Y.; Culpitt, T.; Hammes-Schiffer, S., Multicomponent Time-Dependent Density Functional 
Theory: Proton and Electron Excitation Energies. J. Phys. Chem. Lett. 2018, 9 (7), 1765. 
23.  Kreibich, T.; van Leeuwen, R.; Gross, E. K. U., Multicomponent density-functional theory for 
electrons and nuclei. Phys. Rev. A 2008, 78, 022501. 
24.  Mintmire, J. W.; Dunlap, B. I., Fitting the Coulomb potential variationally in linear-combination-of-
atomic-orbitals density-functional calculations. Phys. Rev. A 1982, 25 (1), 88. 
25.  Dunlap, B. I.; Rösch, N.; Trickey, S. B., Variational fitting methods for electronic structure 
calculations. Mol. Phys. 2010, 108 (21-23), 3167. 
26.  Kendall, R. A.; Früchtl, H. A., The impact of the resolution of the identity approximate integral 
method on modern ab initio algorithm development. Theor. Chem. Acc. 1997, 97 (1), 158. 
27.  Moncada, F.; Posada, E.; Flores-Moreno, R.; Reyes, A., Non-Born–Oppenheimer self-consistent 
field calculations with cubic scaling. Chem. Phys. 2012, 400, 103. 
28.  Warshel, A.; Levitt, M., Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric 
stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 1976, 103 (2), 227. 
29.  Salahub, D., et al., QM/MM Calculations with deMon2k. Molecules 2015, 20 (3), 4780. 
30.  Chakraborty, A.; Pak, M. V.; Hammes-Schiffer, S., Properties of the exact universal functional in 
multicomponent density functional theory. J. Chem. Phys. 2009, 131 (12), 124115. 



27 
 

31.  Sirjoosingh, A.; Pak, M. V.; Hammes-Schiffer, S., Multicomponent density functional theory study 
of the interplay between electron-electron and electron-proton correlation. J. Chem. Phys. 2012, 136 
(17), 174114. 
32.  Auer, B.; Hammes-Schiffer, S., Localized Hartree product treatment of multiple protons in the 
nuclear-electronic orbital framework. J. Chem. Phys. 2010, 132 (8), 084110. 
33.  Mejía-Rodríguez, D.; Köster, A. M., Robust and efficient variational fitting of Fock exchange. J. 
Chem. Phys. 2014, 141 (12), 124114. 
34.  Kreibich, T.; Gross, E. K. U., Multicomponent Density-Functional Theory for Electron and Nuclei. 
Phys. Rev. Lett. 2001, 86 (14), 2984. 
35.  Yang, Y.; Brorsen, K. R.; Culpitt, T.; Pak, M. V.; Hammes-Schiffer, S., Development of a practical 
multicomponent density functional for electron-proton correlation to produce accurate proton 
densities. J. Chem. Phys. 2017, 147 (11), 114113. 
36.  Brorsen, K. R.; Yang, Y.; Hammes-Schiffer, S., Multicomponent Density Functional Theory: Impact 
of Nuclear Quantum Effects on Proton Affinities and Geometries. J. Phys. Chem. Lett. 2017, 8 (15), 
3488. 
37.  Köster, A. M., Hermite Gaussian auxiliary functions for the variational fitting of the Coulomb 
potential in density functional methods. J. Chem. Phys. 2003, 118 (22), 9943. 
38.  Calaminici, P., et al., Auxiliary Density Functional Theory: From Molecules to Nanostructures. In 
Handbook of Computational Chemistry, Leszczynski, J., Ed. Springer Netherlands: Dordrecht, 2016; pp 
1. 
39.  Köster, A. M.; Reveles, J. U.; del Campo, J. M., Calculation of exchange-correlation potentials with 
auxiliary function densities. J. Chem. Phys. 2004, 121 (8), 3417. 
40.  Pak, M. V.; Hammes-Schiffer, S., Electron-Proton Correlation for Hydrogen Tunneling Systems. 
Phys. Rev. Lett. 2004, 92 (10), 103002. 
41.  Sirjoosingh, A.; Pak, M. V.; Swalina, C.; Hammes-Schiffer, S., Reduced explicitly correlated Hartree-
Fock approach within the nuclear-electronic orbital framework: Theoretical formulation. J. Chem. Phys. 
2013, 139 (3), 034102. 
42.  Sirjoosingh, A.; Pak, M. V.; Brorsen, K. R.; Hammes-Schiffer, S., Quantum treatment of protons with 
the reduced explicitly correlated Hartree-Fock approach. J. Chem. Phys. 2015, 142, 214107. 
43.  Colle, R.; Salvetti, O., Approximate calculation of the correlation energy for the closed shells. 
Theoret. Chim. Acta 1974, 37 (4), 329. 
44.  Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a 
functional of the electron density. Phys. Rev. B 1988, 37 (2), 785. 
45.  Imamura, Y.; Tsukamoto, Y.; Kiryu, H.; Nakai, H., Extension of density functional theory to nuclear 
orbital plus molecular orbital theory: self-consistent calculations with the Colle-Salvetti Electron-
Nucleus correlation functional. Bull. Chem. Soc. Jpn. 2009, 82 (9), 1133. 
46.  Udagawa, T.; Tsuneda, T.; Tachikawa, M., Electron-nucleus correlation functional for 
multicomponent density-functional theory. Phys. Rev. A 2014, 89 (5), 052519. 
47.  Roberto, F. M., et al., LOWDIN: The any particle molecular orbital code. Int. J. Quantum Chem 
2014, 114 (1), 50. 
48.  Pulay, P., Convergence acceleration of iterative sequences. the case of scf iteration. Chem. Phys. 
Lett. 1980, 73 (2), 393. 
49.  P., P., Improved SCF convergence acceleration. J. Comput. Chem. 1982, 3 (4), 556. 
50.  Köster, A. M.; Campo, J. M. d.; Janetzko, F.; Zuniga-Gutierrez, B., A MinMax self-consistent-field 
approach for auxiliary density functional theory. J. Chem. Phys. 2009, 130 (11), 114106. 
51.  Fischer, T. H.; Almlof, J., General methods for geometry and wave function optimization. J. Phys. 
Chem. 1992, 96 (24), 9768. 
52.  Chaban, G.; Schmidt, M. W.; Gordon, M. S., Approximate second order method for orbital 
optimization of SCF and MCSCF wavefunctions. Theor. Chem. Acc. 1997, 97 (1), 88. 
53.  Neese, F., Approximate second-order SCF convergence for spin unrestricted wavefunctions. Chem. 
Phys. Lett. 2000, 325 (1), 93. 



28 
 

54.  Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple 
zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7 
(18), 3297. 
55.  Feller, D. F.; Ruedenberg, K., Systematic approach to extended even-tempered orbital bases for 
atomic and molecular calculations. Theoret. Chim. Acta 1979, 52 (3), 231. 
56.  Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. 
Phys. Rev. A 1988, 38 (6), 3098. 
57.  Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 
1993, 98 (7), 5648. 
58.  Řezáč, J.; Riley, K. E.; Hobza, P., S66: A Well-balanced Database of Benchmark Interaction Energies 
Relevant to Biomolecular Structures. J. Chem. Theor. Comput. 2011, 7 (8), 2427. 
59.  Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys. 
Rev. Lett. 1996, 77 (18), 3865. 

60. Delesma, F. A.; Geudtner, G.; Mejia-Rodriguez, D.; Calaminici, P.; Köster, A. M., Range-separated 
Hybrid Functionals with Variational Fitted Exact Exchange. J. Chem. Theory Comput. 2018, 14, 5608. 

 


