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Abstract

We prove existence and uniqueness of a random field solution (u(t, x); (t, x) ∈ [0, T ]×Rd)
to a stochastic wave equation in dimensions d = 1, 2, 3 with diffusion and drift coefficients
of the form |z|

(
ln+(|z|)

)a
for some a > 0. The proof relies on a sharp analysis of moment

estimates of time and space increments of the corresponding stochastic wave equation
with globally Lipschitz coefficients. We give examples of spatially correlated Gaussian
driving noises where the results apply.
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1. Introduction

In this paper, we study the stochastic wave equation in spatial dimension d ∈ {1, 2, 3},
with a multiplicative noise W ,

∂2

∂t2
u(t, x)−∆xu(t, x) = b(u(t, x)) + σ(u(t, x))Ẇ (t, x), (t, x) ∈ (0, T ]× Rd,

u(0, x) = u0(x),
∂

∂t
u(0, x) = v0(x), x ∈ Rd. (1.1)

The choice of Ẇ depends on the dimension d. First, we consider the case d = 1 with
space-time white noise. Then, we consider the dimensions d = 2, 3 with a noise white in
time and coloured in space. The initial conditions u0 and v0 are real-valued functions.
The coefficients b, σ : R→ R are locally Lipschitz functions such that, for |z| → ∞,

|b(z)| ≤ θ1 + θ2|z| (ln |z|)δ , |σ(z)| ≤ σ1 + σ2|z| (ln |z|)a , (1.2)
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where θi, σi ∈ R+, i = 1, 2, θ2, σ2 > 0, δ, a > 0.
We are interested in studying conditions ensuring global existence of a random field

solution to (1.1), that is, the existence of a stochastic process
(
u(t, x), (t, x) ∈ [0, T ]× Rd

)
satisfying

u(t, x) = [G(t) ∗ v0](x) +
∂

∂t

[
G(t) ∗ u0

]
(x) +

∫ t

0

ds [G(s) ∗ b(u(t− s, ·))](x)

+

∫ t

0

∫
Rd
G(t− s, x− y)σ(u(s, y))W (ds, dy), a.s. (1.3)

either for all (t, x) ∈ [0, T ] × Rd or (t, x) ∈ [0, T ] ×D, with D ⊂ Rd bounded. In (1.3),
G(t), t > 0, is the fundamental solution to the wave operator, the notation “∗” denotes
the convolution in the space variable, and the stochastic integral is defined for example
in [4].

It is a well-known phenomenon in PDEs that if the coefficients are superlinear, blow-
up may occur (see for instance [12], and [23, Section X.13, p. 293]). For parabolic SPDEs,
there is an extensive literature devoted to the study of blow-up phenomena. We refer
the reader to [5] for a sample of references. There are however less results on stochastic
wave equations. To the best of our knowledge, existence or absence of blow-up has been
studied so far in the setting of functional-valued solutions, rather than for random field
solutions, and mostly but not only, with strong conditions on the space covariance (see
e.g. [3], [22], [18]). A quite general setting is considered in [17], where, existence (but
not uniqueness) of functional-valued global solution is proved. The recent prepublication
[11] is a new contribution to the problem.

Our research is motivated by [5], on the parabolic SPDE

∂

∂t
u(t, x)− ∂2

∂x2u(t, x) = b(u(t, x)) + σ(u(t, x))Ẇ (t, x), (t, x) ∈ (0, T ]× (0, 1), (1.4)

u(0, x) = u0(x), x ∈ [0, 1], with vanishing Dirichlet boundary conditions and locally Lip-
schitz coefficients such that, as |z| → ∞, |b(z)| = O(|z|(ln |z|)), |σ(z)| = o

(
|z|(ln |z|)1/4

)
.

One of the main results in [5] is the existence of a unique global random field solution
to (1.4) on C(R+ × [0, 1]). This solution satisfies sup(t,x)∈[0,T ]×[0,1] |u(t, x)| <∞, a.s., for

any T > 0. If in equation (1.4), σ is constant and |b(z)| ≥ |z|(ln |z|)1+ε when |z| → ∞,
with ε arbitrarily close to zero, Bonder and Groisman [1] prove that blow-up occurs in
finite time t > 0. The results in [5] imply that this condition on b is sharp.

The main results of this work are Theorem 3.5 and Theorem 4.13, relative to the
two type of noises considered in the paper. Two scenarios are considered: (i) we restrict
the spatial domain to a bounded set D; (ii) the initial values have compact support and
b(0) = σ(0) = 0. (see Section 6 for details). Loosely formulated, we prove:

If the initial conditions satisfy some Hölder continuity properties, the coefficients are
such that (1.2) holds (see condition (Cs) in Section 3), and b dominates σ (see conditions
(C1), (Cd) in Sections 3 and 4, respectively), then a global random field solution to (1.3)
exists.

Our approach follows the L∞-method of [5], nevertheless, we do not use compari-
son theorems concerning monotony of coefficients since they do not hold for the wave
equation. The main task consists in establishing qualitative sharp upper bounds on
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E
(

sup(t,x)∈K |u(t, x)|p
)

, for some range of values of p, when the coefficients are globally

Lipschitz and K is compact subset of R+ ×Rd. Such upper bounds depend on the value
at the origin and the Lipschitz constants of the coefficients b and σ (see Propositions 3.4
and 4.12, and the notation (2.6)). These bounds are obtained from Lp-estimates of in-
crements in time and in space of the process (u(t, x))(t,x) (see Propositions 3.3 and 4.11)
via a version of Kolmogorov’s theorem ([9, Theorem A.3.1]). Why is this important?
Existence of solutions to equations with locally Lipschitz coefficients is often proved by
transforming the coefficients into globally Lipschitz functions, using truncation. With a
classical argument, involving an increasing sequence of stopping times (τN )N , if τN ↑ ∞
a.s., then existence of global solution follows. Let uN denote the random field solution
to (1.3) with truncated (by N) coefficients bN , σN (see (3.25)). In our case, a sufficient
condition for τN ↑ ∞ to hold (a.s.) is

E
(

sup
(t,x)∈K

|uN (t, x)|p
)

= o(Np). (1.5)

We prove (1.5) in the two scenarios described above, thereby deducing absence of blow-
up.

In Section 3, we consider the case d = 1 and space-time white noise. The simplicity
of this case allows to better highlight the approach. In Section 4, we deal with the case
d = 2, 3. Since we are interested in random field solutions, in contrast with the case d = 1,
we cannot take a space-time white noise. Instead, we consider a class of Gaussian noises
white in time and coloured in space, for which a well developed stochastic integral theory
exists (see e.g. [4], [9]). In comparison with Section 3, the arguments and computations
are more difficult; they are inspired by the approach to sample path regularity of the
random field solution of (1.3) for d = 3 given in [7] and [13]. Section 5 provides several
examples of covariance densities where the results of the paper apply. Finally, in Section
6, we give the background on the two settings for the wave equation considered in the
paper.

We end this introduction with some remarks. Addressing the question of critical
growth of the coefficients for blow-up would be a natural and interesting continuation of
this article. This is a plan for future work. Consider the case where b and σ are globally
Lipschitz functions. From the first statement of Proposition 4.11 (see (4.72)), we deduce
the existence of a version of the process (u(t, x))(t,x) with locally Hölder-continuous
sample paths, jointly in (t, x). Thus, for the class of spatial covariances considered in
Section 4, this gives a unified approach to sample path regularity of the stochastic wave
equation when d = 2, 3. Related results are in [19] for d = 2, and [7], [13] for d = 3.

Without much additional effort, the results of this paper can be extended to equation
(1.3) with coefficients b(t, x;u(t, x)) and σ(t, x;u(t, x)).

2. Preliminaries and notations

We recall that for d = 1, 2 and for any fixed t > 0, the fundamental solution G(t) to

the partial differential operator ∂2

∂t2
−∆x, is a function. More precisely,

G(t, x) =

{
1
2 1{|x|<t}, x ∈ R,
1

2π
1√

t2−|x|2
1{|x|<t}, x ∈ R2,

(2.1)
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while for d = 3,

G(t, dx) =
1

4πt
σt(dx), x ∈ R3, (2.2)

where σt(dx) denotes the uniform surface measure on the sphere centred at zero and
with radius t, (see e.g. [10, Ch. 5]).

Recall that, for any d ≥ 1, the Fourier transform of G(t, ·) is (see [27, p. 49])

FG(t, ·)(ζ) =

∫
Rd
e−ix·ζG(t, dx) =

sin(t|ζ|)
|ζ|

. (2.3)

We will write G(t, x− dy) to denote the translation by −x of the measure G(t, dy) in
the distribution sense (see e.g. [24, p. 55]).

We will often write (1.3) in the compact form

u(t, x) =

2∑
i=0

Ii(t, x), t ∈ [0, T ], x ∈ Rd, (2.4)

where

I0(t, x) =[G(t) ∗ v0](x) +
∂

∂t

[
G(t) ∗ u0

]
(x),

I1(t, x) =

∫ t

0

ds [G(s) ∗ b(u(t− s, ·))](x),

I2(t, x) =

∫ t

0

∫
Rd
G(t− s, x− dy)σ(u(s, y))W (ds, dy). (2.5)

Notations

As mentioned in the introduction, we assume first that the coefficients of (1.3), b and
σ, are globally Lipschitz continuous functions. Therefore, we have

|b(z)| ≤ c(b) + L(b)|z|, |σ(z)| ≤ c(σ) + L(σ)|z|, z ∈ R, (2.6)

with c(b) = |b(0)|, c(σ) = |σ(0)| and L(b), L(σ), the Lipschitz constants of b and σ,
respectively.

Let Φ : Ω × [0, T ] × Rd → R be a jointly measurable random field. For fixed α > 0,
p ∈ [2,∞), we define the family of seminorms

Nα,p(Φ) := sup
t≥0

sup
x∈Rd

e−αt‖Φ(t, x)‖p, (2.7)

where ‖ · ‖p denotes the norm in Lp(Ω).
For φ : R → R, set ‖φ‖∞ = supx∈R |φ(x)| and, for R ≥ 0, ‖φ‖∞,R = sup|x|≤R |φ(x)|.

For γ ∈ (0, 1), we define

‖φ‖γ = sup
x 6=y

|φ(x)− φ(y)|
|x− y|γ

. (2.8)

Except if specified otherwise, C, C̄, C̃, c, . . . are positive and finite constants that
may change throughout the paper, and C(a), C̄(a), etc., denote positive finite constants
depending on the parameter a.
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3. The stochastic wave equation in dimension one

In this section, we consider the stochastic wave equation (1.3) for d = 1, with a space-
time white noise W and coefficients satisfying the superlinear growth condition (1.2).The
study goes through several steps developed in the next subsections.

3.1. Qualitative moment estimates

We assume that the coefficients of (1.3), b and σ, are globally Lipschitz continuous
functions therefore satisfying (2.6). We also suppose that L(b) and L(σ) are strictly pos-
itive. The goal is to obtain upper bounds on supx∈R ‖u(t, x)‖p in terms of the constants
c(b), c(σ), L(b), L(σ) for some range of values of p. This will be done using the approach
of [14, Chapter 5] for the stochastic heat equation (see also [5]).

By the definition of I0(t, x) and G given in (2.5) and (2.1), respectively, we have

I0(t, x) =
1

2

∫ x+t

x−t
v0(y)dy +

1

2

(
u0(x− t) + u0(x+ t)

)
. (3.1)

From this equality, we deduce

sup
x∈R
|I0(t, x)| ≤ t‖v0‖∞ + ‖u0‖∞. (3.2)

Clearly, if u0, v0 are bounded functions then supx∈R |I0(t, x)| <∞ for every t ∈ [0, T ].

Proposition 3.1. ([2, Proposition II.3]) Assume that the function (t, x) 7→ I0(t, x) is
continuous and sup(t,x)∈[0,T ]∈R |I0(t, x)| <∞. Suppose that b and σ are globally Lipschitz

continuous functions. Then (1.3) has a unique random field solution
(
u(t, x); (t, x) ∈

[0, T ]× R
)
. This solution satisfies

sup
(t,x)∈[0,T ]×R

‖u(t, x)‖p <∞, for any p ∈ [1,∞).

In the proof of the next proposition, the following facts will be used:

sup
t≥0

(tke−αt) = kk(eα)−k, k ∈ N, sup
t≥0

∫ t

0

se−αs ds = α−2, α > 0. (3.3)

Proposition 3.2. Let u0 and v0 be Borel functions satisfying ‖u0‖∞ + ‖v0‖∞ < ∞.
Suppose that L(b) ≥ 8L(σ)2. Then, there exists a universal constant C > 0 such that,

for any p ∈
[
2, L(b)

4L(σ)2

]
,

N
2
√
L(b),p

(u) ≤ T0 + C
[ c(b)
L(b)

+
c(σ)

L(σ)

]
, (3.4)

where

T0 =
e−1‖v0‖∞√

L(b)
+ 2‖u0‖∞. (3.5)

Thus,

sup
x∈R

E(|u(t, x)|p) ≤ e2pt
√
L(b)

{
T0 + C

[
c(b)

L(b)
+
c(σ)

L(σ)

]}p
, t ∈ [0, T ]. (3.6)
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Proof. Fix α > 0 and p ∈ [2,+∞). Using (3.2) and (3.3),we obtain

Nα,p(I0) ≤ e−1

α
‖v0‖∞ + ‖u0‖∞. (3.7)

Applying Minkowski’s inequality, and then (2.6), we have

‖I1(t, x)‖p ≤
∫ t

0

ds

∫
R
dy G(t− s, x− y)‖b(u(s, y))‖p

≤
∫ t

0

ds

∫
R
dy G(t− s, x− y) [c(b) + L(b)‖u(s, y)‖p] .

Since
∫
RG(t, x)dx = t, using (3.3) we deduce

Nα,p(I1) ≤ c(b) sup
t≥0

(
t2

2
e−αt

)
+ L(b)Nα,p(u) sup

t≥0

∫ t

0

(s)e−α(s)ds

≤ 2e−2

α2
c(b) +

1

α2
L(b)Nα,p(u) ≤ 1

α2
[c(b) + L(b)Nα,p(u)] . (3.8)

Applying first the version of Burkholder-Davies-Gundy’s inequality given in [14, The-
orem B1, p. 97], then Minkowski’s inequality and (2.6), we obtain

‖I2(t, x)‖2p ≤ 4p
∥∥∥∫ t

0

∫
R
G2(t− s, x− y)σ2(u(s, y))dsdy

∥∥∥
p
2

≤ 4p

∫ t

0

∫
R
G2(t− s, x− y)‖σ2(u(s, y))‖ p

2
dsdy

≤ 8p

{∫ t

0

ds

∫
R
dy G2(t− s, x− y)

[
c(σ)2 + L(σ)2‖u(s, y))‖2p

]}
.

Since G2(t, x) = 1
2G(t, x), using (3.3) we have

Nα,p(I2) ≤
√

2p c(σ) sup
t≥0

(
te−αt

)
+
√

8p L(σ)Nα,p(u)

×
(∫ t

0

ds

∫
R
dy G2(t− s, x− y)e−2α(t−s)

)1/2

≤
√

2p
e−1

α
c(σ) +

√
8p L(σ)Nα,p(u)

(∫ t

0

1

2
se−2αsds

) 1
2

≤
√
p

α
[c(σ) + L(σ)Nα,p(u)] . (3.9)

The inequalities (3.7), (3.8) and (3.9) imply

Nα,p(u) ≤e
−1

α
‖v0‖∞ + ‖u0‖∞ +

c(b)

α2
+

√
p

α
c(σ) + 2 max

(L(b)

α2
,

√
pL(σ)

α

)
Nα,p(u).

(3.10)

Fix α2 = 4L(b); since L(b) ≥ 8L(σ)2, the interval
[
2, L(b)

4L(σ)2

]
is nonempty. Since

for any p in this interval we have
√
pL(σ) ≤

√
L(b)

2 = α
4 , the choice of α implies
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max
(
L(b)
α2 ,

√
pL(σ)

α

)
= 1

4 , and
√
p

α ≤
1

4L(σ) . Hence, from (3.10) we deduce (3.4). The esti-

mate (3.6) is an immediate consequence of the definition of Nα,p(u) for α = 2
√
L(b).

3.2. Uniform bounds on moments

In this section, we still assume that the coefficients of (1.3) are globally Lipschitz
continuous functions. We prove an upper bound for

E
(

sup
t∈[0,T ]

sup
|x|≤R

|u(t, x)|p
)
, (3.11)

for any R > 0, and for specific values of p that depend on the initial values u0, v0, and the
constants c(b), c(σ), L(b), L(σ). This will be a consequence of the following proposition.

Proposition 3.3. Let u0 be locally Hölder continuous with exponent γ1 ∈ (0, 1], and v0

be continuous. Set γ = γ1 ∧ 1
2 , and fix T,R ≥ 0. Then, for any p ∈ [2,∞), there exists a

positive constant C(p, T,R) such that, for any t, t̄ ∈ [0, T ], x, x̄ ∈ [−R,R] and α > 0,

‖u(t, x)− u(t̄, x̄)‖p
(|t− t̄|+ |x− x̄|)γ

≤ C(p, T,R)
[
M1 +M2e

αTNα,p(u)
]
, (3.12)

where

M1 = ‖u0‖γ1 + ‖v0‖∞,R+T + c(b) +
√
p c(σ), M2 = L(b) +

√
p L(σ). (3.13)

Moreover, if L(b) ≥ 8L(σ)2 then for any p ∈
[
2, L(b)

4L(σ)2

]
,

‖u(t, x)− u(t̄, x̄)‖p
(|t− t̄|+ |x− x̄|)γ

≤ C(p, T,R)

[
M1 +M2e

2
√
L(b)T

(
T0 +

c(b)

L(b)
+
c(σ)

L(σ)

)]
, (3.14)

with T0 given in (3.5).

Proof. The function V0(z) =
∫ z

0
v0(y) dy is continuously differentiable; hence,

∣∣∣ ∫ x̄+t̄

x̄−t̄
v0(y) dy −

∫ x+t

x−t
v0(y) dy

∣∣∣ ≤ 2 ‖v0‖∞,R+T (|x− x̄|+ |t− t̄|) .

Consequently, using the expression (3.1) and the γ1- Hölder continuity of u0, we obtain

|I0(t, x)− I0(t̄, x̄)| ≤ C(T,R) (‖u0‖γ1 + ‖v0‖∞,R+T ) (|x− x̄|γ1 + |t− t̄|γ1) . (3.15)

for some C(T,R) > 0.
In the next arguments, we will use the following inequalities, whose proofs are easy.

For all 0 ≤ t̄, t ≤ T , x, x̄ ∈ R, there exists a positive constant C(T ) such that∫ T

0

ds

∫
R
dy |G(t− s, x− y)−G(t̄− s, x̄− y)|

= 2

∫ T

0

ds

∫
R
dy |G(t− s, x− y)−G(t̄− s, x̄− y)|2 ≤ C(T ) (|t− t̄|+ |x− x̄|) . (3.16)
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For any α > 0, as in the proof of Proposition 3.2, Minkovski’s inequality and (2.6) imply

‖I1(t, x)− I1(t̄, x̄)‖p ≤
∫ T

0

ds

∫
R
dy |G(t− s, x− y)−G(t̄− s, x̄− y)|‖b(u(s, y))‖p

≤ C(T )
[
c(b) + L(b)eαTNα,p(u)

]
(|t− t̄|+ |x− x̄|) . (3.17)

Upper bounds of increments of I2 are also obtained following the arguments in the
proof of Proposition 3.2, based on the Burkholder-Davies-Gundy and Minkowski inequal-
ities. More precisely,

‖I2(t, x)− I2(t̄, x̄)‖2p ≤ 4p
∥∥∥∫ T

0

ds

∫
R
dy|G(t− s, x− y)−G(t̄− s, x̄− y)|2σ2(u(s, y))

∥∥∥
p
2

≤ 8p C(T )
[
c(σ)2 + L(σ)2e2αTNα,p(u)2

]
(|t− t̄|+ |x− x̄|) ,

for any α > 0. Consequently,

‖I2(t, x)− I2(t̄, x̄)‖p ≤ 2
√

2C(T )
√
p
[
c(σ) + L(σ)eαTNα,p(u)

]
(|t− t̄|+ |x− x̄|)

1
2 .

(3.18)

Let γ = γ1 ∧ 1
2 ; the inequalities (3.15), (3.17) and (3.18) imply (3.12).

Let α = 2
√
L(b) and p ∈

[
2, L(b)

4L(σ)2

]
; then (3.4) implies (3.14). The proof of the propo-

sition is complete.

From Proposition 3.3, using Kolmogorov’s continuity lemma (see [9, Theorem A.3.1]
or [14, Theorem C-6]), we deduce the following.

Proposition 3.4. Let the initial values u0, v0 be as in Proposition 3.3. Let γ = γ1 ∧ 1
2

and suppose that L(b) > 8
γL(σ)2. Then u has a version, still denoted by u, which is

locally Hölder continuous jointly in (t, x) with exponent η ∈ (0, γ). Furthermore, given

any p ∈
(

2
γ ,

L(b)
4L(σ)2

]
, there exists a constant C(p, T,R) such that

E
(

sup
t∈[0,T ]

sup
|x|≤R

|u(t, x)|p
)
≤ 2p−1‖u0‖p∞,R + C(p, T,R)

[
Mp

1 +Mp
2M

p
3 e

2pT
√
L(b)
]
,

(3.19)
where M1, M2 are defined in (3.13), and

M3 =
e−1‖v0‖∞,R√

L(b)
+ 2‖u0‖∞,R + C

[ c(b)
L(b)

+
c(σ)

L(σ)

]
,

with the universal constant C in the right-hand side of (3.4).

Proof. For any s, t ∈ [0, T ], x, y ∈ [−R,R], set ∆(t, x; s, y) = |t− s|γ + |x− y|γ .
Proposition 3.3 implies

E(|u(t, x)− u(s, y)|p) ≤ K(∆(t, x; s, y))p,

with
K := C(p, T,R)

[
Mp

1 +Mp
2e
αpTNα,p(u)p

]
, α > 0. (3.20)
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Apply [9, Theorem A.3.1] with k = 1, α1 = α2 = γ, I = [0, T ], J = [−R,R], p ∈(
2
γ ,∞

)
, to infer the existence of a version of u (that we still denote by u) with jointly

Hölder continuous sample paths of exponent η ∈ (0, γ). Moreover, since by (1.1), C1 :=

E
(

sup|x|≤R |u(0, x)|p
)

= ‖u0‖p∞,R, we deduce from [9, Equation(2.8.50)],

E
(

sup
t∈[0,T ]

sup
|x|≤R

|u(t, x)|p
)
≤ 2p−1‖u0‖p∞,R + C(p, T,R)K, (3.21)

where K is defined in (3.20). Observe that K depends on α.
Choose α = 2

√
L(b). Then (3.21) and (3.20) yield

E
(

sup
t∈[0,T ]

sup
|x|≤R

|u(t, x)|p
)
≤ 2p−1‖u0‖p∞,R

+ C(p, T,R)
[
Mp

1 +Mp
2e

2pT
√
L(b)N

2
√
L(b),p

(u)p
]
. (3.22)

Notice that, since γ ≤ 1/2, the condition L(b) > 8
γL(σ)2 implies that the hypotheses of

Proposition 3.2 are satisfied. Hence, using (3.4) to upper estimate N
2
√
L(b),p

(u) on the

right-hand side of (3.22), and since we are considering |x| ≤ R, we obtain (3.19).

3.3. Existence and uniqueness of global solution

In this section, we consider the equation (1.3) with coefficients having superlinear
growth and prove existence and uniqueness of a random field solution.

We introduce the following set of hypotheses.

(Cs) The functions b, σ : R→ R are locally Lipschitz and such that as |z1|, |z2| → ∞,

|b(z1)− b(z2)| ≤ θ2|z1 − z2| [ln+(|z1 − z2|)]δ ,
|σ(z1)− σ(z2)| ≤ σ2|z1 − z2| [ln+(|z1 − z2|)]a ,

where θ2, σ2 ∈ (0,∞), δ, a > 0, and ln+(z) = ln(z ∨ e) for z ≥ 0.

(C1) The parameters δ, a in (Cs) satisfy one of the properties: (1) δ > 2a; (2) δ = 2a
and the constants θ2 and σ2 are such that θ2 > γ̄σ2

2 , for some γ̄ > 0.

Notice that condition (Cs) implies (1.2), while (C1) says that b dominates σ. We
define θ1 := |b(0)| and σ1 := |σ(0)|.

Theorem 3.5. Assume that the initial condition u0 is Hölder continuous with exponent
γ1, and v0 is continuous. Set γ = γ1 ∧ 1

2 and let the coefficients b and σ satisfy the
conditions (Cs) and (C1) with δ < 2 and γ̄ = 8γ−1.

1. For any M > 0, there exists a random field solution to (1.3) in [−M,M ],
(
u(t, x),

(t, x) ∈ [0, T ]× [−M,M ]). This solution is unique and satisfies

sup
(t,x)∈[0,T ]×[−M,M ]

|u(t, x)| <∞, a.s. (3.23)

2. Suppose that the initial conditions u0, v0 are functions with compact support in-
cluded in [−ρ, ρ], for some ρ > 0, and b(0) = σ(0) = 0. Then there exists a random
field solution

(
u(t, x), (t, x) ∈ [0, T ] × R) to (1.3). This solution is unique and

satisfies
sup

(t,x)∈[0,T ]×[−(ρ+T ),ρ+T ]

|u(t, x)| <∞, a.s. (3.24)
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Proof. We start with some remarks. In statement 1. above, the notion of “random field
solution to (1.3) in [−M,M ]” is made rigorous in Section 6.2. According to Proposition
6.2, the support of the sample paths of this solution is included in [0, T ]×[−(M+T ),M+
T ].

By Proposition 6.1, the assumptions in statement 2. imply that the support of the
sample paths of the solution

(
u(t, x), (t, x) ∈ [0, T ] × R) is included in [0, T ] × [−(ρ +

T ), ρ+ T ]. Hence, (3.24) is equivalent to

sup
(t,x)∈[0,T ]×R

|u(t, x)| <∞, a.s.

Solution for truncated Lipschitz continuous coefficients. For a locally Lipschitz function
g : R→ R and N ≥ 1, we define a globally Lipschitz function gN by

gN (x) = g(x)1{|x|≤N} + g(N)1{x>N} + g(−N)1{x<−N}. (3.25)

Using this definition for σ and b, we consider (1.3) with coefficients σN , bN , and denote
by uN := (uN (t, x); (t, x) ∈ [0, T ]× R) its unique random field solution (see Proposition
3.1). From (Cs) we see that if N ≥ 2, σN , bN satisfy the conditions (2.6) with

c(bN ) = θ1, c(σN ) = σ1, L(bN ) = θ2(ln(2N))δ, L(σN ) = σ2(ln(2N))a. (3.26)

Observe that, in the setting 2. of the Theorem, θ1 = σ1 = 0.
Therefore, Proposition 3.3 applies; by Kolmogorov’s continuity criterion, there is a

version of uN with jointly Hölder continuous sample paths of exponent η ∈ (0, γ) in both
variables. In the sequel we will consider this version that we will still denote by uN .

Bounds for Lp moments of uN . Assume that condition (C1) (1) holds. Then, for N large
enough, we have L(bN ) > 8

γL(σN )2. On the other hand, if condition (C1) (2) is satisfied,

then L(bN ) > 8
γL(σN )2 holds for any N ≥ 2. We can therefore apply Proposition 3.4 to

see that for any p ∈
(

2
γ ,

θ2(ln(2N))δ

4σ2
2(ln(2N))2a

]
, R > 0, N large enough (if necessary).

E
(

sup
t∈[0,T ]

sup
|x|≤R

|uN (t, x)|p
)
≤2p−1‖u0‖p∞,R

+ C(p, T,R)
[
Mp

1 +Mp
2(N)Mp

3(N) e2pT
√
L(bN )

]
, (3.27)

where

M1 =‖u0‖γ1 + ‖v0‖∞,R+T + θ1 +
√
p σ1, M2(N) = L(bN ) +

√
p L(σN ),

M3(N) =
e−1‖v0‖∞,R√

L(bN )
+ 2‖u0‖∞,R + C

[
θ1

L(bN )
+

σ1

L(σN )

]
. (3.28)

Existence and uniqueness of a global solution. Fix R > 0. For any N ≥ 2, set

τN := inf
{
t > 0 : sup

|x|≤R
|uN (t, x)| ≥ N

}
∧ T. (3.29)

The uniqueness of the solution and the local property of stochastic integrals imply that
uN (t, x) = uN+1(t, x) a.s. for t ≤ τN . Hence, almost surely, (τN )N≥2 is an increasing
sequence, bounded by T .
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Assume that supN τN = T , a.s., and thus {t ≤ τN} ↑ Ω, a.s. On {t ≤ τN}, define
(u(t, x), (t, x) ∈ [0, T ) × R) by u(t, x) = uN (t, x); then u(t, x) = uM (t, x), for every
M ≥ N . The random variable u(t, x) is well-defined and moreover, (1.3) holds for any
(t, x), a.s. Indeed, the definition of τN implies that on {t ≤ τN},

u(t, x) =I0(t, x) +

∫ t

0

ds

∫
R
dy G(t− s, x− y)bN (uN (s, y))

+

∫ t

0

∫
R
G(t− s, x− y)σN (uN (s, y))W (ds, dy).

But on {t ≤ τN}, bN (uN (s, y)) = b(uN (s, y)) = b(u(s, y)) and σN (uN (s, y)) = σ(uN (s, y)) =
σ(u(s, y)). Since {t ≤ τN} ↑ Ω a.s., we conclude that (u(t, x), (t, x) ∈ [0, T )×R) satisfies
(1.3). Notice that, in this case, the stochastic integral in (1.3) is not defined in L2(Ω),
but using instead an extension defined a.s. (see e.g. [9]).

The last part of the proof is devoted to check that indeed, supN τN = T a.s. This
will follow from the property

lim
N→∞

P (τN < T ) = 0, (3.30)

that we now establish. Let C(p, T,R,N) denote the right-hand side of (3.27). To em-
phasise the terms that depend on N , we write

C(p, T,R,N) = C1(p, T,R) + C2(p, T,R,N), (3.31)

with

C1(p, T,R) = 2p−1‖u0‖p∞,R + C(p, T,R)Mp
1,

C2(p, T,R,N) = C(p, T,R)Mp
2(N)Mp

3(N) e2pT
√
L(bN ).

Fix p ∈
(

2
γ ,

θ2(ln(2N))δ

4σ2
2(ln(2N))2a

]
. Applying Chebychev’s inequality and then (3.27), we have

P (τN < T ) ≤ P
(

sup
t∈[0,T ]

sup
|x|≤R

|uN (t, x)| ≥ N
)
≤ N−pE

(
sup
t∈[0,T ]

sup
|x|≤R

|uN (t, x)|p
)

≤ N−pC(p, T,R,N) = N−p [C1(p, T,R) + C2(p, T,R,N)] . (3.32)

Assume that
C2(p, T,R,N) = o(Np). (3.33)

Then, from (3.32), we clearly obtain (3.30).
For the proof of (3.33), we first write the expressions ofM2(N) andM3(N) in (3.28),

substituting L(bN ) and L(σN ) by their respective values given in (3.26). Because of the
property supN≥2M3(N) ≤ C, we obtain

C2(p, T,R,N) = C̃2(p, T,R) exp
(
p δ ln[ln(2N)] + 2pTθ

1/2
2 [ln(2N)]δ/2

)
.

Since δ < 2, this implies (3.33).
Let M > 0 be as in Claim 1. From the above discussion, we deduce (3.23) by taking

R = M . Similarly, Claim 2. is obtained by considering R = ρ+ T .
The proof of the theorem is complete.
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4. The stochastic wave equation in dimensions 2 and 3

The aim of this section is to discuss the same questions as in Section 3 when d = 2, 3,
and the noise W is white in time and coloured in space. It is well-known that for
dimensions d ≥ 2, if W is a space-time white noise, the stochastic convolution in (1.3)
fails to be a well-defined random variable in L2(Ω), for almost any (t, x) ∈ [0, T ] × Rd.
This is the case even if σ is constant. However, we can still obtain a random field solution
of (1.3) by taking a smoother noise in the spatial variable (see e.g. [28]). This leads to
the introduction in the next subsection 4.1 of a new class of Gaussian noises.

4.1. Spatially homogeneous Gaussian noise and stochastic integrals

Let Λ be a non-negative definite distribution in S ′(Rd). By the Bochner-Schwartz
theorem (see e.g. [24, Chap. VII, Thoerem XVIII]), Λ is the Fourier transform of a
non-negative, tempered, symmetric measure µ on Rd called the spectral measure of Λ.
In particular, Λ is also a tempered distribution.

On a complete probability space (Ω,A, P ), we consider a Gaussian process {W (ϕ), ϕ ∈
C0(Rd+1}, indexed by the set of Schwartz test functions, with mean zero and covariance

E (W (ϕ)W (ψ)) =

∫ ∞
0

dt

∫
Rd

Λ(dx)
(
ϕ(t) ∗ ψ̃(t)

)
(x), (4.1)

where “∗” denotes the convolution operator in the spatial variable and ψ̃ means reflection
in the spatial variable too.
We will consider spatial covariances Λ satisfying the following hypothesis ([4]):

(h0) The spectral measure µ = F−1Λ is such that∫
Rd

µ(dζ)

1 + |ζ|2
<∞. (4.2)

From (2.3), we see that this is equivalent to
∫ T

0
dt
∫
Rd µ(dζ) |FG(t)(ζ)|2 <∞.

Consider a jointly measurable adapted process Z =
(
Z(t, x), (t, x) ∈ [0, T ]× Rd

)
such

that sup(t,x)∈[0,T ]×Rd E(|Z(t, x|p) < ∞, for some p ∈ [2,∞), and assume (h0). Then,
the stochastic integral

((GZ) ·W )(t, x) :=

∫ t

0

∫
Rd

G(t− s, x− y)Z(s, y) W (ds, dy)

is a well-defined random variable. Moreover, for any x ∈ Rd, the process ((GZ) ·
W )(t, x), t ∈ [0, T ]) is a martingale with respect to the natural filtration generated by
W .

We will consider the particular class of covariances Λ described in (h1) below.

(h1) Λ is an absolutely continuous measure, Λ(dx) = f(x)dx, f ≥ 0. Its spectral
measure µ = F−1Λ is such that, for all signed measures Φ and Ψ with finite total
variation, ∫

Rd

∫
Rd

Φ(dx) Ψ(dy)f(x− y) = C

∫
Rd
µ(dζ)FΦ(ζ)FΨ(ζ). (4.3)
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Remark 4.1. Assume
∫
Rd µ(dζ)

[
|F(‖Φ‖)(ζ)|2 + |F(‖Ψ‖)(ζ)|2

]
< ∞, where the nota-

tion ‖ · ‖ stands for the total variation. Suppose also that f : Rd → [0,+∞] is lower
semicontinuous. Then if Φ = Ψ, [16, Corollary 3.4] implies the validity of (4.3) with
C = (2π)−d. By a polarity argument, (4.3) can be extended to Φ 6= Ψ (see [15, p. 487]).

Assume (h0) and (h1). Since for any t > 0, G(t, dx) is a non-negative finite measure
with compact support, using (4.3) with Φ = G(t, dx) and Ψ = G(s, dy), s, t > 0, we have∫

Rd

∫
Rd
G(t, dx) G(s, dy)f(x− y) =

1

(2π)d

∫
Rd
µ(dζ)FG(t, ·)(ζ)FG(s, ·)(ζ). (4.4)

In particular,

J(t) :=

∫
Rd

∫
Rd
G(t, dy)G(t, dy)f(x− y) =

1

(2π)d

∫
Rd
µ(dζ)|FG(t)(ζ)|2. (4.5)

Using (2.3), we have |FG(t)(ζ)|2 ≤ 2
1+|ζ|2 1{|ζ|≥1} + t2 1{|ζ|<1} ≤ 2(1+t2)

1+|ζ|2 for t > 0.

Hence,

J(t) ≤ 2(1 + t2)Cµ, where Cµ :=
1

(2π)d

∫
Rd

µ(dζ)

1 + |ζ|2
<∞, (4.6)

which implies, supt∈[0,T ] J(t) <∞.
Assuming (h0) and (h1), the stochastic integral ((GZ)·W )(t, x) satisfies the following

sharp version of the Burkholder Davies Gundy inequality

‖((GZ) ·W )(t, x)‖pp ≤ (2
√
p)
p

× E
(∫ t

0

ds

∫
Rd

∫
Rd
G(t− s, x− dy)G(t− s, x− dz)f(y − z)Z(s, y)Z(s, z)

) p
2

(4.7)

(see e.g. [9], [21]).

We end this section with a technical lemma related with the identity (4.3). For d = 3,
with a different proof, the result can be found in [13, Lemma 6.5].

Lemma 4.2. Let d ≥ 1, t > 0 and G(t) be the fundamental solution of the wave operator
on Rd. Let ϕ, ψ be bounded Borel measurable functions defined on Rd. Let Λ be a
symmetric measure satisfying (h1), with spectral measure µ = F−1Λ satisfying (h0).
Then, for any s, t > 0 and z ∈ Rd, we have∫

Rd

∫
Rd
ϕ(x)G(t, dx)ψ(y)G(s, dy)f(x− y + z)

=
1

(2π)d

∫
Rd
F (ϕG(t)) (ξ)F (ψG(s)) (ξ)e−iz·ξ µ(dξ). (4.8)

Proof. By applying the translation τzx = x+ z, the left-hand side of (4.8) equals∫
Rd

∫
Rd
ϕ(τ−zx)τ−zG(t, dx)ψ(y)G(s, dy)f(τzx− y) =

∫
Rd

∫
Rd
f(w − y) Φ(dw)Ψ(dy),

where Φ(dw) = ϕ(τ−zw)τ−zG(t, dw) and Ψ = ψ(y)G(s, dy). We recall that τ−zG(t, dw)
stands for the translation of the measure G(t, dw) by −z in the distribution sense (see
e.g. [24, p. 55]).
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Because of the assumptions on ϕ and ψ, the measures Φ(dw) and Ψ(dy) are signed
measures with finite total variation. We can therefore apply (4.3) to deduce∫

Rd

∫
Rd
f(z − y) Φ(dw)Ψ(dy) =

1

(2π)d

∫
Rd
Ff(ξ)F(Φ)(ξ)F(Ψ)(ξ) dξ.

Using the identities F(Φ)(ξ) = F (τ−zϕ(·)τ−zG(t, ·)) (ξ) = e−iξ·zF (ϕG(t, ·)) (ξ), we ob-
tain (4.8).

4.2. Qualitative moment estimates

We introduce a set of assumptions that ensure the existence and uniqueness of a
random field solution to (1.3).

(he)
(i) The functions b and σ are Lipschitz continuous;
(ii) W is a spatially homogeneous noise as described in Section 4.1. Its covariance and
spectral measures (Λ and µ, respectively) satisfy (h0) and (h1).
(iii) The initial values u0, v0 are such that the function (t, x) 7→ I0(t, x) defined in (2.5)
is continuous and

sup
(t,x)∈[0,T ]×Rd

|I0(t, x)| <∞. (4.9)

Theorem 4.3. Assume that (he) is satisfied. Then there exists a random field solution(
u(t, x), (t, x) ∈ [0, T ]× Rd

)
to (1.3), and for any p ∈ [1,∞),

sup
(t,x)∈[0,T ]×Rd

‖u(t, x)‖p <∞. (4.10)

This solution is unique in the class of jointly measurable, adapted processes u satisfying
(4.10) with p = 2.

In the case u0 = v0 = 0, this follows from [4, Theorem 13] applied to the wave
operator. For non-null initial conditions, this follows from [6, Theorem 4.3].

In the sequel, as in Section 3, we will suppose that L(b) and L(σ) are strictly positive.

Proposition 4.4. In addition to (he), we assume that the initial values u0, v0, satisfy
the following conditions:

1. for d = 2, u0 is a bounded function of class C1 with bounded partial derivatives; v0

is continuous and bounded;

2. for d = 3, u0 is a bounded function of class C2 with bounded second order partial
derivatives; v0 is continuous and bounded.

We also suppose that the covariance measure Λ satisfies (h1), and the Lipschitz constants
L(b), L(σ) are such that L(b) ≥

(
212 32 C2

µ L(σ)4
)
∨ 1

4 , where Cµ is given in (4.6). Then,

for any p ∈
[
2,

√
L(b)

25 3Cµ L(σ)2

]
we have

N
2
√
L(b),p

(u) ≤ C
[
T0 +

c(b)

L(b)
+
c(σ)

L(σ)

]
, (4.11)
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where C is a universal constant and

T0 =

‖u0‖∞ + 1√
L(b)

(
‖∇u0‖∞ + ‖v0‖∞

)
, if d = 2,

‖u0‖∞ + ‖∆u0‖∞ + 1√
L(b)
‖v0‖∞, if d = 3.

(4.12)

As a consequence, we deduce that for t ∈ [0, T ] and p ∈
[
2,

√
L(b)

25 3Cµ L(σ)2

]
,

sup
x∈Rd

E(|u(t, x)|p) ≤ Cp e2pt
√
L(b)
[
T0 +

c(b)

L(b)
+
c(σ)

L(σ)

]p
. (4.13)

Proof. We will consider the contributions to Nα,p of each of the terms Ii(t, x) in (2.5).

Estimates of Nα,p(I0). Consider first the case d = 2. Using (1.11) and (1.12) from [19],
we have for t > 0 and x ∈ R2∣∣[G(t) ∗ v0](x)

∣∣ ≤ t ‖v0‖∞,
∣∣∣∣ ∂∂t[G(t) ∗ u0

]
(x)

∣∣∣∣ ≤ C {‖u0‖∞ + t ‖∇u0‖∞} .

Since supt≥0(te−αt) = (eα)−1, we deduce that for any α > 0 and p ∈ [2,∞),

Nα,p(I0) ≤ C
[
‖u0‖∞ +

e−1

α

(
‖v0‖∞ + ‖∇u0‖∞

)]
. (4.14)

Let d = 3. Using (2.2) and
∫
R3 G(t, dx) = t, we obtain, for t > 0 and x ∈ R3,

|[G(t) ∗ v0](x)| =
∣∣∣ ∫
|y|=t

v0(x− y) G(t, dy)
∣∣∣ ≤ ‖v0‖∞

∫
|y|=t

G(t, dy) = t‖v0‖∞.

By applying the formula d
dt

(
G(t) ∗ u0

)
= 1

t

(
G(t) ∗ u0

)
+ 1

4π

∫
{|y|≤1}(∆u0)(.+ ty)dy (see

[25]), we have
∣∣ d
dt

(
G(t) ∗ u0

)
(x)
∣∣ ≤ ‖u0‖∞ + 1

3‖∆u0‖∞. Therefore,

Nα,p(I0) ≤ e−1

α
‖v0‖∞ + ‖u0‖∞ +

1

3
‖∆u0‖∞. (4.15)

Estimates of Nα,p(I1). Use the expression of I1(t, x) given in (2.5) and then Minkovski’s
inequality along with (2.6) to obtain

‖I1(t, x)‖p ≤
∫ t

0

ds

∫
Rd
G(t− s, dy)

[
c(b) + L(b) ‖u(s, x− y)‖p

]
=
t2

2
c(b) + L(b)

∫ t

0

ds (t− s)
(

sup
x∈Rd

‖u(s, x)‖p

)
.

From the above estimates, an argument similar to that used to prove (3.8) implies

Nα,p(I1) ≤ c(b) sup
t≥0

( t2
2
e−αt

)
+ L(b) sup

t∈[0,T ]

∫ t

0

ds(t− s)e−α(t−s)
(

sup
(s,x)∈[0,T ]×Rd

e−αs‖u(s, x)‖p
)

≤ 2e−2

α2
c(b) +

1

α2
L(b)Nα,p(u). (4.16)
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Estimates of Nα,p(I2) Applying (4.7) with Z(s, y) := σ(u(s, y)) and then Minkowski’s
inequality, we obtain

‖I2(t, x)‖2p ≤ 4p

{
E
[ ∫ t

0

ds

∫
Rd

∫
Rd
G(t− s, x− dy)G(t− s, x− dz)f(y − z)

×σ(u(s, y))σ(u(s, z))
] p

2

} 2
p

≤ 4p

∫ t

0

ds

∫
Rd

∫
Rd
G(t− s, x− dy)G(t− s, x− dz)f(y − z)‖σ(u(s, y))σ(u(s, z))‖ p

2

≤ 4p

∫ t

0

ds

∫
Rd

∫
Rd
G(t− s, x− dy)G(t− s, x− dz)f(y − z)‖σ(u(s, y))‖p‖σ(u(s, z))‖p.

Then, from (2.6) and the inequality 2ab ≤ a2 + b2 (valid for a, b ∈ R), we deduce

‖I2(t, x)‖2p ≤ 4p

∫ t

0

ds

∫
Rd

∫
Rd
G(t− s, x− dy)G(t− s, x− dz)f(y − z)

×
[
c(σ) + L(σ)‖u(s, y)‖p

]2
≤ 8p

∫ t

0

ds

∫
Rd

∫
Rd
G(t− s, x− dy)G(t− s, x− dz)f(y − z)

×
[
c(σ)2 + L(σ)2‖u(s, y)‖2p

]
. (4.17)

Using the notation introduced in (4.5), we can rewrite (4.17) as follows

‖I2(t, x)‖2p ≤ 8p
[
c(σ)2

∫ t

0

ds J(t− s) + L(σ)2

∫ t

0

ds J(t− s) sup
y∈Rd

‖u(s, y)‖2p
]
. (4.18)

From here, using the change of varables s 7→ t− s, we have

Nα,p(I2) ≤
√

8p ν1(α) c(σ) +
√

8p ν2(α)L(σ)Nα,p(u), (4.19)

where the finite constants ν1(α) are ν2(α) are defined by

ν1(α) := sup
t∈[0,T ]

(
e−2αt

∫ t

0

dsJ(s)
) 1

2

, ν2(α) := sup
t∈[0,T ]

(∫ t

0

ds e−2αsJ(s)
) 1

2

. (4.20)

Thus, owing to (4.16), (4.19), we deduce

Nα,p(u) ≤ Nα,p(I0) +
2e−2

α2
c(b) +

√
8p c(σ) ν1(α)

+ 2 max

[
L(b)

α2
,
√

8pL(σ) ν2(α)

]
Nα,p(u). (4.21)

Using (4.6) and the value of supt≥0(tke−αt) for k = 1, 3, shown in (3.3), we see that

ν1(α) ≤ C
1
2
µ sup

t∈[0,T ]

(
e−2αt

∫ t

0

2 (1 + s2) ds
) 1

2 ≤ C
1
2
µ

(e−1

α
+

9

4

e−3

α3

) 1
2

. (4.22)
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Furthermore, using the inequality (4.6) and computing
∫ t

0
s2e−αsds, we obtain

ν2(α) ≤ C
1
2
µ sup

t∈[0,T ]

(∫ t

0

2(1 + s2) e−2αsds
) 1

2 ≤ C
1
2
µ

( 1

α
+

1

2α3

) 1
2

. (4.23)

Thus, (4.21)-(4.23) yield

Nα,p(u) ≤ Nα,p(I0) +
2e−2

α2
c(b) +

√
8p c(σ)C

1
2
µ

(
e−1

α
+

9

4

e−3

α3

) 1
2

+ 2 max

[
L(b)

α2
,
√

8pL(σ)C
1
2
µ

( 1

α
+

1

2α3

) 1
2

]
Nα,p(u). (4.24)

Choose α2 = 4L(b). Since by assumption L(b) ≥ 1
4 , we have α ≥ 1, which yields

e−1

α
+

9

4

e−3

α3
≤ 13

8e
L(b)−

1
2 and

1

α
+

1

2α3
≤ 3

4
L(b)−

1
2 .

Moreover, using once more the assumption L(b) ≥
[
212 32 C2

µ L(σ)4
]
∨ 1

4 , we see that for

α2 = 4L(b) and for any p ∈
[
2,
√
L(b)/

(
25 3Cµ L(σ)2

)]
,

max
[L(b)

α2
,
√

8pL(σ)C
1
2
µ

( 1

α
+

1

2α3

) 1
2
]

=
1

4
.

Hence, from (4.24), using the upper bound p ≤
√
L(b)

25 3Cµ L(σ)2 , (4.14) and (4.15), we deduce

N
2
√
L(b),p

(u) ≤ 2N
2
√
L(b),p

(I0) + e−2 c(b)

L(b)
+

(
13

3e23

) 1
2 c(σ)

L(σ)

≤ C1T0 + C2

[
c(b)

L(b)
+
c(σ)

L(σ)

]
,

with T0 defined in (4.12). This completes the proof of (4.11).
The inequality (4.13) follows from (4.11) using the definition of Nα,p(u).

4.3. Uniform bounds on moments

In this section, we address the problems of Section 3.2 when d = 2, 3, and W is a
noise white in time and coloured in space. The main task is to prove a result similar to
Proposition 3.3 on moment estimates of increments in time and in space for the solution
to equation (1.3) with globally Lipschitz coefficients.

Increments of I0(t, x) in time and space

Proposition 4.5. Let I0(t, x), (t, x) ∈ [0, T ]× Rd be as in (2.5) and R ≥ 0 be fixed.

1. Let d = 2. Assume that u0 is C1, ∇u0 is Hölder continuous with exponent γ1 ∈
(0, 1], and v0 is Hölder continuous with exponent γ2 ∈ (0, 1]. Then, there exists a
positive constant C(T,R) such that, for any t, t̄ ∈ [0, T ], and any x, x̄ ∈ B(0;R),

|I0(t, x)− I0(t̄, x̄)| ≤ C(T,R) (‖v0‖∞,R+T + ‖v0‖γ2
+ ‖∇u0‖∞,R+T + ‖∇u0‖γ1

)

× (|t− t̄|γ1∧γ2 + |x− x̄|γ1∧γ2) . (4.25)
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2. Let d = 3. Assume that u0 is C2, ∆u0 is Hölder continuous with exponent γ1 ∈
(0, 1], and v0 is Hölder continuous with exponent γ2 ∈ (0, 1]. Then, there exists a
positive constant C(T,R) such that, for any t, t̄ ∈ [0, T ], and any x, x̄ ∈ B(0;R),

|I0(t, x)− I0(t̄, x̄)| ≤C(T,R)
[
‖v0‖γ2 + ‖∇u0‖∞,R+T + ‖∆u0‖γ1

]
× (|t− t̄|γ1∧γ2 + |x− x̄|γ1∧γ2) . (4.26)

Proof. (1). Let 0 ≤ t ≤ t̄ ≤ T and x ∈ B(0;R) be fixed. The scaling property G(t, dx) =
tG(1, dx) for t > 0 implies

|[G(t)−G(t̄)] ∗ v0(x)| =
∣∣∣ ∫

R2

G(t, dy)
[
v0(x− y)− t̄

t
v0

(
x− t̄

t
y
)]∣∣∣

≤ t̄

t

∫
R2

G(t, dy)
∣∣∣v0(x− y)− v0

(
x− t̄

t
y
)∣∣∣+

∣∣∣1− t̄

t

∣∣∣ ∫
R2

G(t, dy) |v0(x− y)|

≤ T‖v0‖γ2
|t− t̄|γ2 + ‖v0‖∞,R+T |t− t̄|.

Consequently, sup
|x|≤R

∣∣[G(t)−G(t̄)] ∗ v0(x)
∣∣ ≤ C(T ) (‖v0‖∞,R+T + ‖v0‖γ2

) ||t− t̄|γ2 .

According to the computations in [19, p. 812-813], we have

sup
|x|≤R

∣∣∣ ∂
∂t

[
G(t) ∗ u0(x)−G(t̄) ∗ u0(x)

]∣∣∣ ≤ C(‖∇u0‖∞,R+T |t− t̄|+ ‖∇u0‖γ1

)
|t− t̄|γ1 .

Thus,

sup
|x|≤R

|I0(t, x)−I0(t̄, x)| ≤ C(T )
(
‖v0‖∞,R+T+‖v0‖γ2

+‖∇u0‖∞,R+T+‖∇u0‖γ1

)
|t−t̄|γ1∧γ2 .

(4.27)
Let now 0 ≤ t ≤ T and x, x̄ ∈ B(0, R) be fixed; then∣∣(G(t ∗ v0)(x)− (G(t ∗ v0)(x̄)

∣∣ ≤ ∫
R2

G(t, y)|v0(x− y)− v0(x̄− y)| dy

≤ ‖v0‖γ2 |x− x̄|γ2

(∫
R2

G(t, y) dy
)
≤ T‖v0‖γ2 |x− x̄|γ2 . (4.28)

According to the computations in [19, p. 815-816], we have∣∣∣ ∂
∂t

[
G(t) ∗ u0(x)−G(t) ∗ u0(x̄)

]∣∣∣ ≤ C(‖∇u0‖∞,T+R|x− x̄|+ ‖∇u0‖γ1
|x− x̄|γ1

)
for t ∈ [0, T ]. Therefore,

sup
0≤t≤T

|I0(t, x)−I0(t, x̄)| ≤ C(T,R)
(
‖v0‖γ2

+‖∇u0‖∞,T+R+‖∇u0‖γ1

)
|x−x̄|γ1∧γ2 . (4.29)

From the estimates (4.27)–(4.29), we deduce (4.25).

(2). Fix 0 ≤ t ≤ t̄ ≤ T and x ∈ B(0, R). According to [7, Lemma 4.9, p. 43], we have

sup
|x|≤R

∥∥∥ ∂
∂t

(G(·) ∗ u0) (x)
∥∥∥
γ1

≤ C (‖∇u0‖∞,R+T + ‖∆u0‖γ1
) ,

sup
|x|≤R

‖ (G(·) ∗ v0) (x)‖γ2 ≤ C‖v0‖γ2 ,
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where C > 0 is a universal constant. Consequently,

sup
|x|≤R

|I0(t, x)−I0(t̄, x)| ≤ C(T,R)
(
‖∇u0‖∞,R+T +‖∆u0‖γ1

+‖v0‖γ2

)
|t− t̄|γ1∧γ2 . (4.30)

Fix 0 ≤ t ≤ T and x, x̄ ∈ B(0, R). Using the arguments in [13, p. 362] (see also [7,
Chapter 4]), and the validity of the computations in (4.28) in dimension 3, we deduce

sup
0≤t≤T

∣∣∣ ∂
∂t

[
G(t) ∗ u0(x)−G(t) ∗ u0(x̄)

]∣∣∣ ≤ C (‖∇u0‖∞,R+T + ‖∆u0‖γ1
) |x− x̄|γ1 .

Hence,

sup
0≤t≤T

|I0(t, x)−I0(t, x̄)| ≤ C(T,R)
(
‖∇u0‖∞,R+T+‖∆u0‖γ1

+‖v0‖γ2

)
|x−x̄|γ1∧γ2 . (4.31)

The proof of (4.26) is a consequence of (4.30) and (4.31).

Remark 4.6. In comparison with the assumptions (1) and (2) of Proposition 4.4, in
Proposition 4.5 we restrict the space variable to a bounded set and therefore, the bound-
edness hypotheses are satisfied.

Increments of I1(t, x) in time and space

Proposition 4.7. Let I1(t, x), (t, x) ∈ [0, T ]× Rd be as in (2.5).

1. Assume that the hypotheses (he) are satisfied. Then there exists a positive constant
C(T ) depending on T such that for any (t, x), (t̄, x̄) ∈ [0, T ]×Rd and for any p ∈ [2,∞),

‖I1(t, x)− I1(t̄, x̄)‖p ≤ C(T )
{
|t− t̄|

[
c(b) + L(b) sup

(t,x)×Rd
‖u(t, x)‖p

]
(4.32)

+ L(b)

∫ t

0

ds
(

sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖p + sup
|z1−z2|≤|t−t̄|

‖u(s, z1)− u(s, z2)‖p
)}
.

2. Assume the hypotheses of Proposition 4.4. Then there exists a positive constant C(T )

depending on T such that for any p ∈
[
2,

√
L(b)

253CµL(σ)2

]
and any (t, x), (t̄, x̄) ∈ [0, T ]× Rd,

‖I1(t, x)− I1(t̄, x̄)‖p ≤ C(T )
{
|t− t̄|

[
c(b) + L(b)e2T

√
L(b)N

2
√
L(b),p

(u)
]

(4.33)

+ L(b)

∫ t

0

ds
(

sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖p + sup
|z1−z2|≤|t−t̄|

‖u(s, z1)− u(s, z2)‖p
)}
,

with N
2
√
L(b),p

(u) satisfying (4.11).

Proof. 1. Fix t ∈ [0, T ] and x, x̄ ∈ Rd. The Minkoswki inequality, the Lipschitz
continuity of b and the property

∫
Rd G(t, dx) = t yield

∥∥I1(t, x)− I1(t, x̄)
∥∥
p
≤ L(b)

∫ t

0

ds (t− s)
[

sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖p
]

≤ L(b)T

∫ t

0

ds sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖p . (4.34)
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By the triangle inequality ‖I1(t̄, x)− I1(t, x)‖p ≤ T1(p; t, t̄, x) + T2(p; t, t̄, x), for any
0 ≤ t ≤ t̄ ≤ T , where

T1(p; t, t̄, x) =
∥∥∥∫ t

0

ds

∫
Rd

[
G(t̄− s, dy)−G(t− s, dy)

]
b(u(s, x− y))

∥∥∥
p
,

T2(p; t, t̄, x) =
∥∥∥∫ t̄

t

ds

∫
Rd
G(t̄− s, dy)b(u(s, x− y))

∥∥∥
p
.

By the scaling property of the fundamental solution G(t), T1(p; t, t̄, x) equals∥∥∥∫ t

0

ds

∫
Rd
G(1, dz) [(t− s)b(u(s, x− (t− s)z))− (t̄− s)b(u(s, x− (t̄− s)z))]

∥∥∥
p
.

Apply Minkowski’s inequality and use the Lipschitz property of b and (2.6); this yields

T1(p; t, t̄, x) ≤ |t− t̄|
∫ t

0

ds

∫
Rd
G(1, dz)

[
c(b) + L(b)‖u(s, x− (t̄− s)z))‖p

]
+ L(b)

∫ t

0

ds

∫
Rd
G(1, dz)(t− s) ‖u(s, x− (t− s)z))− u(s, x− (t̄− s)z))‖p . (4.35)

Since the support of G(1, dz) is included in the closed ball B(0; 1), we have∫ t

0

ds (t− s)
∫
Rd
G(1, dz) ‖u(s, x− (t− s)z))− u(s, x− (t̄− s)z))‖p

≤ T
∫ t

0

ds

∫
Rd
G(1, dz) sup

|z1−z2|≤|t−t̄|
‖u(s, z1)− u(s, z2)‖p

= T

∫ t

0

ds sup
|z1−z2|≤|t−t̄|

‖u(s, z1)− u(s, z2)‖p .

The first term on the right-hand side of (4.35) is bounded from above by

|t− t̄|
{
Tc(b) + L(b)

∫ t

0

ds sup
x∈Rd

‖u(s, x)‖p
}
. (4.36)

Thus,

T1(p; t, t̄, x) ≤ T
(
L(b)

∫ t

0

sup
|z1−z2|≤|t−t̄|

‖u(s, z1)− u(s, z2)‖p ds

+ |t− t̄|
{
c(b) + L(b) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

})
. (4.37)

With similar arguments, we deduce the following upper bounds for T2(p; t, t̄, x):

T2(p; t, t̄, x) ≤ c(b)
∫ t̄

t

ds

∫
Rd
G(t̄− s, dy) + L(b)

∫ t̄

t

ds(t̄− s) sup
x∈Rd

‖u(s, x)‖p

≤ c(b) (t̄− t)2

2
+ L(b)

(t̄− t)2

2
sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p . (4.38)
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From (4.37) and (4.38), we obtain (4.32) for x = x̄. Along with (4.34), we obtain (4.32).

2. This claim follows from the definition of (2.7) and Proposition 4.4.

Space increments of I2(t, x)

While keeping assumption (h1), we consider a strengthening of (h0), denoted by
(h2). This is condition (c′) in [13, p. 367] on the spectral measure µ.

(h2) There exists γ ∈ (0, 1) such that the Fourier transform of the tempered measure
|ζ|2γµ(dζ) is a non-negative locally integrable function gγ , and moreover,∫

Rd

µ(dζ)

1 + |ζ|2−2γ
<∞.

Set

C(γ)
µ :=

1

(2π)d

∫
Rd

µ(dζ)

1 + |ζ|2−2γ
. (4.39)

Proposition 4.8. Let I2(t, x), (t, x) ∈ [0, T ]× Rd be as in (2.5).

1. Assume that the hypotheses (he), (h1) and (h2) are satisfied. Then, for any p ∈
[2,∞) and t ∈ [0, T ], there exists a positive constant C such that, for every x, x̄ ∈ Rd,
t ∈ [0, T ],

‖I2(t, x)−I2(t, x̄)‖2p ≤ Cp (1 + T 2)CµL(σ)2
(∫ t

0

ds sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖2p
)

+ Cp (T + T 3)C(γ)
µ |x− x̄|2γ

[
c(σ) + L(σ) sup

(s,y)∈[0,T ]×Rd
‖u(s, y)‖p

]2
, (4.40)

where Cµ, C
(γ)
µ are defined in (4.6), (4.39), respectively.

2. Assume that the hypotheses of Proposition 4.4 hold. Then, for any p ∈
[
2,

√
L(b)

253CµL(σ)2

]
,

there exists a positive constant C such that, for every x, x̄ ∈ Rd, t ∈ [0, T ],

‖I2(t, x)−I2(t, x̄)‖2p ≤ Cp (1 + T 2)CµL(σ)2
(∫ t

0

ds sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖2p
)

+ Cp (T + T 3)C(γ)
µ |x− x̄|2γ

[
c(σ) + L(σ)e2T

√
L(b)N

2
√
L(b),p

(u)
]2
, (4.41)

where N
2
√
L(b),p

(u) satisfies (4.11).

Proof. To simplify the presentation, we will use the notation of [13, Theorem 3.1] that
we recall below. For s ∈ [0, T ] and x, x̄, y, z ∈ Rd, set ξ = x− x̄ and

Σx(s, y) = σ(u(s, x− y)), Σx,x̄(s, y) = σ(u(s, x− y))− σ(u(s, x̄− y)),

h1(s, y, z) = f(y − z)Σx,x̄(s, y)Σx,x̄(s, z),

h2(s, y, z) =
[
f(y − z + ξ)− f(y − z)

]
Σx(s, z)Σx,x̄(s, y), h3(s, y, z) = h2(s, z, y),

h4(s, y, z) =
[
2f(y − z)− f(y − z + ξ)− f(y − z − ξ)

]
Σx(s, y)Σx(s, z).
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Fix p ∈ [2,∞) and apply the Burkholder-Davies-Gundy inequality to obtain

‖I2(t, x)− I2(t, x̄)‖2p ≤ 4p

4∑
i=1

‖Qi(t;x, x̄)‖ p
2
, (4.42)

where, using the transfer of increments strategy introduced in [7, p. 19] (see also in [13,
p. 374]), we set

Qi(t;x, x̄) =

∫ t

0

ds

∫
Rd

∫
Rd
G(t− s, dy)G(t− s, dz)hi(s, y, z), i = 1, . . . , 4.

In [13, Theorem 3.2], upper bounds of the terms ‖Qi(t;x, x̄)‖ p
2

are established. We
sketch here their proofs, paying attention to the value of the relevant constants and
checking that the arguments also hold for d = 2.

Upper bound of ‖Q1(t;x, x̄)‖ p
2
. Using Minkowski’s inequality, then the Cauchy-Schwarz

inequality, the Lipschitz property of σ and (4.6) we obtain

‖Q1(t;x, x̄)‖ p
2
≤L(σ)2

∫ t

0

ds

∫
Rd

∫
Rd
G(t− s, dy)G(t− s, dz)f(y − z)

×
[

sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖2p
]

≤ 2L(σ)2(1 + T 2)Cµ

∫ t

0

ds sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖2p. (4.43)

For the study of the remaining terms ‖Qi(t;x, x̄)‖ p
2
, i = 2, 3, 4, in order to be in the

setting of Lemma 4.2, we use a truncation argument on the processes Σx(s, y), Σx,x̄(s, y).
For k ≥ 1, set Σkx(s, y) = Σx(s, y)1{|Σx(s,y)|≤k}, Σkx,x̄(s, y) = Σx,x̄(s, y)1{|Σx,x̄(s,y)|≤k}, and

Qki (t;x, x̄) =

∫ t

0

ds

∫
Rd

∫
Rd
G(t− s, dy)G(t− s, dz)hki (s, y, z), i = 2, 3, 4,

where each hki (s, y, z) is defined as hi(s, y, z) by replacing Σx(s, y) and Σx,x̄(s, y) by
Σkx(s, y) and Σkx,x̄(s, y), respectively.

Upper bound for ‖Qk2(t;x, x̄)‖ p
2
. Apply Lemma 4.2 to the bounded functions ϕ(z) =

Σkx(s, z) and ψ(y) = Σkx,x̄(s, y). Then, up to the constant (2π)−d, Qk2(t;x, x̄) is equal to∫ t

0

ds

∫
Rd
F
(
Σkx(s, .)G(t− s, .)

)
(ζ) F

(
Σkx,x̄(s, .)G(t− s, .)

)
(ζ)
[
e−iξ.ζ − 1

]
µ(dζ),

where ξ = x − x̄. Since for any γ ∈ (0, 1], |e−iξ.ζ − 1| ≤ C|ξ|γ |ζ|γ , and 2
√
ab ≤ (a + b)

for a, b ≥ 0, computations similar to those in [13, p. 368] imply

‖Qk2(t;x, x̄)‖ p
2
≤ C

(
‖Qk,12 (t;x, x̄)‖ p

2
+ ‖Qk,22 (t;x, x̄)‖ p

2

)
, (4.44)

where

Qk,12 (t;x, x̄) := |ξ|2γ
∫ t

0

ds

∫
Rd

∣∣F(Σkx(s, .)G(t− s, .)
)
(ζ)
∣∣2 |ζ|2γµ(dζ),

Qk,22 (t;x, x̄) :=

∫ t

0

ds

∫
Rd

∣∣F(Σkx,x̄(s, .)G(t− s, .)
)
(ζ)
∣∣2 µ(dζ).
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Set J (γ)(t) = 1
(2π)d

∫
Rd µ(dζ)|ζ|2γ |FG(t)(ζ)|2. A minor change in the proof of (4.6) yields

J (γ)(t) ≤ 2(1 + t2)C(γ)
µ <∞, (4.45)

where C
(γ)
µ is defined in (4.39), and we have used the assumption (h2).

Using the Plancherel identity, the Minkowski inequality with respect to the non-
negative measure [G(t − s, .) ∗ G(t − s, .)](y)gγ(y) dy ds and once more the Plancherel

identity, since G̃(s, .) is symmetric, we deduce (as in [13, p. 369]),

‖Qk,12 (t;x, x̄)‖ p
2
≤ C|x− x̄|2γ sup

(s,y)∈[0,T ]×Rd
‖Σkx(s, y)‖2p

∫ t

0

ds

∫
Rd
µ(dζ)|ζ|2γ |FG(t− s)(ζ)|2

≤ C|x− x̄|2γT (1 + T 2)C(γ)
µ sup

(s,y)∈[0,T ]×Rd
‖Σkx(s, y)‖2p.

From (2.6) we have

sup
(s,y)∈[0,T ]×Rd

‖Σx(s, y)‖p ≤ c(σ) + L(σ) sup
(s,y)∈[0,T ]×Rd

‖u(s, y)‖p.

Therefore,

‖Qk,12 (t;x, x̄)‖ p
2
≤ C|x− x̄|2γ(T +T 3)C(γ)

µ

[
c(σ) +L(σ) sup

(s,y)∈[0,T ]×Rd
‖u(s, y)‖p

]2
. (4.46)

With similar arguments, we obtain

‖Qk,22 (t;x, x̄)‖ p
2
≤ C

∫ t

0

ds sup
y∈Rd

‖Σkx,x̄(s, y)‖2p
∫
Rd
|F(G(t− s, .))(ζ)|2 µ(dζ)

≤ C
∫ t

0

sup
y∈Rd

‖Σkx,x̄(s, y)‖2pJ(t− s)ds ≤ C(1 + T 2)Cµ

∫ t

0

sup
y∈Rd

‖Σkx,x̄(s, y)‖2pds

≤ C(1 + T 2)CµL(σ)2

∫ t

0

ds sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖2p, (4.47)

where in the last inequality, we have used (4.6), the Lipschitz property of σ and the
upper estimate ‖Σkx,x̄(s, y)‖p ≤ ‖Σx,x̄(s, y)‖p.

Summarising, (4.44), along with (4.46) and (4.47) imply

‖Qk2(t;x, x̄)‖ p
2
≤ C(T + T 3)C(γ)

µ |x− x̄|2γ
[
c(σ) + L(σ) sup

(s,y)∈[0,T ]×Rd
‖u(s, y)‖p

]2
+ C(1 + T 2)CµL(σ)2

∫ t

0

ds sup
|z1−z2|=|x−x̄|

‖u(s, z1)− u(s, z2)‖2p, (4.48)

for some universal positive constant C.
Notice that, since |e−iξ.ζ − 1| = |eiξ.ζ − 1|, swapping y and z we deduce that (4.48)

also holds for ‖Qk3(t;x, x̄)‖ p
2
.
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Upper bound of ‖Qk4(t;x, x̄)‖ p
2
. Applying Lemma 4.2 with ϕ = ψ = Σkx(s, .) and then

Plancherel’s identity, we obtain

|Qk4(t;x, x̄)| ≤ 1

(2π)d

∫ t

0

ds

∫
Rd
dy
∣∣2− e−iξ.ζ − eiξ.ζ∣∣ ∣∣F(ϕG(t− s, .)

)∣∣2 µ(dζ)

≤ C|ξ|2γ
∫ t

0

ds

∫
Rd
dy gγ(y)

[(
Σkx(s, .)G(t− s, .)

)
∗ ˜(

Σkx(s, .)G(t− s, .)
)]

(y),

where in the last inequality, we have used that for γ ∈ (0, 1], |1− cos(ξ.ζ)| ≤ C(|ξ||ζ|)2γ .
Consider the non-negative measure gγ(y)

[
G(t − s, .) ∗ G(t − s, .)

]
(y)ds dy. The

Minkowski inequality with respect to this measure, the Plancherel identity and (4.45)
yield

‖Qk4(t;x, x̄)‖ p
2
≤ C|ξ|2γ

∫ t

0

ds

∫
Rd
dy gγ(y)

[
G(t− s, .) ∗G(t− s, .)

]
(y)

× sup
y,z∈Rd

‖Σkx(s, y)Σkx(s, y + z)‖ p
2

≤ C|ξ|2γ
∫ t

0

ds sup
y∈Rd

‖Σx(s, y)‖2p 2(1 + T 2)C(γ)
µ .

Thus, an argument similar to that proving (4.46) implies

‖Qk4(t;x, x̄)‖ p
2
≤ C(T + T 3)C(γ)

µ |x− x̄|2γ
[
c(σ) + L(σ) sup

(s,y)∈[0,T ]×Rd
‖u(s, y)‖p

]2
. (4.49)

The upper estimates (4.42), (4.43), (4.48) and (4.49) conclude the proof of (4.40).

The statement in part 2 is an immediate consequence of the definition of N
2
√
L(b),p

(u)

and Proposition 4.4. The proof of the proposition is complete.

From Propositions 4.4-4.8, we derive estimates on space increments of the random
field (1.3) for d = 2, 3. Later on, they will be used to deduce estimates on time increments
of I2(t, x). For its further use, set

K0(u0, v0) =

{
‖v0‖γ2

+ ‖∇u0‖∞,R+T + ‖∇u0‖γ1
, d = 2,

‖v0‖γ2
+ ‖∇u0‖∞,R+T + ‖∆u0‖γ1

, d = 3.
(4.50)

Proposition 4.9. We are assuming the following.

1. The initial value functions u0 and v0 satisfy the conditions of Proposition 4.5 with
some Hölder exponents γ1, γ2 ∈ (0, 1].

2. The coefficients σ and b are globally Lipschitz continuous functions;

3. The covariance measure Λ of the noise W satisfies (h1), and the corresponding
spectral measure µ satisfies (h2).
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(i) Fix T,R > 0. Then, for any p ∈ [2,∞) and α > 0, there exist positive constants
c1(T,R), c2(T ) and c3(T ) such that if

C1 := c1(T,R) K0(u0, v0),

C2 := c2(T )
(
pC(γ)

µ

) 1
2

[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]
,

C3 := c3(T )
[
L(b)2 + pCµ L(σ)2

]
, (4.51)

with Cµ and C
(γ)
µ defined in (4.6) and (4.39), then for any t ∈ [0, T ], and x, x̄ ∈ B(0;R),

sup
|z1−z2|≤|x−x̄|

‖u(t, z1)− u(t, z2)‖2p ≤ exp(TC3)
(
C2

1 |x− x̄|2(γ1∧γ2) + C2
2 |x− x̄|2γ

)
. (4.52)

Consequently,

sup
t∈[0,T ]

sup
|z1−z2|≤|x−x̄|

‖u(t, z1)− u(t, z2)‖p ≤ C̃|x− x̄|ν1 , (4.53)

with ν1 = min(γ, γ1, γ2), and C̃ = C(R) (C1 + C2) exp(TC3/2).

(ii) Suppose furthermore that the Lipschitz constants L(b), L(σ) and are such that
L(b) ≥

(
212 32 C2

µ L(σ)4
)
∨ 1

4 . Then, for p ∈
[
2,
√
L(b)/

(
25 3Cµ L(σ)2

)]
we have

C2 ≤ c2(T )
(
pC(γ)

µ

) 1
2

[
c(σ) + L(σ) e2T

√
L(b)N

2
√
L(b),p

(u)
]
,

with N
2
√
L(b),p

(u) satisfying (4.11).

Proof. (i). We first prove

sup
|z1−z2|≤|x−x̄|

‖u(t, z1)−u(t, z2)‖2p ≤ C2
1 |x− x̄|2(γ1∧γ2) + C2

2 |x− x̄|2γ

+ C3

∫ t

0

ds sup
|z1−z2|≤|x−x̄|

‖u(s, z1)− u(s, z2)‖2p. (4.54)

Indeed, using (2.4) and (2.5), the first term on the right-hand side comes from (4.29)
and (4.31). The second one comes from the last term on the right-hand side of (4.40).
Finally, the very last term is obtained by the sum of the upper bound (4.34) and the first
term on the right-hand side of (4.40).

Apply Gronwall’s lemma to the function t 7→ sup|z1−z2|≤|x−x̄| ‖u(t, z1)− u(t, z2)‖2p to
obtain (4.52), and then (4.53).

The claim (ii) follows form the definition of N
2
√
L(b),p

(u) and Proposition 4.4.

Time increments of I2(t, x)

In order to deduce Lp-estimates of increments in time of the stochastic integral term
I2(t, x), additional assumptions on the covariance of the noise are needed.

(h3) The spectral measure µ is such that there exists ν > 0 and C > 0 for which∫
Rd
|FG(t)(ζ)|2 µ(dζ) ≤ Ctν , for any t ∈ [0, T ]. (4.55)

(h4) The covariance density function f satisfies the following conditions:
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1. There exists b > 0 and C > 0 such that for any h ∈ [0, T ],∫ T

0

ds s

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

∣∣f(s(y + z) + h(y + z))− f(s(y + z) + hz)
∣∣ ≤ Chb.

(4.56)

2. There exists b̄ > 0 and C > 0 such that for any h ∈ [0, T ],∫ T

0

ds s2

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

×
∣∣f(s(y + z) + h(y + z)

)
− f

(
s(y + z) + hy

)
− f

(
s(y + z) + hz

)
+ f

(
s(y + z)

)∣∣
≤ Chb̄. (4.57)

According to (4.5)–(4.6), the left-hand side of (4.55) is a function of t uniformly
bounded over bounded intervals. Assumption (h3) provides a growth rate for this func-
tion.

Up to scalings, the assumption (h4) is on estimates of one and two-dimensional
increments of the covariance density in a L2-type norm. We shall give in Section 5
examples where these conditions are satisfied.

Proposition 4.10. Assume that the hypotheses (1)–(3) of Proposition 4.9 hold. Suppose
also that the hypotheses (h3) and (h4) on the covariance of the noise are satisfied. Then
there exists a constant C(T, ν) such that for any p ∈ [2,∞), t, t̄ ∈ [0, T ] and x ∈ Rd,

‖I2(t, x)− I2(t̄, x)‖2p ≤ C(T, ν) p
(
CµL(σ)2C̃2|t− t̄|2ν1

+
[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]2{
|t− t̄|1+ν + |t− t̄|min(b+1,b̄,α̃)

}
+ L(σ)C̃

[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]
|t− t̄|ν1+min(b,1)

)
, (4.58)

where ν1 = min(γ, γ1, γ2), C̃ is defined in Proposition 4.9, α̃ = (1 + ν) ∧ 2 if ν 6= 1 and
α̃ < 2 if ν = 1.

If, as in Proposition 4.4, the Lipschitz constants L(b), L(σ) are such that L(b) ≥(
212 32 C2

µ L(σ)4
)
∨ 1

4 , where Cµ is given in (4.6), then there exists a constant C(ν, T )

such that for p ∈
[
2,

√
L(b)

25 3Cµ L(σ)2

]
, t, t̄ ∈ [0, T ] and x ∈ Rd,

‖I2(t, x)− I2(t̄, x)‖2p ≤ C(ν, T ) p
(
C(T )CµL(σ)2C̃2|t− t̄|2ν1

+
[
c(σ) + L(σ)e2T

√
L(b)N

2
√
L(b),p

(u)
]2{
|t− t̄|1+ν + |t− t̄|min(b+1,b̄,α̃)

}
+ L(σ)C̃

[
c(σ) + L(σ)e2T

√
L(b)N

2
√
L(b),p

(u)
]
|t− t̄|ν1+min(b,1)

)
, (4.59)

with N
2
√
L(b),p

(u) satisfying (4.11).
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Proof. For 0 ≤ t ≤ t̄ ≤ T and x ∈ Rd, set

I2,1(t, t̄;x) =

∫ t̄

t

∫
Rd
G(t̄− s, x− dy)σ(u(s, y)) W (ds, dy).

By applying Burkholder-Davis-Gundy’s inequality, and then Minkowski’s inequality,

‖I2,1(t, t̄;x)‖2p ≤ 4p

∫ t̄

t

dsJ(t̄− s) sup
y∈Rd

‖σ(u(s, y))‖2p

≤ p C|t− t̄|1+ν
[
c(σ) + L(σ) sup

(s,y)∈[0,T ]×Rd
‖u(s, y)‖p

]2
,

where J is defined in (4.5), and the last upper estimate is deduced from (h3) (see (4.55)).
Let

I2,2(t, t̄;x) =

∫ t

0

∫
Rd

[G(t̄− s, x− dy)−G(t− s, x− dy)] σ(u(s, y)) W (ds, dy). (4.60)

We study the Lp-norm of this term following the proof of [13, Theorem 4.1]. This uses
the transfer of increments trick introduced in [7, Section 3.2]. Applying the Burkholder-

Davies-Gundy inequality, we obtain ‖I2,2(t, t̄;x)‖2p ≤ 4p
∑4
i=1 ‖Ri(t, t̄;x)‖ p

2
, where, let-

ting h := t̄− t and Θt,x(s, y) = σ(u(t− s, x− y)), we set

R1(t, t̄;x) =

∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)(s+ h)2f

(
(s+ h)y − (s+ h)z

)
×
[
Θt,x(s, (s+ h)y)−Θt,x(s, sy)

][
Θt,x(s, (s+ h)z)−Θt,x(s, sz)

]
,

R2(t, t̄;x) =

∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

×
[
(s+ h)2f

(
(s+ h)y − (s+ h)z

)
− s(s+ h)f

(
sy − (s+ h)z

)]
×
[
Θt,x(s, (s+ h)z)−Θt,x(s, sz)

]
Θt,x(s, sy),

R3(t, t̄;x) =

∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

×
[
(s+ h)2f

(
(s+ h)y − (s+ h)z

)
− s(s+ h)f

(
(s+ h)y − sz

)]
×
[
Θt,x(s, (s+ h)y)−Θt,x(s, sy)

]
Θt,x(s, sz),

R4(t, t̄;x) =

∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

×
[
(s+ h)2f

(
(s+ h)y − (s+ h)z

)
− s(s+ h)f

(
sy − (s+ h)z

)
− s(s+ h)f

(
(s+ h)y − sz

)
+ s2f

(
sy − sz

)]
×Θt,x(s, sy)Θt,x(s, sz).

Notice that the linear growth and Lipschitz continuity assumptions on σ imply that for
any p ∈ [2,∞), every s, t ∈ [0, T ] and x, y, z ∈ Rd,

sup
0≤s≤t≤T ;(x,y)∈Rd

‖Θt,x(s, y)‖p ≤ c(σ) + L(σ) sup
(t,x)∈[0,T ]×Rd

‖u(t, x)‖p, (4.61)
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and

sup
0≤s≤t≤T ;(x,y,z)∈Rd,|y−z|≤r

‖Θt,x(s, y)−Θt,x(s, z)‖p ≤ L(σ) sup
t∈[0,T ],|y−z|≤r

‖u(t, y)− u(t, z)‖p

≤ L(σ)C̃rν1 , (4.62)

where the last inequality follows from (4.53).

Upper bound of ‖R1(t, t̄;x)‖ p
2

. Apply the Minkowski and Cauchy-Schwarz inequalities.
Then, using (4.62) we obtain

‖R1(t, t̄;x)‖ p
2
≤ L(σ)2C̃2|t− t̄|2ν1

×
∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)(s+ h)2f

(
(s+ h)y − (s+ h)z

)
. (4.63)

Consider the change of variables ((s+h)y, (s+h)z) 7→ (y, z); using the scaling property,
(4.5) and (4.6), we deduce∫

Rd

∫
Rd
G(1, dy)G(1, dz)(s+ h)2f

(
(s+ h)y − (s+ h)z

)
= (2π)−d

∫
Rd
|FG(s+ h)(ζ)|2 µ(dζ) ≤ 2(1 + (2T )2))Cµ. (4.64)

Hence, (4.63) and (4.64) imply

‖R1(t, t̄;x)‖ p
2
≤ 2

[
1 + (2T )2

]
CµL(σ)2C̃2|t− t̄|2ν1 , (4.65)

where C̃ is defined in Proposition 4.9.

Upper bound of ‖R2(t, t̄;x)‖ p
2

and ‖R3(t, t̄;x)‖ p
2

. We will only consider ‖R2(t, t̄;x)‖ p
2
,

since ‖R3(t, t̄;x)‖ p
2

is similar. Set

R2,1(t, t̄;x) =

∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

× s(s+ h)
[
f
(
(s+ h)y − (s+ h)z

)
− f

(
sy − (s+ h)z

)]
×
[
Θt,x(s, (s+ h)z)−Θt,x(s, sz)

]
Θt,x(s, sy),

Apply the change of variable z 7→ −z along with the Minkowski and Cauchy-Schwarz
inequalities to obtain

‖R2,1(t, t̄;x)‖ p
2
≤ sup

0≤s≤t≤T ;(x,z1,z2)∈Rd,|z1−z2|≤h
(‖Θt,x(s, z1)−Θt,x(s, z2)‖p)

× sup
0≤s≤t≤T ;(x,y)∈Rd

(‖Θt,x(s, y)‖p)

×
∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)s(s+ h)

∣∣f((s(y + z) + h(y + z)
)
− f

(
s(y + z) + hz

)∣∣
≤ CTL(σ)C̃|t− t̄|ν1+b

[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]
, (4.66)
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where we have used (4.61), (4.62) and assumption (h4) (see (4.56)).

Define

R2,2(t, t̄;x) =

∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)h(s+ h)f

(
(s+ h)y − (s+ h)z

)
×
[
Θt,x(s, (s+ h)z)−Θt,x(s, sz)

]
Θt,x(s, sy),

A computation similar to that used to upper estimate ‖R2,1(t, t̄;x)‖p implies

‖R2,2(t, t̄;x)‖ p
2
≤ CL(σ)C̃|t− t̄|ν1

[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]
×
∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)h(s+ h)

∣∣f((s+ h)y − (s+ h)z
)∣∣.

Using the change of variables ((s+h)y, (s+h)z) 7→ (y, z), the scaling property, (4.5) and
(h3), we obtain∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)h(s+ h) [f((s+ h)y − (s+ h)z)]

= (2π)−dh

∫ t

0

ds

s+ h

∫
Rd
µ(dζ)|FG(s+ h)(ζ)|2 ≤ C h

∫ t

0

ds (s+ h)ν−1 ≤ C T ν h.

Thus,

‖R2,2(t, t̄;x)‖ p
2
≤ CT νL(σ)C̃|t− t̄|ν1+1

[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]
. (4.67)

Since R2(t, t̄;x) = R2,1(t, t̄;x) +R2,2(t, t̄;x), from (4.66) and (4.67), we deduce

‖R2(t, t̄;x)‖ p
2
≤ C(T + T ν)L(σ)C̃|t− t̄|ν1+min(b,1)

[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]
.

(4.68)

Upper bound of ‖R4(t, t̄;x)‖ p
2

. Using Minkowski’s inequality and (4.61), we obtain

‖R4(t, t̄;x)‖ p
2
≤
[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]2
I(t, h),

where

I(t, h) =

∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)

∣∣∣(s+ h)2f
(
(s+ h)(y − z)

)
− s(s+ h)f

(
sy − (s+ h)z

)
− s(s+ h)f

(
(s+ h)y − sz

)
+ s2f

(
s(y − z)

)∣∣∣.
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Use the change of variable z 7→ −z to see that I(t, h) =
∑4
j=1 Ĩj(t, h), with

Ĩ1(t, h) =

∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz)s2

×
∣∣f((s+ h)(y + z)

)
− f

(
sy + (s+ h)z

)
− f

(
(s+ h)y + sz

)
+ f

(
s(y + z)

)∣∣,
Ĩ2(t, h) =

∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz) sh

×
∣∣f((s+ h)y + (s+ h)z)

)
− f

(
sy − (s+ h)z

)∣∣,
Ĩ3(t, h) =

∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz) sh

×
∣∣f((s+ h)y + (s+ h)z

)
− f

(
(s+ h)y + sz

)∣∣,
Ĩ4(t, h) =

∫ t

0

ds

∫
Rd

∫
Rd
G(1, dy)G(1, dz) h2

∣∣f((s+ h)y + (s+ h)z
)∣∣.

The hypothesis (h4) implies Ĩ1(t, h) ≤ C hb̄ and Ĩ2(t, h) + Ĩ3(t, h) ≤ C hb+1, (see (4.57)
and (4.56), respectively). As for Ĩ4(t, h), we apply the change of variables ((s+ h)y, (s+
h)z) 7→ (y, z), the scaling property, (4.5) and (h3); this yields

Ĩ4(t, h) =

∫ t

0

ds

(s+ h)2
h2

∫
Rd

∫
Rd
G(s+ h, dy)G(s+ h, dz)f(y − z) ≤ Ch2

∫ t

0

(s+ h)ν−2ds.

For h ∈ (0, T ] and ε > 0 arbitrarily small, this yields that, up to some multiplicative
constant, Ĩ4(t, h) is upper estimated by h2T ν−1 if ν > 1 (respectively by hν+1 if ν < 1,
and by T εh2−ε if ν = 1). Summarising the estimates above, we obtain

‖I2(t, x)− I2(t̄, x)‖2p ≤ 2
(
‖I2,1(t, t̄;x)‖2p + ‖I2,2(t, t̄, x)‖2p

)
≤ Cp

([
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]2
|t− t̄|1+ν + CµL(σ)2C̃2|t− t̄|2ν1

+ (T + T ν)L(σ)C̃
[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]
|t− t̄|ν1+min(b,1)

+ C̃(ν, T )
[
c(σ) + L(σ) sup

(t,x)∈[0,T ]×Rd
‖u(t, x)‖p

]2
|t− t̄|min(b+1,b̄,α̃)

)
, (4.69)

where α̃ = (1 + ν) ∧ 2 if ν 6= 1, while α̃ < 2 if ν = 1, and C̃(ν, T ) is a positive constant.
This completes the proof of (4.58).

From (4.58), using Proposition 4.4, we deduce (4.59). This concludes the proof.

From Propositions 4.5–4.10 we deduce Theorem 4.11 below, which is the main ingre-
dient towards obtaining uniform bounds on moments.

The following constants ν1 and ν2 will be used in the next Theorem:

ν1 = min(γ, γ1, γ2), ν2 = min

(
ν1,

1

2
[ν1 + min(b, 1)],

1 + ν

2
,
b+ 1

2
,
b̄

2
,
α̃

2

)
. (4.70)
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We recall that γ1, γ2, are the Hölder exponents of the initial values (see Proposition 4.5),
γ is the parameter in the assumption (h2), ν is defined in (h3), b and b̄ in (h4), and α̃
in the last part of the proof of Proposition 4.10.

Let

K̄0(u0, v0) =

{
‖v0‖γ2

+ ‖∇u0‖∞,R+T + ‖∇u0‖γ1
+ ‖v0‖∞,R+T , d = 2,

‖v0‖γ2 + ‖∇u0‖∞,R+T + ‖∆u0‖γ1 , d = 3.
(4.71)

Comparing this definition with (4.50), we see that K0(u0, v0) ≤ K̄0(u0, v0).

Theorem 4.11. Suppose that the hypotheses (1)–(3) of Proposition 4.9 hold, and that
the conditions (h3) and (h4) on the covariance of the noise are satisfied. Fix T,R > 0.
Then the following holds.

1. For any p ∈ [2,∞), there exists a constant C(p, T,R) such that, for any t, t̄ ∈ [0, T ],
x, x̄ ∈ B(0;R) and α > 0,

‖u(t, x)− u(t̄, x̄)‖p
|x− x̄|ν1 + |t− t̄|ν2

≤ C(p, T,R)
[
M1 +M2 +M3 e

TαNα,p(u)
]
, (4.72)

where

M1 = K̄0(u0, v0)
{

1 +
[
L(b) +

√
p
(
1 +

√
Cµ
)
L(σ)

]
exp

(TC3

2

)}
,

M2 = c(b) +
√
pc(σ)

{
1 + (C(γ)

µ )1/2
[
L(b) +

√
p
(
1 +

√
Cµ
)
L(σ)

]
exp

(TC3

2

)}
,

M3 =
[
L(b) +

√
p
(
1 +

√
Cµ
)
L(σ)

]{
1 + (pC(γ)

µ )1/2L(σ) exp
(TC3

2

)}
, (4.73)

with K̄0(u0, v0) and C3 given in (4.71) and (4.51), respectively.

2. Suppose further that L(b) ≥
(
21232C2

µL(σ)4
)
∨ 1

4 . Then, for any p ∈
[
2,

√
L(b)

253CµL(σ)2

]
and T0 defined in (4.12), we have

‖u(t, x)− u(t̄, x̄)‖p
|x− x̄|ν1 + |t− t̄|ν2

≤ C(p, T,R)

×
[
M1 +M2 +M3 e

2T
√
L(b)

(
T0 +

c(b)

L(b)
+
c(σ)

L(σ)

)]
. (4.74)

Proof. Fix x ∈ B(0;R) and consider the time increment ‖u(t, x) − u(t̄, x)‖p, with t, t̄ ∈
[0, T ]. Using the estimates (4.27), (4.30) for the increments of I0 in dimension d = 2, 3,
respectively, then (4.37), (4.38) and the definition of (2.7) for the increments of I1, and
finally (4.59) for the increments of I2, we obtain

‖u(t, x)− u(t̄, x)‖p ≤ C(T,R)
{
K̄0(u0, v0)|t− t̄|min(γ1,γ2)

+
[
c(b) + L(b)eTαNα,p(u)

]
|t− t̄|

+ C̃
([
L(b) +

√
p
√
CµL(σ)

]
|t− t̄|ν1 +

√
pL(σ)|t− t̄| 12 [ν1+min(b,1)]

)
+
√
p
[
c(σ) + L(σ)eTαNα,p(u)

]
×
[
|t− t̄| 12 [ν1+min(b,1)] + |t− t̄|

1+ν
2 + |t− t̄| 12 min(b+1,b̄,α̃)

]}
, (4.75)
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where the constant C̃ is the same as in (4.53). Here we have applied the inequal-

ity
√
AB ≤ 1

2 (A + B) to the product of constants A := C̃L(σ) and B :=
[
c(σ) +

L(σ)eTαNα,p(u)
]

in the last line of (4.59) (with α instead of 2
√
L(b) ).

Since by (4.53) we have supt∈[0,T ] ‖u(t, x)− u(t, x̄)‖p ≤ C̃|x− x̄|ν1 for x, x̄ ∈ B(0;R),
we deduce that the Lp norm or space-time increment ‖u(t, x)−u(t̄, x̄)‖p is bounded from

above by the sum of the left-hand side of (4.75) and C̃|x− x̄|ν1 . Using the definition of
C̃ and grouping terms, we obtain the inequality (4.72).

Part 2. follows from Proposition 4.4 (see (4.11)). This concludes the proof.

With an approach similar to that used in Section 3, from part 2. of Theorem 4.11
and the Kolmogorov continuity lemma ([9, Theorem A.3.1]), we deduce the uniform Lp

moment estimates stated in the next Proposition. They are essential in the proof of
existence and uniqueness of a global random field solution to (1.3). Set

K(c(b), c(σ), L(b), L(σ)) =M1 +M2 +M3e
2T
√
L(b)

(
T0 +

c(b)

L(b)
+
c(σ)

L(σ)

)
, (4.76)

whereMj , j = 1, 2, 3 and T0 are defined in (4.73) and (4.12), respectively. Observe that,
up to a constant factor, K(c(b), c(σ), L(b), L(σ)) equals the right-hand side of (4.74).

Proposition 4.12. Suppose that the hypotheses (1)–(3) of Proposition 4.9 hold, and the
hypotheses (h3) and (h4) on the covariance of the noise are satisfied. Let ν1 and ν2 be
the parameters defined in (4.70). Suppose that the Lipschitz coefficients L(b) and L(σ)
satisfy L(b) ≥

(
21232C2

µL(σ)4
)
∨ 1

4 and√
L(b)

253CµL(σ)2
>

1

ν1
+

d

ν2
, d = 2, 3. (4.77)

Fix T,R > 0. Then, for any p ∈
(

1
ν1

+ d
ν2
,
√
L(b)/

(
253CµL(σ)2

)]
, there exists positive

constants C1 and C2(p, T,R) such that

E
(

sup
(t,x)∈[0,T ]×B(0;R)

|u(t, x)|p
)
≤ 2p−1C1 + C2(p, T,R)K(c(b), c(σ), L(b), L(σ)), (4.78)

with K(c(b), c(σ), L(b), L(σ)) defined in (4.76).

The proof is analogous to that of Proposition 3.4; it is omitted.

4.4. Existence and uniqueness of a global solution

In this section, we consider the equation (1.3) in spatial dimensions d = 2, 3. We
assume that the coefficients b and σ satisfy the hypothesis (Cs) of Section 3.3, thereby
having superlinear growth. We also assume that b dominates σ, in the terms expressed
by the condition (Cd) below.

(Cd) The parameters δ and a in (1.2) satisfy one of the properties:
(1) δ > 4a;

(2) δ = 4a and θ2 and σ2 are such that θ2 > 21232C2
µσ

4
2

(
1
ν1

+ d
ν2

)2
, d = 2, 3,

where Cµ is defined in (4.6) and ν1, ν2 are given in (4.70).

The next theorem is the main result of this section.
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Theorem 4.13. The hypothesis are as follows.

(i) The initial values u0 and v0 are functions satisfying the hypotheses of Proposition
4.5 with some Hölder exponents γ1, γ2 ∈ (0, 1).

(ii) The coefficients b and σ satisfy (Cs) and (Cd) with δ < 1
2 .

(iii) The covariance of the noise satisfies conditions (h1), (h2), (h3) and (h4).

1. For any M > 0, there exists a random field solution to (1.3) in B(0;M),
(
u(t, x),

(t, x) ∈ [0, T ]×B(0;M)). This solution is unique and satisfies

sup
(t,x)∈[0,T ]×B(0;M)

|u(t, x)| <∞, a.s. (4.79)

2. Suppose that the initial conditions u0, v0 are functions with compact support in-
cluded in B(0; ρ), for some ρ > 0, and b(0) = σ(0) = 0. Then there exists a
random field solution

(
u(t, x), (t, x) ∈ [0, T ]×R) to (1.3). This solution is unique

and satisfies
sup

(t,x)∈[0,T ]×B(0,ρ+T )

|u(t, x)| <∞, a.s. (4.80)

Equivalently,
sup

(t,x)∈[0,T ]×Rd
|u(t, x)| <∞, a.s. (4.81)

Proof. We refer to Section 6 for details on the settings of the claims. The proof uses
the same approach as in the proof of Theorem 3.5. First, for g = b, σ, we consider the
truncated globally Lipschitz functions bN , σN , defined in (3.25). The assumption (Cs)
imply that (3.26) holds. Moreover, by (Cd), we see that the Lipschitz coefficients L(bN ),
L(σN ) satisfy the hypotheses of Proposition 4.12.

Let uN =
(
uN (t, x), (t, x) ∈ [0, T ]× Rd

)
be the unique global random field solution

to (1.3) with coefficients bN , σN . Fix R > 0. Under the standing hypotheses, we
can apply Proposition 4.12 to the stochastic process uN to deduce that, for any p ∈(

1
ν1

+ d
ν2
,

√
L(bN )

253CµL(σN )2

]
(and N large enough if necessary), there exist positive constants

C1 and C2(p, T,R), not depending on N , such that

E
(

sup
(t,x)∈[0,T ]×B(0;R)

|uN (t, x)|p
)
≤ 2p−1C1 + C2(p, T,R)K(c(bN ), c(σN ), L(bN ), L(σN )).

(4.82)

Here, K(c(bN ), c(σN ), L(bN ), L(σN )) is given by (4.76), with c(b), c(σ), L(b), L(σ) re-
placed by c(bN ), c(σN ), L(bN ), L(σN ). Recall that

c(bN ) = θ1, c(σN ) = σ1, L(bN ) = θ2(ln(2N))δ, L(σN ) = σ2(ln(2N))a,

(see (3.26)). Because of (Cd), and since max(a, δ) = δ < 1
2 , we have

K(c(bN ), c(σN ), L(bN ), L(σN )) = o(Np). (4.83)

Consider the sequence of increasing stopping times defined in (3.29). Using (4.83),
we see that supN τN = T , a.s. By the standard localization argument (see the details of
the proof of Theorem 3.5), we finish the proof.
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5. Examples of covariance densities

In this section, we give three examples of covariances which satisfy the conditions
(h0)–(h4) of section 4; for each of them, we identify the values of the parameters ν1,
ν2 in (4.70). For d = 3, the same examples are studied in [13]. We only sketch some
arguments and refer the reader to the extended version of this article in arXiv ([20]) for
details.

5.1. Riesz kernels. For β ∈ (0, d), let fβ : Rd → [0,+∞] be defined by fβ(x) = |x|−β
for x ∈ Rd \ {0}, and fβ(0) = +∞. Let Λ be the non-negative definite tempered
distribution given by Λ(dx) = fβ(x) dx. According to [26, Chapter V], its spectral
measure is µβ(dζ) = cd,βfd−β(ζ) dζ, where cd,β = 2−β+d/2Γ((d − β)/2)

/
Γ (β/2), where

Γ denotes the Euler Gamma function.
Observe that the integral

∫
Rd

µβ(dζ)
1+|ζ|2 converges if and only if β ∈ (0, 2 ∧ d). In the

sequel, we consider the dimensions d = 2, 3, and assume that β ∈ (0, 2). Thus, µβ
satisfies the condition (h0). Since fβ is a lower semicontinuous function, from Remark
4.1 we deduce that (h1) holds.

Fix γ ∈ (0, 1); the integral
∫
Rd

µβ(dζ)
1+|ζ|2−2γ is finite if and only if γ < (2 − β)/2.

Since |ζ|2γµβ(dζ) = cd,β |ζ|−(d−β−2γ)dζ, and the Fourier transform of this measure is
gγ(x) = c̃(β, d)|x|−(β+2γ) (for some positive constant c̃(β, d)), if β + 2γ < d, the func-
tion |ζ|2γµβ(dζ) is locally integrable. Therefore, µβ satisfies the condition (h2) for any
γ ∈ (0, (2− β

)
/2).

Apply the change of variable η = tζ to deduce
∫
Rd |FG(t)(ζ)|2 µβ(dζ) = cd,β t

2−βId,β ,

where the integral Id,β :=
∫
Rd

sin2(|η|)
|η|2+d−β dη is finite. Hence µβ satisfies the condition (h3)

with ν = 2− β and C := cd,β Id,β .

The function fβ satisfies the conditions (h4) 1. and (h4) 2. for any b ∈ (0,min(2−
β, 1)) and b̄ ∈ (0, 2−β), respectively. For d = 3, this is proven in [13, Proposition 5.3, p.
383-386], relying on [7, Lemma 2.6, p. 10] (see also Lemmas 6.4 and 6-5 in [7]). Going
through the details of the proofs, we see that they can be extended to d = 2, thanks to
Lemma 4.2 (see [20, Section 5] for further details).

Conclusion. Let d = 2, 3 and β ∈ (0, 2). For spatially homogeneous Gaussian noises
with covariance given by (4.1) with Λ(dx) = fβ(x) dx, the parameters in (4.70) are

ν1 = ν2 = min(γ, γ1, γ2), with γ < 2−β
2 . Hence, (4.72) implies that almost all sample

paths of the solution to (1.3) are locally Hölder continuous, jointly in (t, x), with exponent
θ ∈

(
0,min((2− β)/2, γ1, γ2

)
. For d = 3, this is [7, Theorem 4.11, p. 48]. Moreover, the

critical exponent min((2−β)/2, γ1, γ2) is sharp in both dimensions, d = 2, 3 (see [7], [8]).

5.2. Bessel kernels. For any κ > 0, the Bessel kernel is the function defined by f̃κ(x) =∫∞
0
w
κ−d−2

2 e−we−
|x|2
4w dw if x ∈ Rd \ {0}, f̃κ(0) = ∞ if 0 < κ ≤ d, and f̃κ(0) = c(d, κ) if

κ > d, where 0 < c(d, κ) < ∞. Let Λ be the measure defined by Λ(dx) = f̃κ(x) dx; its

spectral measure is µ̃κ(dζ) = Cd,κ
(
1 + |ζ|2

)−κ2 dζ (see [26, Chapter V]). In the sequel,
we consider the case d = 2, 3, and we assume κ > d− 2.

Since f̃κ is lower semicontinuous, the condition (h1) holds (see Remark 4.1). Fix

γ ≥ 0; the integral
∫
Rd

µ̃κ(dζ)
1+|ζ|2−2γ is finite if and only if 2γ < κ − d + 2. Take γ = 0 to
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deduce that (h0) holds. Furthermore, for γ ∈
(
0,min

(
κ−d+2

2 , 1
))

, the constant C
(γ)
µ̃κ

defined in (4.39) is finite and therefore, (h2) holds.
To check (h3), we fix t > 0 and write∫
Rd
|FG(t)(ζ)|2µ̃κ(dζ) ≤ C̃d,κ

(∫ 1

0

t2rd−1dr +

∫ T
t

1

t2rd−1−κdr +

∫ ∞
T
t

rd−1r−2r−κdr
)

≤ C̃d,κ
( t2
d

+

∫ T
t

1

t2rd−1−κdr +
1

κ− d+ 2

( t
T

)κ−d+2)
. (5.1)

Set I(t) :=
∫ T
t

1
t2rd−1−κdr; we see that I(t) is upper bounded by t2

d−κ
(
T
t

)d−κ
if d− 2 <

κ < d (respectively by t2 ln
(
T
t

)
if κ = d, and by t2

κ−d if d < κ). Therefore, (5.1) implies∫
Rd
|FG(t)(ζ)|2µ̃κ(dζ) ≤ C(d, κ, T ) tν , t ∈ [0, T ],

where C(d, κ, T ) is some positive constant and ν < min(2, κ− d+ 2). Hence, (h3) holds
with ν < min(2, κ− d+ 2).

For d = 3, the validity of (h4) is proved in [13, Section 5.3]. Going through the proof,
we see that they also hold for d = 2 (see the details in [20, Section 5]).

Conclusion. Let d = 2, 3, κ > d − 2. For spatially homogeneous Gaussian noises with
covariance given by (4.1) with Λ(dx) = f̃κ(x) dx, the parameters defined in (4.70) are
ν1 = ν2 = min(γ, γ1, γ2), with γ < min

(
κ−d+2

2 , 1
)
. Thus, we deduce that almost all

sample paths of the solution to (1.3) are locally Hölder continuous, jointly in (t, x), with
exponent θ ∈

(
0,min(κ−d+2

2 , 1, γ1, γ2)
)
. When d = 3, we recover the results in [13, p.

393]. Whether this Hölder exponent is sharp seems to be an open question.

5.3. Fractional kernels Let d = 2, 3, and H = (Hi)1≤i≤d, with Hi ∈ (1/2, 1). Let

f̄H(x) = CH
∏d
i=1 |xi|2Hi−2, when

∏d
i=1 xi 6= 0, where C(H) =

∏d
i=1Hi(2Hi − 1), and

f̄H(x) = +∞, otherwise. In this section, we consider the non-negative definite tempered

distribution Λ(dx) = f̄H(x)dx. Its spectral measure is µ̄H(ζ) = CH
∏d
i=1 |ζi|1−2Hi dζ,

where CH is some positive constant.
Since the function f̄H is lower semicontinuous, condition (h1) holds, by Remark 4.1.

As proved in [20, p. 44], the condition (h0) is satisfied if
∑d
i=1Hi > d− 1.

Set κ̄ :=
∑d
i=1Hi − (d− 1) > 0. The condition (h2) holds if γ < κ̄ (see [20, p. 44]).

Let t ∈ [0, T ]; then∫
Rd

∣∣FG(t)(ζ)
∣∣2µ̄H(dζ) ≤ C

[ ∫ t−1

0

t2r2d−1−2
∑d
i=1 Hidr +

∫ ∞
t−1

rd−1−2+d−2
∑d
i=1 Hidr

]
≤ Ct2κ̄.

Thus, the condition (h3) holds with ν = 2κ̄.
For d = 3, the validity of (h4) is proved in [13]. With minor changes, the arguments

also hold for d = 2 (see [20, Section 5] for more details).

Conclusion. Let d = 2, 3, H = (Hi)1≤i≤d, with H1 ∈ (1/2, 1) and κ̄ =
∑d
i=1Hi − d +

1 > 0. For spatially homogeneous Gaussian noises with covariance given by (4.1) with
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Λ(dx) = fH(x) dx, the parameters in (4.70) are

ν1 = ν2 = min (γ1, γ2, κ̄,min (Hi − 1/2; i = 1, · · · , d)) .

As a consequence, from (4.72) we deduce that almost all sample paths of the solution to
(1.3) are locally Hölder continuous, jointly in (t, x), with exponent

θ ∈
(
0, min (γ1, γ2, κ̄,min (Hi − 1/2; i = 1, · · · , d))

)
.

For d = 3, this is [13, Theorem 6.1]. In this case, following [13, Theorem 6.2], the critical
exponent should be min(γ1, γ2, κ̄); therefore the above result is not optimal.

6. Appendix: some elements on stochastic wave equations

In this section, we give some basic elements relative to the stochastic wave equations
considered in this article.

Throughout the section, (u(t, x), (t, x) ∈ [0, T ]×Rd) denotes the random field solution
to the stochastic wave equation in each one of the settings:

(s1) d = 1, W is a space-time white noise, and the conditions of Proposition 3.1 hold;

(s2) d = 2, 3, W is a noise white in time and coloured in space, and the hypotheses of
Proposition 4.3 are satisfied.

For any bounded Borel set O ⊂ Rd and ε0, O(ε0) denotes the closed ε0-neighborhood
of O, that is,

O(ε0) = {z ∈ Rd, d(x,O) ≤ ε0}.

6.1. Propagation of support

For the homogeneous (deterministic) wave equation there is a well-known compact
support property saying that if the initial conditions have compact support then the
solution in the classical sense also has compact support. The proposition below tells us
that, under suitable conditions, this property extends to the stochastic wave equation in
dimensions d ∈ {1, 2, 3}. As for the deterministic case, this relies on the fact that the
support of the fundamental solution of the wave equation G(t, ·), t ∈ [0, T ], is included
in the closed ball B(0; t).

Proposition 6.1. Consider the two cases (s1) and (s2) described above. Assume that

(i) the initial conditions u0, v0 are functions with compact support K ⊂ Rd;

(ii) the coefficients b and σ satisfy b(0) = σ(0) = 0.

Then, for any t ∈ [0, T ],

u(t, x) = 0, for any x /∈ K(t). (6.1)

Hence, the support of the sample paths of the solution (u(t, x), (t, x) ∈ [0, T ] × Rd) is
included in [0, T ]×K(T ).
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Proof. We will extend the arguments in [18, p. 925] in dimension d = 2 to any d ∈
{1, 2, 3}.

First, notice that since the mapping [0, T ] 3 t 7→ K(t) is increasing, the last statement
is an immediate consequence of (6.1).

Next, we prove that (6.1) holds with u(t, x), replaced by un(t, x)–the n-th Picard
iteration of u defined by

u0(t, x) = I0(t, x),

un(t, x) = I0(t, x) +
∫ t

0
ds
∫
Rd dy G(t− s, x− y)b(un−1(s, y))

+
∫ t

0

∫
Rd G(t− s, x− y)σ(un−1(s, y)) W (ds, dy), n ≥ 0.

(6.2)

Indeed, fix t ∈ [0, T ] and let n = 0. If x /∈ K(t), we have |x − y| > t for any y ∈
K. Therefore, the integrals defining I0(t, x) (see (2.5)) vanish, because of the above
mentioned property on the support of G(t, ·).

In the next induction step, we will make use of the following fact:

(PS) Let x /∈ K(t). Then for all s ∈ [0, t] and all y ∈ Rd such that |x − y| ≤ t − s,
we have y /∈ K(s).

Indeed, if x /∈ K(t) then for any z ∈ Rd, |z − x| > t. By the triangle inequality, this
implies |z − y| ≥ |z − x| − |x− y| > t− (t− s) = s. Thus, y /∈ K(s).

Assume that (6.1) holds with u(t, x) replaced by ul(t, x), l = 0, . . . , n−1. We observe
that the integrands in (6.2) (with n := n− 1) vanish if |x− y| > t− s. If on the contrary,
x − y ≤ t − s, from (PS) and the induction assumption, we have that u(n−1)(s, y) = 0.
Hence, by assumption (ii), we have b(un−1(s, y)) = σ(un−1(s, y)) = 0, which implies
(6.1) with u(t, x) replaced by un(t, x).

In Propositions 3.1 and 4.3 the random field solutions (u(t, x), (t, x) ∈ [0, T ] × Rd)
are obtained as limits of the Picard iterations (6.2). Thus, the propagation of support
property (6.1) holds.

6.2. The solution of the stochastic wave equation restricted to a bounded domain

Let d ∈ {1, 2, 3} and T > 0. Following the setting of [7, Chapter 4], we consider a
bounded domain D ⊂ Rd and the associated past light cone

D(T−t) = {z ∈ Rd : d(z,D) ≤ T − t}, t ∈ [0, T ].

For any (t, x) ∈ [0, T ]× Rd, set

u(t, x)1D(T−t)(x) = 1D(T−t)(x)

(
[G(t) ∗ v0](x) +

∂

∂t

[
G(t) ∗ u0

]
(x)

)
+ 1D(T−t)(x)

∫ t

0

ds

∫
Rd
dy G(t− s, x− y)b

(
u(s, y)1D(T−s)(y)

)
+ 1D(T−t)(x)

∫ t

0

∫
Rd
G(t− s, x− y)σ

(
u(s, y)1D(T−s)(y)

)
W (ds, dy).

(6.3)

By the triangle inequality, if x ∈ D(T−t) and x − y ∈ B(0; t− s) then y ∈ D(T−s)

for all 0 ≤ s ≤ t ≤ T (compare with property (PS) in Section 6.1). Hence, (6.3) is
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consistent in the following sense: when x /∈ D(T−t), it is a trivial equation, while when
x ∈ D(T−t), the stochastic process

(
u(t, x)1D(T−t)(x), (t, x) ∈ [0, T ]× Rd

)
satisfies (1.3)

(with (t, x) ∈ [0, T ]×D(T−t)). In [7], this process is called a solution to the wave equation
“in D”.

Observe that [0, T ] 3 t 7→ D(T−t) is decreasing and ∩t∈[0,T ]D
(T−t) = D.

Proposition 6.2. Consider the cases (s1), (s2) described above.
Let u = (u(t, x), (t, x) ∈ [0, T ]×Rd) be the respective random field solutions given in

Propositions 3.1 and 4.3.
Let D ⊂ Rd be a bounded domain. Then, almost surely, u(t, x) = u(t, x)1D(T−t)(x)

for all (t, x) ∈ [0, T ] × D, where
(
u(t, x)1D(T−t)(x), (t, x) ∈ [0, T ]× Rd

)
is the random

field solution to (6.3).
Therefore, the support of the sample paths of the random field u = (u(t, x), (t, x) ∈

[0, T ]×D) is included in [0, T ]×D(T ).

Proof. For d = 3 and covariance densities of the noise belonging to a class that include
Riesz kernels, the existence and uniqueness of a random field solution to (6.3) is estab-
lished in [7, Chapter 4] (see, in particular Proposition 4.3 and Theorem 4.6 there). With
covariance densities satisfying the conditions (h0) and (h1) of Section 4.1, the results are
still valid ([6], [13]). With similar but simpler arguments, those results can be extended
to d = 1 (with space time white noise) and to d = 2 with covariance densities satisfying
the conditions (h0) and (h1) of Section 4.1.

Because of the uniqueness of solution assertions, for all (t, x) ∈ [0, T ] ×D, u(t, x) =
u(t, x)1D(T−t)(x) a.s. Actually, since the sample paths of both processes are continuous
(and even locally Hölder continuous), the processes (u(t, x), (t, x) ∈ [0, T ] × D) and
(u(t, x)1D(T−t)(x), (t, x) ∈ [0, T ]×D) are indistinguishable.
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