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Abstract The three-dimensional two-phase flow dy-

namics inside a microfluidic device of complex geometry

is simulated using a parallel, hybrid front-tracking/level-

set solver. The numerical framework employed circum-

vents numerous meshing issues normally associated with

constructing complex geometries within typical compu-

tational fluid dynamics packages. The device consid-

ered in the present work is constructed via a module

that defines solid objects by means of a static distance

function. The construction combines primitive objects,

such as a cylinder, a plane, and a torus, for instance,

using simple geometrical operations. The numerical so-

lutions predicted encompass dripping and jetting, and

transitions in flow patterns are observed featuring the

formation of drops, ‘pancakes’, plugs, and jets, over a

wide range of flow rate ratios. We demonstrate the fact

that vortex formation accompanies the development of

certain flow patterns, and elucidate its role in their un-
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Scientifique (CNRS), Université Paris Saclay, Bât. 508, Rue
John von Neumann Campus Universitaire, F-91405 Orsay,
France.
5 Department of Mechanical and System Design Engineering,
Hongik University, Seoul 121-791, Republic of Korea.
6 Department of Mathematics, Imperial College London,
South Kensington Campus, London SW7 2AZ, United King-
dom.

derlying mechanisms. Experimental visualisation with a

high-speed imaging are also carried out. The numerical

predictions are in excellent agreement with the experi-

mental data.

Keywords Two-phase flow · Cross Junction ·
Pancakes · Plugs · Drops · Jets

PACS 47.55.-D, 47.11.-j, 47.32.cd

1 Introduction

Two-phase flow in micro-channels is of central impor-

tance to applications in chemical, medical, and pharma-

ceutical processes such as inkjet printing, DNA chips,

lab-on-a-chip technology, micro-propulsion, and microflu-

idics [1,14,19,30,18]. Many configurations [4] are used

in applications involving co-flowing and cross-flowing

streams, flow in an elongation channel, and stretching-

dominated flows for which droplet, or plug formation

is obtained by a periodic breakup mechanism of the

dispersed phase. The most popular device designs, how-

ever, are flow-focusing [32,42], T-junctions [8,40,6], and

cross-junctions [17].

Experimental studies have highlighted the impor-

tance of the squeezing mechanism on the droplet, or

plug, at the junction by providing the plug size as a

function of flow rate ratio fitted by a simple scaling law.

Garstecki et al. [8], Thorsen et al. [36], Tice et al. [37]

and Christopher et al. [5] amongst others all studied

these squeezing regimes for the case of a square section

T-junction channel; Guillot et al. [10] provided simi-

lar studies for both square and rectangle cross-section

of T-junction channel. Naturally, many devices do not

involve simple square cross-section channels, and the

details of the junction often involve additional detail
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(a) (b)

Fig. 1 Configuration of Dolomite droplet junction chip with etch depth 190µm (part number 3000301)[7] used for this study,
(a); numerical design and calculation domain of size 3.42 mm length, 0.19 mm width and 1.14 mm height, (b). The calculation
domain is divided into 18 × 1 × 3 = 54 subdomains, as shown in (a), where each subdomain holds a regular grid mesh of
32 × 32 × 64 cells. The global resolution in the entire domain is then 576 × 32 × 192.

and narrowing to fine-tune the breakup by further in-

tensifying the flow at the junction. The influence of the

device cross-section, junction-thinning, and details of

the breakup itself have not been the subject of a thor-

ough numerical study; this is the aim of the present pa-

per. The lattice Boltzmann method [31] has been used

for multiphase micro-channel devices with square [17]

or rectangle [6] cross-sections for T-junction configura-

tions. Other techniques have also been used to conduct

numerical simulations of microfluidic flows, such as the

volume-of-fluid, and level-set methods, though the lat-

ter feature numerical instabilities particularly when the

interfacial tension becomes a dominant factor in the

flow [29].

The front-tracking technique [39], and the variants

developed by Shin et al. [24,27], exhibit no numerical

instabilities, and parasitic currents. This approach is

ideally suited to multiphase flow simulation, particu-

larly in the case of surface tension dominated flows, and

it is employed herein to study the physics of breakup,

the influence of the flow-focussing at junctions in mi-

crofluidics devices, which are potentially key, as shown

in previous experimental work. For instance, Steijn et

al. [34] performed experiments for rectangular T-junctions

and provided important details of the flow just before

the thread pinch-off, highlighting the existence of a re-

verse flow, around the thread, just when the neck col-

lapses rapidly to release a drop. More recently, Chinaud

et al. [2] have developed a new technique for flow visual-

isation, termed “complementary micro Particle Image

Velocimetry (µPIV )”, which allows velocity fields in

both phases to be imaged. These experiments highlight

the apparent existence of an intriguing vortex forma-

tion during the squeezing regime; we utilise the results

of our simulation technique to detect, and quantify nu-

merically, the role of this vortex in the breakup mech-

anism.

The rest of this article is organised as follows: The

channel geometry construction is covered in Sec. 2, while

the governing equations, the computational methods,

and the problem initialisation are outlined in Sec. 3 to-

gether with a description of the numerical techniques

for interface advection. Sec. 4 presents results and flow

details for two types of squeezing regimes together with

cross-validation results against experimental data. Fi-
nally, concluding remarks are provided in Sec. 5.

2 The configuration of the cross-junction and

its numerical construction

The specific micro-channel device used in this study is

similar to the device used by Kovalchuk et al. [15], il-

lustrated in Figure 1; here, the geometry acts to both

focus flow and combine different fluids using a cross-

junction. This glass microfluidics device is designed by

Dolomite as a droplet junction chip, with etch depth

190µm (part number 3000301)[7]. The complexity of

the cross-junction is not simply in terms of its plan-

form, but also in its cross-section with the channels

having non-circular, and different, tubular forms; at the

junction itself, there is designed constriction. Our ap-

proach circumvents the need for time-consuming con-

struction, meshing, and remeshing, of this geometry.

Instead, we proceed in a modular manner that enables
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us to build the geometry from primitive geometrical

objects using a static distance function that takes into

account the interaction of these objects with the flow

for both single and two-phase flows. The final structure

in the computational domain, viz. Fig. 1-top-left, con-

sists of the iso-value ψ(x, y, z) = 0; the static distance

function, ψ(x, y, z), is positive for the fluid part and

negative for the solid part, and (x, y, z) are Cartesian

coordinates.

Many primitive solid geometry shapes are already

included in the code, including spheres, planes, cylin-

ders, and tori, as are geometrical operations such as the

union or intersection for each primitive object. In our

case, only planes, cylinders and tori are required for

the construction of cross-junction and they are easily

combined together and Fig.2 illustrates the steps of the

construction:

– Starting with one of the branches, here the left side

requires an intersection of two horizontal planes at

a distance of 200µm, followed by a union with two

horizontal cylinders with a diameter of 190µm, and,

finally, an intersection with a perpendicular plane in

the spanwise direction (viz. Fig. 2 top-left).

– The left branch is then stored, and in a similar way

we construct and store the right, top, and bottom

branches. We then assemble all the branches using

a union operation (Fig. 2 top-right).

– An oval structure is added at the end of each branch:

this is the union of a torus and cylinder, as shown

in Fig. 2 center-left.

– The junction is made by the union of two perpendic-

ular cylinders of a diameter of 195µm. We use the

union operation to combine this with the branches

(viz. Fig. 2 center-right).

– Finally, we close the resulting channel intersecting

two planes in the front and the back of the domain

(Fig. 2 bottom-left).

Similar techniques are used for the construction of

the initial shape of the fluid interface. The inlet section

has an oval shape (see Fig. 1 bottom-left), and the in-

terface is initialised with the shape of a half-pancake at

the inlet (see Fig. 2 bottom-right). This pancake shape

is a union of a torus and a cylinder, and the intersection

of two planes.

3 Problem formulation

3.1 Governing equations

We now outline the basic solution procedure for the

Navier-Stokes equations together with a brief explana-

tion of the interface method; full details of the numeri-

cal solution method for the velocity, pressure and inter-

face dynamics are given in several articles of Shin and

Juric [21–25]. The governing equations for transport of

an incompressible two-phase flow are given as:

∇ · u = 0

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P +∇ · µ

(
∇u +∇uT

)
+ F

(1)

where u is the velocity, P the pressure and F is the

local surface tension force at the interface. This force is

described by the hybrid formulation:

F = σκ
H
∇I (2)

where σ is the surface tension coefficient assumed here

to be constant. We use an indicator function, I, that is

zero in one phase and one in the other phase, resolved

with a sharp but smooth transition across 3 to 4 grid

cells; this is essentially a numerical Heaviside function

generated using a vector distance function computed

directly from the tracked interface [24]. A curvature

function, κ
H

, is defined to be twice the mean interface

curvature field and it is calculated on the Eulerian grid

using:

κ
H

=
F

L
·G

σG ·G
(3)

where F
L

=

∫
Γ (t)

σκ
f
n

f
δ
f

(
x− x

f

)
ds (4)

and G =

∫
Γ (t)

n
f
δ
f

(
x− x

f

)
ds. (5)

In these formulae: x
f

is a parameterisation of the inter-

face, Γ (t), and δ
f
(x−x

f
) is a Dirac distribution that is

non-zero only when x = x
f
, n

f
is the unit normal vec-

tor to the interface and ds is the length of the interface

element; κ
f

is again twice the mean interface curvature

but now obtained from the Lagrangian interface struc-

ture. The geometric information, unit normal, n
f
, and

length of the interface element, ds, in G are computed

directly from the Lagrangian interface and then dis-

tributed onto an Eulerian grid using the discrete delta

function. The details follow Peskin’s [20] well-known

immersed boundary approach and a description of our

procedure for calculating the force and constructing the

function field G and indicator function I is given in Shin

et al. [22–25]. The Lagrangian interface is advected by

integrating

dx
f

dt
= V (6)

with a second-order Runge-Kutta method where the

interface velocity, V, is interpolated from the Eulerian

velocity. Material properties, such as the density and
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Fig. 2 The modular construction of the geometry as it is built from left to right and top to bottom.

viscosity, are defined in the entire domain with the aid

of the indicator function I(x, t):

ρ(x, t) = ρcon. + (ρ
dis.
− ρcon.) I(x, t)

µ(x, t) = µ
con.

+ (µ
dis.
− µ

con.
) I(x, t)

(7)

where the subscripts con., and dis., stand for the contin-

uous, and dispersed, phase respectively. The numerical

code structure consists of two main modules:

– A module that solves the incompressible Navier-

Stokes equations

– A module for the interface solution that includes

tracking the phase front, initialisation and recon-

struction of the interface when necessary.

The parallelization of the code is based on an al-

gebraic domain-decomposition technique. The code is

written in the computing language Fortran 2003 and

communications are managed by data exchange across

adjacent subdomains via the Message Passing Interface

(MPI) protocol. The Navier-Stokes solver computes the

primary variables of velocity u and pressure P on a

fixed and uniform Eulerian mesh by means of Chorin’s

projection method [3]. Depending on the physical prob-

lem, numerical stability requirements and user prefer-

ences, the user has a choice of explicit or implicit time

integration to either first or second-order. For spatial

discretization we use the well-known staggered mesh,

MAC method [12]. All spatial derivatives are discre-

tised using standard centred differences, except in the

nonlinear term where we use a second-order Essentially-

Non-Oscillatory (ENO) scheme [28,33]. We use a multi-

grid iterative method for solving the elliptic pressure

Poisson equation

∇ ·
(

1

ρ
∇P

)
= S (8)

where S denotes the source term and is a function of the

non-projected velocities and interfacial tension. In the

case of two-phase flow with large density ratio, the now

non-separable Poisson equation is solved for the pres-

sure by a modified multigrid procedure implemented for

distributed processors. We have developed a modified

parallel 3D V-cycle multigrid solver based on the work

of Kwak and Lee [16]. The solver incorporates a parallel

multigrid procedure whose restriction and prolongation

operators are not associated with each other, contrary

to common usage. This method has been successfully

implemented to solve 3D elliptic equations where co-

efficients can be highly discontinuous [41]. The proce-

dure can handle large density discontinuities up to den-

sity ratios of O(105). The key features of the modified

multigrid implementation can be summarized as cell

centered second-order finite-difference approximation of

equation (8), harmonic approximation of the discontin-

uous coefficient 1/ρ, linear interpolation of the residual

during the restriction process, cell flux conservation of

the error on coarse grids during the prolongation pro-

cess, parallel Red-Black SOR technique to relax the lin-

ear systems on fine grids, and solution of the error using

a parallel GMRES algorithm on the coarsest grid. Fur-

ther details of the code are comprehensively given in

Shin et al. [26].
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3.2 Initialisation and boundary conditions

The cross-sectional shape at the entrance of each branch

has a shape resembling an oval. This shape, and its di-

mensions, are highlighted in Fig. 1 (bottom-left) and

it is the connection of a rectangular shape (200 µm

length and 190 µm width) and two spherical shapes

of diameter of 195 µm. Despite the complexity of the

cross-section, it has the advantage of being a smooth

circumference, with no singularities or corners, and so

we can set an analytical initial shape for the velocity

field at the entrance. The boundary conditions should

satisfy the no-slip condition along its circumference and

ensure an exact entry flow rate Q. Considering the ex-

ample of a section normal to the z-axis (as in Fig. 3),

the initialised velocity profile is given by:

V (x, y) =
A
(

(y − y0)2

R2
− 1

)
if |x− x0| ≤ L/2

A
(

(x− x0 − L/2)2

R2
+

(y − y0)2

R2
− 1

)
otherwise

(9)

and

A =
−Q

4
3RL+ π

2R
2

where L = 200 µm and R = 95 µm are parameters that

define the cross-section and Q is the fluid flow rate.

Figure 3 highlights the initialised velocity profile at the

entrance of a branch for a given flow rate. Here, x
0

and

y
0

refer to coordinate values for the centre position of

a branch.

Fig. 3 Normalised velocity field at the cross section in-
lets. The contours are equally spaced with steps of 0.05 and
(x

0
, y

0
) = (0, 0).

The temporal integration scheme is based on a second-

order Gear method [38], with implicit solution of the

viscous terms of the velocity components. Each time-

step, ∆t, is chosen for each temporal iteration to satisfy

a criterion based on

∆t = min (0.1×∆tCFL, 0.05×∆tint, ∆tcap) (10)

Table 1 Fluid physical properties for the combinations of
liquid-liquid 1© and 2©.

Density ρ Viscosity µ
(kg/m3) (Pa.s)

Continuous phase 1© 855 0.03
Dispersed phase 1© 1000 0.001
Continuous phase 2© 920 0.0046
Dispersed phase 2© 1133 0.006

which ensures stability of the calculations. These bounds

are defined by:

∆tCFL ≡ min
j

(
min

domain

(
∆xj
uj

))
∆tint ≡ min

j

(
min
Γ (t)

(
∆xj
‖V‖

))
∆tcap ≡

1

2

(
(ρ

con.
+ ρ

dis.
)∆x3min

πσ

)1/2

(11)

where ∆xmin = minj (∆xj); Kahouadji et al. [13] used

similar criteria.

4 Results

We consider two different liquid combinations 1© and
2© that correspond to opposite physical situations: in

combination 1© the dispersed phase is less viscous than

the continuous phase, and combination 2© has the roles

reversed with the dispersed phase more viscous than

the continuous one. The corresponding interfacial ten-

sions for these combinations are Γ
1

= 49 mN/m and

Γ
2

= 29 mN/m, respectively, and the density and dy-

namic viscosity values are provided in Table 1. These

fluid combinations are then subject to fluid flow rates,

Fig. 4 The generic interface shapes showing, from top
to bottom, jets, ‘plugs’, ‘pancakes’, and spheres, respec-
tively. The physical properties for both continuous and
dispersed phase consists of the combination 2© high-
lighted in Table 1. The flow rate combination between the
(dispersed, continuous) are from top to bottom (0.07, 0.01),
(0.1, 0.05), (0.06, 0.06) and (0.01, 0.08) mL/min, respectively.
Experimental snapshots under similar conditions are pro-
vided in Fig. 13.
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and the resulting droplet shapes and flow features are

presented.

These fluid combinations, when driven through the

junction, have four generic interface shapes for the dis-

persed phase at the exit branch: (i) spherical drops

with a diameter smaller than the cross-junction height

(190µm), (ii) ‘pancakes’ resembling a flattened sphere

with radius between 190µm and 390µm, (iii) plugs which

have an elongated three-dimensional oval shape with

length larger than 390µm, and (iv) jets where the re-

sulting dispersed phase has the shape of a continuous

stratified jet. These generic interface shapes, generated

numerically, are shown in Fig. 4 using the fluid combi-

nation 2© provided in Table 1.

4.1 The dynamics of ‘pancake’ formation

The fluid combination used for this section is 1©. The

typical flow rates are Qdis. = 0.05 mL/min and Qcon. =

0.025 mL/min in both the top and bottom cross chan-

nels; these values are used in all the pancake droplet

figures shown. Pancake formation is characterised by

periodically spaced identical pancakes that emerge at a

fixed frequency. We give the flow rate Qcon., here and

later, as a multiple of the flux in each branch. Breakup

in the junction is key to controlling pancake formation,

and we begin by inspecting this breakup process.

The process is shown in Fig. 5 which depicts the

evolution from one droplet to the periodic arrangement;

the neck formation at the junction, and pinch-off, are

repeated with a precise periodicity of 9.3 ms. Fig. 5

shows sequences of 9 pancakes with the same size 261.3

µm and equidistant length of 57.6 µm. The panel at the

bottom of Fig. 5 shows a superposition of experimental

and numerical (dashed line) snapshots; there is excel-

lent quantitative agreement between the numerical and

experimental results.

The detail of neck formation and subsequent breakup

are shown in Fig. 6 which highlights the temporal evo-

lution of the interface from its entry into the junction

through to forming the first pancake shape in three

stages: (i) Fig. 6-top, the interface evolution in the

left branch until entering the junction is shown by su-

perposed snapshots separated in time by intervals of

2.5 ms; (ii) once in the junction, Fig. 6-middle, an elon-

gated neck is formed and this process is much more

rapid; the snapshot separation here has time intervals

of 1.0 ms. Finally, (iii), a very rapid pinchoff in the

neck takes place, represented in Fig. 6-bottom, where

the time intervals are 0.1 ms. The numerical simulations

show the rapid pinch-off and qualitative behaviour seen

in experiments.

(a)

(b)

Fig. 5 Typical evolution of pancake droplet production for
the case of fluid combination 1© provided in Table 1 shown
in (a); each pinch-off occurs every 9.3 ms. Panel (b) shows
a superposition of the interface contour generated numeri-
cally and the corresponding experimental snapshot. The dis-
persed and continuous flow rates are Qdis. = 0.05 mL/min
and Qcon. = 2 × 0.025 mL/min, respectively.

We now consider the formation and breakup cycle

in more detail, a useful diagnostic quantity to consider

is the global kinetic energy of the configuration:

E =

∫ ∫ ∫
1

2
ρ u2 dxdydz (12)

Fig. 7(a) shows this kinetic energy versus time for

the pancake formation in Fig 5, and illustrates the pe-

riodic behaviour superimposed on a constant increas-

ing slope, which is due to the density of the dispersed

phase (1000 kg/m3) being larger than the density of

the continuous phase (855 kg/m3). For each cycle, we

observe an initial growth of the kinetic energy to a max-

imum (see Fig. 7-bottom), which corresponds to the

neck formation. The kinetic energy then decreases until

it jumps rapidly to another local maximum (the sharp

peak in Fig.7(b)); the peak represents the moment of

pinch-off. The pinch-off event is a very rapid process

that shows intriguing vortex structures emerging just

before breakup and which remain until the neck for-

mation process begins again. Fig. 8 shows the stream-
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Fig. 6 The detail of the neck development in the junction
and breakup to form a pancake droplet. Snapshots of the in-
terface position are shown at time intervals of 2.5 ms, 1.0 ms,
and 0.1 ms in the top, middle, and bottom panels, respec-
tively.

lines field in both the continuous and dispersed phase

highlighting the creation of vortices and their evolution

during the pinch-off process.

This vortex motion occurs as, at the moment when

the pinch-off occurs, the pancake is pushed forward and

simultaneously surface tension forces retract the dis-

persed phase in the junction backwards. This process

generates the formation of a vortex in the dispersed

phase about to enter the junction because this retrac-

tion is into a flow field that is advancing and pushes

the interface forwards again. The vortex remains until

the dispersed phase restarts neck formation. The de-

tachment of the pancake drop from the cross-junction

also occurs rapidly creating two centrifugal vortices in

the continuous phase between the pancake and the wall.

From the moment of pinch-off to the final pancake droplet

ejection into the exit channel there is a high veloc-

ity field following the pancake droplet. The centrifu-

gal vortices in the continuous phase dissipate rapidly

compared to the vortex in the dispersed phase that re-

mains until the next neck formation. This phenomena

is evident in the final snapshot of Fig. 8 and in the

accompanying video [43].

(a)

(b)

Fig. 7 Temporal evolution of the kinetic energy for the for-
mation of the nine pancakes shown in Fig. 5, (a), and an
enlarged view of the t = 0.064 − 0.074 s interval, (b).

Vortex formation during the pinch-off process in a

microfluidic channel was observed experimentally by

Chinaud et al. [2] using two complementary micro-PIV

technique that allows visualisation of the velocity field

in both phases. In their experiment this vortex is ob-

served only in the dispersed phase at the edge of the

pinch-off location. From the numerical simulations we

see that the pair of vortices in the continuous phase has

a very low intensity and hence why they were difficult

to observe experimentally.

4.2 The dynamics of plug formation

The dynamics of the pancake droplet formation shown

in the previous section can be summarised as a periodic

sequence of pinch-offs. Plug formation is also a result

of periodic pinch-offs, with a different time range, but

it can be more complex, involving droplet coalescence

just after the junction as in the example we choose

to illustrate in this section. We keep the same phys-

ical properties for both the continuous and dispersed
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Fig. 8 Streamlines highlighting the spatio-temporal evolution of the vortical structures accompanying the forma-
tion of pancake droplets for the same parameter values as those used to generate Figures 5-7. Here, t =
0.1, 100, 180, 200, 240, 270, 280, 300, 330, 334, 335, 340, 345, and 350 ms with the panels to be read going down left column and
then down the right. An accompanying video is available in the supplementary material [43].

phases and reduce only the continuous phase flow rate

to Qcon. = 2× 0.00625 mL/min. The typical sequence

of droplets emerging that is observed is shown in Fig.

10. A key difference from pancake droplets is that plug
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(a)

(b)

Fig. 9 Typical evolution of plug production for the case of
fluid combination 1© provided in table 1 shown in (a). The
snapshots shown from top to bottom in (a) correspond to
t = 496, 582, 753, 993, 1077, 1249, 1490, 1574, 1746, 1987, 2071,
2243, 2484, 2569, and 2741 ms, respectively. Panel (b) shows
the superposition of the interface contour generated numeri-
cally and the corresponding experimental snapshot. The dis-
persed and continuous flow rates are fluxes Qdis. = 0.05
mL/min and Qcon. = 2 × 0.00625 mL/min.

formation involves two pinch-off events and a coales-

cence event. Fig. 9 shows the periodic successions of

pinch-off coalescence and pinch-off process for the for-

mation of five plugs. The time from the first pinch-off

to the first coalescence is 8.4 ms., while the coalescence

to the second pinch-off that forms a plug took 17.2 ms .

From the pinch-off that forms a plug to a pinch-off that

provides a new pancake shape for the next plug, the

time is 24 ms. Finally, every pinch-off occurs periodi-

cally every 49.6 ms and this level of detail is readily ex-

tracted from the simulations. All plugs obtained in Fig.

9 are at the same size of 764 µm and equidistance of 77

µm. Fig. 10-top shows the details of this plug formation

Fig. 10 Detailed view of the plug formation process for the
same parameters as in Figure 9. From top to bottom, the
snapshots are given at a time period of 2.5, 2, 0.1, 2, 0.1 and
0.1 ms, respectively.

starting from the interface entering the cross-junction

with snapshots superposition at constant time of 2.5

ms. As we move down in the figure panels, we see the

neck formation and then the first pinch-off (see the sec-

ond and third panels of Fig. 10). The dispersed phase

is now in two parts, the pancake that has emerged from

the junction and an interface within the junction; this

interface is progressing faster than the pancake drop,

and hence it catches up with it and a coalescence event

takes place (see Fig. 10-fourth and fifth panels). Finally,

another neck forms near the cross-junction leading to

the second pinch-off and the plug emerges (see Fig. 10-

bottom). To summarise, the plug is formed, by a suc-

cession of periodic pinch-off, coalescence, the pinch-off

processes. Fig. 11 shows the temporal kinetic energy of

plug shape formation showing the periodic behaviour
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with the events clearly separated. Finally, Fig. 12 high-

lights the complex structure of vortices in both contin-

uous and dispersed phase resulting from the process of

two pinch-offs and a coalescence process.

(a)

(b)

Fig. 11 Temporal evolution of the kinetic energy for the
plug formation process in Fig. 9, (a), with an enlarged view
of the time interval t = 0.18 − 0.23 s shown in (b).

We have chosen to illustrate a computation, in Fig.

9, 10 and 12, corresponding to the most complex situ-

ation we encounter: each plug is a consequence of two

pinch-off events and a coalescence event. Fig. 9(b) su-

perposes the experimental snapshot and a numerical

contour of the interface; the results have qualitative

agreement and also considerable quantitative agreement.

The plug size is replicated well, but there is a minor off-

set between experiment and simulation; this gap does

not occur when a plug is the consequence of only a sin-

gle pinch-off analogous to the pancake formation. The

double pinch-off and coalescence is far more sensitive;

the results are within experimental error given variabil-

ity in the experiments in terms of possible minor surface

contamination, accuracy of rheological measurements,

and experimental data collection.

Fig. 12 Streamlines highlighting the spatio-temporal
evolution of the vortical structures accompanying the
formation of plugs for the same parameter values
as those used to generate Figures 9-11. Here, t =
200, 496, 512, 582, 583, 600, 720, 753, 754, and 820 ms for the
panels shown from top to bottom, respectively. An accompa-
nying video is available in the supplementary material [43].

5 Concluding remarks

In terms of experiments, in the application we have

treated here, regime maps such as that created from the
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(a) (b)

Fig. 13 Experimental regime map from Kovalchuk et al. [15] using the fluid property combinations 2© highlighted in table
1. The experimental snapshots correspond to flow rate combinations similar to fig.4 and are from top to bottom (0.07, 0.01),
(0.1, 0.05), (0.06, 0.06) and (0.01, 0.08) mL/min respectively.

modelling in Fig. 13, are useful predictive tools in ex-

perimental work and these can be rapidly created using

the modelling process we have outlined in this article.

The flow regimes, for this combination of liquids and

at the range of flow rates used, are seen to be domi-

nated by the pancake droplet and plugs. The isolated

droplets and stable jets are also predicted by the mod-

elling, but for brevity we have omitted them and con-

centrated upon the more commonly occurring pancake

and plug droplets.

Direct numerical simulations (DNS) of the full Navier-

Stokes equations have not been utilised before for mi-
crofluidics as many solvers have stability issues associ-

ated with the interfacial tension. As clearly seen here,

front-tracking with the variations that we have devel-

oped, overcomes this and hence opens the way towards

microfluidic simulations involving, say, reactions, addi-

tional physics, surfactant chemistry, phase changes and

much more. Such DNS solutions elucidate fine scale fea-

tures within a microfluidic device junction, such as the

vortex creation at pinch-off and the more complex inter-

connection of events, the pinch-off, coalescence, pinch-

off, for plug formation all give valuable insight to the

underlying physical processes. Furthermore, the method-

ology we have allows the geometry of the fluid focusing

junction to be rapidly redesigned (with minimal compu-

tational effort) and that will allow for further precision

in terms of fine-tuning the output from such devices.

The DNS front-tracking approach is currently being de-

veloped as a design tool to aid in the manufacture of

microfluidic devices and is being extended to encompass

additional physics and chemistry.

Future research avenues for study are to perform

numerical simulations featuring three-phase encapsula-

tion, non-Newtonian fluids, and the presence of surfac-

tant as in the recent paper of Shin et al. [27].
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