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ABSTRACT 

We describe a modeling technique for dynamic contact angle between a phase interface and a solid 

wall using a Generalized Navier Boundary Condition (GNBC) in the context of a Front-Tracking based 

multiphase method. The contact line motion is determined by the Generalized Navier-Slip boundary 

condition in order to eliminate the infinite shear stress at the contact line.  Applying this slip boundary 

condition only to the interface movement with various slip ratios shows good agreement with 

experimental results compared to allowing full fluid slip along the solid surface. The interface slip 

model performs well on grid convergence tests using both the slip ratio and slip length models. A 

detailed energy analysis was performed to identify changes in kinetic, surface and potential energies as 

well as viscous and contact line dissipation with time.  A friction coefficient for contact line dissipation 

was obtained based on the other computed energy terms. Each energy term as well as the friction 

coefficient were compared for different grid resolutions. The effect of varying the slip ratio as well as 

the contact angle distribution vs contact line speed was analyzed.   The behavior of drop impact on a 

solid wall with different advancing and receding angles was investigated. Finally, the proposed dynamic 

contact model was extended to three-dimensions for large-scale parallel calculations.  The impact of a 

droplet on a solid cylinder was simulated to demonstrate the capabilities of the proposing formulation 

on general solid structures. Widely different contact angles were tested and showed distinctive 

characteristic behavior clearly.  

 

Keywords: multiphase flow, numerical simulation, front-tracking method, contact line modeling, 

dynamic contact angle 
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1. INTRODUCTION 

Contact line behavior in multiphase flows is very important in many natural as well as engineering 

processes which include capillary dynamics, wetting or droplet impact on solid surfaces. Recently the 

droplet jumping phenomenon during condensation has drawn attention since it can considerably 

promote heat transfer from a wall without additional energy input [1]. This self-induced jumping of 

micro-droplets is strongly controlled by surface tension effects as well as contact line dynamics which 

are both very important to the overall kinematics. Due to experimental constraints, the study of contact 

line dynamics has usually been restricted to measurements of general characteristics of contact line 

motion such as wetting area or speed. Numerical simulations can thus be useful for in-depth 

investigations of the underlying physics associated with contact line dynamics. 

Recent advances in three-dimensional numerical modeling of multiphase flows have used various 

modeling techniques such as those in the category of front-capturing type methods: Volume of Fluid 

(VOF) [2], Level Set [3], and Phase Field [4] methods. These methods capture interface motion through 

the advection of an auxiliary Eulerian scalar field i.e. local volume fraction (VOF), distance function 

(Level Set) or Phase Field.  Another category of numerical techniques for handling phase interfaces is 

based on Front-Tracking [5] and uses a dedicated Lagrangian interface structure due to its accuracy in 

modeling interface dynamics and surface forces. However due to algorithmic difficulty in maintaining 

interface connectivity of the triangular Lagrangian mesh, the classic Front-Tracking method is 

perceived to be difficult to generalize to three-dimensional simulations.  Recently, hybrid capturing-

tracking methods have been developed which retain the advantages associated with each technique. 

Here we use one such hybrid, the Level Contour Reconstruction method [6] which combines 

characteristics of Front Tracking and Level Set methods. A more detailed description of the LCRM can 

be found in the next section. 

Despite recent improvements in the accuracy and efficiency of two-phase flow simulations, most 

investigations have been focused on cases with isolated drops or bubbles. However, when the phase 

interface touches a solid wall, a contact line will be formed which will further complicate multiphase 
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modeling.  An accurate description of the contact line motion is essential to the correct modeling of 

such two-phase flows.  Using a general no-slip condition, the contact line is pinned to a specific location 

at the wall and will thus unnaturally generate infinite shear stress at the wall. To prevent this unbounded 

shear stress condition, there are generally two different approaches for handling contact line dynamics. 

The first is to allow interface slip near the contact line, i.e. a hydrodynamic model originally proposed 

by Hocking [7].  Cox [8] divided the contact zone into micro and macro regions and considered an 

intermediate region between them. Fluid slip is allowed in the micro region and depends on a relation 

between the dynamic contact angle and slip velocity from an asymptotic solution.  The second approach 

uses adsorption and desorption relations from molecular theory near the contact line [9], i.e. molecular 

kinetic modeling. Both approaches can match experimental results successfully with some adjustments 

and have been applied to resolve contact line problems in various ways.  

Huang et al. [10] investigated bubble movement in shear flow near the wall using a Front-Tracking 

method.  A conventional Navier-slip condition, where contact line slip is proportional to the velocity 

gradient, was used. The contact line speed was computed using a friction parameter which is 

proportional to the difference between the contact angle and the advancing or receding angles.  The 

dynamic contact angle was determined by a linear model.  Local forces were introduced based on the 

moving contact angle and contact line speed. Ren et al. [11] considered non-Newtonian behavior near 

the contact line where a linear response is no longer valid. They pointed out that an unbalanced Young’s 

stress is necessary for a more accurate computation. The conventional no-slip condition is still valid 

away from the contact line but a slip boundary condition is required near the contact line. They modified 

the contact model which accounts for tangential as well as normal force balances near the contact line. 

They proposed an effective boundary condition from molecular dynamics (MD) simulations and applied 

it to their continuum model.  Afkhami et al. [12] imposed a slip boundary condition implicitly using a 

VOF method.  The Navier-slip condition was used at the wall and this slip condition was applied to the 

entire wall surface. A grid converged solution was obtained using a slip length related to the grid size. 

To obtain a fully converged solution, a sufficient slip length was necessary.  The fluid motion in the 

viscous region near the contact line was replaced by an analytic asymptotic solution considering the 

grid independent behavior of fluid flow with small Capillary number (< 0.1).  The difference between 
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macro and micro angle was used to generate a functional relation between them. From the relation of 

Cox [8] with an appropriate choice of length scale, the apparent contact angle from the simulation can 

be cast into a micro-scale angle. Thus, contact line speed from the micro angle becomes resolution 

independent even if the apparent contact angle would change depending on the grid resolution. This 

model was applied to simulate the case of a plate withdrawn from a liquid pool. 

Dupont and Legendre [13] devised a contact model by enforcing an appropriate color function 

value at ghost points inside the wall which satisfy contact angle constraints. Contact angle hysteresis 

was considered and the macro contact angle was related to the micro-scale value using Cox’s relation 

[8].  To expedite the simulation, a fitted function of Cox’s relation was used.  The contact line speed 

was not given but computed from the momentum equation during the simulation. The contact angle 

which satisfies the local momentum balance was iteratively searched for and the advancing or receding 

angle was chosen depending on its direction of movement. Various benchmark tests were performed 

including droplet dynamics on an inclined wall.  

Sui and Spelt [14] proposed a contact model based on the Level Set method. The model relates the 

micro and macro contact angles using Cox’s relation [8].  They argued that the macro contact angle can 

be applied to the contact model directly if sufficient grid resolution is available so that the viscous inner 

region can be captured.  With limited grid resolution, there will be a difference between macro and 

micro contact angles and thus a proper relation needs to be provided.  The Navier slip condition was 

applied to the entire wall and contact angle hysteresis was not considered.  A simple interfacial source 

term was used without modeling of the force balance in the normal direction.  The unbalanced Young’s 

stress was not calculated directly but rather implicitly using a macro to micro contact angle relation. 

Detailed grid convergence tests were performed and showed fully converged behavior for the macro to 

micro model. 

Yamamoto et al. [15] modified the Generalized Navier Boundary Condition originally proposed 

by Qian et al. [16] for the Front-Tracking method.  The interfacial Young’s stress at the contact line was 

considered to play a very important role based on evidence from MD simulations [17].  They applied 

their model to the problem of meniscus rise.  Numerical results were compared with experimental 

measurement and matched very well.  However, additional computations near the contact line were 
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necessary in order to apply the GNBC. They also upgraded their contact line formulation by including 

a relation between micro and macro contact angles based on Cox’s relation [19] and recently extended 

the method to three-dimensions to simulate contact line behavior upon passing a defect on vertical wall 

[39].  Zhang et al. [18] applied the GNBC to the Phase Field method and investigated the drop impact 

process in detail.  A wide range of impact regimes including adherence, bouncing, and splashing were 

considered with various input conditions. 

Due to the modeling complexity, typically the steady state or transient toward steady state behavior 

of the contact line dynamics was analyzed as discussed above. On the other hand, fully dynamic 

processes in contact line motion were also intensively studied [19-22].  In these cases, simpler models 

have been used since movement of the contact line is relatively rapid and contact angle hysteresis must 

be accounted for.  Yokoi et al. [23] numerically analyzed the drop impact problem using a CLSVOF 

method and compared the simulation results with experiment. Using an extension velocity, contact 

angle hysteresis was applied without explicitly locating the contact point.  The slip length was not 

considered since the no-slip condition does not generate a singularity in their formulation.  A contact 

angle relation as a function of contact line speed was devised using Tanner’s law [24] for flow in the 

capillary regime.  In the inertia dominant regime, the contact angle was fixed to either the advancing or 

receding angle.  They tested various input conditions for contact angle profiles depending on contact 

line speed.  They found that the simulation results match experiments very well with similar functional 

relations between contact line speed and contact angle. 

Most studies of contact line behavior in dynamic situations use a conventional Navier-slip 

condition with treatment of contact angle depending on the advancing and receding dynamics.  The 

front capturing approach is widely used for dynamic contact modeling due to its simplicity.  A scalar 

field representing interface motion can be specified to certain values which satisfy the given contact 

angle associated with each method.  In Front-Tracking type methods, a Heaviside function generated 

from the Lagrangian interface can be specified similarly.  In this study, we introduce an extended 

interface at the contact line to control contact angle hysteresis more accurately by fully utilizing Front-

Tracking’s precise interface positioning [25]. We show that the extended interface naturally accounts 

for the GNBC in the context of the Front Tracking method.  Our ultimate goal is to generalize the contact 



 

7 

 

model for fully three-dimensional flows with complex solid structures in a simple yet robust formulation.  

Since identifying the location of the contact line (3D) or contact point (2D) is very straightforward in 

Front Tracking, the extended interface can easily be defined even in the presence of complex solid 

structures.  

The current paper is organized as follows; we first discuss the general description of our interface 

tracking method (the Level Contour Reconstruction method) in the next section. Then we provide a 

detailed description of the contact line model including the extended surface concept and wall slip.  The 

overall numerical scheme is briefly described.  We then present verification of our contact line model 

for the case of drop impact on a flat wall in axisymmetric geometry.  Various slip conditions are 

investigated and grid convergence tests are provided.  For a test of the full three-dimensional contact 

model on complex solid structures, we demonstrate the simulation of a droplet impact on a stationary 

cylinder for three different contact angle conditions.  
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2. NUMERICAL FORMULATION 

2.1 Interface tracking method 

 To track an evolving and deforming interface, Front Tracking type methods use a separate 

Lagrangian interface mesh composed of line segments (2D) or triangular elements (3D).  This mesh is 

contained within a fixed Eulerian mesh upon which the fluid variables are discretized.  The Lagrangian 

interface mesh makes the Front Tracking method very effective in precisely describing the phase 

boundary and setting capillary forces.  However, the inherent difficulty in classic Front Tracking, 

especially in three dimensions, is maintaining uniformity of the interface elements and allowing for 

topology change.  On the other hand, front capturing type methods implicitly locate the phase boundary 

by solving an additional Eulerian advection equation for the scalar field of a phase indicator such as the 

local volume (Volume of Fluid) or distance function (Level Set).  Since this additional scalar field is 

defined on the same grid as the velocity and pressure, the formulation is relatively easy and 

straightforward. Some drawbacks such as ensuring continuity (VOF) and diffusivity (LS) of the 

interface were noticed and various remedies have been suggested to overcome those difficulties. 

In this article, we use the Level Contour Reconstruction Method (LCRM) [6] to track the moving 

interface.  The LCRM hybridizes the Front Tracking and Level Set methods to combine the advantages 

of each method.  The basic concept in the LCRM is depicted in Fig. 1.  The LCRM basically tracks an 

additional Lagrangian interface similar to classic Front Tracking but it also computes a distance function 

directly from the interface location (the detailed procedure can be found in [26]).  Interface elements 

are periodically refreshed by repositioning them along the contour of a specific value of the distance 

function thus endowing the technique with Level Set characteristics (see Fig. 1). Interface 

reconstruction from the distance function involves drawing iso-contour lines in each reconstruction cell. 

To avoid ambiguity in drawing the iso-contour lines, the rectangular reconstruction cell has been divided 

into two triangles. Along the reconstruction cell edges, we locate the zero distance point and connect 

the interface line when two points are located at the cell edges (see Fig. 1).  The regenerated interface 

elements maintain a certain distance from each other preventing excessive coagulation or dispersion.  
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The underlying grid cells used for the primary variables of velocity, pressure, and temperature are 

divided into tetrahedral cells for tetra-marching reconstruction.  The advantage of tetrahedral cells is 

that the contour reconstruction in each cell is guaranteed to be unique.  A more precise allocation of the 

interface elements can be obtained using a high order reconstruction technique [27].  The curvature 

computation was improved [28] to eliminate spurious currents even in cases where capillary forces are 

dominant as in microscale flows.  Recently, our three-dimensional code has been parallelized for high 

performance computing on massively parallel architectures [29].  The performance of the numerical 

technique has been benchmarked through various studies [6, 25-29].  

 

2.2 Dynamic contact model 

A complete mathematical description of the contact line motion including microlayer behavior is 

still a formidable task especially in three-dimensions.  With a no-slip boundary condition at the wall, 

the shear stress becomes infinite near the contact line.  Recently molecular dynamics simulations in the 

region of the contact point reveal several important physical aspects [16].  To prevent an infinite shear 

stress at the contact point, the interface must be allowed to slip along the wall.  Interface slip has usually 

been modeled by the Navier-slip condition which displaces the contact line proportional to the shear 

stress at the wall.  Recently, the Generalized Navier Boundary Condition (GNBC) was proposed [15] 

to include proper behavior of the contact line obtained from molecular theory.  In addition to Navier-

slip, i.e. viscous stress on the wall, an unbalanced Young’s stress is included to account for the 

interaction force acting on a very thin layer near the contact line.  By considering the unbalanced 

Young’s stress, slip information at the microscale can be modeled at the macroscale. 

We followed a similar procedure proposed by Yamamoto et al. [15] to formulate the GNBC within 

the framework of the LCRM. We first allowed contact line movement proportional to shear stress at the 

contact point as in the Navier-slip model.  The contact line velocity can be determined by the following 

equation: 
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 cl

wall

u
U

n



=


 (1) 

 

here, Ucl denotes the contact line speed,  u/nwall is the shear strain rate at the wall, and  is a 

proportionality slip constant usually the size of a grid cell.  This slip constant would be a function of 

the distance from the contact line [30] but we assume it has a fixed value for simplicity in the current 

study.  Henceforth, we will denote this constant as the “slip length”.  The Generalized Navier Boundary 

Condition (GNBC) additionally accounts for physical aspects of the contact line motion determined 

from molecular simulations describes interface slip as follows [15]: 

 

 
(cos cos )Young

s d
cl

wall wall

u u
U

n n
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  

 

 − 
= + = + 

   
 (2) 

 

Here, the first term on the right side represents viscous shear stress and the second term accounts for 

the unbalanced Young’s stress.   is again a proportionality constant, i.e. slip length, and   is the size 

of a grid cell.  s represents the micro static contact angle and d is the micro dynamic angle. 

Since we track the interface, it is relatively straightforward to implement contact line dynamics in 

the LCRM.  Fig. 2 illustrates the procedure for implementing the contact line model in the LCRM.   

First, we identify the contact point in 2D (see Fig. 2(a)) or contact line in 3D (see Fig. 2(b)).  Here we 

explain our extended interface concept for the contact model in 2D.  Using the interface normal (nf) for 

the element contacting the wall and the normal (ns) to the solid wall, we can identify the contact angles 

(contact in Fig. 2) associated with those contact points.  We then extend the interface inside the wall with 

a specific angle (ext) to correctly impose the interfacial tension force in the governing equations as 

described below. The angle for this extension, i.e. ext in Fig. 2, has been chosen to account for contact 

angle hysteresis.  We use a simple hysteresis model as follows: 
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if

otherwise
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  (3) 

 

In our current study, constant advancing (adv) and receding (rec) contact angles are used. The 

extension angle (ext) is fixed to either the advancing (adv) or the receding (rec) angle if the contact 

angle is greater than the advancing angle or less than the receding angle, respectively.  Otherwise, the 

contact angle is free to move between the advancing and receding angles. More sophisticated models 

which relate contact line speed to the contact angle are available and could be incorporated in future 

work.  

The force on a short segment of the front in 2D is given by: 

 

 


=
s

e sF d n  (4) 

 

We can rewrite Eq. (4) using the Frenet relation, n=dt/ds: 

 

 d ( )
B

ext f
A

F s
s

    


= = −

t

t t  (5) 

 

For the extended surface, the tangential force is only computed on the side pointing away from the 

wall (see Fig. 2(a), 𝑡𝑒𝑥𝑡).  By using the extended surface, the wall contacting element (containing 𝑡𝑓) 

will have the correct opposing component (𝑡𝑒𝑥𝑡 ) of the matching interface tangential force thus 

automatically balancing the surface tension force in the direction of the solid normal (ns).  Moreover, 

Young’s unbalanced force is accounted for naturally in this current extended surface formulation.  The 

interfacial force balance in the direction tangential to the solid normal (ns), on the segment near the wall 

including the extended surface, can be computed as follows: 
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 ( ) ( )
int

d ( ) cos cos Young

e ext f ext contactwall
F s dy

s
          


 =  = −  = − =

 
t
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Here, i represents the perpendicular direction to the wall and the last term indicates the integration of 

Young’s unbalanced force to the y (i.e. normal) direction near the wall. As can be seen from the figure, 

the extended surface will impose the unbalanced Young’s stress [15] implicitly in the wall direction.  

Since a finite delta function was utilized to account for the surface force (see Eq. (14)~(19)), its effect 

has been confined near the wall or the interface with a finite computational cell width of 4 cells along 

the interface. Thus, the extended surface accounts for the angle mismatch between ext and contact 

through increased curvature near the wall. This additional force will attribute the change of pressure 

during the projection of the velocity field (see Eq. (9) and Eq. (23)~(27)). One more advantage of the 

extended surface is that the distance function computation from the interface can be naturally extended 

to the inner wall boundary which facilitates the computation of Eq. (10) near the solid wall. Thus, using 

the NBC (Navier Boundary Condition) will be sufficient to account for the correct interface slip (i.e. 

using Eq. (1)).  As pointed out in Yamamoto et al. [15], most front capturing type methods compute 

curvature for the interfacial source term indirectly using a color function such as distance or volume 

fraction.  In some case, iteration of the color function near the wall is necessary for imposing the correct 

contact condition which, however, increases computational time.  With the extended surface, the 

interface condition at the contact line can be accounted for directly in the interfacial tension force term 

which will prove very effective when considering the full three-dimensional formulation.  

Another point to note is that numerically we are computing an apparent contact angle (i.e. 

macroscopic angle) in the simulation. The exact force balance near the contact point should be 

computed using the actual microscopic contact angle. Recent molecular dynamics simulations of 

contact line behavior support Cox’s relation [8] between macro and micro contact angle [15]: 

 

 ( ) ( ) ln ( )macro micro

slip

R
g g Ca O Ca

l
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 
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Here Ca is the capillary number (Ca=U/), R is the length scale, and lslip is the slip length. The 

functional form of g() can be found in [14].  In the case where the second term on the right-hand side 

of Eq. (7) is sufficiently small, we can assume micro ~ macro.  In our benchmark simulation of drop 

impact on a wall, R is of the order of 1 mm and Ca is around 0.014 for a water droplet with initial 

velocity of 1 m/s.  If we assume the slip length (lslip) to be 1 nm as computed in [15, 17], the second 

term is of order 0.4, less than unity. During the drop impact, the velocity of the contact line becomes 

much smaller than the initial impact velocity thus the second term would have a much smaller value.  

Therefore, we will confine our work to macroscopic modeling of contact line dynamics without 

considering the micro contact angle behavior.  

The extended surface concept can be easily expanded to three-dimensions.  As can be seen from 

Fig. 2(b), the basic process is the same as in 2D.  First the contact line from the triangular element in 

contact with the wall (the element  in Fig. 2(b)) is identified.  Then the contact line can be tagged 

(the line from the edge points  to ).  Using the interface normal (nf) of the wall contacting element 

and the solid normal (ns), the contact angle can be computed.  Again, the relation from Eq. (3) will 

convert contact angle to extension angle for contact angle hysteresis.  In the 3D formulation, lines will 

be extended into the wall from points  and  to form points (A) and (B) (see Fig. 2(b)).  These 

extended lines will be in the plane formed by the two normals, nf and ns, respective to each point.  For 

the continuous interface, the interface normal at the wall is computed using the distance function.  The 

extended surface will initially form the rectangle ((A)(B)).  This will be broken into three triangular 

elements as in Fig. 2(B).  This extension procedure is performed on all of the contact line elements. 

After the extension of the interface, advancement of the contact line is performed as in 2D using Eq. 

(1). The velocity gradient was computed using a first order approximation. The velocity in the normal 

direction from the wall at a distance of a grid cell was used to approximate the gradient. In the current 

simulation, simple solid structures such as a circle or cylinder were used where the distance from the 

solid can be obtained theoretically. Therefore the normal direction can be computed easily with the 

given solid distance function field even for complex solid structures.  
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2.3 Solution procedure 

The detailed method for solving the Navier-Stokes equations can be found in [6, 26-27].  Here we 

briefly describe the basic procedure. The governing equations for mass and momentum can be described 

in a single field form as follows:  

 

 0 =u  (8) 

 ( ) ( )
T

ρ P ρ μ
t

   +  = − + +   +  +    

u
u u g u u F  (9) 

 

where u is the velocity, P, the pressure and g, the gravitational acceleration.  A hybrid formulation for 

the surface tension force term, F, is used to minimize parasitic currents: 

 

 H I= F  (10) 

 

Here σ represents the surface tension coefficient which is assumed to be constant in our current study. I 

is the Heaviside function which has the value zero in one phase and one in the other.  It is also used to 

describe material properties for density and viscosity, 

 

 ( )L G L I   = + −  (11) 

 ( )L G L I   = + −  (12) 

 

Here, the subscripts L and G stand for the liquid and gas phases, respectively. 

We compute the hybrid form of the interface curvature field κH as [26]: 
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where 

 

 L ( )f f f dA = −F n x x  (14) 

 ( )f f dA= −G n x x  (15) 

 

Here xf is a parameterization of the interface and  the geometric information, interface curvature, κf, unit 

normal, nf, and area of the interface element, dA are computed directly from the Lagrangian interface. 

The discrete form of the expressions in Eq. (14) and (15) can be distributed onto the Eulerian grid by 

summing over interface elements, e, as follows: 

 

 L , , ( )i j e i j e e

e

f D x A= F  (16) 

 

With A the element area and Di,j being a discrete approximation to the Dirac delta function, here in 

2D: 
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where hx and hy are the dimensions of an Eulerian grid cell and  
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For the axi-symmetric simulations, the circumferential component was added to Eq. (10) 

 

 
r

H rI i
r

=  + 
n

F  (20) 

 

Here nr represents the interface normal in the radial direction, ir is the unit vector in the r direction, and 

r is the radial position of the interface. The first term on the right-hand side can be computed similarly 

to Eq. (5) for plane 2D geometry (i.e. r-z plane) and the second term will account for the circumferential 

component of the curvature. For the three-dimensional case, equation (14) can be converted into a line 

integral around each interface element as: 

 

 L ds= F t n  (21) 

 

Here, t is a vector tangent to the edge of the element and n is a normal vector to the interface element. 

More detailed formation can be found in [6, 26, 28] 

The interfacial elements are advected in Lagrangian fashion by integrating: 

 

 
fd

dt
=

x
V  (22) 

 

with a second order Runge-Kutta method where the interface velocity, V, is interpolated from the 

Eulerian velocity.   
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The Navier-Stokes equation, Eq. (9) is solved using a conventional projection method on a 

staggered grid. The discrete form of Eq. (9) can be written with lumping advection, diffusion, and 

gravitational terms into A as follows: 

 ( )
1 1 1n n

n n
hn n
P

t  

+ −
= + − 



u u
Α F  (23) 

Here the subscript h implies a spatially discrete operator. The convection term was discretized with a 

second order ENO method and central differences were used for the diffusion term. Time integration 

was performed with two substeps: 
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−
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

u u
Α F  (24) 

and 
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Here the variable u~   is the new fluid velocity while ignoring pressure. By enforcing 
1+n

u   to be 

divergence free, the pressure can be found by solving 
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 The updated velocity is 

 
1n

hn

t
P



+ 
= − u u  (27) 

 

A more detailed description of the solution procedure for such two-phase flows can be found in [6, 25-

28]. 

Recently, our interface tracking method, i.e. Level Contour Reconstruction Method, has been 

extended to fully three-dimensional simulations using a high performance, parallel code which we call 

BLUE on large-scale parallel computing architectures.  BLUE can handle large property differences, 

where density and viscosity ratios are on the order of several thousand.  Owing to the Level Set 
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characteristics of the LCRM, parallelization is relatively straightforward. The program has been built 

on a modular basis thus application of the code to a wide variety of physical scenarios is possible. 

Various benchmarking tests including bubble rise, drop splash, and Faraday free surface instabilities 

were performed.  Detailed parallel performance characteristics of the code can be found in [29].  In this 

work, the aforementioned contact modeling has been implemented in BLUE and tested for droplet 

impact on a stationary solid cylinder.  
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3. RESULTS AND DISCUSSIONS 

3.1 Simulation settings and reference case 

We simulate a small water droplet impacting on a solid wall in order to study the detailed behavior 

of the contact line motion in a dynamic situation. The simulation conditions are essentially the same as 

those in Yokoi et al. [23].  The axisymmetric simulation geometry for the current test is shown in Fig. 

3(a).  A spherical droplet with initial radius R = 1.14 mm is placed above the wall, emulating the impact 

condition.  The initial impact velocity is 1 m/s.  The box size in both the horizontal and vertical 

directions is chosen to be 5 mm  5 mm.  Open conditions are imposed on the side and top boundaries. 

Water and air properties at atmospheric pressure are chosen for the current study.  The density and 

viscosity of the water are 1000 kg/m3 and 1.010-3 Ns/m2, respectively.  Those for air are 1.25 kg/m3 

and 1.8210-5 Ns/m2 respectively.  The surface tension coefficient is 0.072 N/m. 

Fig. 3(b) shows the contact angle variation with contact line speed according to Yokoi et al. [23]. 

Red squares represent experimental measurements and the blue dotted line is the curve fitted profile 

using the following relation: 
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 (28) 

 

Here e is the equilibrium contact angle.  Yokoi et al. [23] recommend adv and rec values of 114o and 

52o and ka and kr values of 910-9 and 910-8, respectively.  Since, our current treatment of the contact 

line assumes constant advancing and receding angles, we choose to use an intermediate value of 65o for 

the receding angle when a somewhat large variation is present.  For the advancing angle, we use 114o, 

the same as Yokoi’s condition. 

Figure 4 shows the contact diameter variation during the impact process.  A 256256 grid is used 
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for this reference case.  A non-dimensional slip ratio (/x) of 0.5 is used for the Navier-slip condition 

based on Eq. (1). The Navier-slip condition was applied only to the interface movement not the fluid 

flow near the wall (i.e. interface slip which will be introduced in section 3.2). A time step size of 10-6 

was used which is below the capillary time step constraint from Brackbill et al. [31] (tcapillary = 

√(𝜌𝐿 + 𝜌𝐺)∆𝑥3/(4𝜋𝜎)~3 × 10−6 ). We also considered a time step limit based on restricting the 

movement of the interface to less than 0.1 times the grid cell size during a time step.  As can be seen in 

the figure, the contact diameter calculated from the current formulation matches very well with the 

experimental measurements from Yokoi et al. [23].  For further detailed analysis, we divide the 

simulation results for contact diameter into 6 different regions (see alternate long and short dashed lines 

in Fig. 4).  The first region (I) is the initial spreading of the droplet at largest impact velocity. We also 

plot the interface evolution including the extended surface at the contact line to show the behavior of 

the dynamic contact angle in Fig. 5.  Fig. 5 (b) and (c) depict the interface evolution during phase I.  

The contact angle is fixed to the advancing angle and we can notice that a rim builds up around the edge 

of the droplet.  During phase II, the change in contact diameter with time decreases to zero.  Fig.5 (d) 

shows the typical interface profile during phase II.  The rim at the edge of the droplet bulges slightly 

upward then starts to be drawn into the center.  The contact point is almost pinned to the same location 

during this transition period. The interface then contracts rapidly inward and pushes the fluid to the 

center creating an upward motion (phase III).  Fig. 5(e) shows that the contact angle now approaches 

the fixed receding angle. After a linear decline of the contact diameter in phase III, the contact point is 

pinned to a fixed location again (phase IV).  During phase IV, upward motion at the center is reduced 

due to the increased downward gravitational force which depresses the droplet and pushes the contact 

line slightly outward (Phase V).  After this, there is insufficient force to move the contact line and the 

contact diameter remains nearly constant (Phase VI).  In our contact model formulation, the contact 

angle in Phase VI, the static contact angle, is not prescribed thus it will be determined by the fluid 

motion and interface interaction with a value between the advancing and receding angles.  More 

sophisticated modeling is possible and can readily be implemented with few modifications. However, 

as mentioned earlier, we decided to use a simpler form considering the extension to complex 3D flows. 
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The pressure field and velocity vectors during Phases I to V are shown in Figs. 6 and 7.  Initially 

the higher pressure inside the droplet due to curvature radiates to the outer rim (Fig. 6 (a)).  We also 

note a strong counter-clockwise vortex near the contact line (Fig. 7(a)).  With spreading of the interface, 

high pressure builds up at the far end of the droplet (Fig. 6(b)) then recoils to the center (Fig. 6(c)).  The 

counter-clockwise vortex moves slightly inward with decreasing magnitude (Fig. 7(b) and (c)).  High 

pressure near the contact line pushes the outer rim up and inward.  Pressure increases at the center of 

the droplet (Fig. 6(d)) and pushes the interface upward (Fig. 6(e)).  During the receding phase, the 

vortex rotates clock-wise with increasing magnitude (Fig. 7(d)).  The pressure increases slightly at the 

top of the droplet, then gravity pulls the interface downward (Fig. 6(f) and Fig. 7(f)) 

 

3.2 slip model test 

As discussed in section 2, our contact line model uses the Generalized Navier Boundary Condition 

(GNBC).  The contact line motion is proportional to the velocity gradient at the wall.  The non-

dimensional slip ratio, i.e. slip length divided by grid size, is computed using interpolated values of the 

ghost velocity field inside the wall (See Fig. 2 (a)).  In other work [12, 14, 23] the actual velocity is 

used for computing slip along the entire wall.  Another approach is to allow some relaxation, where the 

slip condition is applied only near the contact line (usually over 3 to 4 grid cells to be consistent with 

the support of the discretized Dirac kernel in the Front-Tracking approach). Since our interface method 

tracks both the Lagrangian interface as well as the Eulerian distance function, we can accommodate 

how the slip boundary condition is computed. We denote “momentum slip” to indicate that the specified 

slip length or slip ratio is applied to the actual velocity field near the wall and “interface slip” to indicate 

that the specified slip length or slip ratio is only applied for interface movement by adjusting the ghost 

velocity at the wall. 

Fig. 8 shows the contact diameter evolution for momentum slip (Fig. 8(a)) and interface slip (Fig. 

8(b)) for a variety of non-dimensional slip ratio (/x).  Here  is the proportionality constant as shown 

in Eq. (1) and x is the chosen grid size.  As can be seen in the figure, momentum slip results are very 

sensitive to the slip ratio. With the highest slip ratio of 0.75, the drop spreads beyond the extent of the 
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domain in the x direction. With interface slip, the slip ratio effect is relatively minor compared to the 

momentum slip model.  There is only a slight increase of maximum spread diameter with increasing 

slip ratio. The velocity of the contact line (Ucl) is also plotted in Fig. 9 corresponding to the cases in Fig. 

8. With higher slip ratio, the momentum slip model shows large changes in contact line velocity.  On 

the other hand, the interface slip model shows only a small difference.  Initially, during phase I, the 

contact velocity decreases rapidly then changes sign in phase II where retraction begins. The contact 

velocity further decreases to a minimum value then rises.  In phase IV the contact velocity is nearly 

constant.  The most distinctive difference can be noticed in phase V.  With larger slip ratio, the velocity 

bump in phase V is slightly retarded and also slightly higher in magnitude.  To investigate the effect of 

the two slip models more closely, we compare the shear stress distribution during phase I where the 

largest shear stress can be expected.  Fig. 10 plots the shear stress at the wall for both the full and 

interface slip models with a slip ratio of 0.5 at a time of 1 ms.  As can be seen in the figure, the 

momentum slip model shows a much smaller shear stress distribution compared to the interface slip 

model.  In both the full and interface slip models, the contact diameter and contact line speed approach 

similar values as the slip ratio decreases.  This indicates that a small slip ratio should be used for the 

momentum slip model to obtain an accurate solution.  It is also possible to use partial slip however our 

intention was to devise a simple and general procedure for full three-dimensional simulations. Thus, we 

choose interface slip as our operational model for contact line motion. 

 

3.3 Grid convergence test with energy analysis 

Before full simulation techniques for two-phase flow with dynamic contact models became 

available, drop impact processes were studied through an energy analysis assuming simple drop shapes.  

Attante et al. [32] used spherical cap, cylinder, or rimmed cylinder geometries to emulate the droplet 

during the spreading process. They identified kinetic, potential (surface and gravitational), and 

dissipation energy terms for the spreading droplet.  For the viscous energy term, film, line, and viscous 

dissipation were considered based on de Gennes [33] work.  They ignored the film dissipation term due 

to partial wetting of the droplet spreading and line dissipation was also neglected in their analysis.  
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Recently, Bange and Bhardwaj [34] investigated conversion of the energy terms during droplet impact 

using a FEM model. 

To gain a more detailed physical understanding, we analyze the drop impact process in our 

simulations using an energy analysis similar to that of Attante et al. [32], where we consider surface, 

gravitational, potential, kinetic, and dissipation energy changes.  Since the droplet impact in our case is 

for partial wetting, we neglect the film dissipation term.  However, we include line dissipation attributed 

to motion of fluid molecules at the contact line. The total energy variation can be cast into the following 

form: 

 

 0total surface kinetic potential viscous cldE E E E E E =  +  +  +  +  =  (29) 

 

Here Esurface represents surface energy released by droplet impact, Ekinetic is the total kinetic energy, 

Eviscous is the viscous dissipation, Epotential is the gravitational energy, and Ecld is the contact line 

dissipation which is the energy necessary to overcome contact line movement.  Each energy term can 

be computed as:  

 

 surface lv lv ls ls sv svE A A A   =  +  +   (30) 
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Here Vd and dv represent the volume of the droplet and a local infinitesimal element, respectively.  zc is 

the centroid of the droplet and the subscript 0 represents the initial state.  A(=A-A0) is the change in 

the interfacial area between solid (s), vapor (v), and liquid (l) phases.  R in Eq. (20) represents the 

contact radius at the wall and  is a friction coefficient. The energy variation over time can be computed 

throughout the simulation except for the Ecld term since the friction efficient () is unknown. Since the 

total energy should be conserved as in Eq. (29), the change of the energy in contact line (Ecld) has been 

computed from other energy terms, Eq. (30), (31), (32), and (33) which can be calculated directly from 

the simulation. Considering energy conservation during the impact process, we can obtain the energy 

required to overcome contact line movement, i.e. Ecld, as follows: 

 

 ( )cld surface kinetic potential viscousE E E E E = −  +  +  +   (35) 

 

Since the contact radius during impact can be computed, the friction coefficient can be obtained using 

Eqs. (34) and (35).  The contact radius, R, can be tracked by storing the contact point throughout the 

simulation. The derivative of the contact radius over time can also be computed using the time history 

of the stored R.  

We plot the variations of each energy term during the impact process for the reference case (shown 

in Fig. 4) in Fig. 11.  As can be seen from the figure, viscous dissipation increases to a saturated value 

while kinetic energy decreases with slight oscillations which are reflected in the oscillation of surface 

energy.  Potential energy variation is almost negligible for this small droplet.  The computed Ecld term 

is depicted as the solid red line.  The energy required to overcome contact line movement increases and 

it is interesting to note that its value is comparable to viscous dissipation and cannot be ignored. 

For the interface slip model, we also conduct grid convergence tests to determine how the energy 

balances depend on resolution. As pointed out in [15], simulations using the GNBC dynamic contact 

model for a given choice of slip length show grid resolution dependence.  That is, it is the slip ratio, 

/x, that should be fixed for different grid resolutions and not the slip length, . We have previously 
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defined  as the actual slip length and /x as the slip ratio which depends on grid size (x).  In the 

energy analysis, we fix either the slip ratio (/x) or the slip length () to demonstrate the difference in 

convergence characteristics.  We also compare energy balances for the momentum slip and interface 

slip conditions.  

Figure 12 shows the change in kinetic energy for different slip models. The top row is for interface 

slip and the bottom row is for momentum slip. The right-hand column uses a constant slip ratio 

condition and the left-hand column is for constant slip length.  The slip models show convergence with 

increasing grid resolution except for the momentum slip model with constant slip length where, under 

these conditions, the highest grid resolution solution tends to diverge.  Thus, in order to provide 

comparisons, we reduce by half the slip ratio and slip length for the momentum slip model compared 

to the interface slip cases.  In Fig. 13, we plot the evolution of surface energy for the different slip 

models.  In the case of momentum slip with constant slip length, Fig. 13(d), the surface energy at the 

highest resolution diverges.  With increased resolution, the wall shear stress near the contact line 

increases and results in unphysical motion of the contact line.  Similar behavior can be noticed in Fig. 

13(b) where interface slip with constant slip length is used.  The solution does not converge with 

increased grid resolution.  On the other hand, with a fixed slip ratio, the evolution of the surface energy 

shows convergence with grid resolution.   

Figure 14 depicts the energy change due to viscous dissipation. Except for the momentum slip 

model with constant slip length, the viscous dissipation increases with higher resolution. The 

momentum slip condition has a lower viscous dissipation compared to the interface slip condition as 

was seen in Fig. 10.  The wall shear stress for both the interface and the momentum slip condition at 

different resolutions is plotted in Fig. 15 at a time of 1 ms during phase I as in Fig. 10.  Again, the shear 

stress at the wall is much smaller for the momentum slip condition. With increased resolution, a sharp 

peak of the shear stress is generated around the contact line as already described in [14, 15].  However, 

the shear stress distribution becomes similar away from the contact line with increased mesh resolution.  

Figure 16 shows the computed friction coefficient for the different slip models based on Eqs. (34) 

and (35).  For all the models, the friction coefficient essentially decreases with increased grid resolution. 
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The friction coefficient for the momentum slip model with constant slip length decreases in an 

unpredictable way with higher resolution.  The interface slip model with constant slip length and the 

momentum slip model with constant slip ratio show almost a linear decrease of the friction coefficient 

with sufficiently high resolution.  The friction coefficient for the interface slip model with constant slip 

ratio shows a relatively narrow variation with different resolution compared to the other cases.  

The evolution of the contact diameter for different slip models is shown in Fig. 17.  The interface 

slip model with constant slip length and the momentum slip model with constant slip ratio both generate 

a very similar variation of the contact diameter with varying grid resolution but do not exhibit 

convergence with increased resolution.  The momentum slip model with constant slip length shows a 

very large deviation of the contact diameter at the highest resolution as can be expected from the 

behavior of the energy changes ((d) of Figs. 12, 13, 14).  As can be deduced from the behavior of the 

energy changes associated with the different slip models, the interface slip model with constant slip 

ratio shows the best convergence characteristics.  In this case, the lowest grid resolution has the largest 

error but quickly converges with higher grid resolution. In our current two-phase numerical model, the 

interfacial source term in the momentum equation (Eq. (9)) is a Dirac delta distributed over nearby grid 

cells (usually two grid cells in each direction) thus generating a resolution dependent distribution.  The 

physical region affected by the interface source term narrows with increased resolution.  Thus, 

maintaining a constant slip ratio, i.e. decreasing slip length, with increased resolution would be 

mathematically appropriate as indicated by Yamamoto et al. [15].  Considering these convergence 

characteristics, it seems that the best choice would be to keep the slip ratio constant for different grid 

resolutions.  

We also tested the effect of slip ratio on the variation of energy changes for the interface slip model 

with 2562 resolution in Fig. 18.  The kinetic energy variation is almost identical for different slip ratios 

and there are only slight changes in the viscous dissipation and surface energy terms. On the other hand, 

the friction coefficient () has noticeable differences. With decreased slip ratio, the friction coefficient 

increases.  Considering Fig. 16(a), we believe that the slip ratio should decrease in order to generate a 

converged solution for the friction coefficient. With increasing grid resolution, near wall regions could 

better capture the detailed physics of the microlayer thus the slip length should approach the physical 
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value which is known to be very small. 

In Fig. 19, we show the contact angle distribution dependence on contact line velocity with 

different slip ratios.  Different slip ratios ranging from 1.5 to 0.125 have been considered.  As can be 

seen in the figure, with larger slip ratio, the contact angle has a sharper transition from the receding to 

advancing angle.  As we decrease the slip ratio, the contact angle tends to deviate from the constant 

input values for the advancing (114o) and receding (65o) angles.  The deviation becomes larger with 

decreasing slip ratio.  We can see that the contact angle profile in the receding region can be 

approximated well using a slip ratio of 0.125.  With a high enough slip ratio, the contact angle shows a 

very similar trend, a sharp change to a fixed input value. Similar behavior was shown in Yamamoto et 

al. [15].  In their simulation of meniscus rise, the advancing contact angle linearly increased with an 

increase of contact line velocity.  We can generate a similar trend by changing the slip ratio with our 

current contact modeling.  As pointed out by Yamamoto et al. [15], the slip ratio can be considered to 

represent surface characteristics of the microscale surface structure such as surface roughness.  

 

3.4 Effect of contact angles 

We compare the effect on contact diameter for differing advancing and receding contact angles. 

For the advancing contact angle, we vary its value from 94 o to 134 o in increments of 10o. For the 

receding contact angle, we vary its value from 55 o to 75 o in increments of 5 o.  Thus, a total of five 

cases are compared for advancing angles and five for receding angles. Fig. 20 shows the contact 

diameter dependence on the advancing contact angles.  As can be seen in the figure, the advancing angle 

affects the maximum spreading radius considerably.  The interface initially spreads to its maximum 

with high impact velocity during phase II then spreads again with a relatively small spread in phase VI.  

The advancing angle affects this spreading behavior significantly. In Fig. 21, the changes of kinetic, 

viscous, and surface energy are plotted for different advancing angles. The computed friction coefficient 

is also shown in Fig. 21(d).  The changes of kinetic energy are relatively minor compared to the viscous 

and surface energies.  Initially, the kinetic energy decreases almost identically for different advancing 

angles.  At the end of phase I, the lower advancing angle shows a slightly delayed response. With lower 
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advancing angle, the viscous dissipation and surface energy increase while the friction coefficient 

increases with increasing advancing angle.  

The effect of varying the receding angle is shown in Fig. 22.  Contrary to the advancing angle (Fig. 

20), the receding angle affects the drop retraction motion considerably in phase IV and V. With 

increasing receding angle (i.e. the interface can slip more freely), the interface retracts much further to 

a smaller contact diameter value.  It is interesting to note that the retracting interface spreads again to a 

similar contact diameter.  The energy variation dependence on different receding angles is shown in Fig. 

23.  In this case, kinetic energy and viscous dissipation are quite similar for all of the receding angles.  

The most significant discrepancy can be noticed in the surface energy change after phase III (during the 

retraction phase).  With increased receding angle, the friction coefficient decreases but the surface 

energy change increases during the retraction phase.  

Considering the effect of contact angle and slip ratio, we now adjust the reference case to obtain a 

more accurate comparison with experimental data. To match the contact angle variation vs contact line 

speed, we use a slip ratio of 0.125 for the receding phase while keeping a value of 0.5 for the advancing 

phase.  The computed contact diameter is shown in Fig. 24 along with the plot of contact angle variation 

vs contact line speed. With this modified slip condition, the contact line diameter somewhat better 

represents experimental values especially in the final phase.  Using different slip ratios for the advancing 

and receding phases, we can model contact angle variations which are very close to the experiment. 

 

3.5 3D Droplet impact on a cylinder 

To ascertain the applicability and performance of our contact line formulation in 3D, we simulate 

a droplet impacting on a cylindrical solid surface. Droplet impact on cylindrical surfaces is a very 

important phenomenon in many processes such as that by which droplets pass through a porous structure 

[35, 36].  Several studies have been performed to identify the mass of the droplet which remains on the 

solid after impact [36] or the impact of a droplet on a flexible wire [37], however very few references 

are available. Here, we simulate droplet impact on a cylindrical solid structure to demonstrate the 

capability of our current contact model for challenging three-dimensional problems. The presence of 
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complex solid structures is accounted for by using the ghost fluid method which satisfies the momentum 

equation by adjusting the ghost node value inside the wall [40]. In this study, we focus on a qualitative 

comparison of impact behavior with different contact angles to assess the validity of our contact model 

in general 3D simulations.   

Details of the simulation geometry are described in Fig. 25.  The simulation domain in these 

simulations is 8 mm  8 mm  16 mm.  The code is fully parallelized for distributed processing 

architectures and we divide the simulation domain into 32 subdomains.  Each local subdomain has a 

646432 grid for a total resolution of 128128256 grid cells. The total simulation time was 

approximately 1 day on a 32 core CPU with 2.6 GHz processors.  A solid cylinder 3mm in diameter is 

placed 9 mm from the bottom wall.  A spherical droplet 2.7 mm in diameter is placed above the cylinder 

and impacts it with a velocity of 0.75 m/s.  The physical properties are the same as the previous case 

for drop impact on a flat wall. Three different cases are tested.  The first uses identical advancing and 

receding angles as in the previous impact problem (adv = 114o, rec = 65o).  For the second test, we use 

a hydrophilic surface which emulates the condition of a water droplet hitting a glass surface. For this 

hydrophilic condition, we use an advancing angle of 60o and a receding angle of 34o.  The last case has 

a highly hydrophobic surface with an advancing angle of 165o and a receding angle of 160o.  Such super-

hydrophobic nanostructured surfaces can now be engineered [38]. 

The interface evolution for each test case is shown in Fig. 26 (regular case), Fig. 27 (hydrophilic 

case) and Fig. 28 (super-hydrophobic case).  As can be seen in Fig. 27, the hydrophilic surface tends to 

slide around the cylinder during impact and cover a wider area of the cylinder.  The spreading rim of 

the water droplet slides around the cylindrical surface and merges underneath the cylinder to form a 

hanging droplet.  With larger advancing and receding angles (regular case Fig. 26), the spreading motion 

of the droplet at the impact becomes considerably restricted compared to the hydrophilic surface. For 

this case, the spreading rim in the axial direction of the cylinder retracts more quickly than the rim 

around the cylinder.  An elongated half ring shaped drop continues to retract along the cylinder and 

ultimately forms a static droplet sitting on top of the cylinder.  For the hydrophobic surface (Fig. 28), 

we can observe completely different interface dynamics.  The droplet cannot spread enough to wet the 
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cylindrical surface and retracts very quickly in the axial direction of the cylinder. With this increased 

retraction speed of the rim, the half ring shaped drop detaches from the cylinder surface. The elongated 

droplet oscillates to become a spherical drop separated from the cylinder.  Our current contact angle 

formulation shows promise in treating general contact line behavior on complex solid structures.  A 

more detailed quantitative analysis of droplet impact on a cylindrical surface is necessary and will be 

conducted in future work. 
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4. CONCLUSION 

We formulate a simple contact line model in the context of a Front Tracking based method for 

simulation of multiphase flows.  Our main objective was to devise an efficient and accurate method 

which is also readily applicable to complex three-dimensional simulations.  Special attention was paid 

to the dynamic contact angle model where large variations in advancing and receding angles are 

expected.  The advancing and receding contact angles are imposed with the aid of an extended interface 

from the contact point (contact line in 3D) into the solid.  The angles for the interface elements in the 

extended surface are defined according to the values of the contact angle for the fluid side interface 

elements.  If the computed contact angle for the fluid side Lagrangian elements which contact the wall 

is larger than the given advancing angle, the extended surface is given the value of the advancing angle 

and analogously for the receding angle.  This procedure naturally applies the Generalized Navier 

Boundary Condition (GNBC).  The interface contacting the wall must slip in order to prevent infinite 

shear stress near the contact point. We used a conventional Navier-Slip condition. Since the Lagrangian 

elements are explicitly tracked, we are able to apply the slip condition locally only on the interface 

motion and not the full fluid velocity field.  Ghost values of the velocity in the solid boundary which 

satisfy the given slip ratio are used to advect the interface along the wall.  Results for contact diameter 

and contact line speed are much less sensitive to the slip ratio when the local slip condition is applied 

as opposed to imposing momentum slip along the wall.  

In order to study the detailed dynamics of the drop impact process, we investigated the time 

evolution of changes to surface, kinetic and potential energies as well as both viscous and contact line 

dissipation. The energy needed to overcome contact line movement was computed using these other 

calculated energy terms.  The changes for each energy term as well as the friction coefficient are 

compared for various grid resolutions and show that the interface slip model demonstrates good grid 

convergence compared to the momentum slip model.  In addition, we show that results for an imposed 

constant slip length do not converge correctly with increased resolution.  The detailed behavior for cases 

of imposed slip ratio or slip length was compared and suggest that the slip ratio model performs better. 
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The effect of varying the advancing and receding angles on droplet impact was also investigated. The 

advancing contact angle affects the spreading radius considerably while the receding angle effect is 

significant only in the drop impact retraction phase. Finally, we simulated droplet impact using different 

slip ratios for the spreading and retracting phases which match experimental results more accurately, 

especially when considering contact angle variation vs contact line speed.  

Our formulation extends in a straightforward way to three-dimensional simulations which we 

demonstrate for the case of droplet impact on a solid cylinder. Three impact scenarios with different 

contact angles were simulated to model hydrophilic, regular, and super-hydrophobic behaviors. Both 

the hydrophilic and regular cases wet the solid cylinder while the super-hydrophobic surface shows 

completely different characteristics during impact.  We conclude that this simple contact line 

formulation can simulate realistic contact line dynamics in two- and three-dimensions with proper 

approximation of contact angles and slip ratio. 
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FIGURE CAPTIONS 

Fig. 1 General description of the LCRM. 

Fig. 2 Description of the present contact model with extended surface for (a) two-dimensional (b) 

three-dimensional simulation. 

Fig. 3 Numerical setup for benchmark tests (a) simulation geometry (b) contact line speed vs. contact 

angle from experimental measurements. 

Fig. 4 Evolution of the contact diameter with time for the reference case. 

Fig. 5 Interface evolution with time including contact angle variation throughout the simulation. 

Fig. 6 Pressure distribution for the reference case. 

Fig. 7 Velocity vector distribution for the reference case. 

Fig. 8 Comparison of momentum slip (a) and interface slip (b) models for contact diameter variation 

with different slip ratios. 

Fig. 9 Comparison of momentum slip (a) and interface slip (b) models for contact line velocity with 

different slip ratios. 

Fig. 10 Wall shear stress distribution in phase I (t = 1 ms) for the full and interface slip models. 

Fig. 11 Variation of energy terms for the reference drop impact simulation. 

Fig. 12 Variation of the change of the kinetic energy for drop impact simulation with different grid 

resolution (a) interface slip with constant slip ratio (b) interface slip with constant slip length 

(c) momentum slip with constant slip ratio (d) momentum slip with constant slip length. 

Fig. 13 Variation of the change of the surface energy for drop impact simulation with different grid 

resolution (a) interface slip with constant slip ratio (b) interface slip with constant slip length 

(c) momentum slip with constant slip ratio (d) momentum slip with constant slip length. 

Fig. 14 Variation of the change of the viscous dissipation energy for drop impact simulation with 

different grid resolution (a) interface slip with constant slip ratio (b) interface slip with 

constant slip length (c) momentum slip with constant slip ratio (d) momentum slip with 

constant slip length. 
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Fig. 15 Wall shear stress distribution in phase I (t = 1 ms) for (a) interface slip (/x=0.5) and (b) 

momentum slip model (/x=0.25) with different grid resolution. 

Fig. 16 Variation of the computed friction coefficient from energy analysis with different grid 

resolution (a) interface slip with constant slip ratio (b) interface slip with constant slip length 

(c) momentum slip with constant slip ratio (d) momentum slip with constant slip length. 

Fig. 17 Variation of contact diameter for drop impact simulation with different grid resolution (a) 

interface slip with constant slip ratio (b) interface slip with constant slip length (c) momentum 

slip with constant slip ratio (d) momentum slip with constant slip length. 

Fig. 18 Variation of the energy change terms with different slip ratio (a) kinetic energy (b) viscous 

dissipation (c) surface energy (d) computed friction coefficient. 

Fig. 19 Contact angle distribution with contact line speed at different slip ratio (a) /x=0.75, (b) 

/x=0.5, (c) /x=0.375, (d) /x=0.25, (e) /x=0.125, (e) /x=0.0625. 

Fig. 20 Effect of advancing contact angle on contact diameter. 

Fig. 21 Variation of the energy change terms with different advancing angles (a) kinetic energy (b) 

viscous dissipation (c) surface energy (d) computed friction coefficient. 

Fig. 22 Effect of receding contact angle on contact diameter. 

Fig. 23 Variation of the energy change terms with different receding angle (a) kinetic energy (b) 

viscous dissipation (c) surface energy (d) computed friction coefficient. 

Fig. 24 Contact diameter variation using different slip ratios for the spreading (/x=1.0) and 

contracting (/x=0.25) phases. 

Fig. 25 Simulation geometry for 3D drop impact on a solid cylinder. 

Fig. 26 Interface evolution for the regular surface (adv = 114o, rec = 65o). 

Fig. 27 Interface evolution for the hydrophilic surface (adv = 165o, rec = 160o). 

Fig. 28 Interface evolution for the super-hydrophobic surface (adv = 60o, rec = 34o). 
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Fig. 21 
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 (a) t = 1.6 [ms] (b) t = 4.32 [ms] (c) t = 8.75 [ms] 

 

   
 (d) t = 13.0 [ms] (e) t = 23.6 [ms] (f) t = 70.7 [ms] 
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 (a) t = 1.48 [ms] (b) t = 4.21 [ms] (c) t = 13.0 [ms] 

 

   
 (d) t = 17.5 [ms] (e) t = 55.7 [ms] (c) t = 137 [ms] 
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 (a) t = 4.05 [ms] (b) t = 7.55 [ms] (c) t = 10.7 [ms] 

 

    
 (d) t = 14.4 [ms] (e) t = 19.3 [ms] (f) t = 27.2 [ms] 
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