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ABSTRACT.  10 

Building design involves many challenges and requires to take into account the interaction between the building and the 11 

users. Different occupant behaviour models implemented with building simulation tools (thermal, air quality, lighting) 12 

have been proposed. Among these, models based on the agent approach seem to be the most promising. However, 13 

existing models poorly describe human cognition and the social dimension. Moreover, they are often oriented towards a 14 

specific use (thermal simulation, waste management) without being transposable to another field, and they require a 15 

significant instantiation effort for each new case, making their use difficult. This article proposes an agent-based model 16 

called Li-BIM that simulates the behaviour of the occupants in a building and their indoor comfort. Li-BIM model is 17 

structured around the numerical modelling of the building –BIM- (with standard exchange format IFC), a high-18 

resolution cognitive model, and the coupling with various physical models. Li-BIM simulates the reactive, deliberative 19 

and social behaviour of occupants in residential dwellings based on the Belief-Desire-Intention architecture. This model, 20 

thanks its ease of use and flexibility, is an operational and relevant tool to support building design process with a 21 

human-centred approach. An application of the model is presented, focusing on energy consumption and the inhabitants’ 22 

comfort. In-situ data obtained from the instrumented house that served as case study have been compared with 23 

simulation results from Li-BIM and a standard energy simulation software, demonstrating the reliability of the proposed 24 

model.  25 
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  Introduction  56 

1.1. The gap between performance evaluation and reality 57 

The construction industry, representing 44% of the French total final energy consumption and 21% of total CO2 58 

emissions (CGDD 2012), is recognised as a major hotspot of environmental impacts. Causing half of primary resources 59 

extraction, third of the water consumption and a third of the waste generated in the European Union (European 60 

Parliament, 2014), this sector has a central place in the use of worldwide resource. Traditionally, this issue has mainly 61 

been considered through the prism of energy performances, and extensive research has been investigating improvements 62 

both in products efficiency (equipment, materials, etc.) and geometrical settings (volume, orientation, etc.). However, 63 

promoting low energy building should be completed based upon environmental concerns (climate change, etc.), 64 

economic (investment cost, etc.) and social considerations (comfort, etc.) to address sustainability. One of the biggest 65 

challenges of the construction industry sector is to be able to propose low environmental impact buildings while limiting 66 

cost and keeping (or even increasing) building usability.  67 

Nevertheless, optimal performances cannot be considered only with regards to technical aspects. More important than 68 

technological efficiency is the effective interaction between occupants and building systems to achieve their comfort 69 

needs and ensure their health. Indeed, occupants’ behaviour and their operating use of the building strongly affect 70 

different aspects of the building design: air quality (Andersen, Fabi and Corgnati, 2016), lighting (Heydarian et al., 2016) 71 

and particularly thermal studies (Gaetani, Hoes and Hensen, 2016). Several studies showed that a huge gap exists 72 

between the simulated energetic consumption and the measured one which is mainly due to the user attitude (Branco et 73 

al., 2004; Cayla, Allibe and Laurent, 2010; Calì et al., 2016). This difference is even more striking in the context of low 74 

energy building in which building systems are highly efficient. In dynamic simulations commonly used both in the 75 

industry and by researchers such as EnergyPlus, Trnsys, or eQuest for example, the occupant is only considered as a 76 

homogeneous and linear object. No distinction is done between diverging schedules, energy-use habits, the standard of 77 

living, green awareness, etc. This lack of consideration of the impact of the users’ behaviour on the indoor environment 78 

prevents from achieving accurate energy performance and from identifying behaviour-determined energy savings 79 

potential. 80 

Furthermore, most building models currently address a single aspect of building performance, primarily energy 81 

performance. However, designing sustainable buildings is challenging since the indoor environment is a complex system 82 

in which different physical realities should be evaluated: the relative improvement of one criterion should not alter the 83 

others. (Yan et al., 2015) take the example of the window: maximising the window area in energy simulation leads to 84 

solar gain maximisation, thus minimizes energy consumption. In reality, though, huge windows raise glare issues that are 85 

likely to incite occupants to close blinds and rely on electric lighting instead of daylight, increasing electricity needs. The 86 

optimal window size from an energy-efficiency point of view may be found by taking into account the interaction 87 

between the users and the building’s design. Consideration of human behaviour could also be useful in comparing design 88 

alternatives on both the building level (e.g., the percentage of glazing) and the system control level (e.g., the type of 89 

blinds’ system control).  90 

 91 

1.2. Towards human-centred building design 92 
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This naturally leads to the question of the impact of the users and their behaviour on operating use and building design 93 

choices that can help enhance their operating use. Given this situation, a rising issue in building design is to take into 94 

account the users’ behaviour and their comfort in a holistic way, whether they are tenant or owner in residential 95 

dwellings or employee in an office building. Many international standards (ASHRAE Standard 55 - Thermal 96 

Environmental Conditions for Human Occupancy (2010), RT 2020 French thermal regulation) have now shifted from 97 

energy efficient centric regulations to human-centric guidelines, acknowledging that building design now needs to 98 

integrate occupant comfort and health.  99 

Expectations of comfort vary widely from households to households, even in situations where households have the same 100 

environmental background or access to similar infrastructures, as emphasised by Chappells and Shove (2004). According 101 

to (O’Brien et al., 2017), understanding and modelling diversity of occupants is more critical on a small scale 102 

(household) rather than a larger scale (district energy systems) since the impact of individuals is much more important 103 

than the aggregated behaviour of all inhabitants. People do not act nor have the same comfort standard according to their 104 

gender, age, social class, etc. As a result, a considerable heterogeneity in household lifestyle exists. (Perrels and Weber, 105 

2000) analysed the impact of lifestyles determined by socio-demographic variables (age, income, education level) on 106 

energy demand and demonstrated that final energy consumption for a stagnation-type household is 1.5 times higher than 107 

for a sustainable through reflective consumption household. Furthermore, social interactions are an essential 108 

consideration (Chapman, 2017) since they lead to decisions on a household level (e.g., opening windows) that differs 109 

from what an agent alone would choose (e.g., occupant bothered by the cold).  110 

 111 

1.3. Current occupants’ behaviour modelling 112 

To better guide building design, a high-resolution bottom-up model with easy-to-handle data input is required to consider 113 

human behaviour during the design phases of a building. Modelling more precisely the user behaviour and coupling it 114 

with dynamic simulation tools have already been done through different approaches: probabilistic methods (Jang and 115 

Kang, 2015) (Jang and Kang, 2015), agent-based modelling (Klein et al., 2012), statistical analysis (Peng et al., 2012) or 116 

even data mining (D’Oca and Hong, 2015). Gaetani et al. (2016) classified in five categories the different behaviour 117 

models that can exist: schedules, deterministic, non-probabilistic, probabilistic and agent-based stochastic. For example, 118 

(Buso, D’Oca and Corgna, 2014) developed realistic schedules from the statistical processing of field monitoring data in 119 

dwellings. Their model allows a better prediction of electricity and thermal loads than the standard schedule used in 120 

traditional energy simulation tools. However, the resolution of such models is relatively low since they ignore the 121 

diversity by averaging occupants’ profile and buildings’ parameters. Obversely, Artificial Intelligence techniques are best 122 

capable of supporting high resolution, and complex problems and ABMs are particularly promising in modelling human 123 

cognition according to Gaetani et al. (2016). 124 

ABMs adopt a bottom-up approach and model individuals at the micro-scale in order to catch emerging phenomena at 125 

the macro-scale. The agent-based approach seems to be the most appropriate one for describing dynamics mainly driven 126 

by human behaviours; it particularly suits the modelling of human beings considering their faculty to adapt, react and 127 

interact, following rational and un-rational behaviour (Langevin et al. 2015). Furthermore, contrary to black-box models 128 

such as those obtained by data-mining, agent-based models provide an explicit and natural representation of the human 129 

behaviour ensuring to (a) imply non-computer scientists in the modelling process (domain expert, final users), (b) 130 

facilitate the monitoring, management and understanding of the simulation and (c) incite the different stakeholders to 131 

reflect on their practices and role in the design process. However, the use of ABMs is time-consuming as it requires 132 

antecedently describing all the buildings and users’ characteristics. This last concern turned out to be a stumbling block 133 

during the building design process during which time is precious and multiple actors are involved, each with their 134 

speciality, tools, stakes and vision of the building. Thus, a consistent agent-based behavioural model that allows easy 135 

data handling is currently missing. 136 

 137 

1.4. Building Information Modelling, a major digital innovation for the building sector 138 

Building Information Modelling (BIM) has high potential to address this issue by easing the description step (Succar, 139 

2009). Many of a building’s sub-systems are designed, constructed, operated, and administered by separate entities (e.g., 140 
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electrical and plumbing subcontractors) that may or may not interact and share information. BIM is designed as an 141 

exchange platform for all the stakeholders of the construction project (client, architect, contractor...) (Zuppa, Issa and 142 

Suermann, 2009) (Dino Zuppa & Raja Issa 2008). The key element of BIM software tools is their interoperability via a 143 

standardised exchanged file called Industry Foundation Classes (IFC) (ISO 16739: 2013). By allowing the different 144 

stakeholders of the project to work on the same support, BIM presents a high potential to ease the coordination between 145 

different actors and monitoring work (Ghaffarianhoseini et al., 2017) (Ghaffarianhoseini et al. 2017). The numerical 146 

modelling of a building is growing in popularity: more and more building projects are integrating a BIM component. The 147 

regulatory context (BIM is recommended in France since 2017 for all new public projects) and the potential of BIM 148 

regarding cost and time saving should lead to the generalisation of BIM for every construction projects in the upcoming 149 

years. Thus, BIM is a promising entry point for any decision-making support tool aiming at integrating key dimensions 150 

of building performances to the design process. BIM provides valuable geometric information with an object-based 151 

approach. Andrews et al. (2011) were the first to evoke the potential of a BIM-based ABM and to date, several studies on 152 

emergency evacuation integrate BIM data to set up the simulation environment in ABM (Liu, Du and Issa, 2014; Zhang 153 

and Issa, 2015; Cheng et al., 2018; Sun and Turkan, 2019). However, the integration of BIM into ABM has never been 154 

done in studies on human-building interaction in order to simulate the occupant's behaviour in her/his daily life.  155 

 156 

1.5. Goal of the present work 157 

Given this situation, an operating model is needed that accounts for (a) an advanced cognitive model and (b) 158 

interoperability and ease of use. In response to these needs, we have developed a tool, Li-BIM (Life in BIM), to guide 159 

early building design choices with a user-centred approach that meets these two criteria. Li-BIM is an innovative agent-160 

based framework that simulates the user behaviour and its interpersonal relations in a residential building from its digital 161 

representation BIM. The main goal is to enhance physical models by considering the interaction of the occupants with 162 

their dwelling as well as their mutual interactions. We first review the existing literature on occupants’ behaviour ABMs 163 

for residential buildings to identify the scientific challenges that should be addressed. Based on this review, we propose 164 

an agent-based architecture to model the building occupants’ interaction. Then, we present how the model has been 165 

currently implemented to quantify the energy demands in a dwelling and the resulting thermal comfort, and we illustrate 166 

its implementation with a case study. Finally, we discuss the model and future possible developments. 167 

 168 

 Literature review on existing ABMs for occupants’ behaviour modelling in dwellings 169 

To date, ABMs have been mostly used to simulate occupants’ behaviour in office (Zhang, Siebers and Aickelin, 2011; 170 

Langevin, Wen and Gurian, 2015; Carmenate et al., 2016; Chen, Hong and Luo, 2018; Hajj-Hassan and Khoury, 2018) 171 

or for occupancy patterns in commercial buildings or university campus (e.g.,  Azar and Al Ansari, 2017; Azar and 172 

Menassa, 2010; Erickson et al., 2009; Liao, Lin and Barooah, 2012; Lee and Malkawi, 2014). This review intends to 173 

collect papers using ABM to simulate user behaviour in dwellings. The exhaustive search was performed with 174 

international bibliographic databases, Scopus, ISI Web Science, Science Direct and Google Scholar, with a combination 175 

of keywords relating to “Agent-based model*” (or “ABM” or “Multi-agent system” or “MAS”) AND “Residential 176 

building” (or “Household” or “Dwelling”). Articles without a case study or a proof of concept were discarded.  177 

Among the 22 articles that were found, two articles use ABMs to investigate the evacuation safety performance of the 178 

residential building (Ying, Zi-Min and Jian, 2017; Mirahadi, McCabe and Shahi, 2019). ABMs have also been widely 179 

used to simulate the diffusion of practices among households: Cao et al. (2017) and Hicks et al. (2015) simulated lighting 180 

adoption patterns; Jensen, Holtz and Chappin (2015);  Zhang, Siebers and Aickelin (2016) and Anderson et al. (2014) 181 

studied the spreading of energy-use feedback; Rasoulkhani et al. (2018) explore the adoption of water conservation 182 

technology and (Mohandes, Sanfilippo and Al Fakhri, 2019) investigate the residential adoption of solar energy. A 183 

literature review has been conducted by (Hesselink and Chappin, 2019) specifically on ABM studies of energy efficient 184 

technologies adoption by households. Since the authors focus on diffusion mechanisms, occupants are likely to be 185 

modelled as households rather than individual entities and their daily life is mostly shaped by two states: being at home 186 

or out. In the same way, Liang et al. (2019) explore the effectiveness of incentive policies on energy consumption thanks 187 

to an ABM and the authors model the likelihood that building owner launches an energy efficient retrofit project. 188 
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However, they do not address the behaviour of occupants in their dwelling. Therefore, these articles were excluded from 189 

the analysis. Finally, 12 papers were identified as simulating user behaviour in dwellings with an agent-based framework. 190 

These articles are compared in Table 1 according to a set of eight criteria. 191 

In two articles, electric appliances are represented as agents. These agents only react to actions from occupants to change 192 

their on/off state in Abdallah, Basurra and Gaber (2018)’s work. In Walzberg et al. (2018)’s article, electric appliances 193 

are described as intelligent agents able to share energy consumption feedback to the occupants and optimise their load 194 

time. In (Evora et al., 2011; Hauser, 2013), occupants are modelled at the household level. To represent a household as a 195 

whole entity does not allow to distinguish between household tasks and personal activities, nor to express different levels 196 

of energy awareness among a family for example.  197 

Four of the twelve papers used existing platforms to implement their ABM (Alfakara, 2010; Andrews et al., 2011; 198 

Hauser, 2013; Abdallah, Basurra and Gaber, 2018). Existing platforms have the advantage to ease the implementation 199 

process by proposing existing cognitive architecture and graphical outputs. However, these platforms may hinder 200 

coupling with other existing physical models. The decision-making process is based on probabilities in forty per cent of 201 

the studies (Alfakara, 2010; Azar and Menassa, 2010; Tröndle and Choudhary, 2017; Abdallah, Basurra and Gaber, 202 

2018; Chapman, Siebers and Robinson, 2018). 203 

In (Alfakara, 2010 and Amouroux and Sempé, 2013), the main variable considered for representing households is the age 204 

of the occupants. The rules governing social interactions are based on this age. (Chapman, Siebers and Robinson, 2018) 205 

defined three household profiles (adult with children, an adult without children or retired adult) upon which activity 206 

choices depend. In the same way, Hinker, Pohl and Myrzik (2016) proposed four different types of household 207 

composition, introducing variability in the occupancy pattern. However, such models cannot assess behaviour variability 208 

between different population segments at the occupant’s level. A finer representation of household heterogeneity is 209 

proposed by Azar and Menassa (2010) which defined three categories of occupants according to their energy usage 210 

degree: “high”, “medium” or “low” consumers. In Andrews et al. (2011) ‘s work, four profiles (green activist, a good 211 

citizen, healthy consumer, traditional consumer) based on occupant responses to a survey introduce variation in 212 

occupant’s illumination preferences (darker or brighter) and the potential actions in response. Walzberg, Samson and 213 

Merveille (2018) implemented a probability of engagement in pro-environmental behaviours that depends on four sub-214 

types of consumers as proposed by Valocchi et al. (2007): passive ratepayers, frugal goal seekers, energy epicures and 215 

energy stalwarts. These profiles are a first attempt to differentiate actions according to different behaviour pattern. 216 

Household attributes such as income or education level are essential to differentiate socio-demographic profiles. Evora et 217 

al. (2011) and Hauser (2013) deepened this aspect by proposing a real sociological approach in which nine household 218 

archetypes are defined based on the equipment level and the modernity of the lifestyle. These typologies of lifestyle have 219 

been first developed by the sociologist Otte (2005).  220 

Interpersonal relations could lead to different sets of actions since human people do not behave the same way when they 221 

are alone or among a community (Yan et al. 2015). Simple rules have been set to resolve conflicting desires: (Andrews et 222 

al., 2011) proposed a framework in which the last agent to behave will win while in Alfakara (2010)’s work the older 223 

person takes the decisions. Amouroux et al. (2013) developed a procedure to exchange information or request the 224 

participation of others in task-sharing. This way, appliances and activities can be shared between occupants (e.g., 225 

watching TV).  226 

Hauser and Evora did not use any thermal model since the energy consumption from heating devices are based on the 227 

data collection realised by the European Institute for Energy Research (EIFER). In the same way, Amouroux et al. (2013) 228 

and Walzberg, Samson and Merveille (2018) developed a model focusing on residential load-curve with the goal to 229 

understand and further predict energy peak. Energy consumption of electrical appliances is based on the notion of 230 

activities: energy demand profiles are generated according to the household activities achieved at each time step. The 231 

dependence between space heating and outdoor conditions is based on the heating and cooling degree days. As a 232 

consequence, they do not consider the physical parameters from the building envelope. This lack of a multidisciplinary 233 

approach could be detrimental during the building design phase. Indeed, finding the set of design solutions involves to 234 

satisfy the best trade-off between the goals of the different trades and requires a systemic approach. For example, 235 

(Alfakara, 2010) aims at determining the response of occupants to summer overheating but does not take into account 236 

blinds position and light control strategies according to the position of the sun and the building’s exposition, which are 237 

key parameters in summer influencing indoor temperature.  238 
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Table 1. Analysis grid for the papers simulating human behaviour in residential buildings with ABM 

References Goal Design aspect Type of agents Decision-making 

architecture 

Socio-demographic 

attributes 

Social interactions Share of 

activities 

Implementation 

platform 

(Abdallah, et 

al., 2018) 

Energy waste Energy consumption Occupants; 

Electrical 

appliances 

Probabilistic models Employment type, 

age  

Yes (no rules 

explained) 

No REPAST 

(Alfakara, 

2010) 

Response to summer 

overheating 

Thermal (TAS 

software) 

Occupants; 

Rooms 

Probability profile based 

on temperature thresholds 

Age (for seniority) The older takes 

decision) 

No REPAST  

(Andrews et 

al., 2011) 

Lighting design 

performances 

Lighting (design 

simulation tool 

RADIANCE) 

Occupants  Belief-Desire-Intention 

and Theory of planned 

behaviour 

Four profiles of 

occupants  

The last one to act 

wins 

No NetLogo 

(Amouroux 

and Sempé, 

2013) 

Households activities Energy consumption 

peak  

Occupants Brahms Age (for 

responsibility level) 

Cooperation 

mechanism 

among individuals 

Share of 

domestic tasks 

SMACH 

(Azar and 

Menassa, 

2010) 

Energy prediction Energetic (eQuest 

software) 

Occupants Probabilities Three profiles of 

occupants 

Word of mouth 

effect 

No Not mentioned 

(Chapman et 

al.; 2018) 

User behaviour Energetic (EnergyPlus 

software) 

Occupants Time-dependent 

probabilities  

Three household 

types 

No No C++ 

(Evora et al., 

2011) 

Lifestyle impact on 

residential load-curve 

Appliance model Households Mission-Decision-Action 

maker 

Nine lifestyle 

typologies 

No No Tafat 

(Hauser, 

2013) 

Lifestyle impact on 

residential load-curve 

Appliance model (from 

Evora et al., 2011) 

Households Mission-Decision-Action 

maker 

Nine lifestyle 

typologies 

No No Anylogic 

(Hinker et al., 

2016) 

Energy efficient 

refurbishment 

strategies 

Thermal comfort 

(calculation kernel of 

VDI 6007-1) 

Occupants; 

Building 

Thermal comfort Four household 

types  

Negotiation 

among occupants 

No  Not mentioned 

(Kashif et al., 

2013) 

Energy management 

in smart homes 

Energetic (EnergyPlus 

software) 

Occupants Brahms No Social behaviour 

influence on 

activity choice 

Group activity Not mentioned 

(Tröndle et al., 

2017) 

Energy prediction Energetic (EN ISO 

13790) 

Occupants; 

HVAC system; 

Building 

Time-heterogeneous 

Markov chain 

Economic activity 

and age 

No No Not mentioned 

(Walzberg et 

al., 2018) 

Energy rebound effect 

in smart homes 

Electricity load profiles 

(from (Paatero and 

Lund, 2006) 

Occupants; 

Electrical 

appliances 

(Kaiser, Byrka and 

Hartig, 2010)'s social-

psychological model 

Four profiles of 

agents 

No No Not mentioned 
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From this literature review, it can be concluded that all the existing agent-based behavioural models for residential 

buildings have been built toward one specific use, but none of them proposes a systematic approach to handle the huge 

amount of inputs data. The use of these models in the building sector still faces a lack of interdisciplinary and data 

acquisition automation. Therefore, the key concepts of the developed framework are (a) to propose a flexible structure 

that allows its use in different (or multiple) civil engineering domains and (b) to use for the first time the potential of the 

BIM as a data centraliser. Furthermore, the analysis of these articles highlights the current methodological challenge of 

integrating social interactions. Therefore, the proposed occupational, cognitive model should be based on a complex 

reasoning procedure integrating both the deliberative and social behaviour of occupants. This way, the heterogeneity of 

the human factor could be treated both at the individual as well as at the household level.  

 

 Model Design 

 Li-BIM architecture 

3.1.1. Model structure  

The developed framework aims at modelling the building occupants’ interaction to assess the impact of the occupants’ 

behaviour on the building performances as well as the occupants’ response to physical conditions in the building. As 

illustrated in Figure 1, its structure is based on an agent-based model simulating the behaviour of the occupants (Block 2) 

that interacts with physical models simulating the behaviour of the building (Block 3). The agent-based model does not 

depend on a specific physical model and can interact with one or several models. Therefore, the physical models can be 

external and the exchange of data made through CSV files. The multi-agent system (MAS) architecture of Li-BIM allows 

intelligence distribution between agents and collective decisions making. It has been implemented under the open source 

multi-agent platform GAMA (Grignard et al. 2014). Pre-defined inputs data can be used for the inhabitants’ and 

environment’s components (Block 1.1 and 1.3 respectively). Building data (Block 1.2) are made of the BIM 

representation of the building in IFC-format. Once the building has been designed with a traditional BIM software, the 

obtained IFC files can be directly imported in Li-BIM at the beginning of the simulation. 
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Figure 1. Li-BIM Framework 

 

3.1.2. Agents  

Li-BIM model is composed of agents “Occupant” representing the occupants of the dwelling and agentified objects “IFC 

Components” representing the functional elements of the building. In their article, Barata and Camarinha-matos (2003) 

proposed an agent-based architecture in which the manufacturing resources of a shop floor are agentified as 

“manufacturing agents”. In the same way, we agentified the functional elements constituting the building: every object in 

the IFC files is transformed into an agentified object (IFC Components) that are linked to one another by spatial 

relationships. According to the terminology used by Barata and Camarinha-matos (2003), the aggregation of agentified 

components that can cooperate through their spatial relationships forms a coalition.  A coordinating agent (CA) is 

specialized in coordinating the activities of the coalition. Following this approach, the whole set of agentified objects IFC 

Components composes a coalition in which the coordinating agent Building manages the global indicators (total energy 

consumption, global warming potential, etc.). Similarly, a coalition is formed by the aggregation of the agents Occupants 

living in a common housing unit; whose activities are coordinated by the CA Household. This second coalition is part of 

the previous coalition, and the CA Building simultaneously coordinates the agentified objects IFC Components as 

illustrated Figure 2. In the current version of Li-BIM model (i.e. a single house), Occupant agents are directly considered 

as part of the same housing unit.  

Agents Occupant exhibit the three capabilities required to be “intelligent agents” as defined by (Wooldrige, 2009): (1) 

reactivity: they can perceive their environment and to adapt their behaviour in order to satisfy their objectives; (2) pro-

activeness: they can exhibit goal-oriented behaviour and take initiatives to satisfy their objectives; (3) social ability: they 

can interact with other agents to satisfy their objectives. Agents and agentified objects can have two types of attributes: 

(a) characterisation attributes that are constant during the simulation, and (b) dynamic attributes evolving at each time 

step of the simulation according to the environment and the agents’ action. Agents Occupant are dynamic and can 

interact with all other agents, as well as the agentified objects of the system (for example, one member of the family 

(agent Occupant) put the heater on (agentified object IFC Component)). Agentified objects can be dynamic (e.g., a 

Window can be open or close) or static (e.g., a Wall). 

 

Figure 2. Li-BIM Agents and agentified objects 

 

3.1.3. Model components (Block 1) 

Households’ archetypes (Block 1-1). Four household archetypes (one-person households, lone-parent households, a 

couple without children,  couple with children) are determined based on the statistics of the French National Institute of 

Statistics and Economic Studies (INSEE, 2018). The number of resulting adults and children as implemented in Li-BIM 

is defined in Table 2. At the beginning of the simulation, the user of Li-BIM model has to define a household archetype as 

well as the social class to which the future occupants are likely to belong. Table S2 of the Supporting Information (SI) 



9 

 

details the categorisation of the household into five social classes according to the monthly income of the household and 

its archetype as defined by INSEE (2017). 

Table 2. The different household archetypes and their representativeness in the French context. Nbed stands for the number of 

bedrooms, Rnd(1,2) is a random integer between 1 and 2 

  One-person 

households 

Lone-parent 

households 

Couple without 

children 

Couple with 

children 

Other types of 

households 

Percentage of households in the 

French context % 

 35,1    7,9    27,0    27,2    2,8   

Number of Adults in Li-BIM 1 1 2 2 Rdn(1,2)*Nbed 

Number of Children in Li-BIM 0 Rdn(1,2)*Nbed 0 Rdn(1,2)*Nbed 0 

  

Occupants’ profiles (Block 1-2). Occupant’s variability can be represented by characterising the occupants with a set of 

attributes likely to influence their behaviour. Four attributes for each Occupant were set up: 

- “Wealth” depends on the level of income and the household type (Poor, Middle class or Upper class/Rich) 

- “Green Conscious” establishes how aware of the environment is the occupant (Unaware, Aware or Concerned) 

- “Building Knowledge” determines how the occupant is aware of her/his building’s functioning (Comfort first or 

Values first) 

- “Individualism” represents if the occupant will put the priority on her/his comfort first (No knowledge, Basic 

knowledge or Advanced knowledge) 

These four attributes are occupants’ specific and determined randomly, except the attribute “Wealth” (as explained in the 

previous section, “Wealth” is representative of the household and must be entered by the user of Li-BIM). This 

characterisation is established for adults but not for children since the authors consider that children’s profile would be 

mostly dependent on the profile of their parents. Thirty different profiles come up from the association of these attributes. 

Different behaviours in the same given situation results from the diversity of these profiles. These profiles differentiate 

four different actions that an occupant is willing to do -or not: switch off appliances when stopping using it, put on 

heaters as soon as feeling discomfort, buy or replace appliances of Class A and energy saving bulbs, adjust blinds to 

maximise solar gain. Profiles that are likely to execute such actions are detailed in Table S4 of the SI.  

Occupants also have a set of parameters describing their habits or schedule more precisely. Parameters can be provided 

thanks to a spreadsheet interface (in CSV-format) that has been developed for this application. When no specific data 

about the future occupants are known, default values have been set based on literature or experts and are provided Table 

S5 (SI).  

 

Building data (Block 1-3). To overcome the challenge of the time-consuming building description phase, the 

methodological approach adopted is to acquire the input data regarding the building from the BIM systematically. To do 

so, we have mapped how the information is structured in the IFC file. Figure 3 shows the mapping of the information for 

the object Wall (the mapping of the other building elements are available in Section S3 of the SI). A specific operator in 

GAMA (operator ifc_file) has been developed to directly create agentified objects from the objects composing the IFC 

file. The implementation in Li-BIM is realised by importing the IFC File with the operator ifc_file as a file of type 

geometry. The content of an ifc_file is a list of geometries corresponding to the objects contained in the IFC file. The 

attribute shape is used in the global context to create the size and shape of the environment. The agentified objects 

corresponding to each type of IFC objects are created. The properties of the objects contained in the IFC file are stored in 

their corresponding GAMA geometry and used as an attribute for the agentified objects. The data that are extracted from 

the IFC files and their corresponding parameters can be found in Section S3 of the SI. 
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Figure 3. Mapping of the IFC information for the building element Wall 

 

Environmental data (Block 1-4). In the same effort of facilitating the operational use of the model, weather data have 

been collected for twenty cities in France from Météo France database (Portail Climatik 2017). The climatic area 

corresponding to each city is generated automatically according to the geographic breakdown stated by the French 

thermal regulation RT2012 while the sunrise and sunset time are directly calculated thanks to the latitude and longitude 

of the future building implantation in the geographic coordinate system.  

 

 Modelling the behaviour and actions of the occupants 

3.2.1. Model dynamic  

Each simulation step follows the same process (Figure 4). Firstly, the model updates the environmental data (e.g., outside 

temperature, humidity) imported as CSV files and, based on this latter, building data (i.e. dynamic parameters of the 

agentified objects) are updated. Different physical models can be used to calculate the new values of these parameters. 

For example, the inside temperatures can be computed by a thermal model thanks to the environmental data (e.g., outside 

temperature) and the IFC Component’s characteristics (e.g., the thermal resistance of wall). The actions previously 

performed by occupants can impact these characteristics (e.g., opening of windows). Finally, the Occupant’s attributes 

regarding their physical/psychological state (e.g., comfort, tiredness, hunger, cleanliness) are updated.  

 

Figure 4. Li-BIM Dynamic 

Some plans carried out by the Occupant agents can last more than one simulation step, and thus, in order to finish its 

plan, the agent will keep the same intention for the required numbers of simulation steps. A plan can be composed of 
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several actions. However, some actions can be instantaneous (e.g., switch on the heater) or can be performed 

simultaneously with other actions (e.g., discuss with another occupant). In this case, and if the intention is not yet 

achieved, the agent will keep its unfinished intention and continue to execute the current plan (i.e. the other actions of the 

plan). If the intention is achieved, then the desire base is updated, and the agent selects a new intention corresponding to 

the desire with the highest priority and executes the most appropriate plan to fulfil this intention. The user can set the 

duration of a simulation step according to the accuracy needed since every time variables and counts are expressed 

according to this parameter.  

Li-BIM proposes two types of experiments to run simulations: (a) a GUI experiment with 3D-graphical visualisation and 

(b) a batch mode with CSV files available at the end of the simulation. Mode (a) proposes to follow in real-time the 

processing of the simulation. In this graphical mode, several variables evolving at each simulation step are available in 

different panels (Figure 5): 

- 3D Model (3D representation of the house, occupants, current day and time) 

- Radar (physical state for each occupant)  

- Activity Graph (the activity of each occupant) 

- Indicator curves (inside and outside temperature, thermal comfort range of each user) 

These windows help to perceive and understand the simulation easily. It is possible to hide the objects composing the 

building (carpentry, roof) in order to enhance the clarity. 

 

Figure 5. Simulation Interface 

Mode (b) proposes to run simulations without any graphical interface in order to increase the simulation speed. This 

mode enables to obtain the results on one year, which is considered as a representative period to analyse the behaviour of 

occupants, in a reasonable time (i.e. less than one hour). A CSV file is generated at the end of the simulation reporting all 

data fitting the focus/requirements of the Li-BIM user.  

 

3.2.2. Modelling individual behaviours and social interactions 

Humans react instinctively to stimulus but also react according to their desires and knowledge of their environment. 

Similarly, discussions with others will influence more or less strongly their behaviour. To efficiently model the 

occupant’s individual behaviour and social interactions resulting in collective actions, Occupant agents are based on the 

combination of two cognitive models: a BDI architecture for the decision-making process with a social behaviour model.  

Decision-making process (Block 2-1-1). These last years, several architectures have been proposed to model the agent 

behaviour and decision making as classified by Balke & Gilbert (2014) in their critical review. Among all these 

architectures, the most popular for social simulation is the one based on the BDI paradigm (Bratman 1991). This 

paradigm proposes a straightforward formalisation of human reasoning through intuitive concepts. Several works have 

already shown the interest of using BDI architectures for social simulation (Adam & Gaudou 2016; Adam et al. 2017; 

Truong et al. 2015). Several architectures based on this paradigm have been proposed such as PRS (Myers 2001), JACK 
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(Howden et al. 2001) and JADEX (Pokahr et al. 2005) for the most famous. In this work, we chose to use the BDI 

architecture proposed by Caillou et al. (2017). In addition to its integration to the GAMA platform, the architecture has 

several advantages: it is simple to use as shown by Taillandier et al. (2016), allows distributed computation (Taillandier 

et al. 2017), and proposes a direct link to a social relation engine (Bourgais et al. 2017). 

BDI architecture provides agents with three cognitive databases: 

- The belief base represents what the agent knows. This knowledge can be true or false or even contradictory and 

can concern the agent itself or the surrounding environment. 

- The desire base corresponds to the goals of the agent. These desires will be prioritized according to their 

importance at the current time. 

- The intention base corresponds to the desires the agent is currently trying to fulfil. 

 

These bases have a dynamic evolution according to the actions of the Occupant agent and its environment. At each time 

step, the Occupant agent will “perceive” its well-being and needs thanks to different physical/psychological state values 

that vary in the range [0; 1]. Its perception of itself, the knowledge of the current time (hour and date) as well as the 

knowledge about the weather (outside temperature and rain) will modify its belief base. These beliefs will help the agent 

to express desires. Based on the priority the Occupant agent gives to these desires, the Occupant agent chooses one 

intention and finally tries to realise through the application of a plan. A plan can be composed of several actions 

performed by the Occupant agent (Figure 6).  

BELIEF 
BASE

DESIRE 
BASE

INTENTION
BASE

ACTION 
SET

BELIEF 1

BELIEF 2

BELIEF 3

DESIRE A

DESIRE B
INTENTION

Action 1

BELIEF 4

BELIEF 5

DESIRE COR

RULES    HIERARCHY PLANS

Action 2

AND

Pmax

... ... ...

 

Figure 6. BDI reasoning system 

For example, if the energy state reaches 0%, then the occupant agent gets the belief “I am tired”. If, moreover, the agent 

has the belief “It is time to go to bed”, it will get the desire “Go to bed”. It will then compare this desire with other 

potential desires (desire “Eat” for example). If the agent judges this desire as more important, “Go to bed” is added to the 

intention base, and the agent will execute the plan “Sleep”. Some actions can only be achieved if some tasks have been 

done before. For example, one agent will be able to eat if it -or another person of the family-, has cooked before.  

This internal reasoning, called rules, allows the agent to create its thoughts without extracting them directly from the 

environment. The combination of the three databases and the rules enables the agent to build its complex reasoning to 

reach its goal and get credible behaviour. 

 

Social behaviour modelling (Block 2-1-2). The model used to describe the social link between the Occupant agents is 

based on the work of Bourgais et al. (2016). This work proposes to describe social relation using the four dimensions 

defined in the dimensional model of interpersonal relationships of Svennevig (2000): the liking, the dominance, the 

solidarity, the familiarity. Dominance, solidarity and familiarity are set between 0 and 1 and liking between -1 and 1. 

Liking represents the affinity that a person feels toward another. Dominance is the control capacity that someone has over 

another. Solidarity describes the degree of consensus between two agents that results in our model in sharing empathy. 
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Familiarity represents the intimacy level which alters the amount and the nature of the exchanged information between 

two persons.  

A relationship is oriented, that is to say that the relationship between agent A and agent B is not necessarily the same as 

the relation between agent B and agent A. This is particularly true for the adult-child relation, for which dominance and 

solidarity will take higher values from the adult to child than in the other way. The Occupants who live together are part 

of a Household, and the value of their familiarity is automatically set to 1.  

This social model is used in order to model different actions: 

- convince another person to take one decision (“I am cold, it would be better if I put on the heater”): Higher the 

dominance of agent A over B and the solidarity and liking from agent B to agent A is, higher are the chances to 

convince agent B 

- propose another person to do something (“I want to go out for a walk, do you want to go with me?”): liking and 

familiarity must be strong enough in both ways 

- carry out collective tasks (“Should we prepare the dinner?”): solidarity and dominance must be high  

- communicate and exchange information (“Outdoor air pollution today, it would be better to close the 

windows”): familiarity and liking must be high values 

 

In order to formalise occupant feelings and perceptions, nine state attributes are updated at each simulation step (Table 

3). When the value of these state attributes reaches zero, it triggers the appropriate need to the belief base as defined by 

the BDI architecture (block 1.1). 

Table 3. Occupant’s state and their respective meaning  

State Value 0% Value 100% 

Energy Exhausted Well-rested 

Hunger Starving  Full 

Cleanliness Dirty Clean 

Toilet Urgent Perfect 

Comfort Discomfort Comfort 

Wash clothes Nothing clean to wear All clothes are clean 

Smoke Urgent Ok 

Fresh air Need to go out Do not need to go 

out 

House cleanliness Dirty Clean 

 

3.2.3. Modelling human activities and interactions (Block 2-2) 

Activities (Block 2-2-1). The belief, desire and intention bases of the Occupant agents are updated at each time step 

according to the BDI architecture explained section 2.2. Depending on the intention selected, the Occupant agents finally 

execute an activity among the 19 implemented ones referenced in Table 4. One activity can lead to several types of 

outputs: (i) mutual knowledge (MK) that will enrich the belief base of the inhabitants, (ii) the update of parameters used 

for the thermal model (TM) or (iii) an instantaneous action (*). We took the hypothesis that collective tasks (#) already 

carried out belong to mutual knowledge, i.e. is known by the other interacting agents. For example, when someone has 

prepared the meal, all the other occupants will know it. What is more, Occupant agents are considered as gullible, i.e. 

they will believe everything they will be told about. The personal heat gains P o c c  that are taken into account in the 

thermal model are not the same depending on the activity that is performed. The values come from in-situ measurement 

for a medium person of 70kg and 1.70m (LeGuay 2016).  
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Table 4. Implemented occupant activities (U stands for thermal transmittance, Q for internal heat gain, and Switch-on for the power 

mode of the appliances, MK for mutual knowledge, TM for the thermal model, * Instantaneous action, #Collective action) 
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Activity Name Trigger  Outputs Room 

Blinds pulling 

down/up* 

Sleeping state  

Solar gain  

U b l i n d s  (TM)  Bed 

room 

Changing clothes* Thermal discomfort  Anyroom 

Cooking# Current time 

 Hunger 

Qocc & Qapp (TM)  

Cooking & Hot water devices Switch-On (TM)  

Meal ready (MK) 

Kitchen 

Discuss*   Any room 

Eating Meal ready (activity cooking 

achieved by one of the 

occupant) 

Qocc (TM)  

Dishes to wash (MK) 

Livingroom 

Going outside Weather & Current day 

Discussions with others 

 Outside 

Ironing# Wash machine ready (activity 

washing clothes achieved) 

Qocc & Qapp (TM)  

Cleaning devices Switch-On (TM) 

Ironed clothes (MK) 

Livingroom 

Toilets Peeing state Qocc (TM)  Toilets 

Heating regulation* Thermal discomfort Heating device regulation R (TM) Any room 

House cleaning# Cleaning frequency Qocc & Qapp (TM)  

Cleaning devices Switch-On (TM) 

Clean house (MK) 

Every room 

Relaxing Default action Qocc & Qapp (TM)  

Relaxing devices Switch-On (TM) 

Living 

room 

Showering Cleanliness  Qocc (TM)  

Hot water device Switch-On (TM) 

Bath 

room 

Sleeping Current time 

 Tiredness 

Action Pull down blinds* 

Qocc (TM)  

Bed 

room 

Smoking Smoking frequency Action Open window * Any room 

Turn on lights* Lightness 

Sleeping state 

Qlight (TM)  

Light device Switch-On (TM)  

Any 

room 

Washing clothes# Washing frequency Qapp (TM)  

Wash machine Switch-On (TM)  

Clean clothes + Clothes to iron (MK) 

Bath 

room 

Washing dishes# Meal finished (activity eating 

achieved by all the occupants) 

Qocc (TM)  

Dishwasher Switch-On (TM)  

Clean dishes (MK) 

Kitchen 

Windows opening* Thermal discomfort 

 Smoking activity 

U w i n d o w s  (TM)  Any 

room 

Working Current time  Outside 

 

Interactions (Block 2-2-2). Discussion can be used by an occupant to propose to share activity and convince another 

member of the family before proceeding with any further action that could impact the well-being of the whole family. 

The agreement of the other family members depends on the informal rules of conduct that are likely to be followed 

within a family. In Li-BIM model, these social conventions are considered as only dictated by the links that unite family 

members. At each time step, a list of the available person to speak with is updated according to two conditions: being at 

home, and not sleeping. The Discussion process has been implemented to deal with the situation of thermal discomfort. 

Every occupant i feeling in uncomfortable because of the indoor temperature will speak with all the other members j of 

the family before deciding since all of them must first agree. If they are all feeling the same discomfort, the adequate 
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action to provide comfort will be executed. If they are in a situation of thermal comfort, the occupant must reach the 

agreement of all the members of the family as shown in Figure 7.  

 

Figure 7. Implemented discussion process for comfort 

 

 Thermal comfort and energy consumption 

 Modelling building thermal behaviour (block 3.1) 

The thermal behaviour of the building has been modelled to assess at each time step the inside temperature Tin(t) on 

which is based the comfort model and the energy model. The thermal model has been adapted from the work of Belazi et 

al. (2018) and Mckone et al. (2010) and is based on classical flow equations (Eq. 1.1 & 1.2). As illustrated in Figure 8, 

these equations enable to compute the heat exchange between (a) Boiler to Heating devices, (b) Boiler to Heat water 

tank, (c) Heating devices to Dwelling (indoor), (d) Dwelling (indoor) to Wall surfaces and (e) Wall surfaces to Outdoor.  

(dTA / dt) = QB


A / CA  (Eq. 1.1) 

with TA the temperature of A, QB


A the power given by B to A, and CA the thermal capacity of A. 

QA


B= (TA - TB)/ RA


B (Eq. 1.2) 

with Ti the temperature of i, QA


B the power given by A to B, and RA


B the thermal resistance from A to B. 

The occupant adjusts the thermostat R to fit her/his comfort temperature range. Hence, the power of the boiler is 

dependent of the choices made by the occupant (Eq. 2). 

Qboiler= R. Qboiler,max with R ϵ (0,1) (Eq. 2) 

with Qboiler,max the maximum power of the Boiler and R the regulation coefficient; R=0 for off-boiler and R=1 for full 

power.  

At each time step, the outside temperature Tout is updated based on environmental data (see section 3.1.3); the solar heat 

gains through the windows Qsolar are calculated according to the global solar radiation (calculation can be found in Table 

S12 in the SI); the internal heat gains Qinternal due the electrical appliances Qapp in operation, lights on Qlight and the 

occupants Qocc (as a function of their activity) are evaluated. All the default value of the variables used in the thermal 

model are detailed in Section S5 in the SI. 
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Figure 8. Thermal model 

 

 Simulating the occupants' thermal comfort (block 3.2) 

The thermal comfort is conditioned by the occupant’s characteristics (sensitive to cold, clothing, etc.) and by the external 

environment (relative humidity, indoor temperature, etc.). The developed comfort model determines a comfort 

temperature range for each user at each time step which depends on both a temperature of comfort and how sensitive to 

cold they are. Computation of the comfort range temperature              and             is based on the work by 

Peeters et al. (2009) and only depends on the outdoor weather conditions. A differentiation is made according to the type 

of room where the occupant stands (for example, usually, people need to feel warmer in a bathroom than in a bedroom). 

In order to take into account the sensitivity of some person to cold and warm, a coefficient   specific to each occupant 

(previously set in the input file Occupant) is then applied to define a lower and upper temperature of discomfort (Eq. 3.1 

and Eq. 3.2). 

                                    Eq. 3.1 

                                   Eq. 3.2 

 

The level of comfort    is defined as a number from 0 to 1 that depends on the indoor temperature at the current time 

step t. The level of comfort is optimal (i.e. equal to 1) when the indoor temperature lies in the comfort temperature range 

(Eq 4.1) whereas it is minimal (i.e. equal to 0) when the indoor temperature is not in the discomfort temperature range 

(4.2). LC evolves linearly when the indoor temperature lies between the comfort and the discomfort temperature range 

(4.3 and 4.4).  

                                                       Eq. 4.1 

                                                              Eq. 4.2 

                   
                

     
                                           Eq. 4.3 

                   
               

     
                                         Eq. 4.4 

 

According to the level of comfort in which the indoor temperature T i n , i ( t )  of the room i at the current time step t lies, the 

user has several choices possible in order to adapt or restore its comfort. Occupants can operate on manually adaptive 

systems: clothes, windows and thermostat (Figure 9). The first rational reflex when being in thermal discomfort will be to 

alter clothing and/or open/close windows. After ten more minutes of discomfort, the time the body needs to adjust to the 

new thermal conditions, the next set of actions are determined by the profile of the occupant: if she/he puts the priority on 

her/his comfort, she/he will control heating devices in order to obtain the temperature wanted. In return, the occupant can 

choose to wait if she/he puts the environment forth.  
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Figure 9. Comfort model process 

 

 Assessing energy consumption (block 3.3) 

In order to assess the energy consumption, each device computes its energy consumption at each time step depending on 

its status (Switch-On, Stand-by, Switch-Off). The device status depends on the occupant activity (e.g., when cooking, the 

occupant turns on the cooking device). After its use, the device will be turned off or put in standby mode according to the 

occupants’ profile and to the device category: 

- Category A: independent of occupant presence (e.g., fridge) 

- Category B: switch-on is user-dependent, switch-off is not (e.g., washing machine) 

- Category C: switch-on and switch-off are user-dependent (e.g., television) 

The process described Figure 10 had been implemented in order to (1) evaluate the running devices and then (2) 

determine the energy consumption. By the same reasoning, we made the hypothesis that the occupant switches on the 

light in the room where she/he is only at night, except during sleeping time. Table 18 from Section S5 of the SI details 

the default input data for devices such as the instantaneous electrical consumption of the household appliances according 

to its states. Several datasets have been used in an effort of collecting data comprehensively (ADEME, CCE and CRES, 

2002; Almeida and Fonseca, 2006; INSEE, 2013; Grinden and Feilberg, 2015; Kreitz, 2016; McKenna and Thomson, 

2016). 
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Figure 10. Energy consumption protocol followed at each time step 

 

 Results and discussion 

 Application 

Case study presentation. The use of Li-BIM model is illustrated through an application of a dwelling situated in La 

Riche, a small town of North-Est of France. We have benefited from in-situ data in thirty instrumented house measured 

by the engineering office Cabinet Hacsé as part of a broader project on energetic consumption in a new district composed 

of energy efficient residential buildings. Every electrical appliance has been instrumented for one full year from May 

2015 to May 2016 with an hourly step time. Surveys have been conducted in the form of individual interviews to analyse 

awareness of inhabitants about energy saving issues in a particular sociological context.  

The dwelling under study is inhabited by two adults (Mr X., 64 years old, who is retired and Mrs X., 60 years old, who 

has a thirty-five hours a week job) and their 20 years old child Miss X. The BIM model represented Figure 11 has been 

realised with Revit (Autodesk) based on the final implementation plan of the house. Occupants’ parameters have been 

initialised thanks to the interviews that give an excellent overview of their living standards, and the family profile has 

been set to low middle class, no green consciousness, comfort first and basic building knowledge. The 75m² house was 

designed as a low energy consumption building (< 50 kWh/m
2
/year). To meet this objective, construction materials have 

been chosen to provide a high thermal mass to the structure. The building envelope is made of heavy concrete, external 

glass wood insulation and wooden cladding. The carpentry is composed of aluminium doors, and argon filled double 

glazing windows. Details of the house envelope composition and thermal properties are reported in Section S7.1 in the 

SI.  

 

Figure 11. 3D modelling of the house with a BIM software (Revit ©) 
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Activities. The time spent daily by the three occupants on the different activities is compared with a survey on the time 

usage of 12000 households conducted by the French National Institute of Statistics and Economic Studies INSEE 

(Degenne et al. 2002). For five out of the seven proposed activities (Sleep, Work, Go out, Shower and Eat), results 

obtained for Mrs X. are very close to INSEE values (<5% difference). Relax and Household chores activities present 

differences of 48% and 39% respectively with INSEE value that could be explained by (i) interpersonal variation, (ii) age 

difference since INSEE proposes the agenda of a worker-age woman between 25 and 54 years old and (iii) data splitting 

in categories and their underlying definition. The daily percentage of time spent at each activity averaged over one year 

for both Mrs X. and Mr X. is presented in section S7.3 in the SI. 

 

Energy consumption. The devices load curves for the X. family were generated over one day with a five-minute time 

step to compare the relevance of the power consumption pattern with the measured in-situ data (hourly monitoring). In 

Figure 12, the highest peak is likely to come from the use of energy-intensive consuming devices such as the oven or 

washing machine for example whereas the cooking activity is likely to cause the three peaks correlated to meal time (7 

o’clock, 12 o’clock and 20 o’clock). The electrical consumption during the night can be explained by the devices still 

operating (e.g., refrigerators) or the devices in standby mode (e.g., TV). The peak of energy consumption simulated by 

Li-BIM model between 6 am, and 8 am corresponds to morning activities (cook breakfast and have a shower). It has been 

measured in-situ at 3 am, which could correspond to a delayed washing machine during the night electricity tariff or a 

late return home. These differences can be explained by the difficulty to find a “typical day”, and the stochasticity of the 

model depicts this variability from one day to the next. However, the global representation of the phenomena that are 

likely to occur during one day (cooking, taking a shower, start a washing machine) is good since data are well correlated 

in time.  

 

Figure 12. Total electrical consumption of the X. family over one day (Monday 07.09.2018) 

Energy consumption results from May 2015 to May 2016 obtained thanks to Li-BIM are compared with the data 

collected in-situ as well as results simulated with the dynamic thermal simulation software Graitec©. The total energy 

consumption during one year simulated by Li-BIM is 3% higher than the one measured in-situ whereas the value 

obtained with Graitec© is 24% higher. Variability in household lifestyle cannot be perceived by traditional dynamic 

thermal simulation modelling which uses standard occupancy profiles and a temperature setpoint of 19°C. This 

variability is particularly striking in this case study since the interview reports particularly economical inhabitants. The 

comparison between the simulated annual indoor temperature profiles and the measured one are presented in section S7.2 

in the SI.  

 

Scenario comparison. Energy strategies adopted by the occupants are a trade-off between energy consumption and 

thermal comfort and are closely linked to the occupants’ profile. To explore the lifestyle-induced variability on energy 

performance, the energy consumption and the level of comfort averaged over one year have been generated for the 30 

profiles. For clarity, only five profiles are represented on Figure 13 (a), and the complete map is available in section S7 in 

the SI. To apprehend how much the building knowledge parameter influences both outputs (energy consumption and 

thermal comfort), profiles P3110 (low knowledge) and P3112 (high knowledge) are compared: the total energy 

consumption is decreased by 2% while the thermal comfort increases of 2%, mainly due to a higher comfort in summer 
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when blinds can be closed in order to prevent heat from coming in. Green profiles (Px2xx) are among the profiles that 

consume the least amount of energy per square meter per person per year. The reduction can be mainly explained by 

lower electrical consumption of the appliances of class A, as well as a lower temperature setpoint of the heating devices. 

It results in a lower average winter indoor temperature, and the level of thermal comfort is decreased. This tendency 

tends to be inhibited by the individualism of some profiles (Pxx1x). For example, P3211 consumes 11% more energy than 

P3201 but achieve a level of comfort 3% higher. The impact of individualism on energy consumption is even more 

accentuated for non-green profiles: P3112 consumes 19% more energy than P3102.  

Simulations have been repeated ten times for each profile to investigate the intra-profile variability. Vertical and 

horizontal error bars represent the standard deviation of the level of comfort and the energy consumption data set 

respectively. Profiles P3112 and P3110 are less stochastics than profiles P3201, P3102 and P3211. This can be explained by 

the fact that green conscious (Px2xx) and non-individualist (Pxx0x) profiles: (i) have a higher number of actions that are 

differentiated (e.g., add a sweat) and triggered partly by random variables and (ii) are more dependent on the interaction 

with the other occupants. The relative standard deviation of the level of comfort data set is one and a half times bigger 

than the one of the energy consumption data set. This discrepancy can be explained by the highly variable sensitivity to 

cold, part of which varies according to age and gender (Kaikaew et al., 2018), and the other part is randomly assigned.  

   

Figure 13. (a) Energy consumption and averaged level of thermal comfort over one year according to different occupants’ profiles and 

(b) Influence of the wealth (W), green consciousness (GC), individualism (I) and building knowledge (BK) factors on the energy 

consumption and the level of comfort and (c) Energy consumption in different expenditure categories according to different 

household’s composition 

In order to quantify to which extent the occupant's attributes impact the energy consumption and the level of comfort, a 

design of the experiment is used (Montgomery C., 2007). Each one-year simulation is run ten times with a different 

combination of the four attributes used to generate the occupants’ profile (wealth, green consciousness, individualism 

and building knowledge). The various sets of attributes considered in the design of the experiment are presented in 

section S7 (SI). Figure 13 (b) illustrates the sensitivity of the model to these four factors regarding energy consumption 

and the level of thermal comfort. The Green consciousness factor influences energy consumption and the level of 

comfort negatively. Both Individualism and Wealth factors influence energy consumption and the level of comfort 

positively. As seen in the previous paragraph, the interaction between green consciousness and individualism strongly 

affect both outputs. The Building knowledge factor influences the level of comfort positively and negatively energy 

consumption, which could help to achieve the best trade-off. This sensitivity analysis allows quantifying the interest in 

promoting a green consciousness or a better knowledge of the physical behaviour of a building to reduce the energy 

consumption while considering the comfort of the occupants. However, it remains theoretical and raises at least two 

questions: (1) what is concretely the meaning of a high green conscious and (2) how to ensure such building knowledge. 

Besides, the dwelling energy performance for different household’s archetype are presented in Figure 13 (c). This figure 

shows the amount of energy consumed for each energy expenditure categories on a per-capita basis for three household’s 

compositions with the same profile (P2111). The retired couple consumes the most significant amount of energy per 

square meter per year because they use electrical appliances, cooking devices during the day. Besides, cold-sensitivity is 

more important for older people (Watts, 1972), which explains that more than 70% of energy consumption is due to 

heating devices. The energy consumption of the couple with two children is 27% higher than for the couple without 

children but smaller on a per-capita basis.  

 

 

 Discussion 
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Limitations. The application that has been presented cannot be used to validate our model as it would have required to 

compare the results for a hundred different buildings. However, the application demonstrates that Li-BIM is operational 

and offers significant improvements compared to traditional modelling approaches. As a consequence of the wide variety 

of real occupants’ behaviour, it is difficult to ensure the capacity of the Li-BIM model to catch reality and thus produce 

precise forecasting.  

Special attention should be paid to the input data regarding the occupants. They can come from data provided by the 

client if the future occupants are known or standardised profiles using typology of occupants as defined in the article. 

This latter can be chosen according to the type of the targeted population, household projections (for example the 

planning tool OMPHALE by INSEE 2008) or synthetic population generation tool (for example SPEW developed by 

Gallagher et al. 2017). However, it should be noted that Li-BIM has been developed for a French context that could be 

transposable in western Europe countries but is less likely to be relevant in another context. Considerable differences in 

occupant beliefs and adaptive capacity may arise from socio-cultural settings. For example, (Chappells and Shove, 2004) 

demonstrate that strategies of heating are related to cultural standards about comfort and even social interaction.  

 

Perspectives. An interesting development would be the simulation of a multiple-unit residential building since it 

represents an important part of the built residential buildings (57% in 2015 in France according to (Logisneuf, 2017)). 

The adaptation of the model for such buildings would require two main improvements: (a) physical models able to 

consider different areas for the different apartments and (b) relation between the occupants from different households to 

integrate complex social interactions such as the dissemination of environmental friendly behaviour between neighbor’s 

families or the establishment of collective strategies to improve waste management. In the same way, the behaviour 

model that has been presently developed is appropriate for residential dwelling, but the adaptation of some decision-

making rules to the work context would make it usable for offices.  

Finally, Li-BIM is currently implemented to evaluate thermal comfort, but the implemented actions of the agents already 

cover a good variety of domains (e.g., smoking or opening windows for air quality, shower or wash dishes for water 

waste management). Therefore, the impact of the occupant behaviours (and its comfort) on a wide variety of building 

behaviour could be investigated. At this stage of the project, Li-BIM is a promising approach to conduct scenario 

analysis based on design choices comparison. This approach paves the way for identifying design choices that can 

enhance the building operating use according to a specific occupant’s archetype.  

Besides, in the proposed model, BIM’s object-oriented approach is used to agentify the functional elements of the 

building. This approach could be further exploited to simulate smart homes and investigate to what extent the occupants 

adopt this technological home environment, modifies occupants’ behaviour and encourages the occupants towards 

greener energy behaviours. 

 

 Conclusion 

In this article, we propose an agent-based model, Li-BIM, evaluating the comfort of the occupants of a residential 

building based on the modelling of their behaviour and social interactions. The model uses Artificial Intelligence 

techniques with a multi-agent system paradigm in which the human preferences and collaborative decision-making 

process are based on a Belief-Desire-Intention architecture. Intelligence is distributed between agents representing active 

entities (the occupants of the building) who interact with agentified objects (building components and devices). This 

architecture offers a credible representation of the reactive and deliberative behaviours of the occupants. To better 

represent the population variability both at the household and the occupant’s level while achieving reliable results, users’ 

profile and households’ typologies have been settled.  

Li-BIM model offers the opportunity to evaluate the performances of a set of design solutions with an approach sensitive 

to users’ behaviour and their dynamic interaction with the building. By linking the numerical model of the building BIM 

with a behaviour model, it becomes possible for the architect to apprehend the effect of any design parameter 

modification on the occupants’ comfort and in return to quantify the impact of the occupant’s behaviour on the building 

performances.   



23 

 

The case study carried out shows that this model allows to quantify the thermal comfort of the occupants and the 

comparison with energy consumptions measured in-situ proves that results obtained with Li-BIM are consistent. The 

simulation of different household profiles demonstrates their impact on both the comfort of the occupants and the energy 

consumptions, allowing to quantify behavioural changes and paving the way to address guidance to occupants.  

Li-BIM, as currently implemented, focuses on residential dwellings, a sector addressing strong economic issues and for 

which the occupants have a significant role. However, promising improvements can still be made as discussed: extension 

of the model for multi-dwelling building, adaption for office buildings and the addition of physical models. Li-BIM 

model has been structured to allow the adaptation of the model to specific uses or new developments.  
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