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ABSTRACT. Life cycle assessment (LCA) has proven its worth in modelling the entire value chain associated with the production of goods and 12 

services. However, modelling the consumption system, such as the use phase of a product, remains challenging due to uncertainties in the 13 

socio-economic context. Agent-based models (ABMs) can reduce these uncertainties by improving the consumption system modelling in LCA. 14 

So far, no systematic study is available on how ABM can contribute towards a behavior-driven modelling in LCA. This paper aims at filing 15 

this gap by reviewing all papers coupling both tools. A focus is carried out on 18 case studies which are analysed according to criteria 16 

derived from the four phases of LCA international standards. Criteria specific to agent-based models and the coupling of both tools, such as 17 

the type and degree of coupling, have also been selected. The results show that ABMs have been coupled to LCA in order to model foreground 18 

systems with too many uncertainties arising from a behaviour-driven use phase, local variabilities, emerging technologies, to explore 19 

scenarios and to support consequential modelling. Foreground inventory data have been mainly collected from ABM at the use phase. From 20 

this review, we identified the potential benefits from ABM at each LCA phase: (i) scenario exploration, (ii) foreground inventory data 21 

collection, (iii) temporal and/or spatial dynamics simulation, and (iv) data interpretation and communication. Besides, methodological 22 

guidance is provided on how to choose the type and degree of coupling during the goal and scope phase. Finally, challenging LCA areas of 23 

research that could benefit from the agent-based approach to include behaviour-driven dynamics at the inventory and impact assessment 24 

phase have been identified. 25 

 26 

KEYWORDS: Model coupling; Consequential LCA; Use phase; Human behaviour; Consumption and production 27 



2 
 

1. Introduction 28 

Worldwide, the modern economy generates pressures on the environment and strives towards more sustainable 29 

activities. The analysis of environmental impacts generated by an activity is addressed through a wide range of 30 

methodologies among which the life cycle assessment (LCA), a clearly accepted scientific methodology for 31 

quantitative assessment of product systems over their entire lifespan accounting for upstream impacts. LCA has 32 

been recognized for its ability to highlight environmental hotspots within a product system, to quantify and compare 33 

environmental impacts of products and services and to prevent burden shifting between impact categories or life 34 

cycle stages.  35 

In LCA, the world is represented by a technosphere and an ecosphere (Hauschild, Rosenbaum and Olsen, 2018a); 36 

the ecosphere represents everything which is not intentionaly “man-made” as opposed to the technosphere which 37 

represent everything that is used, created, or manipulated by humans. This technologically modified environment 38 

can be thought as a production system (PS), which refers to the inter-dependent activities required to deliver 39 

outputs/goods, and a consumption system (CS) which is the demand-driven exchange mechanism removing this 40 

output/good from the market availability, mainly driven by human attributes. LCA as currently practised, does not 41 

consider the cultural and regulatory contexts that can affect the consumption demand-driven mechanisms governing 42 

production. Economic models have been increasingly used to support the consequential approach of LCA on new 43 

products or emerging technologies (Earles and Halog, 2011). However, human choices are not always rational or 44 

driven only by economic factors (Garcia 2005); and as raised by Yang and Heijungs (2017), these models could 45 

benefit from the insights of behavioural economics. Although the entire value chain associated with a product is 46 

now well apprehended in LCA, the consumption system is modelled with simple hypothesis and averages, ignoring 47 

inter-individual behavioural variation (Polizzi di Sorrentino et al. 2016).  48 

The environmental impacts of a system product can be strongly affected by various behavioural factors throughout 49 

its life cycle, from the choice between different alternative products to the use of the product and finally its disposal, 50 

as suggested by Polizzi di Sorrentino et al. (2016). Therefore, when considering product systems for which the 51 

environmental impacts are highly driven by behavioural attributes, the LCA representation of the production system 52 
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needs to be supplemented by a finer representation of the consumption system. Hellweg and Mila i Canals (2014) 53 

highlighted the necessity of including information that is based on consumer behaviour while modelling the use 54 

phase. However, modelling the consumption system remains highly challenging.  55 

One way to generate behavioural data is statistically, such as with surveys, but the reliability is often limited by the 56 

sample size and missing data (Schmidt, 1997). Recent signs of progress have been made in computer science in the 57 

simulating complex systems and modelling user behaviour, which has already been conducted using different 58 

approaches: probabilistic methods (Jang and Kang, 2015), even data mining (D’Oca & Hong 2015) and agent-based 59 

modelling (Klein et al. 2012). Agent-based models (ABMs) are computational models that are composed of 60 

autonomous and heterogeneous entities, namely, agents (Epstein, 1999). The agent-based approach seems to be the 61 

most appropriate to model human behaviours since it considers the faculty of human beings to adapt, react and 62 

interact, led by their cultural and social backgrounds (Langevin et al. 2015). Contrary to black-box models such as 63 

those obtained by data-mining, ABMs provide an explicit and natural representation of the human behaviour which 64 

facilitates the understanding of the simulation and allows non-computer-science researchers to be part of the 65 

modelling process. Agents can interact with other agents in a dynamic environment and are endowed with rules that 66 

establish their behaviour. Behavioural models that are incorporated into ABMs can be merely reactive to stimuli 67 

(e.g., economic parameters) or can integrate a cognitive dimension (e.g., green consciousness). The complex real-68 

world system is generated by the bottom-up modelling of the decision-making of agents. Phenomena can emerge 69 

at the macro-scale that traditional modelling techniques, such as differential equation-based, system dynamics and 70 

discrete event simulation, may potentially not be able to describe (Page et al., 2002). Besides, one of the main 71 

strength of the agent-based approach is its capacity to model a huge number of agents, allowing to reproduce real-72 

world systems in a limited computational time. All of these reasons explain why the field of agent-based modelling 73 

has gained a significant following in recent years (Williams, 2018). 74 

ABM has recently attracted attention as a complementary tool to LCA to model human behaviour and predict how 75 

the dynamics of a system can be affected by internal or external factors. Davis, Nikolíc and Gerard P.J. Dijkema 76 

(2009) were the first to introduce the coupling of ABM with LCA to evaluate the sustainability of an emerging 77 
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energy infrastructure system. Since, several papers in which LCA and ABM are coupled have been published but 78 

existing literature is still scarce and heterogeneous. The first reason is that the computational improvements in the 79 

modelling of complex systems were made recently. In addition, the required expertise in both fields is not highly 80 

prevalent, as noted by (Marvuglia et al., 2018). If ABM can contribute towards a better behavior-driven modelling 81 

in LCA, an overall picture of the coupling strengths and weaknesses is still missing to take full advantage of the 82 

capabilities of agent-based modeling for LCA methodology.  83 

To fill this scientific gap, we propose a comprehensive review that compiles all papers related to the coupling of 84 

ABM and LCA. This review aims at screening how ABM and LCA have been coupled to date, in an effort to 85 

understand how it can help to improve LCA results and how this coupling can be achieved. We address the following 86 

specific objectives: (i) to compile all papers related to the coupling of ABM and LCA, (ii) to investigate how and 87 

why agent-based modelling has been used to support life cycle assessment in the literature, (iii) to establish what 88 

type of outputs ABM can generate for each product life cycle stage, (iv) to identify the methodological challenges 89 

at each LCA phase that can be tackled by ABM, and (v) to establish guidance on the coupling implementation. The 90 

first section presents the rationale for the selection of articles and the choice of the points of comparison. The second 91 

section analyses the selected papers according to these criteria. From this analysis, the theoretical opportunities and 92 

methodological issues are discussed in a third part, and future research needs are anticipated.  93 

 94 

2. Materials and Methods 95 

2.1. Selection of articles 96 

This review intends to collect papers in which ABM and LCA have been coupled. A focus is carried out on all 97 

papers presenting a case study or a proof of concept in order to be able to analyse how the coupling was carried out 98 

from a methodological point of view. Since this concern is relatively new, no temporal restriction has been applied. 99 

The exhaustive search was performed with international bibliographic databases, Scopus, ISI Web Science, Science 100 

Direct and Google Scholar, with a combination of keywords relating to “Agent-based model*” (or “ABM” or 101 
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“Multi-agent system” or “MAS”) AND “Life cycle assessment” (or “LCA” or “Life cycle analysis”). Articles using 102 

the LCA acronym with another meaning (for example, local control agent or local configuration approximation) 103 

were excluded.  104 

2.2. Analysis grid 105 

The analysis follows the four steps of the LCA methodology as defined by (ISO 14040:2006): goal and scope 106 

definition, life cycle inventory collection (LCI), life cycle impact assessment (LCIA) and interpretation of the 107 

results. To analyse the use of both LCA and ABM, sets of criteria that are specific to each tool and specific to the 108 

coupling were selected. ABM criteria, as well as criteria that are specific to the coupling of both tools, have been 109 

included in the analysis grid by drawing an analogy between the four LCA methodological phases and the seven 110 

steps of the description of an agent-based model, as formalised by (Bouquet et al., 2015). Table 1 summarises the 111 

set of the selected criteria, and the following sections detail them.  112 

Table 1 Description of criteria considered within the review 113 

 Specific to LCA Specific to ABM Specific to coupling 

Goal and 

scope 

. Goal (aim, rebound effect) 

. Scope (temporal 

consideration, life cycle steps, 

modelling methodology) 

. Purpose of ABM use 

. Agents (type, number, 

attributes)  

. Time step 

. Feedback loop 

. Type of coupling  

. Degree of coupling  

. Affected parts of the LCA 

computational structure 

Inventory . Foreground/Background data . Model inputs . Data exchange (type, management) 

Impact 

assessment 

. LCIA methods (mono/multi-

criteria, dynamic) 

. Formalization (decision 

process, agents’ capabilities) 

. N/A 

Interpre- 

tation 

. Uncertainty/Sensitivity 

analysis  

. Validation/Calibration 

. Graphical output  

. Comparison with conventional 

LCA studies 
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To understand if the way that coupling has been performed (the type and degree of coupling) is determined by the 114 

choices that have been made during the goal and scope phase, we used the statistical method called principal 115 

component analysis (PCA). The method and the results of this analysis are presented in the Supporting Information. 116 

2.3. Criteria for Goal and Scope 117 

LCA Goal. The goals of the studies are compared to identify papers that intend to address policy recommendation, 118 

explore emerging technologies or assess innovative product development. We investigate whether studies include 119 

the rebound effect. A rebound effect refers to the potential change in user behaviour or consumption patterns 120 

induced by technological improvements (Binswanger, 2001). For example, energy-efficient technologies induce a 121 

drop in cost that stimulates an increasing consumption of this technology (direct rebound effect) and/or increases 122 

consumption of other products due to cost savings (indirect rebound effect), as discussed by (Sorrell and 123 

Dimitropoulos, 2008).  124 

LCA Scope. The analysis of the scope definition includes (a) the temporal consideration (i.e., current context or 125 

future outcomes), (b) the life cycle steps considered, and (c) the modelling methodology. Two main modelling 126 

principles can be used when performing an LCA: attributional or consequential. As described by the handbook LCA 127 

in theory and practice (2018), the attributional LCA (ALCA) quantifies how severely a process impacts the 128 

environment to understand the origin of the burden. ALCA considers the product system to be isolated from the 129 

rest of the technosphere and/or the economy. On the contrary, consequential LCA (CLCA) has been developed to 130 

study change-oriented processes to quantify the consequences of a choice on the environment. CLCA includes every 131 

activity that is affected by a change throughout the life cycle of the product system that is being studied. These 132 

activities are not necessarily within the life cycle of the product system.  133 

Purpose of the use of ABM. A qualitative analysis of the purpose of the use of the agent-based approach is 134 

performed. 135 
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ABM agents. We investigate how agents are implemented, including the type, number and attributes of the agents. 136 

Two types of attributes are distinguished: characterization attributes that are constant during the simulation and 137 

dynamic attributes that evolve at each time step of the simulation according to the environment.  138 

ABM time step. The time step that is used to run the simulation is an essential parameter in any ABM since it 139 

highly depends on the phenomena it aims at modelling, and in return, it highly influences the computational time 140 

(Helbing, 2012).  141 

Feedback loop. We investigate whether a feedback loop is implemented or not. A feedback loop is defined as the 142 

integration of LCA results in the cognitive architecture of the ABM agents, e.g., to integrate the awareness of the 143 

environmental impact of their choice to their decision-making process. 144 

Type of coupling. The way in which ABM and LCA are coupled is referred to as the type of coupling, and it is 145 

examined to understand the internal working of each model, such as if a data flow is exchanged between both 146 

models or if both models are embedded in one another. We define three different coupling strategies in compliance 147 

with the approach of Udo de Haes et al. (2004): model integration, hybrid analysis and complementary use 148 

(described in Table 2). Instead of the term “model integration”, Udo de Haes et al. refers to “extension of LCA,” 149 

although this fourteen-year-old term has since been supplanted (Marilleau, 2016). 150 

Table 2 Description of the different types of coupling (yellow and blue circles represent agent-based and life cycle assessment models, 151 

respectively; yellow and blue arrows represent data flow from agent-based and life cycle assessment models, respectively) 152 

 Type of coupling Coupling strategy 

 

Model integration One unique and larger model created from the combination of 
models 

 

Hybrid analysis Flexible combination of models that exchange data between one 
another 

 

Complementary use  Separate models used in combination; results are calculated 
separately 
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Degree of coupling. The degree of coupling characterises the flow of the exchanged data; thus, it is only 153 

appropriated for model integration and hybrid analysis. When separate models are used in combination, they do not 154 

exchange any information, and the degree of coupling has been referred to as Complementary. Models can be 155 

coupled differently according to (a) time (at which time step they exchange information) and (b) direction (in which 156 

way the data are exchanged). We defined three degrees of coupling as described in Figure 1: hard, tight and soft-157 

coupling. The term “hard-coupling” was first used by (Marvuglia et al., 2017) to define the degree of coupling they 158 

are using, which is why the choice has been made to say “soft” as opposed to “hard”, and “tight” is used to express 159 

an intermediate interdependence of both models.   160 

. Soft-coupling: ABM outputs obtained at the end of the simulation are aggregated and are used as inputs for LCA 161 

analysis.  162 

. Tight-coupling: ABM outputs are used as inputs of the LCA at each time step.  163 

. Hard-coupling: Data are exchanged between LCA and ABM at each time step (LCA results are used as an input 164 

parameter for the ABM simulation) 165 

.  166 

Figure 1 Description of the different degrees of coupling according to the coupling dynamic and the data flow direction (SC stands for soft-167 

coupling, TC for tight-coupling, HC for hard-coupling; the grey square is not applicable) 168 

Affected parts of the LCA computational structure. Within the context of LCA, ABM can be used to simulate 169 

different types of systems: production system, consumption system or environmental system. As introduced in the 170 
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introduction, the production system refers to the assembly of activities that are required to transform inputs into 171 

deliverable outputs (goods or services), from the supply chain to the market. Once removed from the market, the 172 

consumption of finished products and services can be described by the frequency, the quantities of products that are 173 

consumed and the way the product is used. The environmental system (ES) is the assembly of mechanisms that link 174 

human-made interventions in different media (air, soil, water, and biota) to a set of areas of protection. The system 175 

modelled by ABM delimits the part of the LCA computational structure that is affected by this coupling (Figure 2). 176 

 177 

Figure 2 Representation of the computational structure within the four distinct LCA phases as defined by ISO 14040 and 14044 standards 178 

(rectangles are scaled to represent matrices of size *x*) 179 

Heijungs and Suh (2002) clarified the computational structure of LCA by introducing a matrix-based formalism for 180 

both inventory and impact assessment steps. These researchers defined that inventory (i.e., the quantity of emission 181 

released into each compartment and extracted resources) can be assessed thanks to three matrices: the technosphere 182 

matrix, the biosphere matrix and the final demand vector (Figure 2). The (n) technology-based processes, as well 183 

as their interactions with one another, are defined in the technosphere matrix, which is a square matrix of size nxn. 184 

A row quantifies the economic flows that a process has with all the other existing process. The biosphere matrix 185 

details the elementary flows (m) that are released or are consumed by each technological process. It is an mxn matrix 186 

in which a row indicates from which processes an elementary flow is emitted, whereas a column illustrates all of 187 

the elementary flow released by a process. The biosphere matrix is represented with both green and purple colours, 188 
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because part of the fate of pollutants can be addressed in the inventory phase through the biosphere matrix and, 189 

therefore, are dependent on the environmental system. The final demand vector (size n) corresponds to the number 190 

of goods required. Once all of the elementary flows (emissions and extracted resources) have been determined in 191 

the inventory phase, methods should be selected to assess the burden they represent for the environment according 192 

to different impact categories (p). The substance contribution to the environmental system is calculated due to the 193 

characterization matrix of size mxp (Figure 2). A row is composed of the characterisation factors of the respective 194 

emission that is associated with each impact category. 195 

2.4. Criteria for Inventory 196 

LCA foreground/background data. The inventory phase of the LCA is the collection of data on flows going in 197 

and out of the system to assess all of the elementary flows (emissions to air, soil and water as well as resources 198 

extraction). A distinction is made between the (a) foreground data (i.e., data on the processes under control of the 199 

decision maker) and the (b) background data (i.e., data on processes that are part of the system but over which the 200 

decision maker has no direct control). The analysis investigates the source of both types of data.  201 

ABM inputs. A comparison of the input parameters that are required to perform the agent-based simulation is 202 

carried to spot based on (a) the quantity of data needed, (b) the potential difficulties in obtaining them and (c) their 203 

specificity to the temporal and spatial context of the study. 204 

Data exchange. This criterion explores what type of data is generated by the ABM and at which life cycle stage 205 

these outputs are used in the selected articles. Then, we examine how the models are physically interconnected by 206 

comparing the chosen exchange protocol that is selected to transfer data between both models. Coupling two models 207 

requires that attention is given to two points: conformity of the structure of the exchanged data and consistency of 208 

their content. 209 

2.5. Criteria for Impact Assessment 210 

LCIA. According to ISO 14040 (2006), the LCIA phase follows two steps: (1) selection of impact categories and 211 

(2) characterization of the impacts of the emissions and resources based on the selected impact categories. The 212 
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studies are compared according to the impact and damage categories that have been chosen (the study is referred to 213 

as mono-criteria when only one impact category has been selected). The criteria that are used for comparison 214 

between the different case studies is whether the authors use a dynamic impact assessment method, which is to say, 215 

whether the characterization matrix (as defined in Figure 2) is affected by the coupling and, if so, which 216 

environmental mechanism is dynamically modelled.  217 

ABM formalization. This criterion aims to investigate how the agents’ decision-making process is formalized. The 218 

capabilities of an agent are defined as: (1) reactivity: the agent can perceive its environment and to adapt its 219 

behaviour to satisfy its objectives; (2) pro-activeness: it is exhibits goal-oriented behaviour and takes initiative to 220 

satisfy its objectives; (3) social ability: it can interact with other agents to satisfy its objectives. If these three 221 

capabilities are met, the agent is considered to be “intelligent” as defined by Wooldrige (2009). 222 

2.6. Criteria for Interpretation 223 

LCA Uncertainty/Sensitivity Analysis. The LCA methodology aims to evaluate potential impacts, and the 224 

reliability of the results strongly depends on the uncertainties that are associated with the selected assumptions 225 

(Huijbregts, 1998). The analysis of the interpretation phase involves whether a sensitivity check has been performed 226 

(i.e., sensitivity analysis and uncertainty analysis). An uncertainty analysis aims to explore the variability of the 227 

overall outputs, while the sensitivity analysis investigates from which parameters the variability comes from.  228 

ABM Validation/Calibration. The corpus of articles is examined through validation, which is a fundamental 229 

procedure of having enough confidence in the model to use it as part of a decision-making tool and/or with 230 

predictive capacity. Amblard et al. (2007) define two levels of validation: internal and external. Internal validation 231 

ensures that the model is robust and that the parameters are differentiated. This is achieved by exploring the model 232 

properties through a sensitivity analysis, for example. External validation is the ability of the model to correctly 233 

measure and/or predict the phenomena for which it has been developed. This step is usually undertaken by 234 

comparing ABM outputs with empirical data.  235 
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ABM Graphical Output. We determine whether the reviewed studies exploit the ability of ABMs to produce 236 

graphical outputs.  237 

Comparison with conventional studies. We check through the whole corpus to determine whether a comparison 238 

with conventional existing LCA studies has been made to quantify the relevance of coupling LCA with ABM.  239 

3. Results 240 

3.1. Selection of articles 241 

In total, 31 articles dealing with ABM and LCA were found according to the procedure detailed in the material and 242 

method section, as shown in Figure S1 (Supplementary Information), and the exhaustive list can be found in Table 243 

S1(Supplementary Information). The thirteen articles detailed below were not further considered in the detailed 244 

analysis since they do not present a case study:  245 

- Four papers are categorized as “review papers.” One critical review that focusses on the uncertainty in ABM 246 

and LCA-coupled models was found (Baustert and Benetto, 2017). Marvuglia et al. (2018) reviewed the 247 

existing agricultural agent-based models and their implementation to support LCA. A comparison between the 248 

use of ABM and game theory in a predictive application of LCA on emerging systems was made by Alfaro et 249 

al. (2010), while McCabe and Halog (2016) explored the potential of different participatory modelling 250 

approaches, including ABM, to allow stakeholder consideration and behavioural simulations in social life cycle 251 

assessments. 252 

- Several case studies are covered by two or more papers. The paper by (Navarrete Gutierrez et al., 2015a) was 253 

also covered by (Marvuglia et al., 2016), who made a return on experience. In the same way, the framework of 254 

Davis et al. was developed in two papers, but only the peer-reviewed one (Davis et al. 2009) was studied, 255 

whereas the conference proceeding (Davis, Nikolic and Dijkema, 2008) was left aside. Finally, three papers 256 

from Attallah et al. were found, and all deal with the same case study, while only the most recent and exhaustive 257 

one (Attallah et al. 2014) is considered. Therefore, these four additional papers were disregarded in our analysis.  258 
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- Five papers present their framework without applying it to a real case study. They are categorised as framework 259 

papers in Figure S1 and were eliminated from the analysis.  Mo et al. (2014) developed a framework to consider 260 

each life cycle step of the LCA (from production to disposal) as an independent agent with its characteristics. 261 

Knoeri et al. (2013) proposed a dynamic criticality assessment for raw materials in which the materials’ stocks 262 

and flows are simulated with an agent-based approach, and the environmental impacts of substitution decisions 263 

are theoretically quantified due to LCA. Zudor and Monostori (2001) introduced a framework to consider 264 

environmental impacts during the allocation process due to an agent-based model, but it had not implemented 265 

the environmental part to date. In the same way, Choong and McKay (2014) worked with agent-based modelling 266 

to simulate the interactions and behaviours of the different processes that are involved in the palm oil supply 267 

chain. The final goal is to identify the key requirements to improve resource-use efficiency while reducing 268 

energy consumption and to trace back information to implement eco-labelling. However, the article only 269 

presents the results of the simulation of the palm oil industry supply network but does not assess any LCA to 270 

date. Latynskiy et al. (2014) evoked in their conference proceeding expected results from the simulation of a 271 

low-carbon agriculture policy and the associated reduced greenhouse gas emissions.  272 

Finally, the review focuses on 18 case studies that are analysed according to the established set of criteria. Davis et 273 

al. (2008) were the first to theorize the coupling between ABM and LCA in 2008. The growing interest in this 274 

subject is palpable, since the research shows a rising trend in the number of annual publications. The articles are 275 

relatively equally distributed among the different sectors under the study, as illustrated by Figure 3. This partition 276 

suggests that there is not a field that is more suitable for ABM and LCA coupling.  277 

Figure 3 Fields of study of the corpus 278 



14 
 

Table 3 presents the key points of the analysis grid for the 18 selected articles, and the complete evaluation grid is 279 

provided in the Supplementary Material. 280 

 281 
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Table 3 Key points of the analysis of the 18 reviewed papers 282 

Authors Product 
system 

Goal Life cycle 
steps 

Rebound 
effect 

Feedback Modelling 
methodology 

Justification for 
the use of ABM 

Agents' type Agent's attributes Simulation 
duration 

ABM time 
step 

Walzberg et 
al., 2018 

Smart 
homes 

Accounts for 
the rebound 
effect when 
assessing the 

environmental 
performance of 

smart homes 

use phase yes no consequential 
to integrate 
irrational 
decisions 

Households + 
Electrical 
appliances 

Households: pro-
environmental attribute 
(dynamic); Electrical 
appliances: electric 
consumption (static)  

1 year 1 hour 

Vasconcelosa 
et al., 2017 

Carsharing 
system 

Policy analysis 
for different 
carsharing 

system 
configurations 

use phase no no consequential  explore "what-
if" scenario 

Travelers + 
Carsharing 
operator  + 
Vehicles + 

staff 

Travelers: gender, 
income, driver's license, 
car, motorcycle, parking 

space (all static) 

not 
mentioned 

not 
mentioned 

(<15minutes) 

 Mashhadi et 
al., 2017 

Personal 
computer 

with smart-
meters 

 Uncertainties 
and 

heterogeneity 
in the use 

phase (proof of 
concept on PC 
with feedback) 

use phase no no both 
to integrate 
irrational 
decisions 

Households 
(=one 

consumer) 

Environmental 
friendliness (static), 
behavioural control 

(static), social pressure 
(dynamic), habit 

(dynamic) 

401 days 1 day 

 Lu et al., 
2017 

Speed 
railway 

Policy analysis 
for developing 

high-speed 
railways 

resources 
extraction, fuel 

production, 
vehicle 

manufacturing, 
infrastructure 
construction, 

use phase  

no no consequential 

to capture 
spatial and 
temporal 

adoption/market 
dynamics  

Travelers 

Minimum satisfaction 
(dynamic), maximum 
uncertainty (dynamic), 

uncertainty tolerance level 
(static)  

not 
mentioned 

not 
mentioned 

Onat et al., 
2017 

Battery 
electric 
vehicles 

Sustainable 
policies for 

battery electric 
vehicles 

use phase 
(well-to-tank 
and tank-to-

wheel) 

no no attributional 

to capture 
spatial and 
temporal 

adoption/market 
dynamics  

Consumers  + 
Government + 

Vehicles 

Social acceptability 
(dynamic) 

not 
mentioned 

not 
mentioned 

Wu et al., 
2017 

Green 
building 

Policies 
analysis for 

green building 
development 

construction 
phase + 

operational 
phase 

no no consequential 
to integrate 
irrational 
decisions 

Government + 
Developers + 

General 
public 

General public: 
environmental awareness 
(dynamic); Developers: 
Green or Conventional 

(dynamic) 

20 years 1 year 
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Pambudi et 
al., 2016 

Plastic 
waste 

Appropriate 
strategies of 

plastic 
recycling  
through 

environmental 
and social 

aspects 

end of life no no attributional 
to integrate 
irrational 
decisions 

Consumers Willingness to change not 
mentioned 

not 
mentioned 

Bustos-Turu 
et al., 2015 

Plug-in 
Electric 
vehicle 

Find optimal  
strategies for 
PEV charging 

resource use, 
production and 

operational 
phase 

no no consequential 

to capture 
spatial and 
temporal 

adoption/market 
dynamics  

Travelers Worker/non-worker 1 day 10 minutes 

Bichraoui-
Draper et al., 

2015 

Switchgrass-
based 

bioenergy 
system 

Farmers' 
potential 

adoption of 
switchgrass as 

a biomass 

production, 
delivery no no attributional 

to capture 
spatial and 
temporal 

adoption/market 
dynamics  

Farmers + 
Refineries + 

Cofired 
generators 

plants 

Age (dynamic), education 
(static), risk aversion 
(dynamic), familiarity 

(dynamic) 

50 years 1 year 

Navarrete 
Gutiérrez et 

al., 2015 

Biomethane 
production 

Policy 
implementation 
for biomethane 
generation with 
consideration 

of social 
factors 

(evolution of 
the agricultural 

system) 

production  no yes consequential 
to integrate 
irrational 
decisions 

Farmers + 
Farms + 
Product 
buyers 

Green consciousness 
(static) 

not 
mentioned 1 year 

Querini et 
al., 2015  

Electric 
vehicles 

Policy analysis 
for mobility 

(electric 
vehicles) 

production, 
use, end of life no no consequential 

to integrate 
irrational 
decisions 

Travelers  

Typologies based on daily 
activities: 

commuter/inactive/retired 
(dynamic) 

8 years 1 hour 

Hicks et al., 
2015  Lights 

Explore extent 
and time lags 
of efficiency 

gains as well as 
the rebound 

effect thanks to 
efficient 
lighting 

technologies 

use phase yes no attributional 
to integrate 
irrational 
decisions 

Consumers 

Typologies based on the 
relative importance of six 
factors when selecting a 

new light (static) 

18 years 1 year 
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Wang et al., 
2014 Drinks 

Environmental 
impacts of 
beverage 

consumption 

production, 
distribution, 

use, end of life 
no no attributional 

to capture 
spatial and 
temporal 

adoption/market 
dynamics  

Consumers Environmental 
friendliness (static)  100 days 1 day 

Attallah et 
al., 2014 

Certification 
credits 

Assess the 
consequences 
of sustainable 

policy on 
certification 
credits for 
buildings 

use phase   no no attributional  explore "what-
if" scenario 

Client+Project 
+ Consultants 
+ Contractors 

Client: governmental or 
private; Project: location, 

price; Consultant: 
experienced or not, 

Contractors: HSE plan or 
not 

not 
mentioned 

not 
mentioned 

Miller et al., 
2013  Switchgrass 

Explore 
switchgrass 

adoption 
(product)  

production 
phase no yes both  explore "what-

if" scenario Farmers 

 
Resistance 

to change (static), 
profitability (dynamic),  

familiarity with the 
technology (dynamic) 

20 years 1 year 

Heairet et 
al., 2012  Switchgrass 

Analyse at the 
local level the 

development of 
bioenergy 

supply chains 
(switchgrass 
biofuel and 

bioelectricity 
markets) 

production, 
transportation, 

processing, 
use 

no no attributional  explore "what-
if" scenario 

Farmers + 
refineries + 

electric 
generators 

Risk tolerance (static) and 
social acceptance 
threshold (static) 

not 
mentioned 1 year 

Davis et al., 
2009 

Biomass 
electricity 
production 

Explore 
biomass as 
electricity 
production 

(technology) 

biomass 
production, 

transportation, 
processing, 

conversion to 
electricity 

no yes attributional 

to capture 
spatial and 
temporal 

adoption/market 
dynamics  

Firms (the 
entity that 

operates the 
technology) + 
Fossil-based 
power plants 

Efficiency ratio, 
production capabilities 19 years 1 year 

Xu et al., 
2015 Books 

Explore books 
e-commerce 

market and the 
rebound effect 
of increased 

buying power 
of consumers 

transportation 
(driving to 

bookstores or 
delivering) 

yes no consequential 

to capture 
spatial and 
temporal 

adoption/market 
dynamics  

Consumers 
Preference, leadership, 

social need, need 
satisfaction, uncertainty 

13 years 1 year 

 283 
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3.2. Goal and scope 284 

LCA Goal. We can identify three different types of goals. (i) Forty-four percent of the papers aimed to help 285 

decision-making for sustainable policy implementation. For example, Lu and Hsu (2017) investigated different 286 

incentives-based scenarios for the implementation of the high-speed railway Guangzhou-Shenzhen-Hong Kong in 287 

2020: they first assessed the ticket fare that would result in the lowest environmental impact of the high-speed train, 288 

and second, they proposed a scenario without through train with which the greenhouse gases emissions were 289 

reduced by 25%. (ii) Twenty-two percent of the studies aimed to better describe the use phase. Since the 290 

environmental impact of electrical appliances highly depends on the consumption pattern (e.g., time of use and 291 

power management after usage), Mashhadi and Behdad (2017) propose an ABM to simulate consumption patterns 292 

according to different user typologies and to further quantify the variability of the resulting LCA. (iii) The last 28% 293 

of articles explores how emerging technologies could impact the environment by analysing how their supply chain 294 

and market penetration would potentially develop. Heairet et al. (2012) studied the environmental impact of the 295 

developing bioenergy industry due to an ABM that models each actor in the supply chain: the farmers for 296 

switchgrass biofuel production, biofuel refineries and electric generators for the bioelectricity market.  297 

Three studies model rebound effects (Xu et al., 2009; Hicks, Theis and Zellner, 2015a; Walzberg et al., 2018). 298 

Walzberg, Samson and Merveille (2018) model both the direct and indirect rebound effect that can occur in smart 299 

homes. They use an ABM to compute at each time step the monetary savings that result from the consumption 300 

pattern of each household and further exploit the Canadian Input-Output tables to reallocate these savings in other 301 

economic sectors. The authors quantify that the indirect rebound effect increases 24% of the use phase impact on 302 

climate change. Hicks, Theis and Zellner (2015b) use the ABM to assess the increase in electricity consumption 303 

(direct rebound effect) that results from the adoption of energy-efficient lighting technologies. These researchers 304 

account for different agent typologies (as a function of preference, misinformation) and several policies. Xu et al. 305 

(2009) use ABM to simulate the dynamics of the book market following the introduction of a self-pick-up option.  306 

The authors evaluate the direct rebound effect on transport resulting from the purchase of e-books instead of 307 

conventional books. The agent-based approach allows the authors to model the rebound effect as a function of the 308 
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individual choices made by the cognitive agents between both options and were able to quantify a decrease of 12% 309 

gasoline consumption per book with a self-pick-up option. 310 

LCA Scope. Half of the studied articles have a predictive approach and forecast possible outcomes with a time 311 

horizon to 2020 for five articles (Xu et al., 2009; Miller et al., 2013; Bichraoui-Draper et al., 2015; Florent and 312 

Enrico, 2015; Navarrete Gutierrez et al., 2015a). Hicks et al. (2015) forecast potential environmental impact savings 313 

from the shift to efficient lighting technologies (compact fluorescent lamp and light-emitting diode) until the year 314 

2083, which represents the most extended forecasting period of the corpus.  315 

Regarding the life cycle steps considered, one-third of the studies only consider the use phase of the product system, 316 

either because previous LCAs have shown that the use phase of the product system is the most impactful phase 317 

(Attallah, 2014; Onat et al., 2017; Vasconcelos et al., 2017), or because the study aims to quantify the environmental 318 

impacts that are associated with the heterogeneity of the consumption/usage pattern (Hicks, Theis and Zellner, 319 

2015b; Raihanian Mashhadi and Behdad, 2017; Walzberg et al., 2018).  320 

Half of the corpus uses a consequential modelling methodology, among which two studies specify that both 321 

attributional and consequential methodologies can be used (Raihanian Mashhadi & Behdad 2017; Miller et al. 322 

2013), and seven studies do not specify the modelling methodology (Xu et al., 2009; Navarrete Gutierrez et al., 323 

2015a; Querini and Benetto, 2015; Bustos-Turu et al., 2016; Lu and Hsu, 2017; Vasconcelos et al., 2017; Walzberg 324 

et al., 2018). We classified their modelling methodology as consequential, since ABM is used to investigate the 325 

change of demand for products that are not in the system boundary of the product system under study. Therefore, 326 

the product system is not isolated from the rest of the economy. For example, Lu et al. (2017) studied the 327 

environmental impacts of the introduction of a high-speed railway, and the authors use ABM to quantify to what 328 

extent this transportation mode displaced the other modes. These CLCAs only consider the consequences of the 329 

introduction of an innovative product/emerging technology on its market share. ABM is used to assess direct 330 

consequences on the foreground consumption system. Indirect changes in the activities all along the supply chain 331 

of the product system (the response of the production system to the consumption demand) that can be affected by 332 
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the displacement effect are not considered, except from the research of Walzberg et al. (2018), which includes an 333 

indirect rebound effect. 334 

Purpose of ABM use. We can identify three main reasons that justify the use of ABM in environmental studies: (i) 335 

to explore a what-if scenario, (ii) to capture spatial or market dynamics and (iii) to integrate irrational and social 336 

behaviours. (i) Four studies take advantage of the ability of ABM to explore scenarios via the simulation of different 337 

system configurations. Wang, Brême and Moon (2014a) use ABM to set up 6 scenarios representing different 338 

configurations of the beverage consumption resulting either from government incentives (“bottled water is banned”) 339 

or environmental constraints (“no tap water available due to pollution”). (ii) Thirty-nine percent of the studies use 340 

ABM mainly to explore spatial and temporal dynamics. For example, Wu et al. (2017) compare the environmental 341 

impact of green buildings development in a hypothetical city under a fixed percentage in specified neighbourhoods 342 

with a pattern emerging from the ABM simulation (developers decide on the new buildings’ type and location). 343 

Green buildings can be located in neighbourhoods with low environmental friendliness to raise awareness or, on 344 

the contrary, with high environmental friendliness to ensure a high return on investment. Wu et al. demonstrated 345 

that the impact results are highly dependent on the spatial layout of the green buildings: nonrenewable energy saved 346 

during the operational stage is reduced when green buildings are located in an area with high environmental 347 

awareness throughout the population, rather than when they are placed with the educational goal to raise awareness. 348 

Besides spatial dynamics, market dynamics can be captured by ABM to assess the environmental impacts of 349 

innovative products. It is worth mentioning that LCA has been performed in these studies to compare products, 350 

rather than to find change levers for a more environmentally friendly design. For example, using an ABM, Lu and 351 

Hsu (2017) simulated the market share for different transport modes (aircraft, bus, train) after the introduction of a 352 

high-speed railway. The environmental impact of each transport mode was calculated by the occupancy rate. (iii) 353 

Economic models are able to assess market dynamics for emerging products; however, they are all based on the 354 

principle that humans are rational. ABM turns out to be an effective approach to integrate irrational choices that are 355 

driven by socio-economic, -demographic and -cultural factors. This point is highlighted by 37% of the articles in 356 

this corpus to justify their use of the agent-based approach. Farmer agents in Bichraoui-draper (2015)’s work are 357 
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defined by social (age, education, risk aversion, familiarity) and economic (potential profit) attributes. However, 358 

the small correlations (<0.20) between the social factors and the CO2 emissions during the growth of the crops, 359 

ethanol generation, electric generation and ethanol distribution processes show that individual attributes have little 360 

influence on the LCA scores, contrary to the economic factor potential profit (correlation of 0.67).  361 

ABM agents. All papers model cognitive agents (i.e., with a decision-making skill) that are able to represent 362 

humans, either as individuals (e.g., farmers and consumers) or as entities (e.g., households and firm). Papers with a 363 

product focus design agents as consumers (e.g., Raihanian Mashhadi & Behdad 2017b; Hicks et al. 2015b; Xu et 364 

al. 2009; Wang et al. 2014b), and studies with a policy analysis model agents as entities government (e.g., Susie 365 

Ruqun Wu et al. 2017; Onat et al. 2017), or companies (Attallah et al., 2014; Vasconcelos et al., 2017). Twenty-366 

two percent of the articles also represent processes of the supply chain of the product system by using technological 367 

agents. In the same way as cognitive agents, these technological agents can be of two types: devices (e.g., vehicles 368 

in Vasconcelos et al.'s article (2017)) or firms/economic entities (for example refineries, power plants or generators 369 

(Heairet et al. 2012; Bichraoui-Draper et al. 2015)).  370 

Cognitive and technological agents can (i) interact among them, (ii) interact with other types of agents and (iii) 371 

interact with the static supply chain, if one has been previously defined by databases. These interactions are an 372 

essential driver of the decision-making process. In Wu et al.’s agent-based model, green building coverage is driven 373 

by the interactions between the government, the inhabitants and the developers. Developers are encouraged by the 374 

incentives set each year by the government and by public perception to move towards green building construction. 375 

Households’ environmental awareness evolves at each time step as a function of their neighbours.   376 

One of the key specificities of ABMs is the high number of agents that can be simulated. Vasconcelos et al. (2017) 377 

simulate as many travellers as inhabitants in Lisbon, which are 547733. The number of agents, as well as their 378 

attributes, can be static or evolve during a simulation. For example, the number of agents as Developers in Wu’s 379 

agent-based model is a function of the Public agents’ environmental awareness, which is an attribute that evolves 380 

at each time step. For agents with the most advanced cognition, the decision-making process is driven by the 381 

combination of several attributes. Environmental awareness is the attribute the most frequently used among the 382 
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cognitive agents to generate pro-environmental behaviours, as well as the potential spread of a green consciousness 383 

(Attallah, 2014; Wang, Brême and Moon, 2014b; Hicks, Theis and Zellner, 2015b; Navarrete Gutierrez et al., 384 

2015a; Mashhadi and Behdad, 2017; Susie Ruqun Wu et al., 2017; Walzberg et al., 2018).  385 

ABM time step. The time step varies from an hourly period to a yearly period. The choice of the time step can be 386 

justified either by (i) the scope of the analysis (Navarrete Gutierrez et al. (2015a) uses this time step as it fits well 387 

the farming period) or (ii) the trade-off between computation-time and level of detail needed. Since Hicks et al. 388 

(2015b) study a product with a 5-year lifetime, a one-year-time step enables a fine-grain model without being too 389 

time-consuming (the system is replaced every five time-steps, and the total simulated period is 70 years). A third 390 

of the corpus adopted a one-year time step. None of the articles evoke the computational time of their model. 391 

Feedback loop. Four articles use a feedback loop (Davis, Nikolíc and Dijkema, 2009; Miller et al., 2013; Navarrete 392 

Gutierrez et al. 2015b, Walzberg et al. 2018). In Miller et al. ‘s work (2013), the decision process integrates the life 393 

cycle inventory results of the previous time step. However, the criterion that is sent back to the ABM is not specified. 394 

In the same way, in Davis, Nikolíc and Dijkema’s model, each agent knows the LCA score that is associated with 395 

its previous actions/configurations. The authors only mention a criterion based on the reduction in the CO2 emission 396 

as an example. Navarrete Gutierrez et al. (2015b) proposed a static feedback loop: farmer agents have a knowledge 397 

of the crops’ LCA score calculated at the beginning of the simulation. Finally, Walzberg, Samson and Merveille 398 

(2018) model smart meters, which are devices that provide electricity consumption information in real time to the 399 

inhabitants and optimize their load scheduling. The agents Occupants only receive a feedback on energy 400 

consumption; however, the technological agents Devices adjust at each time step their load scheduling according to 401 

feedback on their environmental impact. 402 

Type of coupling. Regarding the type of coupling:  403 

- Four papers do not mention the type of coupling they use.  404 

- Complementary use has been experimented in two studies. ABM and LCA were used separately by 405 

Pambudi et al. (2016) and Onat et al. (2017). In these cases, ABM was used to determine the rate of adoption 406 
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of several potential waste management systems (respectively electric car) since the community (respectively 407 

consumers) involvement and acceptation are necessary to assess sustainable plastic waste management 408 

(respectively battery electric vehicles), while LCA was used to assess the environmental impact of the different 409 

strategies. LCA results are not scaled according to this adoption rate.  410 

- LCA and ABM are integrated in seven studies. Davis, Nikolíc and Gerard P.J. Dijkema (2009) were the first to 411 

extend LCA with ABM: in their model, the static LCA database can be considered as a WorldMarket agent 412 

with which the other Technological agents can interact. The same procedure was used by Walzberg et al. (2018). 413 

The authors represented some of the system processes from the LCA database ecoinvent 3.1, such as Appliances 414 

agents evolving at each time step according to their Switch On/Off position. The five other articles (Xu et al., 415 

2009; Miller et al., 2013; Bichraoui-Draper et al., 2015; Lu and Hsu, 2017; Vasconcelos et al., 2017) run an 416 

LCA calculation directly into their agent-based model and they do not use specific LCA software.  417 

- A hybrid analysis has been used in 28% of the articles. For all these articles, the consumption system is modelled 418 

by ABM and the affected part of the LCA computational structure is the final demand vector. Attallah et al. 419 

(2014) use LCA to quantify the avoided impact at the project level (residential building) according to the 420 

selected credits of the certification that is targeted. Independently, ABM is run to evaluate the adoption rate of 421 

sustainability policies. Thus, LCA scores are aggregated according to the ABM results to obtain the total 422 

reduced impacts to the environment. 423 

Degree of coupling. Regarding the degree of coupling, hard-coupling is used 22% of the time, against 67% for the 424 

soft-coupling as described Table 4. Tight-coupling has never been used, and the 11% remaining articles do not have 425 

any degree of coupling, since ABM and LCA are used in a complementary way.  426 

Walzberg, Samson and Merveille (2018) used a hard-coupling to manage temporally disaggregated data of the 427 

electricity mix. At each hour of the day, they consider the impact associated with the on- or off-peak electricity mix, 428 

so their model requires a flow of data at each time step (running LCA calculation needs as inputs the dynamic state 429 

of the agent Appliance). Table 4Erreur ! Source du renvoi introuvable. shows that every paper with a feedback 430 
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loop are hard-coupled. Data flow both ways, since LCA outputs are returned as an input for ABM, thereby requiring 431 

a high degree of coupling.  Half of these hard-couplings are integrated, while the remaining half is hybrid. Notably, 432 

all studies that modelled technological agents used hard-coupling.  433 

Table 4 Repartition of the articles according to the presence of feedback and technology agents based on the classification of Table 2 and 434 

Figure 1. Percentages in italic are subtotals while figures in black are totals (e.g. 22% of the articles adopted a hard-coupling and, among 435 

them, half of the coupling type is hybrid) 436 

  Feedback Technological agents Type of coupling 

  
Yes No Yes No Integration Hybrid Complementary N. m. 

Degree of 

coupling 

Total
% 

22% 78% 11% 89% 39% 28% 11% 22% 

Hard 22% 100% 0% 50% 50% 50% 50% 0% 0% 

Tight 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Soft 67% 0% 100% 0% 100% 36% 28% 0% 36% 

Complementary 11% 0% 100% 0% 100% 0% 0% 100% 0% 

 437 

Affected parts of the LCA computational structure. In the corpus under study, the technosphere matrix and the 438 

final demand vector were the affected computational parts. The LCA computational part for the studies with a 439 

complementary approach is unaffected, since no data are exchanged. For 66% of the articles, ABM was used to 440 

model the consumption system and to compute the final demand vector. In every study with a temporal 441 

consideration based on future outcomes, except for one study that used a complementary approach, the final demand 442 

vector was affected by the coupling, which suggested that ABMs have been widely used to forecast market 443 

penetration. Eighty-five percent of the articles for which the final demand vector is affected are coupled softly. The 444 

other fifteen percent are hard-coupled with a feedback loop.  445 

In (Davis, Nikolíc and Dijkema, 2009; Wang, Brême and Moon, 2014a; Walzberg et al., 2018), ABM was used to 446 

model part of the technosphere matrix, and for all of them, processes of the technosphere were modelled as agents. 447 

At each time step, the technosphere matrix can (a) shrink according to the processes that are or are not involved–in 448 
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a given moment (i.e., row and columns can be added or removed) and (b) be updated according to the interactions 449 

that the processes of the supply chain have with one another). (Davis, Nikolíc and Dijkema, 2009; Walzberg et al., 450 

2018) integrated LCA in ABM in a hard-coupling way, whereas (Wang, Brême and Moon, 2014a) has a 451 

complementary approach in which the LCA technosphere matrix is shaped by another model. No mention of the 452 

temporal consideration of the study was given, which implies that the authors were interested in the dynamic of the 453 

interactions among agents of the supply chain instead of temporal dynamism.  454 

3.3. Inventory  455 

LCA foreground/background data. For most studies, inventories of the foreground LCA data were collected from 456 

ABM simulations. The ABM results were used to create the final demand vector. Elementary flows associated to 457 

the foreground data are obtained from existing LCA studies from literature in many studies (Xu et al., 2009; Lu and 458 

Hsu, 2017; Onat et al., 2017; Vasconcelos et al., 2017). Vasconcelos et al. 2017 used an existing life cycle 459 

assessment to compute the quantity of air pollutant and greenhouse gases emissions for each kilometre travelled by 460 

car (functional unit). A total of 31% of the studies used the Ecoinvent life cycle inventory database (Weidema et 461 

al., 2013) as background data, either imported in the ABM for integrated models (Davis, Nikolíc and Dijkema, 462 

2009; Walzberg et al., 2018), which were run thanks to an LCA dedicated software for hybrid coupling or 463 

complementary use. Bustos-Turu et al. (2016) and Walzberg, Samson and Merveille (2018) used a disaggregated 464 

energy supply mix to account for the time-dependency of energy production. In both studies, the ABM generates at 465 

each time-step the electricity demand (foreground data) as well as the time-dependent electricity supply mix 466 

(background data). To this end, Walzberg, Samson and Merveille (2018) represent the Ontarian electricity mix as 467 

a network of technological agents exchanging different elementary flows according to the time of the day. 468 

ABM inputs. ABMs can be complex and often require a considerable amount of socio-demographic or -economic 469 

data to set up the design of the agent’s profile. Four studies (Navarrete Gutierrez et al. 2015; Lu & Hsu 2017; Hicks 470 

et al. 2015; Attallah 2014)  are based on surveys that were previously elaborated by the research team. For example, 471 

Omar Attallah et al. (2014) designed and analysed statically survey questions to identify the different stakeholders 472 

and determine their attributes. In addition to data at the agent level, ABM also uses contextual data specific to the 473 
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environment. For example, (Walzberg et al., 2018) used the national weather database to determine heating needs. 474 

Three studies (Heairet et al., 2012; Lu and Hsu, 2017; Bustos-Turu et al. 2016) used spatialized information from 475 

geographic information system (GIS), a tool that represents and analyses spatial information. Three others 476 

(Bichraoui-Draper et al., 2015; Miller et al., 2013; Navarrete Gutierrez et al.,2015) evoke the possibility of adding 477 

GIS extension to directly model the map and to extract environmental parameters. 478 

Data exchange. If the implementation of ABMs requires a massive collection of data, they produce a high quantity 479 

of data that can be useful for the LCA inventory at different life cycle stages as shown Figure 4.  We identified in 480 

the corpus five main types of information generated by ABM. These ABM outputs were used to support the 481 

description of the use and manufacturing phase.  482 

 483 

Figure 4 Data extracted from ABM at each life cycle stages in the articles of the corpus (except studies using ABM and LCA in a 484 
complementary use). References can appear several times according to the life cycle stages that are considered by the study. 485 

In integrated models, every LCA calculations are computed directly in the ABM thanks to the importation of the 486 

necessary databases or parameters values. For studies with a hybrid approach, no information about the 487 

interconnection between both models is given, apart from (Navarrete Gutierrez et al., 2015a) who use SysML for 488 

data-management.  If an LCA software is used (e.g., Gabi and Simapro), a protocol must be created. In theory, the 489 

LCA practitioner can use any existing LCA software to perform the LCA, even if Navarrete Gutierrez et al. (2015) 490 
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highlight that the interaction between different software can be challenging to implement. In the other studies, ABM 491 

outputs were aggregated at the end of the simulation and then were feed manually into the LCA. 492 

3.4. Impact assessment 493 

LCIA method. Half of the environmental studies are multi-criteria, but most of them are only based on several 494 

indicators, mostly energy-related. For example, Bustos et al. (2016) use only climate change and particulate matter 495 

formation mid-point indicators from the ReCiPe method to run their multi-objective optimization. All of the articles 496 

using all of the ReCiPe mid-point indicators have a coupling hybrid type. Indeed, as proper LCA software is used, 497 

it eases the calculation step. None of the studied articles presents dynamic impact assessment methods. Indeed, 498 

ABM has not been used to simulate any environmental mechanism; thus, no characterization factors are temporally 499 

or spatially modified over time. (Susie Ruqun Wu et al., 2017) were the only to mention a possible use of ABM to 500 

generate s dynamic LCIA stage in addition to its current use as input for LCI data.  501 

ABM formalization. The agent decision-making architecture is modelled based on probabilistic rules and decision 502 

trees in eight and three studies, respectively. In both cases, agents were considered to be stochastically reactive, 503 

since they do not elaborate plans. Agents can be qualified as pro-active in three studies: (Bustos-Turu et al., 2016) 504 

to develop an activity-oriented architecture in which travellers’ schedules adapt to various events and incentives, 505 

Walzberg, Samson and Merveille (2018) exploited the socio-psychological model from Kaiser et al. (2010) and Lu 506 

and Hsu (2017) model four cognitive processes (repetition, deliberation, imitation and social comparison). Half of 507 

the reviewed papers model a social network (neighbours or friends) from which arise interpersonal interactions that 508 

modify individual behaviours.   509 

 510 

3.5. Interpretation  511 

LCA Uncertainty/Sensitivity Analysis. No study refers to uncertainty analysis but more than 60% of the articles 512 

conducted a sensitivity analysis (Figure 5). Sensitivity analysis can be performed to determine (a) which parameters 513 

influence the outputs and (b) parameters’ contribution to the variability of the outcomes. (Raihanian Mashhadi and 514 
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Behdad, 2017) carried out a sensitivity analysis that aimed to understand the influence of some input parameters 515 

(environmental friendliness, perceived control, habit and network structure) on the overall results (goal (a)). Linear 516 

correlations were found between each of these four parameters and the percentage of turned-off decisions.  (Xu et 517 

al., 2009) ran a sensitivity analysis with the (b) approach: they studied the contribution of the uncertainty associated 518 

with the agent Consumer’s parameters to the uncertainty of the overall model. To do so, the authors set 519 

homogeneous consumers.  It results in higher uncertainties than with the heterogeneous model, thereby 520 

demonstrating that the real world needs a variety of consumer profiles to be correctly simulated.  521 

The studies conducted the sensitivity analysis differently: (Wang, Brême and Moon, 2014b) used a design of 522 

experiment, whereas (Bichraoui-Draper et al., 2015) evaluated the sensitivity of inputs parameters based on a 523 

correlation matrix of the exogenous variables and LCA results, which demonstrated the potential profit that farmers 524 

are expected to make and has a direct impact on the LCA results. They applied the same methods for the farmers’ 525 

parameters. (Xu et al., 2009) used a normal distribution for endogenous consumer’s parameters (leadership power, 526 

social needs, need satisfaction and uncertainty) instead of a uniform one and showed that these four parameters 527 

slightly influence the outcomes. 528 

 529 

Figure 5 Repartition of the articles according to the three criteria related to the interpretation phase of LCA 530 

ABM Validation/Calibration. Six articles refer to ABM validation (Onat et al. 2017; Wang et al. 2014a), but only 531 

four of them explain the procedure they established (Xu et al. 2009; Walzberg et al. 2018; Bichraoui-Draper et al. 532 

2015; Lu & Hsu 2017). The major part of the corpus raises validation as a necessary step for model robustness. 533 

Some mention it as a limit to their study (Susie Ruqun Wu et al., 2017), while others aim to do so thanks to field 534 

studies (Miller et al., 2013; Raihanian Mashhadi and Behdad, 2017). (Xu et al., 2009) used historical data to validate 535 

their model in two steps: (1) checking if the e-commerce market share curve is fitting the current one and (2) running 536 
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of 1000 Monte-Carlo simulations. (Lu and Hsu, 2017) predicted a transport mode share in 2018 and validated their 537 

model with an official forecast data of China. (Bichraoui-Draper et al., 2015) used a static and dynamic method to 538 

validate their model. The former one is similar to the one that is usually used by authors in the rest of the corpus 539 

(i.e., a comparison of the results with the observed data), while the latter one uses a multiple-linear regression model 540 

to test the fitness of their model. As the data were not available to date on switchgrass adoption, these researchers 541 

decided to validate their results with a different plant (genetically engineered soybeans) adoption in the U.S. The 542 

multiple-linear regression’s goal is to determine which predictor variables are truly related to the response, and by 543 

doing so, it helps to validate the internal hypothesis. The researchers showed that their choice of independent 544 

variables was correct.  545 

(Xu et al., 2009) applied a statistical analysis to find the combination of parameters with which their model best fits 546 

the historical data of the U.S. market share from 1998-2005. However, they highlight the lack of available data with 547 

a technology that is too young to be well modelled and calibrated. (Lu and Hsu, 2017) used as well historical share 548 

data from 2003 to 2014 to fit the parameters of their model. (Vasconcelos et al., 2017) used existing car fleet 549 

statistics to calibrate their model. Survey studies enable the model parameters to be adjusted to strengthen model 550 

robustness and use the results as forecasts. 551 

ABM Graphical Output. Thirty-nine percent of the articles propose a graphic interface by which to visualize the 552 

ABM outputs. This graphical visualization can be rather elementary and illustrates, for example, the connections 553 

between the agents of the supply chain (Heairet et al., 2012; Mashhadi and Behdad, 2017) or the rate of adoption 554 

(Pambudi, Dowaki and Adhiutama, 2016). This graphical output is also used by Miller et al. (2013) and Wu et al. 555 

(2017) to display the spatial evolution of the agents. Navarrete Gutierrez et al. (2015b) and Lu and Hsu (2017) 556 

created interfaces that contain a map and sliders or switch-on buttons to adjust the value of several parameters of 557 

the simulation. 558 

Comparison with conventional studies. Wang, Brême and Moon (2014b) compared their result with an already 559 

existing company’s report, and they demonstrated how results are strongly changed when introducing the market 560 

penetration of potential new products. Results between a conventional LCA study made by Nestlé and the hybrid 561 
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LCA were similar for bottled beverages but were profoundly different for tap water and aluminium bottles, which 562 

is explained qualitatively by uncertainties and the dynamic demand of the hybrid LCA. Wu et al. (2017) compare 563 

the life cycle sustainable results that were obtained with an ABM of green building development on a city scale 564 

with a predefined static policy scenario. Nonrenewable energy saved during the operational stage was 22% higher 565 

with the static policy scenario than with the incentive annual dynamic one.  566 

 567 

The articles of the corpus have been compared against a set of criteria and the major results are summarized below: 568 

-The coupling of ABM and LCA has been used so far in 18 case studies in different sectors: agriculture, transport, 569 

daily products and construction. 570 

-In most cases, ABM has been coupled to LCA in order to model foreground systems with too many uncertainties 571 

arising from a behaviour-driven use phase, local variabilities, emerging technologies. 572 

-Both attributional and consequential modelling methodologies have been used, but CLCA has been applied in most 573 

cases 574 

-Foreground inventory data have been mainly collected from ABM at the use phase 575 

-ABMs have never been used for modelling the impact assessment phase 576 

 577 

4. Discussions 578 

4.1. Theoretical opportunity: How can the ABM enhance LCA? 579 

In light of the results of the review, several points have been identified for which ABM&LCA coupling may enhance 580 

LCA for some of its methodological weaknesses. Table 5 summarizes how the use of ABM may improve LCA in 581 

each of its methodological phases, either for the consequential approach or for both modelling methodologies. The 582 

following sections describe each contribution. 583 
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Table 5 Potential contribution of ABM through the different LCA phases (MM stands for modelling methodology) 584 

LCA  phases ABM support to LCA Enhanced knowledge from ABM MM 

Goal 
and 
scope 

Scenario 

System boundaries 

Explore usage scenario 

Identify system expansion  

Consumption system 

Consumption and production interaction 

ALCA and CLCA 

CLCA 

LCI Foreground data Collect use phase precise data Consumption system ALCA and CLCA 

LCIA LCIA methods Bring temporal and spatial 

dynamics 

Environmental system ALCA and CLCA 

Interpretation Visualize graphically 

Identify targeted guidelines 

-- 

-- 

-- 

-- 

Goal and scope. As previously highlighted, ABM has been extensively used to explore different LCA scenarios. 585 

Thanks to the forecasting capacity of ABM, coupling both tools represent solutions for exploring the effectiveness 586 

of different sustainable policy implementation scenario (e.g., taxes and incentive regulation). ABM can also be used 587 

to cluster users’ behaviours as a function of the typologies of use, for example. Scenarios can be associated with 588 

these users’ archetypes to assess the panel of possible LCA scores of a product system. 589 

 The main modelling challenge for CLCA is double: (i) to spot changes in demand (rebound effect, behaviour shift) 590 

or extension to other products (alternative use of constrained production factors, market effect, competing products), 591 

and (ii) to evaluate to what extent these changes in the consumption system impact the production system. Modelling 592 

the life cycle product with the consequential methodology turns out to be a tough task, because the interaction 593 

between the consumption and the production system (represented by the dotted line in Figure 11) is not well 594 

apprehended yet. LCA is not a tool to consider the complexity of the mechanisms of product/technology adoption, 595 

which depends to a large extent on the perception of the new product/technology and its acceptation (i.e., the 596 

consumption sphere). Economic models have been increasingly used to describe the link between consumption and 597 

production systems. However, these top-down models represent humans as purely rational, which is a limitation 598 

that was identified by Yang and Heijungs (2017); as already mentioned above, the introduction of behavioural 599 

science could be useful to complement this economic approach according to (Miller and Keoleian, 2015). ABM has 600 

already been used in industrial and process engineering research to model supply chains (see Shen et al. (2006) for 601 
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a comprehensive review).  ABM can supplement LCA to investigate how consumers are going to react to emerging 602 

technologies or the new product development (e.g., acceptation, rejection, and spill-over effects) and how this 603 

answer, in turn, affects the whole supply chain. Thus, ABM is a relevant tool with which the LCA practitioner can 604 

quantify the potential effects over time that the product system introduces in the foreground and background 605 

systems.  606 

 607 

Figure 6 Representation of the enhanced dimensions thanks to ABM for attributional LCA and consequential LCA, in compliance with the 608 

description of Weidema et al. (1998) of both modelling methodologies 609 

Inventory. The ways in which users interact with products may profoundly affect the results of environmental 610 

studies, and products with an impacting use phase (e.g., housing, cars, and appliances) need quality inventory data. 611 

(Langevin, Wen and Gurian, 2015) highlighted the need to consider inter-individual behavioural variation when 612 

modelling the use phase instead of simple averages. To this end, the benefit to supplement LCA studies with 613 

behavioural science was pointed out by Polizzi di Sorrentino et al. (2016). Introducing socio-cultural, -demographic 614 

and –economic factors is a valuable method to simulate different usage patterns and to obtain the range of possible 615 

outcomes due to behavioural differences. Thanks to the ability of ABMs to represent individuals with high cognitive 616 

capacities, they allow a better understanding of the increasingly complex consumption system, which is not well 617 

described in current life cycle studies (represented by the orange hatched area in Figure 11). Use phase description 618 

can gain precision through the collection of inventory data from ABM outputs. Within the reviewed papers, two 619 

studies take advantage of the dynamic data that are generated by the ABM to assess the electricity environmental 620 

impact hour by hour. This approach allows for the primary energy source proportion to be accounted for at the 621 

moment when the electricity is demanded. This adjustment is particularly relevant for energy-intensive product 622 
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systems (e.g., the use phase of residential buildings and plug-in electric vehicles) whose electricity demand is highly 623 

time-dependent. ABM could be a useful tool to output time-dependent data instead of averaged data.  624 

In the same way as for dynamic temporal data, ABM can generate spatially distributed data that can be useful to 625 

investigate localized environmental impacts that are dependent on spatial dynamics. For example, Miller et al. 626 

(2013) explained the high dependence of switchgrass environmental impacts on previous land uses, since there was 627 

an initial sediment emission and a spike in nutrients when the former land was unmanaged. In some cases, the LCA 628 

results can be different spatially according to social adoption and the usage pattern as demonstrated by Wu et al. 629 

(2017). Spatial information that is obtained with an ABM could be useful to assess, for example, to what extent the 630 

economy of scale can impact LCA scores or to identify targeted policy incentives according to the area (e.g., rural 631 

versus urban areas). 632 

 633 

Impact assessment. To date, the temporal course of emissions is undefined in LCIA, and environmental systems 634 

are considered through steady-state modelling (Shimako, 2016). Recent studies have moved towards dynamic LCA 635 

to address the inconsistency of the temporal assessment (Beloin-Saint-Pierre, Heijungs and Blanc, 2014). While the 636 

articles of the corpus all used ABM data as input for a robust LCI description, the spatially and temporally 637 

distributed data that were obtained thanks to the ABM can also be used during the LCIA step to simulate dynamic 638 

environmental mechanisms and, in this way, to improve environmental systems modelling. It would be particularly 639 

relevant to improve both human exposure and short-term indoor chemical fate in LCA in so far as behaviour-related 640 

factors profoundly influence chemical fates and exposure probabilities. For example, indoor pollutants do not have 641 

the same residential time indoors based on occupant ventilation strategies. Occupants are exposed to indoor 642 

chemicals through near-field exposure pathways that are highly behaviour-driven: for example, the intake of indoor 643 

chemicals via inhalation depends on the fraction of time spend at home (Jolliet et al., 2015). In return, these human 644 

intakes affect the indoor fate of chemicals significantly (Zhang, Arnot and Wania, 2014). This approach implies a 645 

substantial focus on (i) the heterogeneity in human profiles and activities that are key drivers for quantifying the 646 
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dynamic of air emissions and the resulting human exposure in indoor environments and (ii) the short-term dynamics 647 

of chemical emissions and exposure.  648 

  649 

Interpretation. As explained by Kelly et al. (2013), environmental policies cannot be put into place effectively 650 

without holistic modelling of complex systems and the dynamic interactions that take place among the numerous 651 

stakeholders. Simulation of socio-economic or socio-ecological factors that drive interactions among entities 652 

(humans, institutions, etc) allows for the impacts and outcomes to be explored at the system level. ABM can help 653 

in understanding the main factors that influence agent’s decision-making process, how the adoption pattern affects 654 

the environmental impact of the system, and from this, which policies can help support more sustainable systems. 655 

At the product level, ABM can help LCA to identify the design with which users behave more sustainably. 656 

Inversely, it can help to identify behaviours that positively or negatively affect the environmental performance of a 657 

system and support the development of targeted environmental guidance or policies. An ABM graphic 658 

representation can then be a strategic point to help decision-makers better comprehend the model and communicate 659 

results.  660 

 661 

4.2. Recent LCA developments for which ABM could be relevant 662 

In this section, we specifically identified three recent developments in the LCA field for which the use of ABM 663 

could be beneficial both at the inventory and impact assessment phase. 664 

Regionalization. Regionalized LCA increase the results accuracy by considering site-specific conditions (Hellweg 665 

and Milà i Canals, 2014). However, in practice, regionalization in LCA studies is rarely performed (Mutal and 666 

Hellweg, 2009) because the acquisition of spatial data is challenging. To ease this step, GIS has been integrated in 667 

the inventory and impact assessment  modelling (Geyer et al., 2010; Mutel, Pfister and Hellweg, 2012; Liu et al., 668 

2014) and the open source Brightway software (Brightway2, 2016) includes GIS capabilities in the LCA calculation. 669 

In the same way, the integration of the spatial analysis capabilities of GIS within the ABM could support the LCIA 670 
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of product systems exhibiting spatial dynamics and could help the regionalization of both the inventory and impact 671 

assessment phases. In ABM, agents are often linked to each other by spatial relationships and are situated in an 672 

environment that constrains their actions. For example, an agent “pedestrian” is spatially linked to the agent 673 

“building” when the pedestrian is inside the building, and its path is constrained by the agent “road” when it tries 674 

to reach the agent “building”. GIS provides geospatial details that are based on actual geographic locations. The 675 

integration of GIS within ABM helps to analyse physical factors such as accessibility, distances and to generate a 676 

3D graphical environment. Therefore, there is a growing interest in the integration of GIS within ABM, and 677 

nowadays, many models have already coupled both tools (Brown et al., 2005).  678 

Dissipative use. The current nature of the LCA fails to address the major issue of the dissipative use generated by 679 

human activities at the use or end-of-life phase of the product system. The environmental impact of plastic pollution 680 

in the ocean is recognized as one of the most serious issues affecting the marine environment. Marine debris mainly 681 

result from throwing product packaging into the environment, but LCA lacks models to assess the source, quantity 682 

and transport of those types of plastics. ABM could support LCA in integrating behaviour-driven dissipative uses 683 

at both the inventory and impact assessment phases.  684 

Indoor pollution. The agent-based approach has a high potential to support the impact assessment phase with 685 

dynamic behaviour-related models, and this could also be relevant to estimate the human health impacts in indoor 686 

environments across the product systems life cycle. As highlighted by (Hellweg et al., 2009), health effects from 687 

indoor pollution at the manufacturing and the use phase should be included in LCA.  688 

Engineered nanomaterials have been increasingly used in many sectors, although they present potential effects to 689 

the environment and human health (Vance et al., 2015). The behaviour of engineered nanomaterials in indoor 690 

environments is concentration dependent and driven by dynamic mechanisms that existing steady-state LCIA 691 

models fail to describe. To evaluate the human health hazards posed by engineered nanomaterials at the 692 

manufacturing phase, Tsang et al. (2017) have developed a dynamic model as well as exposure scenarios to model 693 

different situations of nanomaterial handling in a workplace. To go one step further, these LCIA exposure models 694 
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could be refined according to users’ archetypes based on behaviour-related aspects (working time, preventive 695 

measures in the production phase) generated by an ABM.  696 

Besides, the life cycle of products used indoors only consider the emissions occurring during production and 697 

disposal phases and neglect the use phase impacts from exposure to chemicals that have been released in the indoor 698 

environment. The indoor residence time of these chemicals is significantly affected by physical removals from 699 

occupants activities such as windows opening. Occupants are exposed to indoor chemicals through near-field 700 

exposure pathways that are highly behaviour-driven, and physiological-dependent (Fantke et al., 2016) and these 701 

human intakes affect significantly the indoor fate of chemicals (Zhang, Arnot and Wania, 2014). Therefore, there 702 

is a need to address the use phase impact of chemicals from products used indoors with a substantial focus on the 703 

heterogeneity in human profiles and activities which are key drivers for quantifying the dynamic of air emissions 704 

and the resulting human exposure in indoor environments. The agent-based approach would be particularly well 705 

suited to capture the variability of lifestyle-induce indoor exposure.  706 

 707 

4.3. Methodological issues: how can the coupling be done? 708 

The way that both tools are coupled depends on the expected consistency and flexibility. Integrating LCA with 709 

ABM leads to a consistent, unique model, but models are highly dependent, since the ABM architecture is embedded 710 

in the LCA data structure. The main drawback lies in the difficulty in developing an integrated model, since the 711 

modeler must have expertise in both computer science and environmental engineering fields. However, integration 712 

is highly recommended when ABM is embedded in LCA, i.e., when ABM does not represent the whole system but 713 

models a process (already existing or not in LCA) that interacts with other LCA processes within this system. Thus, 714 

ABM and LCA integration is relevant when the dynamic effects in a matrix system of the LCA computational 715 

structure is partly modelled by ABM, i.e., when ABM is used to model environmental and/or production system 716 

(impacting the characterization and the technosphere matrix, respectively, according to Figure 2).  717 
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The hybrid analysis offers a good trade-off between both aspects (consistency and flexibility), since models 718 

exchange data externally through parameters while keeping them independent from one another; thus, the 719 

parameters can be adjusted without impacting the other parameters. Hybrid uses are therefore particularly well-720 

suited for studies in which the ABM generates stand-alone processes. Quantities that will be further used in LCA 721 

computation are the only data exchange that is required between the two models. This is the case when agents are 722 

intended to represent the consumption system (only influencing the final demand vector, as shown in Figure 2). 723 

The degree of coupling profoundly influences the computational time, as well as the programming time. Hard-724 

coupling is meaningful when studies aim to integrate feedback on the environmental impact of the product in the 725 

adaptive decision-making process or the self-learning mechanism of some agents. (Baustert and Benetto, 2017) 726 

emphasize the promising approach of hard-coupling (called LCA/ABM symbiosis by the authors) for feedback 727 

information of the agents to integrate a green consciousness. Agents can adjust their behaviour at each time step 728 

based on informed choices.  729 

Tight-coupling is useful when ABM outputs should be assessed at each time step. This is the case when modelling 730 

non-linear relationships (for example, a dose-response of the human body) or by using data changing over time 731 

instead of average one (for example, the electricity mix). When none of these conditions is required, ABM outputs 732 

can be aggregated at the end of the simulation, and soft-coupling is preferred. Indeed, it limits the computational 733 

time, since data are exchanged only once.   734 

The following guidance diagram (Figure 7) aims to accompany the LCA practitioner through the coupling 735 

possibilities for both the type (hybrid analysis or models integration) and the degree (soft, tight or hard) as defined 736 

in the previous section. Other combinations than the ones presented are possible; we hereby present what we 737 

consider to be an adequate solution regarding the relevance and flexibility). 738 

The type of coupling depends on the system the LCA practitioner aims at enhancing with ABM (i.e., the production, 739 

consumption or environmental system). The degree of coupling depends on the modelling choices that the LCA 740 

practitioner makes according to several yes/no options that arise all along the LCA phases. If a feedback loop is 741 
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necessary, then hard-coupling should be set up. If not, tight-coupling can be put into place if the LCI data are time-742 

dependent or if the LCIA relationships are nonlinear.  743 

 744 

Figure 7 Guidance diagram for possible options of ABM and LCA coupling at different LCA phases, as proposed by ISO 14040 and 14044, 745 

concerning the type of coupling as defined Table 2 and the degree of coupling as defined Figure 1 746 

4.4. Limitations and perspectives of the coupling methodology 747 

Based on the theoretical and methodological issues, we have identified several questions associated with the 748 

coupling of ABM and LCA. In this section, we discuss the most relevant limitations in the coupling methodology 749 

and implementation and how they could be further addressed. 750 

Coupling ABM with LCA requires expertise in both scientific domains. If integration of LCA in ABM is preferred, 751 

the LCA practitioner may know that the LCA computational structure defines agents as part of the life cycle 752 

inventory. The hybrid approach requires both models to be linked so that the exchanged parameters can flow from 753 
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one model to another. However, as highlighted by (Marvuglia et al., 2016), ABM suffers from the difficulties that 754 

are linked to its implementation. LCA current tools have limited functionalities to support interaction with other 755 

software, thus resulting in difficulties in directly calling these latter from a simulator.  756 

The reviewed papers propose a rather simplistic decision process, and several papers highlight that their utility in 757 

guiding any real policymaking is constrained by their simplicity (Susie Ruqun Wu et al., 2017). Implementation 758 

difficulties of ABMs could be avoided due to existing dedicated platforms, such as Netlogo (Gaudou et al., 2017), 759 

Anylogic (Anylogic 4.0, User Manual), and GAMA (Grignard et al., 2013), which already integrates complex 760 

cognitive architectures, such as the Belief-Desire-Intention (Caillou et al., 2017). Such platforms ease model 761 

development with an explicit and natural representation of human behaviour, which allows non-computer scientists 762 

to be included in the modelling process. Thus, decision-makers can be involved from the early modelling stages 763 

and, as underlined by (Marvuglia et al., 2018), the transparency of these participatory modelling processes favour 764 

the acceptance of the final decision by different stakeholders. Besides, these platforms are continuously upgraded, 765 

and one could imagine that they could later automatically integrate the LCA data, as some already do with GIS for 766 

example (e.g., GAMA).  767 

The use of GIS data, as well as national databases as inputs to the agent-based model, generates highly context-768 

specific LCA studies. This enables to account for the specificities of different countries and further identify targeted 769 

policies; however, this also prevents the results from extrapolating to other situations or from using the model in 770 

another context.  771 

ABM brings other sources of uncertainties that must be accounted for to present reliable LCA results and increase 772 

the acceptance of ABM in the LCA field. The additional data collected to implement the ABM increases the 773 

uncertainty. On the other hand, one of the main sources of uncertainty in LCA comes from the choices and lack of 774 

knowledge of the studied system (LCA in theory and practice , 2018). The use of ABMs, allowing to evaluate 775 

different scenarios and account for the local variabilities of the foreground system, could be a solution to deal with 776 

this systemic uncertainty. For example, the prospective development of emerging technologies and the consumers’ 777 

behaviour during the use phase of drinks, for example, are associated with many uncertainties; and Miller et al. 778 
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(2012) and Mashhadi and Behdad (2017) respectively tackle these uncertainties during the inventory phase with an 779 

ABM. Besides, (Wang et al., 2014) argue that uncertainties in the decision process in traditional LCA studies could 780 

be addressed with ABM. Nevertheless, the evaluation of uncertainties in ABM and LCA coupled models is 781 

challenging. To tackle this issue, (Baustert and Benetto, 2017) propose a framework to spot the uncertainty sources 782 

and choose the appropriate propagation methods. In their review, they identify four sources of uncertainties that 783 

could apply to ABM & LCA coupled models: parameters uncertainty, uncertainty due to choices, structural 784 

uncertainty and systemic variability. The different uncertainty propagation methods commonly used in both fields 785 

are compared against three criteria: applicability, accuracy and computational effort. Another important issue which 786 

hinders the acceptance of ABM in the field of LCA comes from the difficulties in validating the model, either 787 

because of the complexity and time-consuming aspects of the cognitive models that are involved or because of the 788 

lack of experimental data to compare them with.  789 

Finally, in this article, we have only dealt with articles using ABM to enhance LCA. However, LCA could be used 790 

to enhance ABM (Marvuglia et al. refer to it as LCA-enhanced ABM). Several articles of the corpus use 791 

environmental awareness as an attribute that is defined rather simplistically (yes/no, low/medium/high). LCA could 792 

be used to refine the environmental awareness attribute in the decision-making process of ABMs, or define the costs 793 

related to environmental improvement in competition models to compare the market share of eco-friendly products 794 

between manufacturers (Liu, Anderson and Cruz, 2012). Furthermore, LCA gives new insight into the 795 

comprehension of complex systems, while the implementation of an ABM requires a massive amount of parameters 796 

to set up the environment in which agents evolve. Davis, Nikolíc and Dijkema (2009) were the first to highlight that 797 

the use of LCA databases can ease the creation of a complex technological environment in ABM. An interesting 798 

research approach would be to transform every unit process from an existing LCA database into agents and to assign 799 

them interactions with each other according to the flows that are quantified in the database. The environmental 800 

impact that is associated with the response of the production system to the consumption demand could be assessed 801 

this way.  802 

 803 
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5. Conclusions  804 

This paper reviews how and why agent-based modelling has been used to support life cycle assessment in the 805 

literature. It shows that to date, ABM has been mostly used to model usage patterns and their associated behavioural 806 

heterogeneity. ABM has also shown its worth in supporting system modelling for consequential LCA by forecasting 807 

the interaction between the production and consumption system (i.e., the reaction of the supply chain to the market 808 

demand according to product adoption rate for example). Finally, ABM has been used for its exploring capacity to 809 

simulate various scenarios.  810 

We identified the methodological challenges that can be tackled by ABM at each LCA phase: (1) to draw up proper 811 

scenario in the goal&scope phase, (2) to collect foreground inventory data at any stage of the product system life 812 

cycle, (3) to address temporal and/or spatial dynamics that are driven by behavioural factors at the impact 813 

assessment phase, and (4) to support data interpretation and communication thanks to graphic representations. 814 

This review establishes guidance on how to conduct the coupling according to the methodological choices that are 815 

made by the LCA practitioner. The type of coupling mostly depends on the computational part of the LCA that is 816 

modelled by ABM, i.e., which dimension the LCA practitioner wants to enhance by using ABM. The degree of 817 

coupling depends on three evaluation options: the time-dependency of data, the linearity of the relationships at stake 818 

and the presence of a feedback loop.  819 

 This theoretical analysis paves the way for future empirical case studies, and it would be valuable to confront the 820 

consistency of the theoretical interpretation with the results. Finally, we identified future research opportunities for 821 

the integration of ABM with LCA, which include regionalization, dissipative use and indoor air pollution. 822 

 823 
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