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Abstract: We describe a simple model of a contact line under purely
diffusive evaporation and complete wetting condition taking into ac-
count the divergent nature of evaporative flux near the contact line
as proposed by Deegan et al. [1] by using electrostatic analogy. We
show the existence of a precursor film at the edge of the liquid and
generalize Tanner’s law accounting for evaporative effects. We ap-
ply this model to the problem of evaporation of a liquid droplet and
partly recover the dynamics of spreading and retraction found in ex-
periments [2].
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1 Introduction

Wetting phenomena have been extensively studied theoretically and experimen-
tally (see Refs. [3–6] for reviews and discussions) and much attention has been
drawn recently to the case of the dynamics of liquid droplet under evaporation.
This problem is motivated by applications (for instance coating [7,8], deposition
near contact line [9], heat exchangers [10, 11]) and by fundamental issues [12].
The local description of a moving contact line is a complicated problem for it
involves a singularity of the viscous stresses due to no-slip boundary condition
of the liquid on the substrate. The second phenomenon involved in the prob-
lem of evaporating contact line is the way the liquid evaporates. Two regimes
shall be distinguished: on the first hand, evaporation of the liquid into its own
vapor [11,13,14]; on the second hand, purely diffusive evaporation of the liquid
in an inert surrounding gas [2, 15–17].

In this paper, we restrict ourself to the isothermal problem of a liquid evap-
orating into inert gas like air. Evaporation is then driven by diffusion. We
describe in details a model of contact line under evaporation and total wetting
conditions [15] taking into account van der Waals interactions and the divergent
nature of evaporation near the border of the liquid as evidenced by Deegan et
al. [1, 9] (section 2). We then apply this result to study the dynamics of an
evaporating droplet in complete wetting situation (section 3) and compare the
results with typical scaling laws of the dynamics of retraction of small droplets
found in experiments [2, 18].

2 Low constant speed model

In this section, we study the shape of the free surface of an evaporating liquid
corner moving at a constant velocity V along a totally wetting solid surface,
both under the effect of a fluid motion U(x, z) linked to pressure gradient, and
of an evaporation flux J(x). The edge of the liquid is set at x = 0 (see Fig.
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1(Left) for notations). We suppose we have translation invariance along the
transverse direction.
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Figure 1: (Left) Notations for the model studied in Section 2 of a liquid moving
at constant speed V on a totally wetting substrate and undergoing evaporation.
(Right) Notations used in Section 3: R is the droplet radius and θ the apparent
contact angle of the spherical cap.

Standard lubrication theory in the limit of low Reynolds numbers and small
interface slope leads to a mean local velocity of the liquid given by: 〈U〉 =
1
h

∫ h

0
U(x, z) dz = −h2

3η
∂P
∂x where h(x) is the liquid thickness, η the liquid viscos-

ity, and the pressure term is

P = Pa + Pc + Pd (1)

with Pa, the ambient pressure, Pc the capillary pressure and Pd, the disjoining
pressure (we assume van der Waals interactions) playing a role at the edge of the
liquid. Both latter pressures read respectively Pc = −γhxx and Pd = + A

6πh3 ; γ
is the surface tension and A < 0 the Hamaker constant. In this problem, gravity
will be neglected. For a liquid moving at constant velocity V , mass conservation
imposes that the local thickness h(x− V t) satisfies

∂th+ ∂x(h〈U〉) + J(x) = 0, (2)

which leads to:
∂

∂x
[h (〈U〉 − V )] + J(x) = 0 (3)

to be combined with the previous expression of 〈U〉.
One now needs an approximation of the local evaporation rate distribution

J(x). For a sessile axisymmetric drop, Deegan [9] assumed an analogy between
vapor diffusion in air and an electrostatic problem, the vapor concentration near
the liquid surface being supposed to saturate at the mass concentration in air
csat. In analogy with this work, we assume that very near the edge of the liquid
J(x) diverges as J(x) = J0x

−(π/2−θ)/(π−θ) where x is the distance to the edge.
This yields for very small values of angle θ:

J(x) ≈ J0/
√
x (4)

in which J0 is given by

J0 =
Dg√
λ

csat − c∞

ρ
(5)

where Dg is the diffusion constant of evaporated liquid in air, and ρ its mass
density. The length scale λ can be either the thickness of a diffusive boundary
layer, or the typical curvature of the contact line. For instance, for the sessile
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drops of in-plane radius R with low contact angle considered in Ref. [9] one
has exactly λ = 2R. For volatile alkanes or silicon oil drops of millimetric size
evaporating in ambient air one typically has J0 ≈ 10−9 m

3

2 · s−1. Note that we
are here treating the limit of a liquid evaporating in the presence of air. It is
also important to note that the activity of a thin film of liquid is approximately
that of the bulk up to the last molecular layer of liquid. Thus the divergence
of the evaporative flux holds at the border of the precursor film. In our purely
diffusive model, Marangoni and thermal gradients will be neglected.

After integrating once Eq. (3) with respect to x, one gets: (< U > −V )h =
−2J0

√
x that can be written as:

V =
2J0
h

√
x+

γ

3η
h2hxxx +

A
6πη

hx

h2
(6)

The local thickness of liquid h(x), is supposed to vanish or at least reach mi-
croscopic values at the tip of the liquid placed by hypothesis at the location
x = 0.

The physical meaning of this equation is that the displacement of a liquid at
velocity V involves migration under capillary and disjunction pressure gradient
together with evaporation itself. This adds new terms to the ordinary differential
equation governing h(x), considered years ago by Voinov [19], that reads in this
specific case:

hxxx =
3Ca

h2
− 6ηJ0

γ

√
x

h3
− A

2πγ

hx

h4
(7)

where Ca = ηV /γ is the capillary number built upon the velocity V (Ca > 0 in
the receding case and Ca < 0 in the advancing case).

In the framework of this model, it is convenient to set a typical horizontal
length scale x0 and a typical height h0 that respectively read

x0 =

( |A|
12πJ0η

)
2

3

, h0 = x
1

2

0 ×
( |A|
2πγ

)
1

4

=
|A| 7

12

(2π)
7

12 (6ηJ0)
1

3 γ
1

4

(8)

Setting J0 = 10−9m3/2 · s−1, A = 10−19 kg ·m2 · s−2, η = 10−3 kg ·m−1 · s−1

yields typical lengths x0 ≃ 2µm and h0 ≃ 30 nm. These values have the same
order of magnitude as those found experimentally by Kavehpour et al. [20] in
the advancing regime without evaporation for Ca = 3 × 10−4. The horizontal
length x0 corresponds in our model to the typical length of the precursor film
at zero velocity.

Eq. (7) is third order in derivatives and the uniqueness of its solutions re-
quires the specification of three boundary conditions at the border of the domain
ε ≤ x ≤ Lmax. At large scale Lmax, we impose zero curvature (hxx(Lmax) = 0).
Two other boundary conditions are needed.

A solution vanishing at x = 0 that connects to a macroscopic liquid corner
hmac(x) = θmac · x can be found at leading order in the neighborhood of zero as

h(x) = α
√
x with α4 =

2

3π

|A|
γ

(9)

This expression yields a crossover length

ℓcross ∼
1

θ2mac

(

2

3π

|A|
γ

)
1

2

. (10)
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This class of solution has been found as well by Poulard et al. [2].
We can search for a second class of solutions that start flat (h′(0) = 0) at

the origin at the given height h(0) = h0. We can then obtain analytically, the
expression of a precursor film the expression of which can be written as

H(X) = 1 + ν1X
2 + cX3 − 8

105
X

7

2 +
1

12
ν1X

4 + o(X4) (11)

with constants c depending on the capillary number and ν1 insuring zero cur-
vature at large scale. This precursor film connects to a large scale liquid corner
profile, the expression of which is

Θ3(X) = Θ3
m − 9Ca

(

x0

h0

)3

ln
X

λ
+

4

Θm
(
1

λ
1

2

− 1

X
1

2

) + β(X − λ) (12)

where X = x/x0, H = h(x)/h0,Θ(X) = H ′(X) with Θm ≃ 1. Constant λ ≃ 3.4
is the matching coordinate between precursor and liquid corner. Constant β
ensures the adequate boundary condition Hxx(Lmax) = ΘX(Lmax) = 0 (for
calculations details, see Refs. [7,15]). Both analytical solutions (9) and (12) can
be confirmed numerically using shooting methods. They are plotted in Fig. 2.
The agreement is very good [15].

From Eq. (12), one can deduce the following expression for the apparent
contact angle θapp

θ3app = θ3m − 9Ca

(

log
Lmacro

ℓmicro
+ 1

)

+
24J0η

γθm

1√
ℓmicro

(13)

or in a more simplified way

θ3app = (1 +
4√
3.4

) θ3m − 9Ca

(

log
Lmacro

ℓmicro
+ 1

)

(14)

where ℓmicro ≃ 3.4x0 is a microscopic length corresponding to the length of the
precursor film, Lmacro a macroscopic length and

θ3m =

(

h0

x0

)3

=

(

2π

γ3|A|

)
1

4

6ηJ0 (15)

corresponding to the apparent contact angle at zero velocity [21]. This law
generalizes Tanner’s law in the presence of evaporation.

In a study of an evaporating meniscus in complete wetting situation where
the coupling between the liquid and the gas is explicitly accounted instead of
considering Deegan’s electrostatic analogy as we do in this paper, Doumenc et

al. derived a similar scaling for the apparent contact angle at zero velocity [17].
In this study, the authors splitted the liquid domain into different parts depend-
ing on the magnitude of the different physical effects involved in the problem
(evaporation, capillary forces together with van der Waals forces). If we compare
our model to theirs, our precursor film corresponds to the region they identify
as the precursor film. The zero coordinate that we set as being the edge of the
liquid corresponds to the beginning of their adsorbed film region. Note that the
thickness we choose is one order of magnitude larger than theirs.
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Figure 2: Numerical solutions of Eq. (7) in non dimensional units. (Top)
Assuming vanishing height at origin: plot of H(X) (Ca = +10−7). Two distinct
scalings are observed: linear in the macroscopic domain and parabolic in the
microscopic one (see straight lines). (Bottom) Assuming vanishing curvature
at large distance (here Xmax = 104) and flat film at the edge of liquid: plot of
angle Θ versus X (non dimensional unit). Inset: Corresponding H(X) profile
(receding case, same parameter): a macroscopic wedge is connected to a flat
precursor film.

3 Evaporating sessile droplet

In this section, we will generalize our previous model and apply it to the study of
an evaporating sessile droplet in total wetting condition. As already stated, the
expression of the evaporative flux of a spherical cap of liquid of radius R, in the
limit of small contact angle θ (see Fig. 1(Right)), reads J(r) = j0/

√
R2 − r2

with the following correspondence with previous section: x = R − r, J0 =
j0/

√
2R and Ca = −ηṘ/γ. Substituting directly these expressions into Eqs.

(14) and (15) yields the following wetting law without any adjustable parameters
(but a logarithmic contribution)

θ3 =
A√
R

+BṘ (16)
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with

A = 6 (
π

2
)

1

4

(

1 +
4√
3.4

)

ηj0

γ
3

4 |A| 14
and B = 9

η

γ

(

log
Lmacro

ℓmicro
+ 1

)

.

(17)
This is the same kind of expression as that found by Poulard et al. using other
arguments [2], hence we recover the same scaling for apparent angle at zero

velocity (that is at maximum radius) θmax ∼ R
−1/6
max while experimental power

law is θmax ∼ R−0.45
max .

A small sessile droplet can be considered as a spherical cap. At small contact
angle θ, its volume V reads V = π

4R
3θ. Under diffusive evaporation, mass

conservation reads dV
dt = −

∫ 2π

0

∫ R

0 J(r)r dr dϕ = −2πj0R. Combining these
two results yields the following relation

3RθṘ+R2θ̇ = −8j0. (18)

With Eqs. (16) and (18) we then obtain a closed set of ordinary differential
equations of variables R and θ that entirely governs the dynamics of evaporation
of a droplet. We will now study this set of equations numerically.

Given the initial conditions Ri = R|t=0 and θi = θ|t=0, we can see using Eq.

(16) that, whether (θi)
3
√
Ri is larger or smaller than constant A, the droplet

starts spreading then retracts, or directly starts with retraction. Experiments
show that, if tf is the time at which the droplet vanishes, the radius of a droplet
of completely wetting alkane on mica follows the scaling R(t) ∼ (tf − t)α with
exponent α close to 1/2 [2,18]. During the retraction sequence, the contact angle
θ has little variations up to late times before total evaporation [2]. Suppose that
R(t) scales like (tf−t)β, Eq. (16) implies that β = 2/3 if θ is to remain bounded,
which is not the case as we will see in the following.

We have performed numerical simulations of Eqs. (16) and (18) using same
physical quantities as in experiments. Results are shown in Fig. 3. The dynam-
ics of spreading followed by the retraction sequence of the droplet is recovered
with correct orders of magnitude compared with experiments. As in the ex-
periments [2], we recover the steep decrease of the contact angle during the
spreading and the beginning of the retraction. Radius vanishes at a given final
time tf . In contrast, contact angle θ vanishes at time t′f < tf (the spherical cap
then becomes flat) and eventually becomes negative which is physically incor-
rect. This vanishing angle singularity is intrinsic to our wetting law model but
experiments by Cazabat at al. also display sharp decrease of the contact angle
at late times.

If one looks carefully at the decay of the radius R(τ) with time τ = tf − t
(see Fig. 3 (Top)), one can see that the radius follows two regimes with distinct
exponents. At the beginning of the retraction, R(τ) ∼ τα with α ≃ 0.33, then,
once the values of θ becomes negative, we have R(τ) ∼ τβ with β ≃ 0.11. These
scalings are in disagreement with the experiments where exponents are close
to 1/2. Nevertheless, by choosing a shifted reference final time Tf (see inset of
Fig. 3 (Bottom)), one can recover an exponent α′ ≃ 0.45 in agreement with
experiments, as did Poulard et al. in their numerical simulations as well [2].

Note that our wetting law (16) contains a logarithmic term depending on
a macroscopic scale Lmacro, at which contact angle is defined. Replacing the
latter length scale by a fraction of radius R modifies the wetting law and shall
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Figure 3: (Top) Plot versus time tf − t of the radius R of an evaporating
totally wetting droplet together with the angle θ. Time tf corresponds to the
time of vanishing radius whereas time t′f if the time at which angle θ gets to
zero. (Bottom) Plot of the dynamics of radius R in log-log scale. Depending on
the choice of reference final time Tf , one obtains a different scaling and recovers
that found in experiments.

delay the singularity (the smaller Lmacro ∼ R, the smaller constant B). We
performed numerical simulations of the dynamics using this modified wetting
law and found no major changes in the dynamics: the final time of singularity
is slightly shifted but the scaling exponents remain the same (data not shown).

The wetting law described by Eq. 14 only catches the early dynamics of
spreading and retraction of the droplet. Indeed this analytical model was de-
rived in the hypothesis of translational invariance along transverse direction,
constant speed limit and zero curvature at large scale which is not realistic for a
spherical cap. Moreover, small capillary numbers were assumed whereas speed
of retraction diverges at late times. In this context, the apparent contact angle
in our model cannot remain finite. Yet simple, our model shall be modified in
order to properly solve the whole dynamics of evaporation.

As a comparison, note that Eggers et al. [16] numerically studied the evapo-
ration of a sessile droplet by coupling the hydrodynamics of the droplet with a
self-consistent description of evaporation from the drop and the precursor film
in a similar approach as Doumenc et al. [17]. They recovered the scaling of
the late time radius R ∼ (t0 − t)α with α ≃ 1/2. However, no wetting law for
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apparent contact angle was proposed. In some cases, dominant drying from the
middle of the drop is even found at late times, the drops loses its spherical shape
and is depleted at the center. This phenomenon is reminiscent of the negative
values of apparent contact angle found in our model.

4 Conclusion

In this paper, we have described a model for completely wetting liquid under
diffusive evaporation taking into account the divergent nature of the evapora-
tive flux. A wetting law relating the apparent contact angle to the speed of the
contact line was proposed and tentatively used to numerically study the dynam-
ics of an evaporating droplet in total wetting conditions. This model correctly
describes the early stages of spreading and retraction of a droplet. However, at
late times, the contact angle vanishes before the radius vanishes itself, yielding
non-physical scalings. Usual dynamical scalings found in experiments can only
be recovered by extrapolating a final reference time.
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