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Abstract

Phytoplankton blooms are an important, widespread phenomenon in open oceans, coastal

waters and freshwaters, supporting food webs and essential ecosystem services. Blooms

are even more important in exploited coastal waters for maintaining high resource produc-

tion. However, the environmental factors driving blooms in shallow productive coastal

waters are still unclear, making it difficult to assess how environmental fluctuations influence

bloom phenology and productivity. To gain insights into bloom phenology, Chl a fluores-

cence and meteorological and hydrological parameters were monitored at high-frequency

(15 min) and nutrient concentrations and phytoplankton abundance and diversity, were

monitored weekly in a typical Mediterranean shallow coastal system (Thau Lagoon). This

study was carried out from winter to late spring in two successive years with different cli-

matic conditions: 2014/2015 was typical, but the winter of 2015/2016 was the warmest on

record. Rising water temperature was the main driver of phytoplankton blooms. However,

blooms were sometimes correlated with winds and sometimes correlated with salinity, sug-

gesting nutrients were supplied by water transport via winds, saltier seawater intake, rain

and water flow events. This finding indicates the joint role of these factors in determining the

success of phytoplankton blooms. Furthermore, interannual variability showed that winter

water temperature was higher in 2016 than in 2015, resulting in lower phytoplankton bio-

mass accumulation in the following spring. Moreover, the phytoplankton abundances and

diversity also changed: cyanobacteria (< 1 μm), picoeukaryotes (< 1 μm) and nanoeukar-

yotes (3–6 μm) increased to the detriment of larger phytoplankton such as diatoms. Water

temperature is a key factor affecting phytoplankton bloom dynamics in shallow productive

coastal waters and could become crucial with future global warming by modifying bloom

phenology and changing phytoplankton community structure, in turn affecting the entire

food web and ecosystem services.
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Introduction

Ocean phytoplankton generate almost half of global primary production [1], making it one

of the supporting pillars of marine ecosystems, controlling both diversity and functioning.

Phytoplankton in temperate and subpolar regions are characterized by spring blooms, a sea-

sonal phenomenon with rapid phytoplankton biomass accumulation due to a high net phy-

toplankton growth rate [2]. This peak biomass of primary producers in the spring supports

the marine food web through carbon transfer to higher trophic levels from zooplankton to

fishes. Spring phytoplankton blooms are a common phenomenon in all aquatic systems,

from open oceans to coastal waters and from transient waters to inland freshwaters. The

magnitude, timing and duration of blooms are as diverse as the ecosystems in which they

occur.

For more than half a century, several paradigms and theories have been developed to

explain the general mechanism of bloom initiation; however from the earliest critical depth

hypothesis of Sverdrup in 1953 [3] they have been, and still are, subject to scientific debate.

The critical depth hypothesis is a bottom-up model based on abiotic drivers and proposes

that a bloom starts when there is sufficient solar radiation and the surface mixing layer

becomes shallower. This change induces stratification [4–7], allowing phytoplankton to

remain in the surface layer, such that their growth rates overcome their losses (i.e., mostly by

zooplankton grazing). This hypothesis has been questioned several times, as observations

have shown that blooms can occur in the absence of stratification. The mixing layer is

defined by density, and since the critical depth hypothesis was put forth, other bottom-up

mixing models have been proposed to explain bloom onset. These models are based on

actively mixed layers that may occur in turbulence windows (the critical turbulence hypothe-

sis [8]) or under deep convection shutdown (the convection shutdown hypothesis [7]),

allowing the phytoplankton to remain in the surface layer long enough to benefit from favor-

able light conditions and start a bloom.

Recently, the disturbance recovery hypothesis of Behrenfeld et al. [9,10] formalized a new

theory based on biotic drivers (top-down control) that had already been suggested several

years before [11,12]. This biotic driver theory proposes that a disturbance factor, such as envi-

ronmental forcing, disrupts zooplankton-phytoplankton predator-prey interactions, allowing

the prey (phytoplankton) to grow rapidly, creating a bloom. Later, when the predator-prey

interactions recover, the bloom ends as the losses by predation overwhelm the gains in prey

biomass. This general ecological theory was proposed for the North Atlantic, where the estab-

lishment of deep-water mixing provides the ecosystem disturbance that disrupts predator-prey

interactions. In other systems, different sources of disturbance can play this role, such as mon-

soon forcing in the Arabian Sea [13] or upwelling in coastal systems [11]. However, the role

played by bottom-up and top-down drivers in phytoplankton spring blooms is still a source of

debate [14,15].

Coastal waters and lakes are highly dynamic and productive ecosystems where phytoplank-

ton blooms are common [16,17]. Coastal phytoplankton blooms are a major ecological event

providing a substantial part of the annual primary production and energy transfer supporting

the entire marine food web. These highly productive periods in coastal systems occur mainly

in spring and autumn and are believed to be influenced by several factors such as increasing

irradiance, anticyclones and nutrient inputs [18–20]. However, clear links between general

theories and field observations in coastal waters have not yet been established. In particular,

the factors that might disturb predator-prey relationships in these shallow systems have been

neglected. Coastal waters, including estuaries, sea grass beds, coral reefs and continental

shelves, cover only 6% of the world’s surface but provide between 22% and 43% of the
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estimated value of the world’s ecosystem services [21]. In addition to hosting major biochemi-

cal and ecological processes, such as nutrient cycling and biological control, and providing

habitats and refugia, coastal waters are of great economic importance for local populations

because they provide food, raw materials and recreational activities [22]. Coastal waters can be

strongly affected by climatic events due to their higher reactivity and lower inertia compared

to open-ocean waters, making them highly sensitive to environmental forcing fluctuations

[23].

Nevertheless, in open oceans, increasing water temperature due to global warming changes

the start and end timing of the blooms, and reduces their amplitude, affecting the survival and

hatching time of commercially important species [24,25]. Furthermore, experimental studies

have shown that warmer conditions change the composition and trophic interactions of plank-

ton communities, propagating the effects to higher trophic levels [26–28]. However, the impact

of environmental forcing factors on spring bloom phenology in shallow waters is not well stud-

ied, making it difficult to assess the future of coastal water ecosystems in a global climate

change context.

The objective of the present study was to investigate spring bloom dynamics and the associ-

ated phytoplankton diversity in a typical shallow coastal system to identify the environmental

factors triggering the blooms. The study combined high-frequency monitoring of chlorophyll

a (Chl a) fluorescence as a proxy of phytoplankton biomass, high-frequency monitoring of

environmental parameters in the air and water and weekly water sampling of the phytoplank-

ton community and nutrients in the water. The study was undertaken during winter and

spring of 2015 and 2016 in Thau Lagoon, a typical productive coastal site on the edge of the

Mediterranean Sea.

Materials and methods

Study site

The study site, Thau Lagoon (Fig 1), was chosen as it is a productive coastal site of economic

interest (principally oyster farms representing 10% of French production) characterized by

large seasonal temperature variation (from approximately 4 to 30˚C throughout the year [29]).

Thau Lagoon is located on the French coast of the northwestern Mediterranean Sea (43˚24’00”

N, 3˚36’00” E). It is a shallow lagoon with a mean depth of 4 m, a maximum depth of 10 m

(excluding deep depressions) and an area of 75 km2 and is connected to the Mediterranean

Sea by three channels. Thau Lagoon is a mesotrophic lagoon with a turnover rate of 2% (50

days), mostly through the Sète channel [30]. Recent studies have suggested that the lagoon is a

phosphorus- and nitrogen-limited system [31]. The water column was monitored at a high fre-

quency (at mid-depth, approximately 1.5 m below the surface) using several sensors at a fixed

station (Coastal Mediterranean Thau Lagoon Observatory 43˚24’53” N, 3˚41’16” E) [32] near

the Mediterranean platform for Marine Ecosystem Experimental Research (MEDIMEER), in

the city of Sète. This fixed station was also used for weekly water sampling. The depth of the

station is 2.5–3 m, and the station is situated less than 50 m from the entrance of the major

channel where the water residence time is the lowest (20 days) [30]; therefore, the station is

mostly influenced by seawater intake rather than inland freshwater. Meteorological data were

also collected at a high frequency on the MEDIMEER pontoon less than 5 m from the location

of high-frequency water monitoring. The study was carried out from January 7 to May 19,

2015, and from December 1, 2015, to July 6, 2016. Hereafter, these two periods are referred to

as 2015 and 2016 for simplicity. No specific permissions were required for the sampling site

for the present research activities as the study site is not protected. No endangered or protected

species were involved in this work.
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High-frequency monitoring of the meteorological data, Chl a fluorescence

and physical and chemical properties of the water

For the meteorological parameters (Table 1), air temperature, wind speed and direction,

photosynthetically active radiation (PAR, 400–700 nm) and ultraviolet radiation A and B

(UVA, 320–400 nm, and UVB, 280–320 nm) were recorded at a high frequency (every 15 min)

using a Professional Weather Station (METPAK PRO, Gill instruments) with PAR, UVA and

UVB sensors (Skye Instruments).

For the water properties at mid-depth (Table 1), the water temperature and salinity were

recorded with an NKE STPS sensor (Table 1). The dissolved O2 concentration and saturation

were recorded using an optical sensor (AADI Oxygen Optode, Aanderaa). The turbidity and

the in situ Chl a fluorescence were recorded with an ECO FLNTU fluorometer (Wetlabs).

Water properties were recorded at the same frequency and over the same periods as the meteo-

rological parameters, except for water temperature and conductivity in 2016, where the moni-

toring started ten days later (from December 11, 2015, to July 6, 2016). All sensors were

calibrated before deployment. The temperature sensor was calibrated from 5 to 25˚C in 5˚C

steps using a reference thermometer and thermostatic bath. The salinity sensor was calibrated

at 25˚C using seawater standards of 10, 30, 35 and 38 (Linearity Pack, OSIL, UK). The 0 stan-

dard was made with ultrapure water (MilliQ). The oxygen sensor was calibrated at 0% and

100% O2 saturation using the Winkler method [33] for measuring the O2 concentration. The

Chl a fluorescence sensor was calibrated using several types of phytoplankton cultures at vari-

ous concentrations, with the concentrations measured by spectrofluorometry. All sensors were

Fig 1. Location of the sampling station.

https://doi.org/10.1371/journal.pone.0214933.g001
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cleaned weekly to prevent biofouling, and measurement drift was checked after each measure-

ment campaign using the same methods as those used to calibrate each sensor.

Weekly monitoring of nutrients, Chl a concentrations, phytoplankton

abundance and diversity

In addition to high-frequency monitoring, water samples were collected weekly to determine

nutrient and Chl a concentrations and phytoplankton abundances and diversity (Table 1).

Samples were collected using a Niskin bottle 1 m below the surface from January 15 to May 12,

2015, and from January 12 to July 6, 2016, between 09:00 and 10:00 am.

To determine the nutrient concentrations, 50 mL seawater subsamples were taken using

acid-precleaned polycarbonate bottles and then filtered through Gelman 0.45 μm filters that

had been prewashed three times. Then, 13 mL of the filtrate was stored at -20˚C until analysis.

Nitrate (NO3), nitrite (NO2), phosphate (PO4) and silicate (Si(OH)4) concentrations were

measured using an automated colorimeter (Seal Analytical) following standard nutrient analy-

sis methods [34].

To determine Chl a concentrations, 1 L subsamples were taken, filtered through glass fiber

filters (GF/F Whatman: 0.25 mm, nominal pore size: 0.7 μm), and stored at -80˚C until analy-

sis. Pigment concentrations, including Chl a concentrations, were measured by high perfor-

mance liquid chromatography (HPLC, Waters) following the extraction protocol described in

Vidussi et al. (2011) [34] and the HPLC method described by Zapata et al. (2000) [35].

Phytoplankton (< 6 μm) abundances were estimated by flow cytometry (FACSCalibur,

Becton Dickinson), and phytoplankton (6–200 μm) abundances and diversity, by optical

Table 1. Type and acquisition characteristics of the studied variables.

Type of data Acquisition

frequency

Variable Type of instrument

Meteorological High frequency:

every 15 min

Air temperature Sensor: Professional Weather Station (METPAK PRO, Gill instruments)

Wind speed

Wind direction

PAR (400–700 nm) Light sensors: Skye Instruments

UVA (320–400 nm)

UVB (280–320 nm)

Hydrological High frequency:

every 15 min

Water temperature Sensors: NKE STPS

Salinity

O2 concentration Sensors: AADI Oxygen Optode (Anderaa)

O2 saturation

Turbidity Sensor: ECO FLNTU fluorometer (Wetlabs)

Biological High frequency:

every 15 min

Chl a fluorescence Sensor: ECO FLNTU fluorometer (Wetlabs)

Biological Weekly Chl a concentrations Water sample collected by a Niskin bottle and analyzed using high performance

liquid chromatography (Waters)

Phytoplankton abundances (cell diameter:

< 6 μm)

Water sample collected by a Niskin bottle and analyzed using flow cytometry

(FACSCalibur, Becton Dickinson)

Phytoplankton abundances (cell diameter:

6–200 μm)

Water sample collected by a Niskin bottle and analyzed using optical microscopy

(Olympus IX-70)

Chemical Weekly Nutrient concentrations (NO3, NO2, PO4

and Si(OH)4)

Water sample collected by a Niskin bottle and analyzed using an automated

colorimeter (Seal Analytical)

PAR: photosynthetically active radiation; UVA and UVB: ultraviolet A and B, respectively; O2: dioxygen; Chl a: chlorophyll a; NO3: nitrate; NO2: nitrite; PO4: phosphate

and Si(OH)4: silicate.

https://doi.org/10.1371/journal.pone.0214933.t001
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microscopy (Olympus IX-70). For the phytoplankton (< 6 μm) abundances, duplicate 1.8 mL

subsamples were taken, fixed with glutaraldehyde following the protocol described in Marie

et al. (2001) [36] and then stored at -80˚C until analysis. Cyanobacteria (< 1 μm), picoeukar-

yotes (< 3 μm) and nanoeukaryotes (in this study, 3–6 μm cell diameter; see Results) abun-

dances were estimated using the flow cytometry method described by Pecqueur et al. (2011)

[37]. Phytoplankton (6–200 μm) abundance and diversity were estimated by microscopy.

Duplicate 125 mL subsamples were taken, fixed in 8% formaldehyde and then settled for 24 h

in an Utermöhl chamber. Cells of each identified phytoplankton taxon were counted under an

inverted microscope. Phytoplankton were identified to the lowest possible taxonomic level

(species or genus) using standard keys for phytoplankton taxonomy [38]. Carbon biomasses of

phytoplankton analyzed by flow cytometry were estimated using the conversion factors of 0.21

pgC cell-1 for cyanobacteria and 0.22 pgC μm-3 for picoeukaryotes and nanoeukaryotes [39].

For microscopic observations, phytoplankton biovolumes were estimated for the most com-

mon taxa using the best shape [40], and carbon biomasses were then calculated using the con-

version factors [41,42].

Chl a fluorescence correction and bloom identification

Chl a fluorescence is commonly used as a proxy for phytoplankton biomass. Chl a fluores-

cence data from the fluorometer were corrected using the weekly measurements of Chl a con-

centrations by HPLC to provide coherent high-frequency Chl a fluorescence data [43].

Bloom periods were identified by estimating the net phytoplankton growth rate (Eq 1)

using the biomass gain or loss [5,9]. The high-frequency Chl a fluorescence data over 24 h

were used to calculate the daily mean phytoplankton biomass (Ct). The daily net growth rate

(rt) was the difference in phytoplankton biomass between two consecutive days. A negative

value indicates a biomass loss, whereas a positive r value indicates a biomass gain.

rtþ1 ¼ Ctþ1 � Ct ð1Þ

A bloom was identified as a period 1) that started with at least 2 consecutive days of positive

growth rates and 2) where the sum of net growth rates over at least 5 consecutive days was pos-

itive. The end of the bloom was the day before 5 consecutive days with negative growth. A

1-day peak of net growth was considered a “sporadic event” and not a bloom. When close suc-

cessions of 5-day blooms were identified, they were coalesced into “bloom periods” followed

by “post-bloom periods” to identify key events. The means of the daily net growth rates were

calculated for bloom periods to compare the mean growth rates among the different periods.

Data analysis

Some of the operations required to maintain the quality of the high-frequency sampling, such

as sensor recalibration and cleaning or drift correction, occasionally induced single or multiple

missing measurements or outliers, which were removed from the data set. In our study, the

fraction of missing values for each variable was generally low, i.e., between 0.06% (water tem-

perature, 2015) and 23.48% (O2 saturation, 2016). Only the UVA data in 2016 had a higher

rejection rate (61.96%), due to a technical problem. Consequently, UVA data were not

included in the data analysis for 2016 but were included in the 2015 analysis. All the other

missing high-frequency data were estimated using a moving average in a 480 data point win-

dow (5 days) [44].

The daily mean of the high-frequency data except for PAR, UVA and UVB was calculated

to remove daily variation patterns; for the three exceptions, the daily cumulative value was cal-

culated. The whole data set (i.e., daily values of biological, meteorological and hydrological
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data) was kept as a separate set for each study period. The two resulting data sets were divided

into separate data sets for each period as bloom periods (winter, early spring and spring), post-

bloom periods (post-winter bloom and post-early spring bloom) and a winter latency period.

The winter latency period was defined as a period where the daily net growth rate was low,

with a mean daily net growth rate close to zero. A post-spring bloom in 2015 and a pre-winter

bloom in 2016 were identified. However, these blooms were too short to perform a strong sta-

tistical test; therefore, we did not keep them in the analysis of identified periods. These separa-

tions between different periods therefore provided therefore 5 data sets for 2015 and 4 data

sets for 2016. Then, autoregressive and moving average (ARMA) models were used for each

time series in each data set to identify ARMA processes [45] before first-differencing the fitted

series to remove stationarity [46]. Principal component analysis (PCA) was used on the fitted

and first-differenced time series in the 2015 and 2016 data sets to identify the relationships

between environmental variables graphically. Then, Spearman’s rank correlation tests were

applied pairwise to highlight significant correlations in the 2015 and 2016 data sets. As Chl a
may exhibit a delayed response to environmental forcing factors, time-lag correlation tests

were performed on the 11 different data sets. Time-lag correlations are based on simple Spear-

man’s rank correlation tests between two variables repeated with time-shifted data to identify

the delayed influence of a variable on the Chl a dynamics.

The weekly data (nutrient concentrations and phytoplankton abundances and diversity)

were kept as a separate data set for each study period but were not divided into identified peri-

ods because the quantity of data would have been insufficient (19 data points for 2015 and 23

data points for 2016). For the high-frequency data, ARMA models were used for each time

series in each data set when needed. Paired Wilcoxon signed-rank tests were used to compare

the mean values of the phytoplankton abundances and diversity and the nutrient concentra-

tions between the 2015 and 2016 data sets. Sample dates were paired by week number (ISO

8601). For example, the sampling dates of January 8, 2015, and January 12, 2016, both corre-

sponding to the 2nd week of the year, were paired. To identify correlations between weekly

data and high-frequency environmental data, daily means of the environmental data for the

sampling days were added to the weekly data sets before using ARMA models and first-

differencing each time series. Spearman’s rank correlation tests were then performed pairwise

on the 2015 and 2016 data sets.

Results

Bloom identification based on Chl a fluorescence data

Three blooms were identified in 2015, while only two blooms were identified in 2016 (Fig 2A

and 2B). Blooms were defined as consecutive days of biomass gain (positive values of daily net

growth rates), while post-bloom periods were consecutive days of biomass loss (negative val-

ues; Fig 2C and 2D, respectively). There were winter blooms in January for 2015 and one

month earlier, in December 2015, for 2016 (Fig 2A and 2B). The 2016 winter bloom was stron-

ger, with Chl a concentrations reaching 3.64 μg L-1 in 2016 and 2.77 μg L-1 in 2015 (Fig 2A and

2B) and maximum daily net growth rates of 0.54 μg L-1 in 2016 and 0.49 μg L-1 in 2015 (Fig 2C

and 2D). The mean daily net growth rate was 0.055 μg L-1 d-1 in 2016, almost double the

0.031 μg L-1 d-1 in 2015. However, it should be noted that the 2015 winter bloom had already

started at the beginning of the monitoring. The winter blooms in 2015 and 2016 were followed

by post-bloom periods, with the Chl a concentration falling to 0.54 μg L-1 in 2015 and 0.62 μg

L-1 in 2016. In 2015, there was an early spring bloom between February 11 and March 11 that

was weaker than the preceding winter bloom (maximum Chl a: 2.01 μg L-1 and mean daily net

growth rate: 0.023 μg L-1 d-1). This early spring bloom was followed by a post-bloom period,
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with the Chl a concentration falling to 0.54 μg L-1. In 2016, however, instead of an early spring

bloom, there was a winter latency period from January 6 to March 11. During this period, the

daily net growth rates were low (Fig 2D), with a mean daily net growth rate close to zero.

Then, the main spring blooms occurred from April 9 to May 14 (36 days) in 2015 and from

March 24 to July 05 (104 days) in 2016. Notably, the monitoring periods had been planned to

end on May 19, 2015, and July 6, 2016; therefore the spring blooms might have continued after

these dates. In 2016, the spring bloom showed a maximum Chl a concentration of 3.16 μg L-1,

which was higher than the value of 2.93 μg L-1 recorded in 2015, but with a mean daily net

growth rate (0.010 μg L-1) d-1 lower than that (0.022 μg L-1) d-1 recorded in 2015.

High-frequency meteorological and hydrological data

The PAR was lowest when the winter blooms occurred in both 2015 and 2016 (Fig 2A and 2B).

Then, the PAR slowly increased to reach its maximum of 2688 μmol m2 s-1 on April 19, 2015,

and 2865 μmol m2 s-1 on June 18, 2016.

Two dominant winds were identified. Dominance of wind was based on the frequency of

occurrence of wind directions over the two studied periods (Fig 3C and 3D). The first wind

was from the northwest (49.5% of the data between 270˚ and 359˚), and the second was from

the southeast (21% of the data between 90˚ and 180˚). There were three windy periods with

northwesterly winds (median of 302˚) in 2015 (Fig 3E) during the post-winter bloom period

(max = 16.6 m s-1), the early spring bloom period (max = 17.4 m s-1) and the post-early spring

bloom period (max = 16.5 m s-1). The wind speed was lower during the winter bloom, the

onset of the early spring bloom and the spring bloom (means of 3.3, 1.9 and 3.1 m s-1,

respectively). In 2016 (Fig 3F), the wind speeds were low during the winter bloom (mean = 1.8

Fig 2. Chlorophyll a fluorescence and daily net growth rates. In situ Chl a fluorescence in 2015 (A) and 2016 (B) and daily net growth rates in 2015

(C) and 2016 (D), indicating daily biomass gains (positive values) and losses (negative values). The bloom periods have a green background, and the

post-bloom periods and winter latency period have a white background.

https://doi.org/10.1371/journal.pone.0214933.g002
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m s-1); otherwise, the wind was erratic, with numerous short windy events exhibiting mean

wind speed values higher than those observed during the winter bloom.

During the 2015 study period, the mean air temperature dropped from 19.9˚C in early Jan-

uary to 1.1˚C in early February (Fig 3G). It then increased until the end of the study period,

Fig 3. Environmental variables. Main environmental variables for 2015 (left) and 2016 (right). A to H are the meteorological data: PAR (A and B),

wind direction (C and D), wind speed (E and F) and air temperature (G and H); and I to N are the hydrological variables: water temperature (I and J),

salinity (K and L) and turbidity (M and N). The background colors for the various periods are the same as in Fig 2.

https://doi.org/10.1371/journal.pone.0214933.g003
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with a maximum of 25.7˚C on May 14. During the 2016 study period, the air temperature was

stable from early December to mid-March (mean: 10.9±2.7˚C, minimum: 2.9˚C and maxi-

mum: 18.5˚C) with a quick chill in early January (Fig 3H). Then the air temperature increased

from mid-March until the end of the study period, with a maximum of 30.8˚C on July 7.

The water temperature was less variable than the air temperature (Fig 3I and 3J). In 2015,

the water temperature was stable during January (8.5±0.6˚C), decreased to a minimum of

4.0˚C on February 6 and then increased to 21.7˚C on May 14. In 2016, the water temperature

was 11.8±0.5˚C from December 12 to January 11, followed by a quick chill to a minimum of

7.0˚C on January 17. Then, the water temperature was stable until March 10 (9.9±0.8˚C), fol-

lowed by an increase until the end of the study period, reaching a maximum of 25.1˚C on July

6.

The salinity was also different between 2015 and 2016 (Fig 3K and 3L). In 2015, the salinity

was 34.95±0.56, while in 2016, it was higher (37.34±0.95) and more variable and exhibited a

large decrease during April, reaching a minimum value of 33.85 on April 18.

The turbidity (Fig 3M and 3N) was 1.69±0.87 NTU in 2015, which was lower than the 2.25

±1.06 NTU observed in 2016, with sporadic peaks reaching 13.15 NTU in 2015 and 14.19

NTU in 2016.

Relationships between Chl a fluorescence, meteorological and hydrological

data

The general relationships between Chl a, meteorological and hydrological data in 2015 and

2016 based on PCA are shown in Fig 4A and 4B. For both data sets, there was a group on the

second axis, comprising the wind conditions (speed and direction) and turbidity. Spearman’s

rank correlations were strong between wind speed and wind direction for both data sets (2015:

ρ = 0.38, p-value < 0.001; 2016: ρ = 0.48, p-value < 0.001). However, the turbidity was corre-

lated with the wind conditions in 2015 (speed: ρ = 0.41, p-value < 0.001; direction: ρ = 0.19, p-

value < 0.05) but not in 2016. Another group, on the first PCA axis of both data sets, com-

prised the light parameters, i.e., PAR, UVA (only in 2015) and UVB, and oxygen concentration

and saturation. Spearman’s rank correlations were significant between light conditions and

oxygen (2015: all p-values < 0.01; 2016: all p-values < 0.001). Chl a fluorescence was opposed

to both these groups in both 2015 and 2016, with significant negative correlations with the

wind conditions (all p-values < 0.05) and the light conditions (all p-values < 0.05). The PCA

for both data sets also showed a positive correlation between water temperature and air tem-

perature (2015: ρ = 0.36, p-value < 0.001; 2016: ρ = 0.29, p-value < 0.001). The water tempera-

ture was positively correlated with Chl a fluorescence in 2015 (ρ = 0.25, p-value< 0.01) but

not in 2016.

Time-lag correlations between high-frequency Chl a fluorescence,

meteorological and hydrological data

As Chl a fluorescence may have exhibited a delayed response to environmental forcing factors,

the time series were tested for time-lag correlations (Table 2). Chl a fluorescence was positively

correlated with the water temperature (0- and 5-day lags, strong p-values < 0.01) as well as

salinity (1- and 3-day lags, p-values < 0.05) in both the 2015 and 2016 data sets. As found

using PCA, Chl a fluorescence was negatively correlated with the light conditions (PAR, UVA

and UVB), with a 0-day lags in both 2015 and 2016. However, there was a positive correlation

between Chl a fluorescence and light conditions with a 1-day lag, but only in 2015. There were

negative correlations between Chl a fluorescence and wind conditions (speed and direction)

with a lag of 0 to 2 days in both 2015 and 2016 (p-values < 0.05).
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For the separate periods (bloom, post-bloom and winter latency periods), Chl a fluores-

cence was positively correlated with water temperature, with a lag of from 0 to 5 days during

four of the five bloom periods (p-values from < 0.05 to< 0.001). Chl a fluorescence was nega-

tively correlated with the wind conditions (speed and/or direction), with a range of lags

between 0 and 4 days for four blooms (p-values from< 0.05 to< 0.001). Salinity was positively

correlated with Chl a fluorescence during the early spring bloom in 2015 (p-value < 0.001)

and negatively correlated with Chl a fluorescence during the winter bloom in 2016 (p-

value < 0.001). Chl a fluorescence was negatively correlated with light conditions for 3 blooms

with 0-day lags (p-values from < 0.05 to< 0.001), while for the spring bloom in 2015, they

were positively correlated with a 1-day lag (p-value< 0.05). There was little correlation during

the post-bloom periods. Chl a fluorescence was negatively correlated with PAR and UVA dur-

ing the post-winter bloom in 2015 (5-day lags, p-value < 0.05) as well as with the wind speed

in for 2016 (0-day lag, p-value < 0.05) and was positively correlated with the wind direction

(5-day lags, p-value < 0.05) during the post-early spring bloom period in 2015.

Nutrient dynamics

During the winter bloom and the post-winter bloom periods, the PO4, NO2 and NO3 concen-

trations were on average 3 to 9 times lower in 2015 (0.01±0.00, 0.07±0.03 and 0.72±0.24 μmol

L-1, respectively) (Fig 5A, 5E and 5G) than in 2016 (0.09±0.05, 0.20±0.05 and 2.26±0.63 μmol

L-1, respectively) (Fig 5B, 5F and 5H). The Si(OH)4 concentration (Fig 5C and 5D) in 2015

(8.67±2.05 μmol L-1) was, however, twice that in 2016 (3.86±0.57 μmol L-1) over the same

period. In 2015, the Si(OH)4 concentrations then gradually decreased until the end of the early

spring bloom, reaching a mean of 2.14±0.29 μmol L-1 in March.

Fig 4. Principal component analysis (PCA) of environmental variables. PCA of Chl a, meteorological and hydrological data for the 2015 data set (A)

and 2016 data set (B). PCA allows the variables to be projected in multidimensional space to highlight the relationships between them. Here, only two

dimensions are represented as they explain the environmental dynamic well. The arrows represent the variables. When arrows are far from the center

and close to each other, they are positively correlated, whereas when they are symmetrically opposed, they are negatively correlated. If the arrows are

orthogonal, they are not correlated. Finally, when the variables are close to the center, they are not well projected in the dimensions represented;

consequently, it is hard to conclude that a relationship occurs between these variables. In this last case, to highlight masked links, we coupled the PCA

with pairwise Spearman’s rank correlations as described in the Material and methods.

https://doi.org/10.1371/journal.pone.0214933.g004
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In 2015, from the early spring bloom to the end of the spring bloom, the PO4, NO2 and

NO3 concentrations remained at the same levels as in the winter, even though there were

peaks in the PO4 (0.08 μmol L-1) and NO3 (6.01 μmol L-1) concentrations on March 12. In

2016, over the same period, the PO4, NO2 and NO3 concentrations fluctuated more than

in 2015, but the mean values were similar (0.04±0.06, 0.04±0.02 and 1.24±0.83 μmol L-1,

respectively). The mean Si(OH)4 concentration during the spring bloom in 2015 (1.62

±1.00 μmol L-1) was approximately half that in 2016 (2.74±0.80 μmol L-1).

Wilcoxon signed-rank tests showed that the PO4 and NO3 concentrations were significantly

higher in 2016 than in 2015 (p-values < 0.05). The N:P ratios (Redfield ratios) were between

11 and 94 (mean: 45±25) in 2015 and between 6 and 124 (mean: 46±35) in 2016. Spearman’s

rank correlations showed significant correlations between Chl a and nutrient concentrations

in neither 2015 nor 2016.

Dynamics of phytoplankton abundances

Three groups of picophytoplankton, namely, cyanobacteria (< 1 μm diameter), picoeukaryotes

(< 1 μm diameter) and picoeukaryotes (1–3 μm diameter), and one group of nanoeukaryotes

(3–6 μm diameter) were enumerated by flow cytometry (Fig 6A to 6D). The abundances of

picoeukaryotes (< 1 μm and 1–3 μm) and nanoeukaryotes were similar between 2015 and

2016: the total abundance of these three groups was 2.14±1.30 × 104 cells mL-1 in 2015 and

2.84±1.41 × 104 cells mL-1 in 2016. However, the mean abundance of picoeukaryotes and

Table 2. Time-lag correlations between meteorological and hydrological data.

Year Period PAR UVA UVB Wind

speed

Wind

direction

Air

temperature

Water

temperature

Salinity Turbidity

2015 Whole - - (0;0.27)

+ + +

(1;0.31)

- - (0;0.24)

+ + +

(1;0.32)

- (0;0.22)

+ + +

(1;0.31)

- (0;0.17)

- - (1;0.28)

- - (0;0.24) + + (0;0.25) + (3;0.18)

Winter Bloom + + (0;0.71)

- - (4;0.79)

Post-Winter Bloom - (5;0.56) - (5;0.55) + (3;0.54)

Early Spring Bloom - (0;0.40) - (0;0.39) + (5;0.43) + + + (0;0.60) + + +

(0;0.56)

- (4;0.43)

- (0;0.38)

Post-Early Spring

Bloom

+ (5;054)

Spring Bloom - (0;0.41)

+ (1;0.39)

- - (0;0.43)

+ (1;0.41)

- (0;0.41)

+ (1;0.39)

+ (2;0.40) - - (0;0.53) + (2;0.35)

2016 Whole - - - (0;0.38) - - - (0;0.36) - (0;0.17)

- (2;0.30)

- - (0;0.30)

- (2;0.15)

+ + (5;0.17) + (1;0.15)

++ (3;0.21)

+ (0;0.16)

Winter Bloom - - (0;0.57) + (0;0.54) - - - (0;0.72)

Post-Winter Bloom - (0;0.86)

Winter Latency

Period

- (0;0.25)

+ + (3;0.32)

- - (0;0.31)

+ + (3;0.34)

- (0;0.24)

+ + (4;0.32)

+ + (3;0.32) + +

(0;0.35)

- - (1;0.32)

Spring Bloom - - - (0;0.44) - - - (0;0.44) - - -

(0;0.35)

+ (5;0.21)

- - (0;0.27)

- (1;0.22)

+ (5;0.23)

- (0;0.25)

- (2;0.20)

+ (5;0.21)

Spearman’s rank time-lag correlations between Chl a fluorescence and environmental variables in 2015 and 2016. Whole: tests performed on the whole data set for a

study period. Only significant results are shown. The signs + and—represent significant positive and negative correlations, respectively; a single sign represents p-

value < 0.05; ++ or—represents p-value < 0.01; and +++ or—represents p-value < 0.001. The time lag (in days) and coefficient of the correlations are in parentheses.

For example, +(2;0.40) represents a positive correlation with a p-value < 0.05, 2-day lag and coefficient of 0.40. The bloom periods have a green background.

https://doi.org/10.1371/journal.pone.0214933.t002
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nanoeukaryotes during the spring bloom in 2016 (6.53±1.38 × 104 cells mL-1) was more than

twice that in 2015 (2.84±1.73 × 104 cells mL-1). One of the main differences between 2015 and

2016 was that during winter and early spring, the cyanobacteria (< 1 μm) abundance in 2016

(2.19±2.19 × 103 cells mL-1) was almost 10 times higher than that in 2015 (3.02±2.55 × 102

cells mL-1). Then, during the spring bloom, cyanobacteria abundances increased to a maxi-

mum on May 06, 2015 (6.01 × 104 cells mL-1), and a lower maximum on May 10, 2016

(2.70 × 104 cells mL-1). The Wilcoxon signed-rank test showed that the mean abundances of

cyanobacteria (p-value < 0.01), picoeukaryotes (< 1 μm) (p-value< 0.01) and nanoeukaryotes

Fig 5. Nutrient concentrations. Nutrient concentrations in 2015 (left) and 2016 (right) for PO4 (A and B), Si(OH)4 (C and D), NO2 (E and F), and

NO3 (G and H). The background colors for the various periods are the same as in Fig 2.

https://doi.org/10.1371/journal.pone.0214933.g005
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(p-value< 0.05) were significantly higher in 2016 than in 2015, but there was no significant

difference for picoeukaryotes (1–3 μm). Tests for correlations between the biological variables

(picophytoplankton and nanophytoplankton abundances and Chl a fluorescence) and the

environmental variables (wind conditions, light conditions, salinity, air and water tempera-

ture, oxygen, turbidity and nutrients) showed a negative correlation of picoeukaryotes (1–

3 μm) with PO4 concentrations in 2015 (ρ = -0.54, p-value < 0.05) and with NO3 in 2016 (ρ =

-0.50, p-value< 0.05). Picoeukaryotes (< 1 μm) were negatively correlated with wind condi-

tions in 2015 (wind speed: ρ = -0.57, p-value < 0.05; wind direction: ρ = -0.50, p-value < 0.05).

The patterns of community composition and total abundances of phytoplankton (6–

200 μm) were different between 2015 and 2016 (Fig 6E to 6J). The total abundances of phyto-

plankton (6–200 μm) were quite similar during winter and early spring in 2015 (266±81 cells

mL-1) and 2016 (212±91 cells mL-1). During the spring bloom, however, the total phytoplank-

ton (6–200 μm) abundances in 2015 were almost three times those in 2016 (982±433 cells mL-

1 and 378±123 cells mL-1, respectively). This result was confirmed by the Wilcoxon signed-

rank test showing that total phytoplankton abundances (6–200 μm) were significantly higher

in 2015 than in 2016 (p-value< 0.01). The maximum abundances of phytoplankton (6–

200 μm) were reached on May 6, 2015, and June 8, 2016 (1470 cells mL-1 and 923 cells mL-1,

respectively). In 2015, during the winter and early spring blooms and their post-bloom

Fig 6. Phytoplankton abundances and diversity. Analyzed by flow cytometry for 2015 (A and C) and 2016 (B and D). Dominant taxa observed by

microscopy for 2015 (E, G and I) and 2016 (F, H and J). The background colors for the various periods are the same as in Fig 2.

https://doi.org/10.1371/journal.pone.0214933.g006
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periods, the phytoplankton community was dominated numerically by Plagioselmis prolonga,

a cryptophyte with a diameter of 8–12 μm (41±13%), and chlorophytes (~6 μm) (38.0±8.5%).

In addition, chrysophyceae (~6 μm) were also abundant during the early spring bloom (18

±2%). In 2016, P. prolonga dominated the phytoplankton (6–200 μm) community during the

winter latency period and the first 11 weeks of the spring bloom (48±11%), and chlorophytes

(~6 μm) were also abundant but less abundant than in 2015 (29±9%). Pseudo-nitzschia sp.

(25–50 μm) and Chaetoceros spp. (10–50 μm), which are large, colonial diatoms, successively

dominated the phytoplankton (6–200 μm) community during the spring bloom in early April

2015 (72±13%) and the second part of the spring bloom from mid-May 2016 (65±23%) until

the end of the study periods. Chaetoceros spp. abundances were significantly lower in 2015

than in 2016 (Wilcoxon signed-rank test, p-value < 0.05), but Pseudo-nitzschia sp. abundances

were not.

The phytoplankton community was dominated numerically by picoeukaryotes (< 1 μm),

accounting for 51 to 95%, depending on the period (Table 3). However, in terms of carbon bio-

mass, picoeukaryotes were never dominant. In 2015, the carbon biomass was dominated by P.

prolonga in the winter and early spring blooms and by Chaetoceros spp. in the spring bloom.

Nanoeukaryotes contributed most of the carbon biomass throughout 2016.

Correlations between weekly measurements of phytoplankton abundances (6–200 μm), Chl

a fluorescence and environmental variables were calculated separately for 2015 and 2016. In

2015, P. prolonga abundance (ρ = -0.60, p-value< 0.05) was negatively correlated with PO4

concentration, and Chaetoceros spp. abundance was positively correlated with Chl a fluores-

cence (ρ = 0.67, p-value< 0.01). In 2016, Pseudo-nitzschia sp. abundance was positively corre-

lated with Chl a fluorescence (ρ = 0.55, p-value< 0.05), and Chaetoceros sp. abundance was

positively correlated with NO3 concentration (ρ = 0.58, p-value< 0.01).

Discussion

Role of water temperature and winter cooling in phytoplankton blooms

Based on the time-lag correlations, water temperature played a significant role in determining

Chl a dynamics, especially the onset of blooms (Table 2). This is the first time that rising water

temperature has been identified as the main factor triggering phytoplankton blooms in an

aquatic ecosystem (ocean, coastal zone or lake). This relationship was true for all the main

blooms observed in 2015 and 2016, and the strength, number of occurrences and consistent

positive sign of the correlations between water temperature and Chl a fluorescence suggested

that water temperature was the main driver. Other parameters such as wind conditions and

salinity were correlated with blooms (see below) but the number of occurrence and non-con-

sistent sign of the correlations suggested that they were not the main drivers. The water tem-

perature was positively correlated with Chl a fluorescence with 0 to 5 days of lag suggesting

that the biomass accumulation represented by increasing Chl a fluorescence was driven by the

increase in water temperature over the 5 previous days. Furthermore, every bloom onset corre-

sponded to a period of increase in water temperature, while such correspondence was not

detected for other parameters.

The effect of temperature on phytoplankton physiology and metabolic processes is well

known. First, under light-saturated conditions, higher temperature increases specific phyto-

plankton productivity by acting on photosynthetic carbon assimilation [47,48]. In addition,

under non-limiting nutrient conditions, an increase in water temperature increases phyto-

plankton nutrient uptake [49,50]. Moreover, phytoplankton growth rates increases with

increasing of temperature, almost doubling with each 10˚C increase in temperature (Q10 tem-

perature coefficient) [51]. Furthermore, the growth rate of phytoplankton is higher than that

Phytoplankton blooms in coastal waters

PLOS ONE | https://doi.org/10.1371/journal.pone.0214933 April 5, 2019 15 / 28

https://doi.org/10.1371/journal.pone.0214933


of herbivorous grazers at low temperatures [51,52]. Thus, an increase in water temperature,

particularly at relatively relative low in situ temperatures such as those in this study (6–14˚C),

can be more favorable for phytoplankton than for their grazers, allowing phytoplankton bio-

mass accumulation, which starts the bloom. Therefore, the initiation of phytoplankton bio-

mass accumulation can result from phytoplankton growth temporarily exceeding grazing-

induced losses as a result of increasing temperature.

In previous studies, water temperature was identified as the main driver of blooms of par-

ticular species, especially cyanobacteria [53,54]. However, the present study underlined that an

increase in water temperature triggered blooms of all phytoplankton community blooms, not

just a particular species. Furthermore, the spring blooms started at a temperature of 13.9˚C in

2015 and 11.2˚C in 2016, while the early spring bloom in 2015 began when the water tempera-

ture was 6.1˚C. This wide water temperature range for bloom initiations indicates that there is

not a threshold water temperature that triggers phytoplankton blooms; instead, blooms are ini-

tiated by an increase in water temperature.

Interannual comparison showed that winter 2015/2016 was the warmest winter recorded in

France according to Meteofrance (http://www.meteofrance.fr/climat-passe-et-futur/bilans-

climatiques/bilan-2016/hiver), which led to exceptionally high winter water temperatures. In

contrast in 2015, the winter cooling of the water was typical of this coastal site. As a result, the

Chl a dynamics in 2016 were completely different from those in 2015 (Fig 1). The absence of

an early spring bloom and the slower biomass accumulation during the 2016 spring bloom can

be explained by the difference between the meteorological conditions. The abnormally high

water temperature during the 2016 winter may have been the cause of biomass stagnation dur-

ing the winter latency period, slowing phytoplankton biomass accumulation during the spring.

The absence of significant winter cooling and the relatively mild water temperatures may have

allowed predators (e.g., ciliates and copepods) as well as filter feeders (e.g., oyster and mussels)

to remain active during this period and maintain grazing pressure on the phytoplankton

[55,56], in turn delaying the ecosystem disturbance required to start a bloom until mid-March,

when the water temperature started to rise. Therefore, winter water temperature seems to be a

crucial factor influencing the dynamics of the spring bloom in temperate shallow coastal

zones. The effect of the winter water temperature on the magnitude of the spring bloom has

already been reported [57,58], with larger spring blooms and more phytoplankton biomass

after cold winters and smaller spring blooms after mild winters in the Wadden Sea. With

Table 3. Relative contributions of the dominant phytoplankton groups to the carbon biomass and abundance.

2015 2016

Winter Bloom Post-Winter

Bloom

Early Spring

Bloom

Post-Early

Spring Bloom

Spring Bloom Winter Latency

Period

Spring Bloom

C Ab C Ab C Ab C Ab C Ab C Ab C Ab

Cyanobacteria (< 1 μm) 0.17 0.62 0.54 0.89 0.38 1.54 1.10 1.92 7.81 40.60 3.48 6.83 5.67 19.82

Picoeukaryotes (< 1 μm) 6.86 90.50 16.03 94.74 5.49 79.06 14.43 89.49 2.78 51.43 12.38 86.50 5.45 67.86

Picoeukaryotes (1–3 μm) 4.81 4.07 8.60 3.25 15.05 13.88 16.49 6.54 3.62 4.29 7.96 3.56 9.73 7.75

Nanoeukaryotes (3–6 μm) 28.52 3.01 13.44 0.64 35.26 4.06 28.87 1.43 14.26 2.11 46.23 2.59 39.87 3.97

Plagioselmis prolonga 31.99 0.92 19.02 0.24 37.41 1.17 27.93 0.38 4.50 0.18 22.43 0.34 6.77 0.18

Chlorophytes 14.68 0.81 5.61 0.14 4.63 0.28 9.11 0.23 1.58 0.12 5.91 0.17 2.69 0.14

Chaetoceros spp. 12.97 0.08 36.76 0.10 1.78 0.01 1.92 0.01 52.96 0.45 1.43 0.00 27.31 0.17

Pseudo-nitzschia sp. 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 12.48 0.82 0.17 0.00 2.50 0.11

Mean relative contribution (in percent) to the carbon biomass (CB) and numerical abundance (Ab) of the dominant phytoplankton groups during each period. Species

and period abbreviations and background colors are the same as in Table 2. The highest contribution for each period is in bold.

https://doi.org/10.1371/journal.pone.0214933.t003
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global warming, these mild winters could become more frequent [59] and may reduce phyto-

plankton biomass accumulation during spring blooms. This modification of the bloom phe-

nology might potentially change the structure of the plankton community assemblages and,

therefore, directly affect the food web. Such modification is particularly important in shallow

temperate coastal zones of economic interest as changes in bloom phenology and magnitude

may affect fish and shellfish production.

There were short (2–3 weeks) winter blooms in both 2015 and 2016. Winter blooms are

known to occur in marine ecosystems, but they are less common than spring blooms. Winter

blooms can be rare, exceptional events [60], but they may occur regularly every year, as in the

Bahia Blanca Estuary in Argentina [61] or in tropical and subtropical seas [62–64]. Winter

blooms in the coastal site of the present study were recorded once before, in December 1993

[65,66], whereas the present study documented winter blooms of a magnitude similar to that

of the spring bloom in two consecutive years. These winter blooms represent an important

part of annual primary production (daily mean net growth rates of 0.055 μg L-1 d-1 in 2015 and

0.031 μg L-1 d-1 in 2016), providing food for the whole plankton food web, and can sometimes

be the most important biomass accumulation event during the year [61]. Winter blooms in

shallow coastal zones are generally triggered by a combination of forcing factors such as high

nutrient concentrations due to autumn rains, an increase in light penetration into the water

column due to a reduction in suspended matter or sediments and low grazing pressure due to

low water temperature or tidal conditions [61]. In this study, water temperature was associated

with the increase in Chl a fluorescence during the winter bloom of 2016. For 2015, however,

the winter bloom had already been triggered when the monitoring started, and the link

between water temperature and Chl a for this winter bloom could not be established as the

time-lag correlations could not be determined. Additional observations will be necessary to

establish whether an annual winter bloom has become a rule, which might indicate that an

ecological shift has occurred in this system. The winter bloom may also have been the result of

particular climatic/environmental conditions that occurred during the study period. In fact,

even though the impact of the El Niño-Southern Oscillation (ENSO) on the Mediterranean cli-

mate is still a source of discussion [67], 2015 was a strong El Niño year with an ENSO Oceanic

Niño Index (ONI) value of approximately 2, making it less important than that in 1997–1998

but more than that in 1991–1992 [68], which could potentially explain the exceptional 2015–

2016 winter climatic conditions.

Role of other environmental forcing factors in phytoplankton blooms

Nutrient input from runoff, rain events or sediment resuspension is widely considered a key

factor triggering blooms in coastal zones. However, there was no direct link between nutrient

concentrations and Chl a fluorescence in this study, suggesting that nutrients are not the sole

driver of Chl a dynamics and that a more complex functioning drives blooms in this mesotro-

phic system (Fig 5). The absence of a link with nutrient concentrations could be explained by

the meteorological conditions of this shallow coastal system, where the wind causes a fairly

constant nutrient supply from sediment resuspension, which can maintain the necessary

nutrient level for phytoplankton growth but does not produce inputs large enough to reveal

show a direct link. The wind conditions (speed and direction) were correlated with Chl a fluo-

rescence with 0- to 5-day lags throughout the study periods and during three bloom periods

each (Table 2). These correlations may indicate that high-speed winds, generally from the

northwest (the tramontane, Figs 3 and 4), reduce biomass accumulation, while low-speed

winds, generally from the east and southeast increase biomass accumulation. Millet and Cecchi

(1992) [69] already reported this relationship between wind conditions and Chl a dynamics in
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this shallow coastal lagoon. They suggested that a wind speed of 4 m s-1 was optimal for balanc-

ing the beneficial effect of vertical turbulent diffusion and the detrimental influence of hori-

zontal advection dispersion. In our study, wind speed was significantly correlated with

turbidity, which was probably caused by sediment resuspension (in particular, peaks of wind

speed coincided with those of turbidity, Fig 3), as has already been reported for shallow coastal

zones [65,70,71]. This sediment resuspension, creating a fairly constant nutrient input to the

water column, may have maintained phytoplankton production and biomass. With weekly

nutrient sampling, the role of nutrient inputs in bloom dynamics may be masked because phy-

toplankton communities respond quickly to nutrient inputs [72]. The use of high-sensitivity in
situ nutrient sensors with high acquisition frequencies is crucial for improving our under-

standing of the effect of nutrient inputs on blooms in such dynamic systems.

There were some correlations between phytoplankton group abundances and nutrient

dynamics, especially for PO4. Furthermore, the N:P ratio was almost 3 times the Redfield ratio

of 16:1, suggesting that PO4 could be a limiting factor for some phytoplankton groups during

some periods of the year. This result is in agreement with that from a nutrient limitation study

of French Mediterranean coastal lagoons [38]. In warmer conditions, as the metabolic

demands per unit biomass increase, a higher nutrient supply is needed to support phytoplank-

ton growth. As the nutrient demand increases, stress and competition for nutrients increase

and smaller phytoplankton benefit [55,73]. However, the PO4 and NO3 concentrations were

higher in 2016, especially during the winter latency period. This result supports our hypothesis

that the predators remain active because of mild water temperatures, in turn maintaining a

high grazing pressure and leading to low levels of phytoplankton biomass and thus lower

nutrient consumption.

Chl a fluorescence and salinity were correlated two times during blooms. Increases in salin-

ity in the studied system can be due to warm and dry periods inducing high evaporation or the

inflow of saltier water from the Mediterranean Sea via winds. Otherwise, a decrease in salinity

is generally caused by freshwater inputs from rain, runoff or floods. When the salinity varia-

tions result from saltier water inflow or from freshwater inputs, nutrients may also be input

[37,74]. In this study, correlations between salinity and Chl a fluorescence were positive one

time (for the early spring bloom in 2015) and negative one time (for the winter bloom in

2016), suggesting that there was an indirect effect on phytoplankton biomass through nutrient

inputs rather than a direct physiological effect of salinity [75]. Rain and consequent runoff

events may have enriched the system with nutrients, providing a supply for phytoplankton

growth. This may have been the case for the onset of the winter bloom in 2016, where a

decrease in salinity was observed and corresponded to a 4-day rain event during the initiation

of the bloom (https://www.historique-meteo.net). This rain event may have enriched the sys-

tem with nutrients, facilitating phytoplankton growth. Additionally, saltier water inputs from

the sea due to strong winds from the southeast may have led to upwelling of nutrient-rich

waters or induced the transport and/or accumulation of phytoplankton in the lagoon by cur-

rents. These nutrient enrichments can benefit phytoplankton growth [76,77]; however, nutri-

ents can be rapidly assimilated and thus may have not been detected by our weekly nutrient

sampling. Saltier water inputs can also explain the strong positive link detected between salin-

ity and Chl a fluorescence during the early spring bloom in 2015. The beginning of this period

was characterized by winds coming from the southeast that may have input saltier and more

nutrient-rich water from the Mediterranean Sea, in turn contributing to the phytoplankton

bloom. The southeasterly wind may also have prevented the dispersion of the accumulated

phytoplankton.

One other important result was the lack of correlations between incident light parameters

(PAR, UVA and UVB irradiance) and Chl a dynamics (Table 2). This lack suggests that in the
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study system, light conditions are non-limiting for phytoplankton production, at least during

winter and spring. The study site is a shallow lagoon in which light reaches a large part of the

water column, with a mean attenuation coefficient of 0.35 m-1 [78]. In shallow temperate

coastal systems, light is often non-limiting, as the light intensities in the water column are gen-

erally higher than the saturating light intensities for phytoplankton growth [79]. The non-lim-

iting light was also supported by the occurrence of winter blooms with similar levels of Chl a
fluorescence as the spring blooms, even though the light intensities were at their lowest level

(Figs 2 and 3). Even though light did not appear to have a direct impact on Chl a fluorescence

in this study, day length may have played a role in bloom timing [80]. There were also some

negative correlations between incident light and Chl a fluorescence with zero lag, probably

due to the inhibition of phytoplankton under high light intensities, as mentioned in the litera-

ture [81,82]. Where there were positive correlations between incident light and Chl a fluores-

cence, they exhibited a time lag of 1 to 3 days. One possible explanation for this result is that

the phytoplankton responded, after a delay, to the high light conditions by first recovering

from light inhibition and then increasing their biomass once acclimatized.

Small phytoplankton species benefit and diatoms lose out in warmer

conditions

The dominant phytoplankton species in terms of carbon biomass in the 2015 winter bloom

and the early spring bloom was the cryptophyte P. prolonga (6–12 μm). Plagioselmis is a wide-

spread genus in Mediterranean coastal waters throughout the year and is sometimes consid-

ered the key primary producer in these systems [83,84]. Plagioselmis and cryptophytes in

general “high-quality food” [85], ensuring efficient energy transfer to higher trophic levels. In

2016, there was a winter latency period but no early spring bloom. Nanoeukaryotes (3–6 μm)

dominated in terms of carbon biomass during the winter latency period, with higher abun-

dances than those observed in 2015, while the P. prolonga abundance was the same as that in

2015. Nanoeukaryotes (3–6 μm) and P. prolonga dominated in terms of biomass and were

probably the main sources of available energy for grazers, at least from winter to early spring.

In both 2015 and 2016, the spring bloom was dominated in terms of abundance by chain-

forming diatoms. Chaetoceros spp. and Pseudo-nitzschia sp., dominated the large-phytoplank-

ton community (6–200 μm). Diatoms, including Chaetoceros spp. and Pseudo-nitzschia sp., are

among the most frequent bloom-forming taxa, generally being dominant during spring blooms

in coastal zones [17,75]. This is also the case at study sites where spring blooms are usually dia-

tom dominated [86,87]. This dominance is well known and is generally attributed to the fast

growth rate of diatoms due to rapid nitrogen uptake (high nitrogen affinity [88]), as confirmed

by the correlation found between Chaetoceros spp. and NO3 concentrations in 2015. This rapid

response to nitrogen makes these species more competitive than others during the spring, when

conditions are favorable (e.g., nutrients, light and temperature). These large cells with a high

fatty acid content are known to be a preferential source food for metazooplankton (e.g., cope-

pods) [89,90], which are consumed by planktivorous fish. However, although Chaetoceros spp.

dominated the biomass during the 2015 spring bloom, nanophytoplankton (3–6 μm) domi-

nated the 2016 spring bloom. In addition, picophytoplankton (< 1 μm) and nanophytoplank-

ton (3–6 μm) abundances were significantly higher in 2016 than in 2015, while Chaetoceros spp.

abundances were significantly lower. We suggest that the meteorological conditions and in par-

ticular the warm winter of 2016 were probably the causes of these differences. Several experi-

mental studies have also suggested that water warming induces a phytoplankton community

shift to picoeukaryote and nanoeukaryote dominance in both fresh and marine waters

[26,56,91]. The first hypothesis for the shift in phytoplankton composition between 2015 and
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2016 is that the relatively high water temperatures throughout winter and spring in 2016 pro-

moted small phytoplankton (e.g., picophytoplankton) rather than larger ones (e.g., diatoms)

due to the higher affinity for nutrients, gas uptake (CO2 and O2) and maximal growth rate

under warmer conditions of the former. This advantage can be explained by the temperature-

size relationship, which suggests that smaller organisms are more favored than larger ones in

warmer conditions due to faster metabolic processes [56,73]. The second hypothesis is that the

warmer winter of 2016 promoted grazers, especially larger ones (e.g., copepods). Heterotrophic

protists and metazoans are more sensitive to low temperatures than phytoplankton are, and

their grazing activity is higher under warmer conditions. The absence of cooling during the

winter may have allowed larger grazers (those that fed on the larger phytoplankton) to remain

abundant and active [27,56,92]. Thus, these larger grazers may have reduced larger phytoplank-

ton abundances and thereby made their ecological niche more accessible to smaller phytoplank-

ton. Moreover, large zooplankton feed on small protozooplankton that in turn graze on small

phytoplankton, reducing the grazing pressure on small phytoplankton.

According to the first hypothesis, the shift from large phytoplankton to picophytoplankton

and nanophytoplankton induced by warming will promote microzooplankton (mostly cili-

ates), creating an intermediate trophic link between primary producers and copepods. This

link will lead to a reduction of the energy transfer from primary production to copepods and

in turn to planktivorous fish [26,90]. Warmer water conditions, especially during the winter

period, will certainly lead to changes in the plankton community that directly affect the whole

food web and ecosystem functioning. In addition, one of the main differences between 2015

and 2016 was cyanobacterial abundance (here, mostly Synechococcus). During the winter and

the early spring before the bloom, cyanobacterial abundances in 2016 were 10 times higher

than those in 2015. Cyanobacteria are known to be strongly controlled by water temperature

(and irradiance) and are more abundant during warmer months [75,93,94]. The relatively

warm water during the winter and the early spring in 2016, without significant cooling,

allowed cyanobacteria to maintain high abundances and compete with other phytoplankton.

According to the second hypothesis, the small protozooplankton grazing on cyanobacteria

would have been controlled via grazing by larger zooplankton facilitated by warmer condi-

tions, further increasing the population of cyanobacteria. With the general spring water warm-

ing in both 2015 and 2016, cyanobacteria became more competitive. Their abundances started

to increase when the water temperature was between 12 and 14˚C. In some regions, including

coastal waters and lakes, cyanobacterial blooms can cause hypoxia and nutrient limitation and

can be both environmentally and economically damaging [95,96]. Furthermore, some cyano-

bacteria can produce toxins that are harmful to most vertebrates, including humans [97], and

will cause health concerns if their high abundances become chronic with global warming. For-

tunately, this is not the case for the cyanobacteria in our study, which were non-toxic unicellu-

lar taxa (e.g., Synechococcus).
Picoeukaryotes (< 1 μm) dominated the phytoplankton community in terms of abundance

throughout the study, followed by picoeukaryotes (1–3 μm), even though they never domi-

nated in terms of biomass (Fig 6 and Table 3). However, picoeukaryotes are known to have

high biomass-specific primary production but are also targeted by microzooplankton grazers

(e.g., ciliates), which prevents a major part of daily growth [86]. This relationship suggests that

despite the low standing stock of carbon, picoeukaryotes play an important role in transferring

carbon to higher trophic levels in coastal zones such as the system studied here [98,99]. As

picoeukaryotes became more abundant in the water warming period in 2016, including the

spring bloom, it is probable that, with global warming, they and small nanoeukaryotes (3–

6 μm), will play a greater role in transferring carbon to higher trophic levels including species

of commercial interest.
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Toward a general explanation of bloom initiation in shallow coastal waters

and general considerations

The disturbance recovery hypothesis [9,10] suggests that a disturbance factor disrupts the

predator-prey interactions that allow phytoplankton growth to outpace grazing losses and

thereby creates a bloom. Later, in response to the high phytoplankton biomass, the predator

abundance and grazing pressure increase, re-establishing the new predator-prey equilibrium

and hence ending the bloom. In the North Atlantic oceanic system, the disturbance factor dis-

rupting predator-prey interactions is the deepening of the mixing layer. In shallow, coastal,

non-oligotrophic systems such as Thau Lagoon, there is no deep mixing, and other forcing fac-

tors might be the major disturbance triggering phytoplankton blooms.

In these shallow coastal waters, previous studies reported that nutrient inputs via wind (sed-

iment resuspension or water transport) and river inputs mainly drove phytoplankton produc-

tion [69,75]. However, even if the role of these forcing factors is confirmed by the results

presented here, this study highlights for the first time that water temperature seems to be the

key factor triggering phytoplankton blooms. An increase in water temperature can stimulate

phytoplankton metabolic rates such as carbon assimilation and nutrient uptake [49,50]. As the

growth rates of phytoplankton can respond more rapidly than those of grazers [51], phyto-

plankton growth outpaces the losses by grazing, leading to a net biomass gain and starting the

bloom. The diverse sources of nutrient inputs (resuspension by winds, rain or freshwater

inputs or seawater intake) with frequent pulses contribute to favorable phytoplankton growth

conditions during periods of increasing water temperature. Rising water temperature

enhances primary production and leads to biomass accumulation and phytoplankton blooms.

In contrast, there were no clear contemporaneous correlations between the environmental

variables, including water temperature, and Chl a fluorescence during the post-bloom periods

(except with wind speed for the post-winter bloom period in 2016). This lack of correlations

suggested that the end of the blooms in these systems is regulated by biological processes, in

particular zooplankton grazing activity [12]. After favorable conditions trigger the bloom, the

increased phytoplankton biomass allows the predator abundances to increase until the grazing

rate exceeds the phytoplankton growth rate, leading to phytoplankton biomass loss during the

post-bloom period. This interaction supports the food web transfer of matter in these systems,

which are also known to be productive in terms of secondary production.

Moreover, low winter water temperatures are important for conditioning the phytoplank-

ton bloom phenology and composition. If there is no significant winter water cooling, then the

blooms are delayed and reduced in magnitude, and the dominant phytoplankton in communi-

ties shift to smaller ones (cyanobacteria (< 1 μm), picoeukaryotes (< 1 μm) and nanoeukar-

yotes (3–6 μm)). Such a shift can affect primary production and the whole food web by

reducing the energy transfer to higher trophic levels, promoting small predators over larger

ones (microbial food web rather than the classic herbivorous food web [100]). With global

warming, mild winters could become increasingly frequent and might potentially, in the mid-

term, totally change the structure of the plankton communities in the most reactive coastal

ecosystems. These changes may propagate to upper trophic levels, especially those including

fish and shellfish, and have a major impact on commercially exploited coastal systems such as

like the studied site as these productive ecosystems are an essential economic resource for local

populations. However, the mild winter effect on blooms and more generally the decadal water

temperature increases due to global warming can be different according to the system. In

some open or deep-coastal zones, phytoplankton blooms are triggered by upwelling, which

provides nutrients from deep nutrient-rich water. As global warming heats more land than it

heats ocean surface, it may strengthen alongshore winds favorable to upwelling, potentially
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increasing nutrient inputs and thus bloom events [101]. In open-ocean systems of low and

mid latitudes where blooms are not triggered by upwelling, surface temperature increases due

to global warming might intensify ocean stratification, and potentially reduce mixing and thus

the nutrient inputs from deep water that promote phytoplankton growth. This reduced nutri-

ent supply could diminish the bloom amplitude, net primary production and phytoplankton

biomass [25,28,30] and modify bloom timing [102]. However, at higher latitudes, where inci-

dent light is limiting, this stratification increase might improve light conditions favorable to

phytoplankton growth in the mixing layer and thus increase net primary production and

bloom events [103].

However, in the present study, the monitoring was conducted at only one sampling station

in Thau Lagoon. In addition, only the winter and spring of two consecutive years were moni-

tored, and 2015 was a “normal” climatic year while 2016 was an exceptional one with a particu-

larly mild winter. Moreover, it is possible that 2015–2016 was influenced by ENSO or North

Atlantic Oscillation (NAO) factors. Finally, the influence of tidal phases (spring/neap) on

blooms was not studied as in Thau Lagoon the tidal amplitude is very low and frequently

masked by climatic factors such as wind conditions [104]. However, tidal phases can influence

Chl a fluctuations and blooms in coastal waters with higher tidal amplitude [105].

The crucial challenge concerning coastal waters, one of the most productive marine sys-

tems, is how these systems will respond to long-term climatic fluctuations such as those

expected with global change. The results and conclusion of the present study are the first evi-

dence of rising water temperature as a main driver of phytoplankton blooms in coastal waters.

However, for the reasons mentioned above, to confirm our finding as a general rule, other

diverse coastal waters should be investigated with adequate monitoring systems for several

consecutive years.
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20. Tian T, Su J, Flöser G, Wiltshire K, Wirtz K. Factors controlling the onset of spring blooms in the Ger-

man Bight 2002–2005: Light, wind and stratification. Cont Shelf Res. 2011; 31: 1140–1148. https://doi.

org/10.1016/j.csr.2011.04.008

21. Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, et al. Changes in the

global value of ecosystem services. Glob Environ Change. 2014; 26: 152–158. https://doi.org/10.

1016/j.gloenvcha.2014.04.002

22. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, et al. The value of the world’s eco-

system services and natural capital. Nature. 1997; 387: 253.

23. Rabalais NN, Turner RE, Dı́az RJ, JustićD. Global change and eutrophication of coastal waters. ICES

J Mar Sci. 2009; 66: 1528–1537. https://doi.org/10.1093/icesjms/fsp047

24. Platt T, Fuentes-Yaco C, Frank KT. Marine ecology: Spring algal bloom and larval fish survival.

Nature. 2003; 423: 398–399. https://doi.org/10.1038/423398b PMID: 12761538

25. Koeller P, Fuentes-Yaco C, Platt T, Sathyendranath S, Richards A, Ouellet P, et al. Basin-scale coher-

ence in phenology of shrimps and phytoplankton in the North Atlantic Ocean. Science. 2009; 324:

791–793. https://doi.org/10.1126/science.1170987 PMID: 19423827

26. Sommer U, Lengfellner K. Climate change and the timing, magnitude, and composition of the phyto-

plankton spring bloom. Glob Change Biol. 2008; 14: 1199–1208. https://doi.org/10.1111/j.1365-2486.

2008.01571.x

27. Vidussi F, Mostajir B, Fouilland E, Le Floc’h E, Nouguier J, Roques C, et al. Effects of experimental

warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnol Ocea-

nogr. 2011; 56: 206–218. https://doi.org/10.4319/lo.2011.56.1.0206

28. Calbet A, Sazhin AF, Nejstgaard JC, Berger SA, Tait ZS, Olmos L, et al. Future Climate Scenarios for

a Coastal Productive Planktonic Food Web Resulting in Microplankton Phenology Changes and

Decreased Trophic Transfer Efficiency. PLOS ONE. 2014; 9: e94388. https://doi.org/10.1371/journal.

pone.0094388 PMID: 24721992

29. Pernet F, Malet N, Pastoureaud A, Vaquer A, Quéré C, Dubroca L. Marine diatoms sustain growth of
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