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PACS 47 55.D- – Drops and bubbles
PACS 47.55.nb – Capillary and thermocapillary flows
PACS 45.40.Cc – Rigid body and gyroscope motion

Abstract – We explore the complex dynamics of a non-coalescing drop of moderate size inside
a circular hydraulic jump of the same liquid formed on a horizontal disk. In this situation the
drop is moving along the jump and one observes two different motions: a periodic one (it orbits
at constant speed) and an irregular one involving reversals of the orbital motion. Modeling the
drop as a rigid sphere exchanging friction with liquid across a thin film of air, we rationalize both
the orbital motion and the internal rotation of the drop. This internal rotation is evidenced by
tracer visualization and exhibits an unexpected dependence upon drop size.

Usually when a drop comes into contact with the same
liquid or a solid surface it coalesces with liquid or spreads
on the solid. There are however exceptions, which could
be called situations of “non wetting”, when a very thin
layer of air or vapor remains trapped between the drop
and the substrate such as in the well known Leidenfrost
effect [1]. In these levitation situations, the disappear-
ance or reduction of friction with the substrate leads to
remarkable dynamics of fluids with (nearly) no contact:
unusual shapes (Poincaré’s shapes) of drops rolling down
a plane [2], particle-wave duality of drops bouncing on
a vibrated bath [3–5], drop motions induced by its own
harmonic modes on vibrated viscous bath [6, 7], chaotic
behavior of a droplet on a soap film [8,9], etc.

Another case of mobile drops in a “non-wetting” situa-
tion has been reported by Sreenivas et al. [10] and Pirat
et al. [11], when a drop is deposited inside a circular
hydraulic jump of the same liquid [12–15]. A thin layer
of air is entrained underneath the drop by the supercrit-
ical flow of liquid feeding the jump, that prevents coales-
cence, the drop remaining trapped at the shock front with
a strong internal rotation. In a previous letter [11] we
have shown that this “non wetting” situation was also as-
sociated with remarkable dynamics in the case of a slightly
inclined jump. In a well defined range of flow rate, a drop
of moderate size (typically close to the capillary length)

Fig. 1: A drop of radius a = 1 mm of silicone oil in non coa-
lescence state inside a horizontal hydraulic jump of the same
liquid (R = 5 mm).

undergoes a gyroscopic instability, with surprising motions
along the jump perimeter, leading to oscillations around
the lowest equilibrium position.

In the present Letter, the authors investigate experi-
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Fig. 2: Spatio-temporal diagrams obtained for a drop (a = 1.1
mm) in the periodic regime (a) (R = 4.6 mm and the recorded
time is ttot = 7.4 s) and in the irregular regime (b-c). Case (b)
(R = 5.5 mm and ttot = 28.8 s) displays a single reversal of the
sense of rotation just above the transition between periodic
and irregular motion, while case (c) (R = 5.9 mm and ttot =
22.4 s) is obtained well above this one. (d) Phase diagram for
the different kind of drop motions. (●) irregular motion, (⧫)
periodic motion and (∎) drop in contact with the jet

mentally a new situation: the drop is now deposited in-
side a jump, formed on a perfectly horizontal circular disk,
taking care to have uniform boundary conditions at large
scale (i.e. circular and horizontal geometry). Because of
the disappearance of any reference equilibrium position,
the drop is in fact always moving around the jump, with
at least two different possible states: clockwise or anti
clockwise regular orbital motion and a more complex state
in which the drop “hesitates” between these two possible
motions, leading to an irregular behavior involving com-
plex mechanisms of reversal. These reversals of motions
are reminiscent of those observed in more complex hy-
drodynamical systems [16–18], such as Rayleigh-Bénard
convection, Kolmogorov flow or the “dynamo instability”
( geomagnetic reversals). They can also be observed in a

meteorological context (quasi-biennial oscillations of high
altitude winds) [19]. These phenomena are presently
attracting a great deal of interest from a large commu-
nity ranging from hydrodynamics and non-linear physics
to geophysics and meteorology. Our system constitutes
perhaps one of the simplest experiment that one can build
to observe these reversals in fluid dynamics, and in par-
ticular without turbulence.

A model of this new situation is proposed and provides
a reasonable description of the regular orbital motion. As
this model involves an internal rotation of the drop that
has never been characterized, experiments were developed
and allowed us to observe and study this internal rota-
tion. As predicted by our model, this rotation exists, but
its dependence upon drop radius is more complex than
expected from an analogy with a rigid sphere supported
by an air film under Couette flow, we suggest that drop
shape distortions (as well as jump shape distortions) have
to be considered to get a better description.

A picture of the experiment is reproduced in Fig. 1.
A jet of silicone oil (viscosity 20 cS, surface tension 20.6
mN/m, density 0.95) issued from a vertical tube of inter-
nal diameter 3 mm, hits the center of a transparent glass
disk placed 4 cm below the outlet and of radius R0 = 15
cm. With these boundary conditions (absence of a wall
fixing the outer height of the jump), and following surface
tracers, we observed that the studied hydraulic jump was
of type I [14] (i.e., unidirectional surface flow with no
vortex able to reverse the flow at the free surface). Also
the radius of the jump R increased with the flow rate Q
while remaining very close to a power law R = αQβ , where
α = 55 ± 10 and β = 0.77 ± 0.02 (units used for Q and R
are respectively here m3.s−1 and m). In these conditions
the hydraulic jump is well known to be steady [20]. A
constant level tank supplied with liquid by a gear pump is
used in order to suppress any flow rate pulsation. Millime-
ter sized drops of the same fluid were deposited directly
inside the jump and small enough ones remained trapped
at the shock front [10].

When a drop does not touch the impinging jet (i.e. when
the distance between the jump and the jet is larger than
the drop width) one observes two different drop dynamics:
periodic and aperiodic. To characterize these phenomena,
movies of the drop were recorded from below, through
the glass plate. From the obtained frames the gray level
evolution is extracted on a circle in order to obtain spatio-
temporal diagrams giving the law θ(t) where θ is the an-
gular position of the drop. Three examples are given in
Fig. 2:

(i) Fig. 2 (a) illustrates the periodic motion: the drop or-
bits periodically along the jump with a frequency ranging
between a few tenths of Hz and a few Hz. This frequency
decreases when the jump radius increases.

(ii) Fig. 2 (c) illustrates the “irregular” motion: unlike
the periodic one this regime is not characterized by a sin-
gle orbital period. Speed variations are observed but also
reversals of the sense of rotation.
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Fig. 3: (a) Notations and structure of the problem expected in a
radial vertical plane containing the jump central axis. The drop
is rotating very fast because of the shear stress transmitted
across the air film. (b) Principle of the instability (top view).
The drop tries to keep constant its kinetic momentum, which
develops an active radial component of the rotation vector that
tends to amplify the drop displacement.

(iii) In the irregular case, just beyond the transition be-
tween periodic and irregular motion, one observes sudden
reversals of the drop rotation sense, separating sequences
of quasi-regular motion in opposite directions (see Fig. 2
(b)).

In principle, when the geometry of the experiment is
fixed (nozzle radius, impact distance,...) one only needs
two parameters to characterize the different regimes : the
drop radius a and the jump radius R. A phase diagram is
presented in Fig. 2 (d) where three different symbols are
used for periodic and irregular motions, and for a drop in
contact with the jet. In this last case one also observes
complex motions (static, regular and irregular motions)
but not well defined and with a lower drop velocity. As
expected the dashed line separating the contact with the
jet and the periodic motion is given by solving the equa-
tion R = 2a + RJ where RJ is the radius of the jet that
we find to be almost constant and equal to approximately
1.5 mm. The continuous line separating the periodic and
aperiodic motions is empirical but can be fitted by the fol-
lowing law R = βa +Rc where β = 4.4 and Rc = 0.84 mm.

A model of the drop motion was suggested in ref [11]
and we have adapted it to the case of a perfectly horizon-
tal jump (α = 0). Here we first remind its essential fea-
tures before developing the results obtained. Entrained by
the radial flow of the bath, the drop acquires an internal

rotation with a kinetic momentum parallel to the shock
front. If a perturbation shifts slightly the drop, the ki-
netic momentum conservation leads to the appearance of
a radial component of rotation (See Fig. 3 (b)). In such a
situation, an active torque should appear, amplifying the
initial perturbation and leading to a self-sustained orbital
motion. To recover this, one models the drop as a rigid
sphere of radius a with two contact points A and B. The
situation is described in Fig. 3 (a).We assume that the
exchanged forces at these points are simply viscous fric-

tions through a sheared air film:
Ð→
FA = ηa(SA/dA)(

Ð→
U A −

Ð→
V G−

Ð→
Ω ×

Ð→
GA) and

Ð→
FB = ηa(SB/dB)(

Ð→
U B −

Ð→
V G−

Ð→
Ω ×

Ð→
GB),

where ηa is the air dynamic viscosity and the quantities

SA, SB , dA, dB ,
Ð→
U A,

Ð→
U B designate in this order : the con-

tact surfaces, the local air layer thickness and the surface
speed of the flow at the points A and B. G is the center of

mass of the drop,
Ð→
V G is the speed of the center of mass of

the drop and
Ð→
Ω designates the angular velocity vector of

the drop around G in the laboratory frame. The kinetic
momentum conservation equations lead to :

dΩr
dt

+
1

τA
(Ωr +

L

a
ω) = ωΩθ

dΩθ
dt

+ (
1

τA
+

1

τB
)Ωθ = −ωΩr −

1

a
(
UA
τA

+
UB
τB
) (1)

dΩz
dt

+
1

τB
(Ωz +

L

a
ω) = 0

These equations must be coupled with the evolution equa-
tion for θ that can be deduced from the fundamental prin-
ciples of dynamics :

dω

dt
+

2

5
(

1

τA
+

1

τB
)ω = −

2

5

a

L
(

Ωr
τA

+
Ωz
τB
) (2)

Where ω = dθ
dt

designates the orbital speed and L = R − a
is the radius of the orbit described by the drop. The
two characteristic times are τA = 8

15
πa3 ρl

ηa

dA
SA

and τB =

8
15
πa3 ρl

ηa

dB
SB

where ρl designates the mass density of liq-
uid. There are only two stationary solutions to these
equations. A first trivial one is:

ω = Ωr = Ωz = 0

Ωθ = −
1

a

UA

τA
+ UB

τB
1
τA

+ 1
τB

(3)

Integrating numerically equations (1) and (2) with a
fourth order Runge-Kutta method, we have checked that
whatever were the initial conditions this solution was un-
stable, in accordance with our experimental observations,
the system always evolving to an other solution. Also, we
have checked this analytically by seeking for Eigen states
and Eigen values of these equations, which confirmed this
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result. There is also a second solution defined by:

Ωθ = 0

Ωr = Ωz = −ω
L

a
(4)

ω2
=
UA
LτA

+
UB
LτB

which corresponds to the periodic orbital state of our sys-
tem. Complementary experiments (not described here)
showed that the velocity UA and UB have almost the same
magnitude (about 0.3 m.s−1) and are nearly independent
of the flow rate Q (for a typical range of 5− 60 cm3.s−1) .
This absence of dependence upon flow rate will be checked
later, when discussing Fig. 6. It seems also reasonable to
suppose that dA and dB , the local air layer thickness at the
points A and B, are independent of the flow rate too (they
could only be fixed by the surface speed and by the drop
properties). So one can assume that τA and τB are inde-
pendent of the flow rate. We thus obtain that the orbital
speed should scale as ω ∝ L−1/2. This conjecture is tested
in Fig. 4 by increasing the radius (through a modification
of the flow rate) for different drop radii. The right behav-
ior is obtained for low jump radii, but the larger decrease
for large values of L (at the approach of the reversal tran-
sition) still needs to be explained. In addition, this model
is unable to capture the aperiodic motion.
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Fig. 4: Orbital speed of the drop ω = dθ/dt versus the orbit
radius followed by the drop: L = R − a. A large range of drop
radii is reported: 0.69 mm - 1.67 mm. Insert: the ratio ωL1/2

versus L, that clearly saturates for low L. Error bars have the
same order of magnitude as the symbols, consequently they are
not shown here.

Fig. 5: Coal particles inside a drop viewed from above (a = 1.6
mm and R = 1.3 cm). Image sequence (the time between two
successive pictures is about 10 ms). The black traces are clouds
of coal particles and the pointer indicates a particular cloud
that is passing below the drop. The jump is visible on the left
bottom corner.

The previous model is based on the hypothesis of an in-
ternal rotation of the drop but this phenomenon remains
to be checked. We therefore performed some experiments
in order to observe and measure this rotation by injecting
coal particles inside the drop. Pictures of this rotation are
reproduced in Fig. 5. The internal rotation is quite diffi-
cult to observe because of the drop motion inside the jump.
To overcome this difficulty, we slightly inclined the jump
plane (typically a few tenths of degrees), in order to main-
tain the drop globally motionless in the jump. Then, we
proceeded to measurements by recording several drop ro-
tations (between 3 and 20 rotation periods) and obtained
reasonably accurate results with this method. Doing this,
the solution (3) of equations (1) is selected, this solution
being stabilized by the plate inclination [11]. Assuming
that the speeds are proportional (or even equal), which
seems rather reasonable, one obtains the scaling law:

Ωθ = −
1

a

UA

τA
+ UB

τB
1
τA

+ 1
τB

∝ −
UA
a

(5)

Our experimental results, reproduced on Fig. 6, high-
lighted a more complex situation : one can distinguish
clearly two different zones by increasing the drop radius:

(i) For “small” drops of radii a < 1 mm (we recall that
the capillary length lc for silicone oil is about 1 mm) , in
the limit case of the smallest radii, we recover asymptoti-
cally the 1

a
law.

(ii) For larger drops (a > 1 mm) one can observe a fre-
quency law in Ωθ = UA

l
a2

, where l is about 0.4 mm.
Moreover, it is interesting to notice that all the curves

presented here are collapsing onto a single master curve
without any rescaling. In other words the rotation fre-
quency does not depend on flow rate. This is consistent
with what we report above, i.e. that, in our specific situ-
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Fig. 6: Ωθ versus drop radius observed for the stabilized in-
clined static case. Different flow rates are considered but all
the curves are collapsing onto a single master curve without
any rescaling, which suggests that the surface velocity at the
jump could be the same for each flow rate. Error bars have the
same order of magnitude as the symbols, consequently they are
not shown here.

ation (boundary conditions, flow rate range, viscosity...),
UA and UB are nearly independent of flow rate.

The fact that the frequency law has a cross over around
the capillary length suggests that the hypothesis of a rigid
sphere on a sheared gas film is too rough and that the
drop deformations have to be taken into account, with
also possibly some local reversal of the air flow due to the
lift applied on the drop. Indeed one can observe experi-
mentally that the drops were slightly flattened by gravity.
This is well known in the literature, in which the drop is
often modeled by a truncated sphere [21], or a truncated
sphere sustained by a non axisymetric air pocket [22].

A new kind of “non wetting” dynamics for a drop in
non coalescence state inside a horizontal hydraulic jump
has been considered, with in particular two kinds of or-
bital motions: periodic and irregular. A model has been
proposed and provides good agreement for the periodic
orbital motion. An internal rotation of the drop has been
highlighted in qualitative agreement with our modeling.
The frequency law illustrates the need for further investi-
gations on this fascinating object. The structure of the hy-
draulic jump has also been studied with an original mean
(introducing drop at the shock front) and reveals some
unexpected observations about the local surface speed at
the jump (does it depend or not upon flow rate ?) that
would deserve further investigations.
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