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SUMMARY

Fighting viral infections is hampered by the scarcity of viral targets and their variability resulting 

in development of resistance. Viruses depend on cellular molecules for their life cycle, which are 

attractive alternative targets, provided that they are dispensable for normal cell functions. Using 

the model organism Drosophila melanogaster, we identify the ribosomal protein RACK1 as a 

cellular factor required for infection by internal ribosome entry site (IRES)-containing viruses. We 

further show that RACK1 is an essential determinant for hepatitis C virus translation and infection 

indicating that its function is conserved for distantly related human and fly viruses. Inhibition of 

RACK1 does not affect Drosophila or human cell viability and proliferation, and RACK1-silenced 

adult flies are viable, indicating that this protein is not essential for general translation. Our 
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findings demonstrate a specific function for RACK1 in selective mRNA translation and uncover a 

new target for the development of broad antiviral intervention.

INTRODUCTION

Viral infections are a significant threat for all living organisms. In humans, acute and 

chronic viral infections cause a wide spectrum of diseases, including life-threatening 

inflammation and cancer. A major challenge for the control of viral infections is that viruses, 

due to the small size of their genomes, offer few intrinsic targets either for recognition by 

the immune system or for inhibition by antiviral effector molecules. Furthermore, the error-

prone viral polymerases allow RNA viruses to rapidly escape detection by the immune 

system and to resist the adverse effects of directly acting antiviral molecules. Significantly, 

viruses rely on numerous host factors for essential functions during their life cycle. These 

are not subject to rapid sequence changes and hence provide good alternative targets for 

antiviral therapy. Therefore, a central challenge is to identify cellular factors required for 

viral replication but dispensable for normal cell function.

RNA replication, transcription and translation are critical steps in the life cycle of RNA 

viruses, which involve interactions with host-cell molecules. In the model organism 

Drosophila melanogaster, the small interfering (si) RNA pathway targets viral RNAs 

(reviewed in (Ding, 2010)). In order to better characterize the contribution of the three core 

components of this pathway, Dicer-2, R2D2 and AGO2, we performed a proteomic analysis 

of the complexes assembling around these molecules in infected Drosophila cells (in 

preparation). One protein copurifying with R2D2 and AGO2 in cells infected with the 

picorna-like Drosophila C virus (DCV) was the evolutionarily conserved ribosomal protein 

RACK1. The RACK1 protein has been extensively studied during the last two decades, and 

shown to be involved in different aspects of cell regulation. RACK1 is an adapter protein, 

interacting with a variety of signaling molecules (e.g. PKC, Src, MAPK) (Belozerov et al., 

2014; Gibson, 2012; Long et al., 2014), and is a component of the 40S subunit of the 

ribosome (Coyle et al., 2009; Sengupta et al., 2004). RACK1 is thus ideally suited to 

connect signal transduction pathways to the regulation of translation (Nilsson et al., 2004). 

Indeed, RACK1 was found to interact with the initiation factor eIF6, which associates with 

the 60S subunit of the ribosome, and prevents its association with the 40S subunit. eIF6 

phosphorylation by RACK1-assisted PKC triggers its release from the 60S subunit, thus 

promoting the formation of 80S active ribosomes (Ceci et al., 2003).

Here, we show that RACK1 is mandatory for DCV replication, but largely dispensable for 

cell viability and proliferation. We further demonstrate that RACK1 is required for internal 

ribosome entry site (IRES)-dependent translation in Drosophila, and in human hepatocytes, 

where this factor is an essential determinant of hepatitis C virus infection. By contrast, 

RACK1 is not required for 5′ cap-dependent translation. Collectively, our data unravel a 

specific function for ribosomal protein RACK1 in selective mRNA translation of fly and 

human viruses and uncover a previously undiscovered target for the development of broad 

antiviral intervention.
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RESULTS

RACK1 is required for Dicistroviridae infection in Drosophila

In a proteomic analysis of the interactome of Dicer-2, R2D2 and AGO2 in virus infected 

cells, to be reported elsewhere, we identified 16 ribosomal proteins. To address the 

functional relevance of this finding, we systematically depleted these ribosomal proteins 

from S2 cells by RNAi, and tested DCV replication. Knockdown of most ribosomal genes 

affected cell viability or proliferation and did not yield interpretable results with regards to 

DCV infection (Figure 1A, B). Indeed, silencing of these genes may result in decreased 

ability of the cells either to support viral replication, or to control the infection. By contrast, 

depletion of RACK1 (Figure S1A) did not affect cell viability or proliferation in S2 cells 

(Figure 1B, C) or in two other cell lines (Figure S1B). However, it resulted in a significant 

decrease of DCV titer in infected cells (Figure 1A). Furthermore, RACK1 silencing did not 

affect replication of either FHV or VSV (Figure 2A, B), indicating that the RACK1-depleted 

cells are not only viable and able to proliferate, but can also support replication of other 

viruses. To test whether the effect of RACK1 was specific to DCV, or to the family to which 

it belongs, we infected S2 cells with Cricket Paralysis Virus (CrPV), another member of the 

Dicistroviridae family. Replication of CrPV was also strongly impaired when RACK1 was 

depleted (Figure 2B).

We next confirmed these findings in vivo. RACK1 null mutant flies are not viable, 

indicating that RACK1 exerts developmental functions (Kadrmas et al., 2007). In agreement 

with this finding, silencing RACK1 expression with a small hairpin (sh) RNA driven by the 

broadly active actin5C promoter was embryonic lethal. When the thermosensitive Gal80 

system was used to express the shRNA only in adult flies, development occurred normally 

and the adult flies expressed significantly reduced levels of RACK1 at the permissive 

temperature of 29°C (Figure 2C). The reduced levels of RACK1 did not affect the viability 

of the flies, although it reduced longevity by 20% at this temperature. In addition, the eggs 

laid by RACK1-silenced females showed a phenotype similar to that of RACK1 mutants 

(Figure S1C) (Kadrmas et al., 2007). Thus, even though RACK1 is required during 

development, it appears to be largely dispensable in adult flies. As expected, when these 

flies were challenged with DCV, both viral RNA and capsid protein levels were markedly 

reduced at 1 and 2 days post-infection compared to controls (Figure 2D). Overall, our data 

indicate that replication of the Dicistroviridae DCV and CrPV requires the ribosomal factor 

RACK1, which is otherwise dispensable for the viability of S2 cells and adult flies.

RACK1 is required for viral IRES-dependent translation

Our data indicate that RACK1 is required for a step of viral replication specific to 

Dicistroviridae. Whereas FHV and VSV use a canonical strategy of cap-dependent initiation 

of translation, DCV and CrPV RNA recruits the 40S ribosomal subunit through IRES 

sequences to initiate translation (Figure S2A). Furthermore, although initially identified as a 

scaffolding protein involved in protein kinase C signaling, RACK1 is now recognized as a 

component of the 40S subunit of the ribosome. This suggested to us that RACK1 was 

required for viral translation. We first verified that RACK1 is indeed required at the 

ribosome level for CrPV replication. We silenced RACK1 expression in a stable cell line 
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using an shRNA targeting the 5′ untranslated region (Figure S1D), and observed a marked 

decrease in CrPV replication (Figure S1E). Transfection of a vector expressing wild-type 

RACK1 restored CrPV replication in these cells (Figure 3A). By contrast, expression of 

mutant proteins unable to interact with either RpS17 (D108Y) (Kuroha et al., 2010) or 18S 

rRNA (R38D/K40E) (Coyle et al., 2009) did not rescue CrPV replication (Figure 3A). We 

conclude that RACK1 is required in the 40S ribosomal subunit for CrPV replication.

To confirm that RACK1 is involved in translation from Dicistroviridae RNAs, we tested 

whether its depletion affected translation of luciferase reporters placed under the control of 

the two IRES elements from CrPV (Figure 3B and Figure S2C). Translation of a 5′ cap-

dependent RNA was not affected in the absence of RACK1, although it was affected when 

expression of eIF4E was knocked down. Translation from the CrPV 5′ IRES reporter was 

not reduced, and was even slightly increased, when eIF4E was silenced, suggesting that the 

5′ IRES drives non canonical translation. Interestingly, a significant reduction of luciferase 

production was observed for the 5′ IRES reporter in RACK1 silenced cells (Figure 3B). 

Silencing of RACK1 did not affect the amount of the 5′ IRES reporter luciferase mRNA in 

the cells, indicating that RACK1 affects translation, rather than RNA stability (Figure S3). 

By contrast, translation driven by the intergenic (IGR) IRES (Jan and Sarnow, 2002; Spahn 

et al., 2004) was not affected by the level of RACK1 in the cells (Figure 3B). Polysome 

profiles from S2 cells and RACK1-silenced stable derivatives of these cells (Figure S1D) 

were similar, confirming that RACK1 does not affect significantly general translation 

(Figure 3C). Finally, we prepared cell-free translation extracts from control and RACK1-

depleted S2 cells, and used them to monitor translation of in vitro transcribed, capped and 

IRES-dependent RNAs. Translation of the 5′ IRES reporter RNA was strongly reduced in 

the RACK1 depleted extract. By contrast, translation of the 5′ CAP and IGR IRES 

dependent reporters was not inhibited and was even slightly stimulated (Figure 3D). Overall, 

our data indicate that ribosomal RACK1 is required for IRES-dependent translation of 

Dicistroviridae both ex vivo and in vitro.

RACK1 is an essential host factor for HCV infection

RACK1 is an evolutionarily strongly conserved factor, and we asked whether it plays a role 

in the translation driven by the IRES of a mammalian virus. Hepatitis C virus (HCV), a 

major cause of liver disease and hepatocellular carcinoma, is a positive strand RNA virus 

member of the Flaviviridae family depending on a highly structured IRES for its translation 

(Figure S2) (Spahn et al., 2001). Transfection of an siRNA targeting RACK1 markedly 

reduced expression of the protein in Huh7.5.1 cells (Figure 4A), a human hepatocyte-

derived cell line highly permissive for HCV infection (Lindenbach et al., 2005; Wakita et 

al., 2005). Infection of RACK1-depleted Huh7.5.1 cells by cell culture-derived HCV (Jc1 

strain) was strongly and significantly reduced, as revealed both by immunodetection of the 

viral core protein (Figure 4A) and the focus forming assay performed by infection of naïve 

Huh7.5.1 cells with supernatants from infected and treated cells (Figure 4B). A similar 

inhibition of infection was observed for HCV Luc-Jc1 (Figure 4C), a well-characterized 

recombinant virus expressing a luciferase reporter (Figure S2B). Inhibition of RACK1 

expression was as efficient as the silencing of the key HCV host factors CD81 

(Koutsoudakis et al., 2007) and Cyclophilin A (CypA) (Kaul et al., 2009) (Figure 4A, B, C). 
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We next transiently depleted RACK1 in Huh7.5.1 cells replicating the reporter virus HCV 

Luc-Jc1, and observed a marked impairment of HCV replication (Figure 4D), demonstrating 

that RACK1 is required for HCV translation/replication rather than entry. HCV replication 

rebound observed after day 4 was due to progressive loss of RACK1 silencing leading to 

neosynthesis of RACK1 (Figure S4A).

To confirm that the inhibition of HCV replication is indeed mediated by the effect of 

RACK1 on IRES-mediated translation, we established stable cell lines expressing an 

IRESHCV-luciferase reporter construct or a classical capped reporter gene (Figure S2C), and 

transfected these cells with RACK1-specific siRNAs. Silencing of RACK1 markedly and 

specifically decreased IRESHCV-dependent translation, to a similar extent as an antiviral 

siRNA directed against the IRESHCV (Figure 4E). By contrast, silencing of ribosomal 

protein RPS3 inhibited translation from both IRES- and 5′ cap-dependent reporter constructs 

(Figure 4E). Similar results were obtained when in vitro transcribed reporter mRNAs were 

transfected into Huh7.5.1 cells, ruling out an effect of RACK1 on transcription of the 

IRESHCV-luciferase reporter gene (Figure 4F).

Importantly, RACK1-specific siRNAs did not affect cell proliferation (Figure S4B) or 

viability, in contrast to silencing of the ribosomal protein RPS3 (Figure 4G). A genome-

wide microarray analysis of polysomes prepared from control or RACK1-silenced human 

Huh7.5.1 cells revealed that the amount in polysomes of mRNAs for most genes, including 

house keeping genes and important hepatocyte specific genes such as albumin or 

lipoproteins, was not affected by RACK1 depletion (Figure 4H). Of note, silencing of 

RACK1 also did not affect the presence of 5′ terminal oligopyrimidine tract (TOP) mRNAs 

in polysomes (for details, see Supplemental information). This result suggests that 

translation of the large majority of mRNAs is not affected by the absence of RACK1 in 

human hepatocytes under normal culture conditions and confirms the results obtained in the 

model organism Drosophila.

The effect of RACK1 on viral translation is independent of the miRNA pathway

While this work was in progress, a role for RACK1 in miRNA function was reported in the 

plant Arabidopsis thaliana (Speth et al., 2013), the model organism Caenorhabditis elegans 

(Chu et al., 2014; Jannot et al., 2011) and humans (Otsuka et al., 2011). In light of the 

important impact of the cellular microRNA miR122 on HCV replication (Jopling et al., 

2005), this suggested that RACK1 might operate on viral translation through the miRNA 

pathway. We first verified that RACK1 affects the miRNA pathway in Drosophila. 

Expression in S2 cells of two previously described miRNA reporters, Par-6 and nerfin-1 

(Eulalio et al., 2007), was derepressed when RACK1 was silenced, indicating that in 

Drosophila as well, RACK1 is involved in miRNA function (Figure 5A, B). We note 

however that the derepression is much stronger for the miR1 reporter than for the miR9b 

reporter, suggesting that the role of RACK1 may be specific of a subset of miRNAs. By 

contrast, silencing of Dcr-1 or AGO1 derepressed equally well the two miR reporters 

(Figure 5A, B). We next tested whether miRNAs play a role in viral replication, by 

monitoring accumulation of viral RNAs in cells depleted of Dcr-1 or AGO1. Silencing of 

Dcr-1 had no effect on the viral RNA load of the four viruses tested (Figure 5C). Silencing 
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of AGO1 did reduce to some extent CrPV and DCV RNA load. However, this reduction was 

variable in the case of DCV, and not to the extent of the reduction observed when RACK1 

was silenced for DCV and CrPV (Figure 5C). Thus, although the miRNA pathway may have 

a contribution in the replication of Dicistroviridae, our data suggest that the strong effect of 

RACK1 cannot be accounted for only by its effect on miRNA function. This was confirmed 

by the observation that silencing of Dcr-1 or AGO1 had no effect on translation driven by 

the IRESCrPV-5′, unlike silencing of RACK1 (Figure 5D).

In mammalian hepatocytes, HCV translation depends on AGO2 and miR122 (Conrad et al., 

2013; Roberts et al., 2011). As expected, transfection of Huh7.5.1 cells with a miR122 

mimic increased HCV replication, while transfection of a miR122 inhibitor led to decreased 

viral replication (Figure 5E). Importantly, the impact of the miR122 mimic and the miR122 

inhibitor on HCV replication did not depend on RACK1 (Figure 5E). To unambiguously 

determine whether the contribution of RACK1 to HCV translation was dependent on 

miR122, we used HEK-293T cells, which do not express miR122 ((Da Costa et al., 2012), 

Figure S5). Silencing of RACK1 expression efficiently repressed translation driven by the 

IRESHCV in these cells (Figure 5F). Finally, transduction of HEK-293T cells with an 

expression vector for miR122 did not affect the impact of RACK1 on HCV translation 

(Figure 5G), although miR122 was expressed and functional in these cells (Figure S5A, B). 

Collectively, these results indicate that RACK1 and miR122 regulate HCV translation by 

different mechanisms.

The eIF3j subunit is dispensable for cell viability, but important for CrPV and HCV 
replication

We next attempted to gain mechanistic insight on the role of RACK1 in viral translation. 

Previous cryo-electron microscopy studies have highlighted the interaction of the 40S 

subunit with the HCV IRES and, in spite of their low resolution, have suggested that binding 

of the HCV IRES triggers a pronounced conformational change in the small subunit of the 

ribosome (Spahn et al., 2001; 2004). HCV IRES has been also visualized on the 80S human 

ribosome and RACK1 localized in its vicinity (Boehringer et al., 2005; Sengupta et al., 

2004). The recently elucidated crystal structure of the small subunit of the ribosome at 3.9Å 

(Rabl et al., 2011) allows to fit the crystal structure in the cryo-electron microscopy density. 

The picture obtained suggests that RACK1 is located in close proximity to the IRES of HCV 

in the region affected by the conformational change triggered upon IRESHCV binding 

(Figure S6A). By contrast, the IRESCrPV-IGR, which does not depend on RACK1 (Figure 

2C), interacts with a distinct site of the 40S subunit, directly contacting RpS25 (Figure S6B) 

(Fernandez et al., 2014; Koh et al., 2014; Schuler et al., 2006; Spahn et al., 2004). Although 

no direct contacts between RACK1 and IRESHCV could be observed, a recent study 

indicates that a peripheral domain of the translation initiation factor eIF3, which is required 

for IRESHCV-dependent translation (Kieft, 2008), is in contact with RACK1 (Figure S6C) 

(Hashem et al., 2013a; Sun et al., 2013). This domain may be the functional link between 

RACK1 and IRESHCV-dependent translation.

We asked whether some subunits of eIF3, such as eIF3c, which has been shown to interact 

with RACK1 in yeast, may be specifically involved in IRES-dependent translation, like 
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RACK1. We first tested in Drosophila S2 cells whether some subunits of the eIF3 complex 

are dispensable for cell viability in normal culture conditions. Out of the 14 genes encoding 

eIF3 components (the Drosophila genome contains two eIF3g paralogues, CG8636 (eIF3ga) 

and CG10881 (eIF3gb)), only two were not required for cell viability or proliferation 

(Figure 6A). One of these genes is CG10881, encoding eIF3gb, which is expressed 

specifically in testis (Chintapalli et al., 2007) and thus provides a useful negative control. 

The second gene is the Drosophila orthologue of eIF3j (Figure 6A). We next monitored 

CrPV replication in cells silenced for eIF3j or eIF3gb (CG10881). Although silencing of 

eIF3gb did not affect CrPV replication, silencing of eIF3j resulted in a significant reduction 

of CrPV replication (Figure 6B). Silencing of eIF3j, but not of eIF3gb, also affected 

translation of the IRESCrPV5′-luciferase reporter, although not as strongly as silencing of 

RACK1 (Figure 6C). In Huh7.5.1 cells, silencing of eIF3c affected cell viability. By 

contrast, silencing of eIF3j only marginally affected cell viability (Figure 6D and (Wagner et 

al., 2014)). Interestingly however, it resulted in a moderate but significant decrease of HCV 

replication (Figure 6E). Altogether, these results suggest that the eIF3j subunit might 

participate in the observed effects of RACK1 on translation.

DISCUSSION

A new function for RACK1 in IRES-dependent translation

Our data reveal a new function for RACK1 in specific mRNA translation. Indeed, silencing 

RACK1 expression does not affect viability of Drosophila S2 or human Huh7.5.1 cells in 

tissue culture, indicating that formation of active ribosomes is not strictly dependent on 

RACK1. In vivo as well, translation can occur in the absence of RACK1, as lethality in 

RACK1 mutant animals does not occur before larval stages for Drosophila and gastrulation 

in mice (Kadrmas et al., 2007; Volta et al., 2013). In agreement with this observation, 

translation of a 5′ cap-dependent reporter was not affected in the absence of RACK1 in 

Drosophila and human cells. Nevertheless, the fact that RACK1 mutant animals cannot 

complete their development suggests that this protein is required for the translation of some 

cellular mRNAs, in addition to viral IRES-containing RNAs. Interestingly, previous studies 

have highlighted the role of another protein from the 40S subunit of the ribosome, RpS25, in 

IRES-dependent translation (Landry et al., 2009). Performed on yeast and mammalian 

tissue-culture cells with IRES reporter assays, these experiments concluded that RpS25 is 

essential for the activity of two viral IRES, IRESHCV and IRESCrPV-IGR. The mechanism 

used by RpS25 and RACK1 to promote translation is probably different because (i) RpS25 

is required for IRESCrPV-IGR, unlike RACK1; and (ii) structural data place RpS25 at a 

distance from RACK1 on the 40S subunit of the ribosome, providing an explanation for its 

importance on the activity of the IRESCrPV-IGR. Several other ribosomal proteins (e.g. 

RpL38, RpL40) were recently proposed to be involved in specific translation of some 5′ 

cap-dependent mRNAs (Kondrashov et al., 2011; Lee et al., 2013), indicating that transcript-

specific regulation can occur in the absence of IRES elements. Our data lend support to an 

evolving picture of the eukaryotic ribosome, which includes structurally peripheral 

components such as RACK1 involved in the modulation of translation of specific mRNAs 

(reviewed in (Xue and Barna, 2012)). They have implications for the development of new 
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antivirals, and raise questions on the mechanism underlying the role of RACK1 in IRES-

dependent translation.

RACK1 as a target for broad antiviral intervention

Our results open interesting therapeutic perspectives for a broad range of viral infections 

including chronic hepatitis C, a major cause of liver cirrhosis and cancer. Because HCV 

translation initiates viral genome neosynthesis via the formation of the replication complex, 

RACK1-mediated translation is a crucial step in virus propagation. Thus, RACK1 is a novel 

host target for antiviral therapy, which is complementary to interferon-based therapies or 

direct-acting antivirals (DAAs). DAAs have achieved high response rates with cure in late-

stage clinical trials, but high costs will limit their broad access. In addition, certain patient 

groups (e.g. genotype 3, renal failure, hepatic decompensation, liver transplantation) will 

need complementary approaches (Chung and Baumert, 2014; Liang and Ghany, 2013).

The low variability of host factors targeted by host-targeted antivirals (HTAs) results in a 

high genetic barrier to resistance (Nathan, 2012). Indeed, HTAs effectively inhibit HCV 

escape variants (Fofana et al., 2010; Lupberger et al., 2011), as well as DAA-resistant virus 

(Xiao et al., 2014a). Furthermore, their complementary mechanism of action results in 

synergy with DAAs (Xiao et al., 2014b). Given that HTAs interfere with host targets, one 

theoretical caveat is the possibly greater risk of cellular toxicity as compared to DAAs. 

Interestingly, our data obtained in cell culture models did not reveal any major toxicity 

linked to RACK1 inhibition. Thus, our proof-of-concept studies in state-of-the-art cell 

culture models open a highly attractive and innovative perspective to develop small 

molecules targeting RACK1. RACK1 inhibitors may also be of interest for treatment of 

infection of many other human or animal viruses using 5′ cap-independent mechanisms for 

the translation of their RNAs.

Mechanistic insight on the role of RACK1 in IRES-dependent translation

While this work was in preparation, several reports described a role for RACK1 in miRNA 

function. However, our data in Drosophila and human cells indicate that the role of RACK1 

in IRES-dependent translation does not involve small regulatory RNAs. Nevertheless, the 

connection between RACK1 and AGO proteins is intriguing, and suggests that RACK1 may 

participate in a checkpoint for the control of the translation of specific mRNAs by miRNAs 

or siRNAs.

The ribosome code or filter hypothesis posits that some ribosomal proteins have evolved to 

mediate translation of specific mRNAs (Mauro and Edelman, 2002; Topisirovic and 

Sonenberg, 2011; Xue and Barna, 2012). A central unresolved issue of this hypothesis is the 

nature of the cis-acting elements defining a possible “ribosome code”. In the case of 

RACK1, these cis-acting elements include viral IRES. Interestingly, the IRESCrPV-IGR is 

active in the absence of RACK1, unlike the IRESCrPV-5′ or the IRESHCV. This 

IRESCrPV-IGR (class I IRES) is capable on its own, without any initiation factors, of binding 

directly the 40S subunit and of recruiting the 60S subunit to form an active 80S ribosome, 

thus bypassing the loading of the initiator methionyl-tRNAi (Jan and Sarnow, 2002; Pestova 

et al., 2004). By contrast, the function of IRESHCV (class II IRES) requires two canonical 
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eIFs, eIF2 and 3, as well as Met-tRNAi (Kieft, 2008). This suggests that the effect of 

RACK1 on translation initiation may require one of these factors. Interestingly, the eIF3 

complex binds to the 40S ribosomal subunit, and to the IRESHCV (e.g. (Kieft et al., 2001)). 

Furthermore, RACK1 was shown to associate with one of the eIF3 subunits in order to 

assemble a translation pre-initiation complex in yeast (Hashem et al., 2013a; Kouba et al., 

2012).

Although our understanding of the molecular structure of the core of the 13 subunits eIF3 

complex has progressed remarkably in recent years (e.g.(Hashem et al., 2013b; Sun et al., 

2011)), the role of the non-core subunits remains essentially untested in animals. 

Interestingly, the subunit eIF3e in the yeast Schizosaccharomyces pombe is involved in 

translation of a selected set of RNAs (Sha et al., 2009; Zhou et al., 2005). More recently, one 

of the two eIF3h genes present in zebrafish, eIF3ha, was shown to encode a factor 

specifically targeting crystalline isoform mRNAs for translation during lens development 

(Choudhuri et al., 2013). Our data indicate that, like RACK1, the subunit eIF3j is not 

required for cell viability in Drosophila, but is required for CrPV replication and IRESCrPV5′ 

driven translation. This raises the possibility that RACK1 and eIF3j act together in 

translation of a specific subset of mRNAs.

Several observations support a role for eIF3j in selective mRNA translation. First, it is 

located in the decoding center of the 40S ribosomal subunit, where it can regulate access to 

the mRNA binding cleft (Fraser et al., 2007; 2009). Second, it is located at the periphery of 

the eIF3 complex, often in sub-stoichiometric quantities, indicating that it can undergo 

regulated cycles of association and dissociation (Hinnebusch, 2006; Miyamoto et al., 2005; 

Sha et al., 2009). Third, experiments in S. pombe and human cells indicate that it can be 

regulated post-translationally by phosphorylation (Sha et al., 2009) or caspase-mediated C-

terminal truncation (Bushell et al., 2000). Altogether, this suggests that RACK1 may act as a 

scaffold recruiting an enzyme modifying eIF3j in order to allow access of the entry channel 

of the 40S subunit to IRES-containing mRNAs. In a way, such a scenario would be 

reminiscent of the recently described role of another eIF3 subunit, eIF3e, which controls the 

recruitment of the kinase Mnk1 to phosphorylate eIF4E, thus promoting selective mRNA 

translation in human cells (Walsh and Mohr, 2014).

EXPERIMENTAL PROCEDURES

Silencing candidate gene expression by RNAi and screening

DsRNAs targeting the candidate genes were designed using the E-RNAi algorithm (http://

www.dkfz.de/signaling/e-rnai3/). Knock-down in Drosophila S2 cells was performed in 96-

well plates using the bathing method, and cells were challenged with virus 4 days later. Viral 

load was determined by qRT-PCR. Alternatively, infected cells were fixed and labeled with 

anti-capsid antibodies for immunofluorescence analysis using the InCELL1000 Analyzer 

workstation (GE LifeSciences). Image data processing was performed using the InCELL 

Analyzer software. See Extended Experimental procedures in Supplemental material for 

more details.
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Preparation of cell-free extract for in vitro translation

In vitro translation competent extracts were prepared from control or RACK1-silenced S2 

cells as described in (Wakiyama et al., 2005). Briefly, cells were resuspended in lysis 

solution [40 mM Hepes–KOH (pH 8), 100 mM potassium acetate, 1 mM magnesium 

acetate, and 1 mM dithiothreitol] at a cell density of approximately 109 mL−1 and were 

placed in the Cell Disruption Bomb (Parr Instrument Company). The homogenate produced 

upon the pressure release was cleared by centrifugations at 4°C, and creatine kinase was 

added at 0.24 mg.mL −1 of lysate, before storage in aliquotes at −80°C. Reporter mRNAs 

were synthesized by transcription in vitro using recombinant T7 RNA polymerase. A non-

functional cap (ApppG) (New England Biolabs) was added at the 5′ end of the IRES 

monocistronic reporter mRNAs to protect them from degradation. Cap-dependent translation 

was measured with a Renilla Luciferase reporter mRNA that was capped with the ScriptCap 

m7G capping system (Epicentre Biotechnologies). In vitro translation was performed as 

previously described (Wakiyama et al., 2005) and under sub-saturating conditions to avoid 

substrate titration.

HCV infection and replication assays

Huh7.5.1 human hepatoma cells were infected with cell culture-derived HCV (HCVcc 

strains Jc1 and Luc-Jc1, half-maximal tissue culture infectious dose (TCID50 104 mL−1 for 

both viruses)) as described (Lupberger et al., 2011; Pietschmann et al., 2006). Two days 

before infection, gene silencing was performed by reverse transfection with 10 nM of 

siRNA (Silence®Select siRNA, Ambion) specific for RACK1, CD81, Cyclophilin A, HCV 

IRES or a nonspecific control siRNA. Viral infection and RACK1 depletion were analyzed 

by western blotting and quantified by counting of focus forming units (ffu)/mL following 

immunostaining using a HCV core-specific antibody (mAbC7-50, Affinity BioReagents, 

CO) or by luciferase reporter gene expression in cell lysates 3 days post infection. For HCV 

replication experiments, Huh7.5.1 cells were electroporated with HCV Luc-Jc1 RNA 

(Koutsoudakis et al., 2007). Three days later, cells were reverse transfected with siRNAs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. RACK1 is required for DCV replication, but not for viability or proliferation in 
Drosophila cells
(A, B) Quantification of DCV viral RNA levels by qRT-PCR (A) and of cell numbers as 

estimated by DAPI staining (B) in cells treated with the indicated dsRNAs to induce 

silencing. Cells treated with a dsRNA corresponding to GFP and AGO2 sequences are used 

as a reference and a control, respectively. (C) S2 cells stably transfected with a 

metallothionein promoter driven vector expressing a shRNA targeting the 5′ UTR from the 

RACK1 gene were treated or not with CuSO4 for three days, stained with DAPI and an anti-

phospho H3 antibody (left panels) and counted (right panel). Data represent the mean and 

s.e.m. of at least three independent experiments. ns: non significant; * p<0.05. See also 

Figure S1 and Table S1.
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Figure 2. RACK1 is required for replication of DCV and CrPV, but not FHV and VSV
(A, B) S2 cells were treated with either control (GFP) or RACK1 dsRNA for 4 days, before 

challenge with DCV, FHV, VSV or CrPV. Viral infection was monitored by 

immunofluorescence (A) and qRT-PCR (B) 16h or, in the case of VSV, 48h later using 

antibodies recognizing capsid proteins. The percentage of infected cells is indicated for each 

virus in panel A. (C) Silencing of RACK1 expression in transgenic flies expressing a shRNA 

targeting the 5′ UTR from the RACK1 gene, using the Gal4-UAS system and the broadly 

expressed actin-Gal4 driver controlled by the thermosensitive (TS) tub-Gal80 repressor. A 

shRNA targeting the mCherry protein was used as a control. The life span of RACK1 

depleted flies is shown in the bottom graph. (D) RACK1 silenced flies infected by DCV after 

5 days at 29°C show a decrease of the viral RNA and protein, as indicated by qRT-PCR 

(upper panel) and western blot. Data represent the mean and s.e.m. from at least three 

independent experiments. ns: non significant; dpi: days post-infection; * p<0.05; ** p<0.01; 

*** p<0.001. See also Figures S1, S2.
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Figure 3. The ribosomal protein RACK1 is required for IRES-mediated translation
(A) Stable S2 transformants expressing a shRNA targeting the 5′ UTR of RACK1 were 

transfected with vectors expressing three versions of RACK1 (WT, D108Y or R38D/K40E). 

Expression of the transfected RACK1 was monitored by western blot using an antibody 

recognizing the N-terminal tag HA. The cells were infected with CrPV for 16h, and viral 

RNA loads were determined by qRT-PCR. Data represent the mean and s.e.m. from three 

independent experiments. (B) RACK1 is required for translation regulated by the 5′ IRES, 

but not the intergenic (IGR) IRES, of CrPV. S2 cells were treated with dsRNAs 

corresponding to GFP (control), AGO2, eIF4E or RACK1 for 3 days, before transfection of 

the indicated Luciferase reporters (5′CAP, IRESCrPV-IGR or IRESCrPV-5′; see Fig. S2). 

Luciferase activity was monitored 48h later. The ratio of the activity of the IRES-dependent 

luciferase and the 5′ cap-dependent luciferase is plotted and normalized to the control for the 

three reporters. Data represent the mean and s.d. from six independent experiments. (C) 

Polysome profiles from S2 cells expressing or not a shRNA targeting the 5′ UTR of 
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RACK1. The position of the peaks corresponding to the 80S ribosomes and the polysomes 

are indicated. (D) In vitro translation of capped and IRES-dependent reporters using cell free 

extracts prepared from control or RACK1-silenced S2 cells. Data represent the mean and 

s.d. from three independent experiments. ns: non significant, * p<0.05, ** p<0.01. See also 

Figures S2, S3.
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Figure 4. RACK1 is a specific host-factor required for IRES-mediated translation of HCV
(A–C) Huh7.5.1 cells were transfected with siRNAs either control (siCTRL) or targeting 

RACK1 (siRACK1-1 or -2), CD81 (siCD81), Cyclophylin A (siCypA), or HCV IRES 

(siHCV) before infection three days later with HCV Jc1 (A, B), or HCV Luc-Jc1 (C). Viral 

infection was monitored 3 days post-infection, by immunoblotting using antibodies 

recognizing HCV core protein (A); by counting foci forming units (ffu/ml) (B); or by 

quantifying luciferase activity (C). (D) HCV Luc-Jc1 replicating cells were transfected with 

siCTRL, two different siRNAs targeting RACK1 or siCypA, and replication was monitored 

during 5 days by luciferase activity quantification. (E) Huh7.5.1. cell lines stably expressing 

an IRES (IRESHCV-Luc) or a 5′ cap (CTRL-Luc) dependent luciferase reporter gene were 

transfected with siCTRL, siRACK1, siHCV, siRPS3 or siLuc. Translation was monitored 

72h later by luciferase activity quantification. (F) Huh7.5.1 cells were transfected with the 

indicated siRNAs and, 72 h later with in vitro transcribed IRESHCV or 5′ cap dependent 

luciferase mRNAs. Luciferase activity was monitored 5h later. (G) Cell viability of 
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Huh7.5.1 cells silenced with the indicated siRNAs was measured during 5 days using MTT 

assay. ** p<0.01; *** p<0.005. (H) Quantification of representative mRNAs in polysomes 

prepared from Huh7.5.1 cells transfected with siCTRL or siRACK1. Gene expression levels, 

shown in arbitrary units, was determined by hybridization on genome wide microarrays, and 

represent the mean +/− s.d. of 4 individual samples. Each sample was analyzed individually. 

See also Figures S2, S4 and Table S2.
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Figure 5. The effect of RACK1 on viral translation is independent of the miRNA pathway
(A, B) RACK1 is required for miR1 and miR9b silencing. The structure of the Par-6 3′ UTR 

and nerfin-1 3′ UTR reporter constructs is represented on top, and the luciferase activity in 

cells silenced for the indicated genes is shown below. (C) Effect of the depletion of AGO1, 

Dcr-1 and RACK1 on replication in Drosophila S2 cells of CrPV, DCV, FHV and VSV. 

Cells were transfected with the indicated dsRNAs, and infected four days later. Viral RNA 

was extracted 24hpi, and quantified by qRT-PCR. (D) Silencing of AGO1 or Dcr-1 does not 

affect the activity of a Luciferase reporter gene controlled by the IRESCrPV-5′ in Drosophila 

S2 cells. (E) A miR122 mimic and a miR122 inhibitor affect HCV replication similarly in 

control or RACK1-silenced Huh7.5.1 hepatocytes. (F–G) Silencing of RACK1 affects the 

activity of the IRESHCV-luciferase reporter in miR122 deficient (F) and stably transfected 

miR122 expressing (G) HEK-293T cells, respectively. Data represent the mean and s.e.m. of 

at least three independent experiments. ns: non significant; * p<0.05; ** p<0.01, *** 

p<0.001. See also Figure S5.
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Figure 6. eIF3j is required for CrPV and HCV replication, but not for cell viability
(A) Quantification by the MTS assay of the number of viable cells 5 days after treatment of 

S2 cells with the indicated dsRNAs. Two different dsRNA preparations, targeting different 

regions of the gene, were used for eIF3j. (B) Quantification by qRT-PCR of CrPV viral 

RNA levels in S2 cells treated with the indicated dsRNAs. (C) Activity of the IRESCrPV5′ in 

S2 cells silenced for the indicated genes. (D) Quantification of Huh7.5.1 cell viability after 

silencing of the indicated genes. (E) Quantification of HCV replication in Huh7.5.1 cells 

transfected with the indicated siRNAs. See also Figure S6.
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