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Abstract

We investigate the behavior of a chain of bistable units with an heterogeneous distribution of energy jumps between the folded
and unfolded states. For homogeneous chains, loaded by soft or hard devices, all units at each switching occurrence have the
same probability to unfold and it is therefore impossible to identify an unfolding pathway. Conversely, the heterogeneity represents
a quenched disorder from the statistical mechanics point of view, and is able to break the symmetry eventually generating an
unfolding pathway. We prove that the most probable pathway is realized by arranging the energy jumps in ascending order. Hence,
the mechanics of this system is able to implement a statistical sorting procedure. We quantitatively evaluate the identifiability of
the obtained unfolding pathway in terms of the variance of the heterogeneous energy jumps and the temperature. This concept is
applied to both deterministic and random distributions of energy jumps within the chain.
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1. Introduction

Chains of bistable or multistable units – with coexisting po-
tential energy minima - have recently garnered a wide interest
because of their capability to represent the behavior of several
macromolecules of biological origin and of materials or struc-5

tures with internal transitions, typically generated by micro in-
stabilities.

Concerning the biological macromolecules, the bistability
has been observed by force-spectroscopy experiments [1–5],
typically performed on polypeptides [6–8], RNA [9, 10], and10

DNA [11–14]. The observation of these complex behaviors is
very important to validate the statistical mechanical theories de-
scribing the thermo-mechanics of polymer chains [15–19]. The
modeling of bistable systems is also relevant for the understand-
ing of the muscles operating principle [20, 21]. In this case,15

bistable mechanical models are able to describe the physical
mechanisms of the two passive and active muscle regimes. In
several artificial systems, the bistability has been exploited to
obtain particular performances. We can cite bistable mechan-
ical metamaterials with a negative Poisson ratio (auxetic me-20

dia) [22] or systems for controlling the waves propagation [23].
Moreover, asymmetric energy barriers (representing a mechan-
ical diode effect) can be realized through origami structures,
which may be used as building blocks for solids with unique
functionalities [24]. Similarly, architected materials (with inter-25

nal instabilities) have been proposed to improve the energy dis-
sipation, which is crucial for having a good damage tolerance
[25]. Models based on chains of bistable units with transitions
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between two states have been also adopted to model plasticity,
hysteretic behaviors and martensitic transformations in contin-30

uum mechanics [26–32].
The paradigmatic minimal model for describing all these

physical situations is constituted of a chain of bistable units
that may assume two states, classically named folded and un-
folded configurations. The bimodal energy potential of each35

unit is therefore composed of two energy wells with different
basal energies, separated by a given energy barrier. This chain
is typically considered at a given temperature T in order to
study the effect of the thermal fluctuations on the transitions
statistics between the states. When the chain is homogeneous40

(all units have the same properties), the system behavior has
been studied in detail. Indeed, it is well known that the thermo-
mechanical response of this chain is strongly dependent on the
applied boundary conditions (see Fig.1a for details). When we
apply a given force (isotensional condition imposed by soft de-45

vices), the system is in the Gibbs ensemble of the statistical
mechanics and the force-extension response is characterized by
a plateau describing the simultaneous transitions of all the units.
On the other hand, when we prescribe the extension of the chain
(isometric condition imposed by hard devices), the system is50

in the Helmholtz ensemble of the statistical mechanics and the
force-extension response is characterized by a series of peaks
representing the sequential unfolding of the units. Moreover,
the intermediate cases, in-between the Gibbs and the Helmholtz
ensembles, have been recently studied by introducing the real55

stiffness of the adopted devices [8]. These results can be ob-
tained with the method of the spin variables, which introduces
a discrete variable (spin-like) for each unit, able to define the
potential well explored by the unit itself (folded or unfolded
state) [33–36]. This approach, originally introduced to develop60

a chemo-mechanical model of the muscle behavior [37, 38], has
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Figure 1: Folding and unfolding processes in homogeneous and heterogeneous chains. Panel a): Gibbs (isotensional) and Helmholtz (isometric) conditions applied
to homogeneous chains. Panel b): Force-extension response (homogeneous chain) for isotensional condition (with a force plateau, blue) and isometric condition
(sawtooth like, red). Panel c): average spin variables showing a synchronous unfolding in the Gibbs ensemble and a sequential unfolding in the Helmholtz one
(homogeneous chain). All spins have the same behavior, and therefore all units have the same probability to unfold at each switching occurrence (no unfolding
pathway can be identified). Panel d): plot of the quantities ∂〈 yi 〉/∂x (or ∂〈 yi 〉/∂〈x〉) versus x (or 〈x〉) for homogeneous chains. These functions are proportional
to the probability density of the position at which we can observe the unfolding transition of the i-th unit. Panel e): Scheme of an heterogeneous chain under
isometric condition where the units have different ∆Ei (energy jumps) and ki (elastic constants). Panel f): Helmholtz force-extension response, slightly modified
by the introduction of the heterogeneity. Panel g): the average spin variables under isometric condition show the unfolding pathway of the process corresponding
to the ascending order of the values ∆Ei: 3©, 1©, 4©, 2©, 5© (in this example ∆E3 < ∆E1 < ∆E4 < ∆E2 < ∆E5). Red curve: mean value 1

N
∑
〈 yi 〉 of the averaged

spins. Panel h): plot of the quantities ∂〈 yi 〉/∂x, confirming the symmetry breaking induced by the heterogeneity. Panel i): scheme of an heterogeneous chain under
isotensional condition where the units have different ∆Ei (energy jumps) and ki (elastic constants). Panel j): Gibbs force-extension response, slightly modified by
the introduction of the heterogeneity. Panel k): the average spin variables under isotensional condition show the unfolding pathway of the process corresponding
to the ascending order of the values ∆Ei: 3©, 1©, 4©, 2©, 5© (in this example ∆E3 < ∆E1 < ∆E4 < ∆E2 < ∆E5, as before). Blue curve: mean value 1

N
∑
〈 yi 〉 of the

averaged spins. Panel l): plot of the quantities ∂〈 yi 〉/∂〈x〉, confirming the symmetry breaking induced by the heterogeneity. We adopted the following parameters:
N = 5, ` = 0.5nm, T = 300K, χ = 7, ki = 0.04N/m ∀i, ∆Ei = 30KBT ∀i in the homogeneous chain and ∆E1 = 27.5KBT , ∆E2 = 32.5KBT , ∆E3 = 25KBT ,
∆E4 = 30KBT , ∆E5 = 35KBT in the heterogeneous case.
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been exploited only for homogeneous chains. Therefore, the
main aim of the present investigation is to extend these meth-
ods to the case of heterogeneous units, namely with heteroge-
neous energy jumps between the states and heterogeneous elas-65

tic stiffness of the units. The most important difference between
the homogeneous and the heterogeneous cases can be discussed
by observing the behavior of the system within both the Gibbs
and the Helmholtz ensembles. We suppose to increase gradu-
ally the force applied or the extension prescribed to a homoge-70

neous chain. We observe a progressive unfolding of the units.
However, because of the homogeneity of the chain, we can not
say what unit unfolds at each transition occurrence. Indeed,
all units have the same probability to unfold at each transition.
Conversely, if the chain is heterogeneous with respect to the75

energy difference between folded and unfolded states of the
units, we are able to identify an unfolding pathway, which is
the sequence of the unfolding processes. The heterogeneity,
representing a quenched disorder within the system, is able to
break the symmetry among the units and to generate different80

unfolding probabilities at each transition, eventually producing
an unfolding pathway. We remark that the process correspond-
ing to the complete unfolding of a chain is a probabilistic event
and therefore the observed pathway assumes a statistical char-
acter. It means that if we repeat the experiment many times, we85

can observe, as a result, different unfolding pathways. How-
ever, the heterogeneity defines different probabilities for each
pathway and therefore is able to identify the most probable un-
folding pathway for a given chain. It is worth noticing that the
symmetry breaking can be also obtained with non-local inter-90

actions between the units of the chain [39, 40]. In this Letter,
we propose a mathematical model explaining the origin of the
symmetry breaking in heterogeneous chains and we prove that
the unfolding pathway is described by the ascending order of
the energy jumps between folded and unfolded states. It means95

that the system implements a statistical sorting procedure. To
give a complete picture of this process, we also define and ap-
ply the concept of identifiability of the unfolding pathway. This
concept is based on the statistical character of the (in general
nonunique) unfolding pathway and quantifies to what extend100

it is possible to determine the most probable pathway, i.e. the
most likely observed sequence of unfolding processes in a given
experiment. We discuss some examples based on deterministic
and random sequences of heterogeneous energy jumps, to show
the generation of an unfolding pathway and the meaning of its105

identifiability.

2. The Gibbs ensemble

We consider a one-dimensional chain aligned with the x-axis
of a reference frame and made of N units, which are bistable
(in each direction, x > 0 and x < 0) and therefore can be ei-110

ther folded or unfolded (in each direction). We consider a unit
length ` in the folded state and a length χ` in the unfolded one
(χ > 1). The potential energy of the units is described by

Ui(x, yi) = vi(yi) +
1
2

ki (x − yi`)2 , (1)

where vi(±1) = 0 and vi(±χ) = ∆Ei are the energy jumps be-
tween folded and unfolded states (arbitrarily varying with i).115

The parameters ki represent the elastic constants of the units,
which are independent of the folded or unfolded state but pos-
sibly heterogeneous along the chain. Moreover, yi is the spin
variable and assumes the values in S = {±1,±χ}. The value of
yi ∈ S allows the identification of the energy well (quadratic120

potential) explored by the i-th unit (see Fig.3 in Ref.[33]). We
remark that the potential energy in Eq.(1) is symmetric with re-
spect to the coordinate x, thus describing the folding-unfolding
process in both direction of x > 0 and x < 0 [33].

While the model should be three-dimensional to exactly rep-125

resent, e.g., the behavior of real macromolecules, we adopt a
one-dimensional scheme for the sake of simplicity. In this re-
gard, the passage at x = 0 is somewhat unphysical, but we
will study extensions and forces only in the positive direction.
Since we consider a one-dimensional system, we introduced130

four potential wells (two folded and two unfolded). Indeed, the
consideration of positive and negative orientations of the ele-
ments allows modeling entropic, enthalpic, unfolding and over-
stretching regimes, as discussed in Ref.[33]. It is also important
to underline that the approximation introduced by the spin vari-135

ables allows us to perform an analytic study of the system under
the hypothesis of thermodynamic equilibrium [33–35, 37, 38].
However, if we consider the out-of-equilibrium regime, the dy-
namics of the folding-unfolding process is also influenced by
the energy barrier between the states, as classically described140

by the reaction-rate Kramers theory [41]. Concerning the Gibbs
ensemble (isotensional condition imposed by soft devices), the
total potential energy of the one-dimensional system is given by

UG
(
~x, ~y, f

)
=

N∑
i=1

Ui (xi − xi−1, yi) − f xN −

N∑
i=1

giyi, (2)

where x0 = 0 and f is the force applied to the last element
of the chain. Here, we defined ~x = (x1, ..., xN) ∈ RN and145

~y = (y1, ..., yN) ∈ SN . Moreover, the quantities gi represent
an external field ~g directly acting on the configurational state of
the elements (it acts as a chemical potential) [34]. While we
will consider ~g = 0 in the applications described in this Letter,
the vector ~g is very important from the mathematical point of150

view, to easily calculate the heterogeneous average values of the
spin variables (see Eqs.(7) and (11) below). Therefore, we can
write the partition function in the Gibbs ensemble by summing
the discrete spins and integrating the continuous coordinates

ZG( f ) =
∑
y1∈S

...
∑
yN∈S

∫
R
...

∫
R

e−
UG(~x,~y, f )

KBT dx1...dxN . (3)

We underline that the use of the spin variables, with the inte-155

gration over all the phase space, corresponds to a multivalued
energy function. This approach must be therefore justified and
this is numerically done in the recent literature [30, 33]. We let
now x1 − x0 = ξ1, x2 − x1 = ξ2,..., xN − xN−1 = ξN , from which
we get xN =

∑N
j=1 ξ j, with x0 = 0. Hence, we obtain160

ZG( f ) =

N∏
i=1

∑yi∈S

e−
v(yi )
KBT Gi

 , (4)
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where

Gi =

∫
R

exp
[
−

1
2

ki

KBT
(ξi − yi`)2 +

f ξi

KBT
+

giyi

KBT

]
dξi. (5)

This integral can be straightforwardly evaluated and we get

ZG( f ) =(8πKBT )N/2

 N∏
i=1

1
√

ki

 exp
(

N f 2

2KBTkeff

)
(6)

×

N∏
i=1

[
cosh

(
` f + gi

KBT

)
+ φi cosh

(
χ
` f + gi

KBT

)]
.

where φi = e−
∆Ei
KBT are the Boltzmann factors calculated with the

energy jumps ∆Ei and 1/keff = (1/N)
∑N

i=1
1
ki

is the inverse of
the effective stiffness. The macroscopic behavior of the chain
is described by the force-extension response and by the average165

value of the spin variables, which can be obtained through the
Gibbs partition function as follows [33, 34]

〈x〉 = KBT
∂

∂ f
log ZG, and 〈 yi 〉 = KBT

∂

∂gi
log ZG. (7)

When the external field ~g is zero, these results may be evaluated
as follows

〈x〉 =
N f
keff

+ `

N∑
i=1

sinh
(
` f

KBT

)
+ χφi sinh

(
χ` f
KBT

)
cosh

(
` f

KBT

)
+ φi cosh

(
χ` f
KBT

) , (8)

〈 yi 〉 =
sinh

(
` f

KBT

)
+ χφi sinh

(
χ` f
KBT

)
cosh

(
` f

KBT

)
+ φi cosh

(
χ` f
KBT

) . (9)

While the first expression represents the macroscopic mechan-
ical response of the system, the second one describes the con-
figurational state (folded or unfolded) of the units in terms of170

the applied force. Interestingly enough, Eqs.(8) and (9) can
be combined to give 〈x〉 =

N f
keff

+ `
∑N

i=1〈 yi 〉, which repre-
sents a spring-like behavior with the equilibrium length con-
trolled by the spin variables. An application of Eqs.(8) and
(9) can be found in Figs.1b, 1c, and 1d, where the force-175

extension relation, the average spin variables and the quanti-
ties ∂〈 yi 〉/∂〈x〉 versus 〈x〉 are represented for a homogeneous
chain with ∆Ei = ∆E ∀i (blue curves). These results describe a
synchronous unfolding of the units for a given threshold force
given by f ∗ = ∆E/[(χ − 1)`] [18, 33, 42]. It is a well known180

behavior observed in DNA [12–14], and other molecules of bi-
ological origin [43, 44]. A second example can be found in
Figs.1j, 1k, and 1l, where the same quantities have been shown
for a heterogeneous chain, as represented in Fig.1i. In this case,
while the force-extension curve is only slightly modified, the185

spin variables assume different behaviors for the different units,
proving the emergence of an unfolding pathway induced by the
heterogeneity of the metastable states energy levels. Also, the
blue curve in Fig.1k shows the mean value of the numbered
curves and is similar to the Gibbs response of the homogeneous190

case. This is true since we used the same parameter χ for all
the units of the chain. It is important to remark that, for an
heterogeneous parameter χ, we can have a different behavior

between 〈yi〉 of the homogeneous chain and 1
N

∑
〈 yi 〉 of the

heterogeneous chain. To conclude, we observe that the quan-195

tity ∂〈 yi 〉/∂〈x〉 can be considered as an approximated measure
of the probability density of the position x at which a transition
occurs between the states of the i-th unit (see below for details).
Therefore, Fig.1l confirms the identification of a unfolding se-
quence induced by the heterogeneity. The analysis of the Gibbs200

ensemble is the starting point for studying the behavior of the
Helmholtz ensemble, which is the core of our investigation as
discussed below.

3. The Helmholtz ensemble

We are now interested in the case of a two-state heteroge-205

neous one-dimensional chain within the Helmholtz ensemble
(isometric condition imposed by a prescribed extension). To an-
alyze this system, we use the Fourier relation linking the Gibbs
and Helmholtz partition functions [45, 46]

ZH(x) =

∫ +∞

−∞

ZG(−iωKBT ) exp(iωx)dω. (10)

Since the direct calculation of ZH(x) is a very complicated theo-210

retical problem, we use Eq.(10) to determine the mathematical
form of ZH(x) on the base of the analytic continuation of the
previously obtained function ZG( f ) (with imaginary values of
f ) [45, 46]. The aim of this section is to describe the macro-
scopic behavior of the chain given by the average quantities215

[33, 34]

〈 f 〉 = −KBT
∂

∂x
log ZH , and 〈y j〉 = KBT

∂

∂g j
log ZH . (11)

Therefore, we develop both ZH and ∂ZH (x)
∂g j

(with ~g = 0), as fol-
lows

ZH(x) =

∫ +∞

−∞

e−
Nω2KBT

2keff eiωx
N∏

i=1

(a + φib) dω, (12)

∂ZH(x)
∂g j

= −
i

KBT

∫ +∞

−∞

[
sinω` + φ jχ sinωχ`

]
× e−

Nω2 KBT
2keff eiωx

N∏
k=1,k, j

(a + φkb) dω. (13)

where we omitted the unimportant multiplicative constant and
we defined a = cosω` and b = cosωχ`. Hence, we calculate

N∏
i=1

(a + φib) = aN + aN−1b
∑

j

φ j + aN−2b2 1
2

∑
i, j

φiφ j

+ aN−3b3 1
3!

∑
i, j,i,k, j,k

φiφ jφk

+ ... + bNφ1 × ... × φN =

N∑
k=0

aN−kbkS k, (14)

with S 0 = 1 and

S k =
1
k!

∑
ja, jb∀a,b

φ j1 × ... × φ jk . (15)

4



The quantities S k are called elementary symmetric polynomi-
als in the variables φ1, ..., φN . To determine S k, we take the
sum of all products of the elements of the k-subsets of the N220

variables φ1,...,φN (a k-subset is a subset of a set of N elements
containing exactly k elements). Therefore, the sum in Eq.(15)
is evaluated over

(
N
k

)
terms. It follows that the direct calculation

of these quantities is computationally expensive because of the
very large number of permutations. Nevertheless, the complex-225

ity can be reduced by introducing the so-called power sums,
defined as

Ph =

N∑
t=1

φh
t =

N∑
t=1

e−
h∆Et
KBT , (16)

where, by definition, P0 = N. These quantities can be easily
calculated for h = 1, ...,N, and the direct relation between the
power sums and the elementary symmetric polynomials is given230

by the following determinant [47, 48]

S k =
1
k!

det



P1 1 0 ... 0 0
P2 P1 2 ... 0 0
P3 P2 P1 ... 0 0
... ... ... ... ... ...

Pk−1 Pk−2 Pk−3 ... P1 k − 1
Pk Pk−1 Pk−2 ... P2 P1


, (17)

which can be used to efficiently evaluate the expressions of ZH

and ∂ZH
∂g j

. The result given in Eq.(17) is an alternative form of
the so-called Newton identities or Newton-Girard formulae [49,
50]. Interestingly enough, other relations between the partition235

function calculation and certain symmetric polynomials have
been discussed for ideal quantum gases [51]. We start with the
calculation of ZH(x) and we can write

ZH(x) =

N∑
k=0

S k

∫ +∞

−∞

e−
Nω2KBT

2keff eiωxaN−kbkdω. (18)

Here, the trigonometric functions in a and b can be expanded
through complex exponential functions and the powers can be
developed by the binomial theorem. The remaining integral is

of the form
∫ +∞

−∞
e−αx2

eiβxdx =
√

π
α

e−
β2

4α , and therefore we even-
tually get the first result

ZH(x) =
1

2N

√
2πkeff

NKBT

N∑
k=0

N−k∑
s=0

k∑
q=0

S k

(
N − k

s

)(
k
q

)
× e−

keff [x+`(2s−N+k+2χq−χk)]2

2NKBT , (19)

where the S k coefficients are calculated by means of Eq.(17).
Concerning the calculation of ∂ZH (x)

∂g j
, we have

∂ZH(x)
∂g j

= −
i

KBT

N−1∑
k=0

S ( j)
k

∫ +∞

−∞

[
sinω` + φ jχ sinωχ`

]
× e−

Nω2KBT
2keff eiωxaN−1−kbkdω, (20)

where we defined

S ( j)
k =

1
k!

∑
ja, jb∀a,b, jc, j∀c

φ j1 × ... × φ jk . (21)

The quantities S ( j)
k (k = 1, ...,N − 1) are defined similarly to the240

quantities S k (k = 1, ...,N) but are based on the set containing
all φ1, ..., φN except φ j. They can be simply calculated with the
same technique based on the determinants, as shown in Eq.(17).
We first determine the power sums

P( j)
h =

N∑
t=1, t, j

φh
t =

N∑
t=1, t, j

e−
h∆Et
KBT , (22)

and then we determine the elementary symmetric polynomials245

through the following determinant

S ( j)
k =

1
k!

det



P( j)
1 1 0 ... 0 0

P( j)
2 P( j)

1 2 ... 0 0
P( j)

3 P( j)
2 P( j)

1 ... 0 0
... ... ... ... ... ...

P( j)
k−1 P( j)

k−2 P( j)
k−3 ... P( j)

1 k − 1
P( j)

k P( j)
k−1 P( j)

k−2 ... P( j)
2 P( j)

1


. (23)

Straightforward calculations allow to put Eq.(20) in the explicit
form

∂ZH(x)
∂g j

=
1

KBT

N−1∑
k=0

[(
βk + χγkφ j

)
S ( j)

k

]
, (24)

where the coefficients βk and γk are given by

βk =
1

2N

√
2πkeff

NKBT

N−k−1∑
s=0

k∑
q=0

(
N − k − 1

s

)(
k
q

)
(25)

×

[
e−

keff [x+`(2s−N+k+2χq−χk)]2

2NKBT − e−
keff [x+`(2s−N+2+k+2χq−χk)]2

2NKBT

]
.

and

γk =
1

2N

√
2πkeff

NKBT

N−k−1∑
s=0

k∑
q=0

(
N − k − 1

s

)(
k
q

)
(26)

×

[
e−

keff [x+`(2s−N+1−χ+k+2χq−χk)]2

2NKBT − e−
keff [x+`(2s−N+1+χ+k+2χq−χk)]2

2NKBT

]
.

From Eqs.(11) and (19) we can finally determine the force-
extension response (〈 f 〉 versus x) as250

〈 f 〉 =
keff

∑N
k=0

∑N−k
s=0

∑k
q=0 S k

(
N−k

s

)(
k
q

)
e−

keffϕ
2

2NKBT ϕksq

N
∑N

k=0
∑N−k

s=0
∑k

q=0 S k

(
N−k

s

)(
k
q

)
e−

keffϕ
2

2NKBT

, (27)

where ϕksq = x+`(2s−N +k+2χq−χk) and the coefficients S k

are given in Eq.(17). Similarly, the expression for the average
spin variable 〈y j〉 can be obtained from Eqs.(11) and (24) as

〈y j〉 =

∑N−1
k=0

[(
βk + χγkφ j

)
S ( j)

k

]
ZH

, (28)

where the coefficients S ( j)
k are given in Eq.(23).

Although the quenched disorder strongly complicates the255

analysis of the system within the Helmholtz ensemble, the ap-
plication of the determinant expression in Eq.(17) or Eq.(23)
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Figure 2: Identifiability I defined as in Eq.(30) as function of the distribution
of the energy jumps ∆Ei (described by the parameter ε) and the temperature T .
We adopted the following parameters: N = 5, ` = 0.5nm, T0 = 300K, χ = 7,
ki = 0.04N/m ∀i, ∆Ei
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∈ {α, α ± ε, α ± 2ε} with α = 30 and ε variable.

(determining the elementary symmetric polynomials S k or S ( j)
k

related to the Boltzmann factors with arbitrary energy jumps)
allows for an analytic treatment of the problem. In particular,260

we are able to obtain the partition function in Eq.(19) (along
with its derivative in Eq.(24)) in closed form and to derive ex-
pressions for the macroscopic observables.

A first simple application of these results can be found in
Fig.1b and 1c, where we plot 〈 f 〉 and 〈yi〉 versus the pre-265

scribed extension x for a homogeneous chain under isometric
condition (red curves). The behavior of 〈 f 〉 and 〈yi〉 can be
interpreted through a sequential unfolding of the units. This
response is in good qualitative agreement with several force-
spectroscopy measurements performed on proteins and other270

macromolecules [52–56]. We also plotted ∂〈yi〉/∂x versus x in
Fig.1d. This quantity satisfies two crucial properties: firstly,∫ +∞

0 (∂〈yi〉/∂x)dx = 〈yi〉(+∞) − 〈yi〉(0) = χ (which means that
it can be normalized); secondly, 〈yi〉 is always non-decreasing,
leading to a non-negative function ∂〈yi〉/∂x. Hence, it follows275

that ∂〈yi〉/∂x can be used as a quantity approximately measur-
ing the probability density of the position x at which a transi-
tion occurs between the states of the i-th unit. We remark that
it is not a rigorous statement but a useful practical approach to
quantify the statistics of the unfolding processes. Fig.1d shows280

that at each transition occurrence the switching probability is
the same for all units of the homogeneous chain. Therefore, no
unfolding pathway can be identified.

We describe now the behavior of a heterogeneous chain, as
represented in Fig.1e. While the force-extension curve in Fig.1f285

is slightly modified with respect to Fig.1b, we observe that the
heterogeneity of the chain, which is a quenched disorder em-
bedded in the system, is able to perform a symmetry breaking
generating an unfolding pathway. Indeed, the numbered curves
of the average spin variables in Fig.1g are able to precisely iden-290

tify what unit is unfolded at each transition, indicating the ac-
tual sequence of unfolding processes. Interestingly enough, the
red curve in the same panel shows the average value of these
numbered curves and is similar to the Helmhotz response of the
homogeneous case. This is true since we used the same param-295

eter χ for all the units of the chain. It is important to remark

that, for an heterogeneous parameter χ, we can have a different
behavior between 〈yi〉 of the homogeneous chain and 1

N
∑
〈 yi 〉

of the heterogeneous chain. Importantly, it follows that through
the spin variables, we can now analyze the unfolding pathway300

generated by the heterogeneity. This is further confirmed by the
plots of ∂〈yi〉/∂x in Fig.1h, where each curve is characterized
by one pronounced peak corresponding to the actual switching,
and other smaller peaks measuring the uncertainty in the path-
way identification (see next section for details). Moreover, the305

numerical results show that the unfolding pathway corresponds
to the ascending order of the values ∆Ei. This implies that the
equilibrium statistical mechanics of this system implements a
statistical sorting procedure. This result is independent of the
heterogeneity of the elastic constants ki since 〈 f 〉 and 〈y j〉 de-310

pend only on the effective stiffness keff.

4. Unfolding pathway identifiability

While the described identification of the unfolding pathway
may seem a simple and expected result, it is important to ob-
serve that: (i) the model elaborated mathematically explains315

how the bistable chain can implement the above introduced sta-
tistical sorting procedure, and the same methodology can be
also applied to more realistic situations with additional hetero-
geneous geometrical and/or physical parameters; (ii) the knowl-
edge of the average spin variables given in Eq.(28) is also useful320

to quantitatively evaluate the identifiability of the most proba-
ble unfolding pathway, i.e. of the most likely observed unfold-
ing sequence in a given experiment. This concept measures to
what extend we are able to identify the most probable unfold-
ing pathway, which represent the sequence of unfolding pro-325

cess observed the largest number of times if we conduct several
identical experiments.

For the sake of brevity, we develop this concept only by con-
sidering the Helmholtz ensemble. If we look at the density-
like curve ∂〈yi〉/∂x for a given unit, see Fig.1h, the identifiabil-
ity can be defined as the relative difference between the largest
peak and the second largest peak. Indeed, this difference mea-
sures the capability to properly identify the transition of that
unit with respect to the other ones. Consequently, if we con-
sider the i-th unit, we can define

Ii =
Fm

{
∂〈yi〉

∂x

}
− Sm

{
∂〈yi〉

∂x

}
Fm

{
∂〈yi〉

∂x

} , (29)

where Fm and Sm are operators extracting the largest peak and
the second largest peak, respectively, of a given function. The
identifiability of the whole unfolding process can be therefore
defined by the average value of these quantities over the N units

I =
1
N

N∑
i=1

Ii. (30)

We first apply this concept to a chain composed of N = 5
units with uniformly distributed energy jumps ∆Ei/(KBT ) ∈
{α, α ± ε, α ± 2ε}, where the parameter ε measures their dis-330

persion. The resulting identifiability I can be found in Fig.2,
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Figure 3: Unfolding pathway in heterogeneous chains with nonuniform distribution of energy jumps. We adopted the distribution ∆Ei = Peiϕ + Q with P =

(∆EN −∆E1)/(eNϕ − eϕ) and Q = (∆E1eNϕ −∆ENeϕ)/(eNϕ − eϕ) (see Eq.(31)). Panels a) and d): average spin variables 〈yi〉 for ϕ = ±1. Panels b) and e): derivatives
∂〈yi〉/∂x for ϕ = ±1. Panel c): distributions of the energy jumps for −1 ≤ ϕ ≤ +1 and with ∆E1 = 30KBT and ∆EN = ∆E5 = 38KBT . Panel f): identifiabilities Ii
and I versus ϕ. We adopted the following parameters: N = 5, ` = 0.5nm, T = 300K, χ = 7, and ki = 0.04N/m ∀i.

where it is plotted versus ε and parametrized by the tempera-
ture T . We note that I = 0 for the homogeneous case with
ε = 0, and I → 1 for increasing value of ε, being the limiting
value I = 1 related to the pathway identification without uncer-335

tainty. We also observe that increasing values of the tempera-
ture reduce the identifiability, for a constant ε. This is coherent
with the idea that the thermal fluctuations are able to reduce the
knowledge on the configurational state of the system.

A more complex example deals with a nonlinear distribution340

of energy jumps of the units. More specifically, we can con-
sider an exponential distribution described by ∆Ei = Peiϕ + Q,
where P and Q are fixed by imposing the values ∆E1 and ∆EN ,
ϕ is a free parameter defining the nonlinearity of the energy
jumps, and i is the index enumerating the units. It means that345

the distribution of energy jumps can be written as

∆Ei =
∆E1

(
eNϕ − eiϕ

)
+ ∆EN

(
eiϕ − eϕ

)
eNϕ − eϕ

. (31)

As a particular case, we observe that if ϕ→ 0, we obtain the lin-
ear distribution of energy jumps ∆Ei = ∆E1+∆EN(i−1)/(N−1),
already considered in the previous analysis. The results based
on these assumptions can be found in Fig.3. In panels a) and350

b) one can find the average spin variables and their derivatives,
respectively, for the case with ϕ = −1. In this case, the en-
ergy jumps are given by a nonlinear concave distribution, as
plotted in panel c). Similarly, in panels d) and e), we show the
results for ϕ = 1, corresponding to a nonlinear convex distri-355

bution, which is shown in panel c), as well. Finally, in panel
f) the identifiabilities are represented for each unit and for the
whole chain. It is important to observe that the nonlinearity
of the energy jumps is reflected in the spread or dispersion of
the values Ii, especially for ϕ approaching ±1. Indeed, it is360

more difficult to identify the unfolding pathway of units with
similar energy jumps (see, e.g., I4 and I5 for ϕ = −1 or I1
and I2 for ϕ = +1) than the unfolding pathway of units with
largely spaced energy jumps (see, e.g., I1 and I2 for ϕ = −1
or I4 and I5 for ϕ = +1). We also note that in the limiting365

case with ϕ→ 0, the distribution becomes linear, as previously
anticipated, and all the quantities Ii assume approximately the
same value. Coherently, the black curve in panel f), represent-
ing the average value I, shows a maximum for ϕ→ 0, proving
that the largest identifiability is achieved for linearly spaced or370

distributed energy jumps.

The applicability of the identifiability concept is twofold.
From one side, it allows a better understanding of the unfolding
pathways of proteins and other bio-macromolecules, typically
measured through force-spectroscopy techniques. In particu-375

lar, it can explain the statistical modifications or variability of
the unfolding pathway, which is sometimes depending on sev-
eral experimental conditions [57–59]. On the other side, the
identificability concept may be useful to improve the design of
heterogeneous micro- and nano-systems based on bi-and multi-380

stability, where folding and unfolding sequences represent the
response of the system and should be therefore stable to temper-
ature variations and to other structural or external parameters
[60]. The important point for the applications is that the identi-
fiability can be calculated for any set of parameters describing385

the chain, and allows therefore a parametric analysis of the sta-
bility of the most probable unfolding pathway, observed when
we conduct several identical experiments. Even if we limited
the analysis of the identifiability only to the Helmholtz case,
we can compare the two ensembles as follows. From panels h)390

and l) of Fig.1, it is not difficult to realize that for a fixed chain
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Figure 4: Unfolding pathway in randomly heterogeneous chains. Panel a): average spin variables 〈yi〉. Panel b): derivatives ∂〈yi〉/∂x. In both panels, 50 Monte-Carlo
realizations have been plotted (thin lines) together with their average values (thick lines) for a system with ∆Ei/(KBT ) = α + δni, where ni are independent and
uniform random variables in the interval (−1, 1). Panel c): identifiability I versus δ. We plotted 100 Monte-Carlo realizations (red circles) and the average value
(black solid line). We adopted the following parameters: N = 5, ` = 0.5nm, T = 300K, χ = 7, ki = 0.04N/m ∀i, α = 30 and δ = 10 (in panels a) and b) only).

the identifiability in the two ensembles is not the same and the
Helmholtz ensemble is capable to maximize this quantity. In-
deed, the variance of the peaks in panel l) is much larger than
the variance of the peaks in panel h). This result can be easily395

interpreted in terms of the differences between the Helmholtz
and the Gibbs ensemble. As a matter of fact, also for a simple
homogeneous chain, in the Gibbs ensemble we have a synchro-
nized unfolding of the units whereas in the Helmholtz ensem-
ble we have a sequential unfolding. Therefore, the Helmholtz400

unfolding, being sequential, is more adapted to separate the un-
folding events and to eventually improve the identifiability.

To conclude this discussion, we determine I for a bistable
chain with random energy jumps between the folded and un-
folded states (under isometric conditions). We assume that the405

energy jumps are given by ∆Ei/(KBT ) = α + δni, where α and
δ are fixed parameters while ni are independent and uniform
random variables in the interval (−1, 1). Of course, the pa-
rameter δ measures the stochastic spread of the energy jumps
distribution. We generate a given number of chains (Monte-410

Carlo realizations) using the previous rule to assign the energy
jumps of the units. Then, we sort the units in each chain in
such a way as to have the energy jumps in ascending order.
This is simply useful to easily compare the spin variables of
different chains, corresponding to units of the same ordered415

position. For any chain, we are able to calculate the average
spin variables 〈yi〉 and their derivatives ∂〈yi〉/∂x with respect
to the increasing extension x of the chain. Consequently, for
each chain, we can determine the corresponding identifiabil-
ity through Eq.(30). These calculations can be repeated for all420

generated Monte-Carlo realizations and the means values can
be eventually evaluated (sampling Monte-Carlo approach). The
results can be found in Fig.4. In panel a) and b) we show the
average spin variables 〈yi〉 and their derivatives ∂〈yi〉/∂x, re-
spectively, for 50 Monte-Carlo realizations of the system. The425

results of the single realizations (thin solid lines) are plotted to-
gether with their sample mean values (thick solid lines). We can
see that, with the adopted parameters, the average spin variables
allow the unfolding pathway identification also with random
energy jumps. While panels a) and b) of Fig.4 concern a fixed430

value of δ, we can perform a more complete analysis where δ
is variable over a given range. Hence, being the standard de-

viation of the energy jumps σ∆Ei = KBTδ/
√

3 proportional to
δ, we plot in panel c) the identifiability I versus δ. We used
100 Monte-Carlo realizations for each value of δ (20 values of435

δ in the range [0, 10]), represented by the red circles in panel c),
and we calculated the sample mean values of the identifiabil-
ity, represented by the solid black line. We repeated the whole
protocol several times and we proved that the solid black line,
describing the behavior of I, remains stable within an maximal440

error bar of around ±0.1. It means that the Monte-Carlo sam-
ple with 100 chains is large enough to give acceptable results.
We observe that, for random chains, relatively large values of
δ < α are necessary to obtain a good average identifiability of
the unfolding path.445

5. Conclusions

We considered the statistical and mechanical behavior of
heterogeneous chains of bistable units. Since this system is
paradigmatically important to represent several situations of
practical interest, we thoroughly analyzed its behavior in both450

isotensional and isometric conditions.
The most important achievement concerns the exact calcu-

lation of the partition function (and related quantities) within
the Helmholtz ensemble (isometric condition). In this case the
heterogeneity represents a quenched disorder, whose analysis455

is a difficult task of the statistical mechanics. We obtained the
closed form expression of the partition function thanks to the
Laplace-Fourier relation between ZH and ZG [45, 46] and using
the determinant form of the so-called Newton-Girard formulae
[47–50]. This original approach represents the core of our anal-460

ysis. We observed that for a homogeneous chain, no unfolded
pathway can be identified since all units have the same switch-
ing probability at each transition occurrence. On the other hand,
the heterogeneity breaks this symmetry and we can identify an
unfolded pathway, which is described by the ascending order465

of the energy jumps between folded and unfolded states of each
unit. It means that the system implements a statistical sorting
procedure when we simply prescribe an increasing distance be-
tween first and last units. Since this process has a statistical
character, we can define the concept of identifiability, which470

measures the capability to identify the most probable unfolding
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pathway. This concept has been applied to deterministic (lin-
ear and exponential) and random distributions of energy jumps.
The results of this work can be applied to the better interpre-
tation of the force spectroscopy measurements of biological475

macromolecules [57–59] and to the accurate design of micro-
and nano-systems based on bistable chains with specific prop-
erties [60].

The model introduced in this investigation is rather simple.
This choice permits to better discuss the theoretical origin of480

the unfolding pathway and its statistical character. Neverthe-
less, the model can be further improved to take into account
other relevant physical and geometrical features. For instance,
concerning the application to macromolecules, the method here
introduced can be generalized to deal with three-dimensional485

bistable freely jointed chains, which have been recently stud-
ied only with homogeneous units [33]. Moreover, the same
techniques can be applied to describe the behavior of polymer
chains with extensible units [34]. Although we considered here
only heterogeneous energy jumps and elastic constants, we en-490

visage to generalize this approach also to other parameters char-
acterizing the units (e.g., `, χ and so on). Further investigations
will concern the out-of-equilibrium regime of these systems.
Indeed, recent works have provided evidence that the traction
velocity applied to the chain with an hard device plays an im-495

portant role in defining the unfolding pathway [61–64]. There-
fore, it is important to fully analyze the interplay between the
distribution of energy jumps and the applied traction velocity
on the unfolding pathway. To do this the Langevin methodol-
ogy will be combined with the spin variables technique in order500

to fully describe the dynamics of the system.

Acknowledgment

We acknowledge the region “Hauts de France” for the finan-
cial support under project MEPOFIB. We also thank the anony-
mous reviewers for their valuable comments on our manuscript.505

References

[1] T. R. Strick, M.-N. Dessinges, G. Charvin, N. H. Dekker, J.-F. Allemand,
D. Bensimon, V. Croquette, Stretching of macromolecules and proteins,
Rep. Prog. Phys. 66 (2003) 1-45.

[2] F. Ritort, Single-molecule experiments in biological physics: Methods510

and applications, J. Phys. Condens. Matter 18 (2006) R531-R583.
[3] K. C. Neuman, A. Nagy, Single-molecule force spectroscopy: Optical

tweezers, magnetic tweezers and atomic force microscopy, Nat. Methods
5 (2008) 491-505.

[4] S. Kumar, M. S. Li, Biomolecules under mechanical force, Phys. Rep.515

486 (2010) 1-74.
[5] H. Miller, Z. Zhou, J. Shepherd, A.J.M. Wollman, M.C. Leake, Single-

molecule techniques in biophysics: A review of the progress in methods
and applications, Rep. Prog. Phys. 81 (2018) 024601.

[6] T.E. Fisher, A.F. Oberhauser, M. Carrion-Vazquez, P.E. Marszalek, J.M.520

Fernandez, The study of protein mechanics with the atomic force micro-
scope, Trends Biochem. Sci. 24 (1999) 379-384.

[7] H. Li, A.F. Oberhauser, S.B. Fowler, J. Clarke, J.M. Fernandez, Atomic
force microscopy reveals the mechanical design of a modular protein.
Proc. Nat. Acad. Sci. USA 97 (2000) 6527.525

[8] G. Florio, G. Puglisi, Unveiling the influence of device stiffness in single
macromolecule unfolding, Scientific Reports 9 (2019) 4997.

[9] M. Bonin, R. Zhu, Y. Klaue, J. Oberstrass, E. Oesterschulze, W. Nellen,
Analysis of RNA flexibility by scanning force spectroscopy, Nucleic
Acids Res. 30 (2002) e81.530

[10] J. Lipfert, G.M. Skinner, J.M. Keegstra, T. Hensgens, T. Jager, D. Dulin,
M. Köber, Z. Yu, S.P. Donkers, F.-C. Chou, R. Das, N. H. Dekker,
Double-stranded RNA under force and torque: Similarities to and striking
differences from double-stranded DNA, Proc. Natl. Acad. Sci. USA 111
(2014) 15408.535

[11] S.B. Smith, L. Finzi, C. Bustamante, Direct mechanical measurements of
the elasticity of single DNA molecules by using magnetic beads, Science
258 (1992) 1122.

[12] J.F. Marko, E.D. Siggia, Stretching DNA, Macromolecules 28 (1995)
8759-8770.540

[13] S.M. Smith, Y. Cui, C. Bustamante, Overstretching B-DNA: The Elas-
tic Response of Individual Double-Stranded and Single-Stranded DNA
Molecules, Science 271 (1996) 795.

[14] K.R. Chaurasiya, T. Paramanathan, M.J. McCauley, M.C. Williams, Bio-
physical characterization of DNA binding from single molecule force545

measurements, Phys. Life Rev. 7 (2010) 299-341.
[15] O.K. Dudko, Decoding the mechanical fingerprints of biomolecules, Q.

Rev. Biophys. 49 (2016) 1-14.
[16] M. Rief, J.M. Fernandez, H.E. Gaub, Elastically Coupled Two-Level Sys-

tems as a Model for Biopolymer Extensibility, Phys. Rev. Lett. 81 (1998)550

4764.
[17] F. Manca, S. Giordano, P. L. Palla, F. Cleri, L. Colombo, Theory and

Monte Carlo simulations for the stretching of flexible and semiflexible
single polymer chains under external fields, J. Chem. Phys. 137 (2012)
244907.555

[18] F. Manca, S. Giordano, P. L. Palla, F. Cleri, L. Colombo, Two-state the-
ory of single-molecule stretching experiments, Phys. Rev. E 87 (2013)
032705.

[19] S. Giordano, Helmholtz and Gibbs ensembles, thermodynamic limit and
bistability in polymer lattice models, Continuum Mech. Thermodyn. 30560

(2018) 459.
[20] M. Caruel, L. Truskinovsky, Physics of muscle contraction, Rep. Prog.

Phys. 81 (2018) 036602.
[21] M. Caruel, P. Moireau, D. Chapelle, Stochastic modeling of chemi-

cal–mechanical coupling in striated muscles, Biomechanics and Model-565

ing in Mechanobiology 18 (2019) 563-587.
[22] A. Rafsanjani, D. Pasini, Bistable auxetic mechanical metamaterials in-

spired by ancient geometric motifs, Extreme Mechanics Letters 9 (2016)
291-296.

[23] S. Katz, S. Givli, Solitary waves in a bistable lattice, Extreme Mechanics570

Letters 22 (2018) 106-111.
[24] H. Fang, K. W. Wang, S. Li, Asymmetric energy barrier and mechanical

diode effect from folding multi-stable stacked-origami, Extreme Mechan-
ics Letters 17 (2017) 7-15.

[25] S. Liu, A. I. Azad, R. Burgueño, Architected materials for tailorable shear575

behavior with energy dissipation, Extreme Mechanics Letters 28 (2019)
1-7.

[26] I. Müller, P. Villaggio, A model for an elastic-plastic body, Arch. Ration.
Mech. Anal. 65 (1977) 25.

[27] B. Fedelich, G. Zanzotto, Hysteresis in discrete systems of possibly in-580

teracting elements with a double-well energy, J. Nonlinear Sci. 2 (1992)
319-342.

[28] G. Puglisi, L. Truskinovsky, Thermodynamics of rate-independent plas-
ticity, J. Mech. Phys. Sol. 53 (2005) 655.

[29] M. Caruel, J.-M. Allain, L. Truskinovsky, Mechanics of collective unfold-585

ing, J. Mech. Phys. Sol. 76 (2015) 237.
[30] Y.R. Efendiev, L. Truskinovsky, Thermalization of a driven bi-stable FPU

chain, Continuum Mech. Thermodyn. 22 (2010) 679.
[31] A. Mielke, L. Truskinovsky, From Discrete Visco-Elasticity to Contin-

uum Rate-Independent Plasticity: Rigorous Results, Arch. Ration. Mech.590

Anal. 203 (2012) 577-619.
[32] I. Benichou, S. Givli, Structures undergoing discrete phase transforma-

tion, J. Mech. Phys. Sol. 61 (2013) 94.
[33] S. Giordano, Spin variable approach for the statistical mechanics of fold-

ing and unfolding chains, Soft Matter 13 (2017) 6877-6893.595

[34] M. Benedito, S. Giordano, Thermodynamics of small systems with con-
formational transitions: The case of two-state freely jointed chains with
extensible units, J. Chem. Phys. 149 (2018) 054901.

9



[35] M. Benedito, S. Giordano, Isotensional and isometric force-extension re-
sponse of chains with bistable units and Ising interactions, Phys. Rev. E600

98 (2018) 052146.
[36] M. Benedito, S. Giordano, Full Statistics of Conjugated Thermodynamic

Ensembles in Chains of Bistable Units, Inventions 4 (2019) 19.
[37] M. Caruel, J. M. Allain, L. Truskinovsky, Muscle as a Metamaterial Op-

erating Near a Critical Point, Phys. Rev. Lett. 110 (2013) 248103.605

[38] M. Caruel, L. Truskinovsky, Statistical mechanics of the Huxley-
Simmons model, Phys. Rev. E 93 (2016) 062407.

[39] L. Truskinovsky, A. Vainchtein, The origin of nucleation peak in transfor-
mational plasticity, J. Mech. Phys. Sol. 52 (2004) 1421.

[40] G. Puglisi, Hysteresis in multi-stable lattices with non-local interactions,610

J. Mech. Phys. Sol. 54 (2006) 2060.
[41] H. A. Kramers, Brownian motion in a field of force and the diffusion

model of chemical reactions, Physica 7 (1940) 284-304.
[42] G. I. Bell, Models for the specific adhesion of cells to cells, Science 200

(1978) 618-627.615

[43] M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, C. Bustamante,
Folding-Unfolding Transitions in Single Titin Molecules Characterized
with Laser Tweezers, Science 276 (1997) 1112-1116.

[44] J. Zakrisson, K. Wiklund, M. Servin, O. Axner, C. Lacoursière, M. Ander-
sson, Rigid multibody simulation of a helix-like structure: the dynamics620

of bacterial adhesion pili, Eur. Biophys. J.44 (2015) 291-300.
[45] F. Manca, S. Giordano, P. L. Palla, R. Zucca, F. Cleri, L. Colombo, Elas-

ticity of flexible and semiflexible polymers with extensible bonds in the
Gibbs and Helmholtz ensembles, J. Chem. Phys. 136 (2012) 154906.

[46] F. Manca, S. Giordano, P. L. Palla, F. Cleri, On the equivalence of ther-625

modynamics ensembles for flexible polymer chains, Phys. A Stat. Mech.
Its Appl. 395 (2014) 154-170.

[47] H. W. Tumbull, Theory of Equations, Oliver and Boyd, Edinburgh and
London, 1947.

[48] H. W. Gould, The Girard-Waring power sum formulas for symmetric630

functions and Fibonacci sequences, Fibonacci Quart. 37 (1999) 135-140.
[49] D. G. Mead, Newton’s Identities, Amer. Math. Monthly 99 (1992) 749-

751.
[50] D. Kalman, A Matrix Proof of Newton’s Identities, Math. Mag. 73 (2000)

313-315.635

[51] H.-J. Schmidt, J. Schnack, Partition functions and symmetric polynomi-
als, Am. J. Phys. 70 (2002) 53-57.

[52] M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, H. E. Gaub, Re-
versible unfolding of individual titin immunoglobulin domains by AFM,
Science 276 (1997) 1109-1112.640

[53] D. B. Staple, S. H. Payne, A. L. C. Reddin, H. J. Kreuzer, Stretching and
unfolding of multidomain biopolymers: A statistical mechanics theory of
titin, Phys. Biol. 6 (2009) 025005.

[54] A. Prados, A. Carpio, L. L. Bonilla, Sawtooth patterns in force-extension
curves of biomolecules: An equilibrium-statistical-mechanics theory,645

Phys. Rev. E 88 (2013) 012704.
[55] L. L. Bonilla, A. Carpio, A. Prados, Theory of force-extension curves for

modular proteins and DNA hairpins. Phys. Rev. E 91 (2015) 052712.
[56] D. De Tommasi, N. Millardi, G. Puglisi, G. Saccomandi, An energetic

model for macromolecules unfolding in stretching experiments, J. R. Soc.650

Interface 10 (2013) 20130651.
[57] S. W. Englander, L. Mayne, The case for defined protein folding path-

ways, Proc. Nat. Acad. Sci. USA 114 (2017) 8253-8258.
[58] M. Yang, B. Yordanov, Y. Levy, R. Brüschweiler, S. Huo, The Sequence-

Dependent Unfolding Pathway Plays a Critical Role in the Amyloido-655

genicity of Transthyretin, Biochemistry 45 (2006) 11992-12002.
[59] A. Yadav, S. Paul, R. Venkatramani, S. R. K. Ainavarapu, Differences

in the mechanical unfolding pathways of apo- and copper-bound azurins,
Scientific Reports 8 (2018) 1989.

[60] M. Caruel and L. Truskinovsky, Bi-stability resistant to fluctuations, J.660

Mech. Phys. Sol. 109 (2017) 117.
[61] M. S. Li, and M. Kouza, Dependence of protein mechanical unfolding

pathways on pulling speeds, J. Chem. Phys. 130 (2009) 145102.
[62] C. Guardiani, D. Di Marino, A. Tramontano, M. Chinappi, F. Cecconi,

Exploring the Unfolding Pathway of Maltose Binding Proteins: An In-665

tegrated Computational Approach, J. Chem. Theory Comput. 10 (2014)
3589-3597.

[63] C. A. Plata, F. Cecconi, M. Chinappi, A. Prados, Understanding the de-
pendence on the pulling speed of the unfolding pathway of proteins, J.

Stat. Mech. (2015) P08003.670

[64] C. A. Plata, Z. N. Scholl, P. E. Marszalek, A. Prados, Relevance of the
Speed and Direction of Pulling in Simple Modular Proteins, J. Chem.
Theory Comput. 14 (2018) 2910-2918.

10


	Introduction
	The Gibbs ensemble
	The Helmholtz ensemble
	Unfolding pathway identifiability
	Conclusions

