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Abstract 

Ion mobility spectrometry (IMS) has become popular to characterize biomolecule folding. 

Numerous studies have shown that proteins that are folded in solution remain folded in the 

gas phase, whereas proteins that are unfolded in solution adopt more extended conformations 

in the gas phase. Here, we discuss how general this tenet is. We studied single-stranded 

DNAs (human telomeric cytosine-rich sequences with CCCTAA repeats), which fold into an 

intercalated motif (i-motif) structure in a pH-dependent manner, thanks to the formation of 

C‒H+‒C base pairs. As i-motif formation is favored at low ionic strength, we could 

investigate the ESI-IMS-MS behavior of i-motif structures at pH ~5.5 over a wide range of 

ammonium acetate concentrations (15 mM to 100 mM). The control experiments consisted of 

either the same sequence at pH ~7.5, wherein the sequence is unfolded, or sequence variants 

that cannot form i-motifs (CTCTAA repeats). The surprising results came from the control 

experiments. We found that the ionic strength of the solution had a greater effect on the 

compactness of the gas-phase structures than the solution folding state. This means that 

electrosprayed ions keep a memory of the charging process, which is influenced by the 

electrolyte concentration. We discuss these results in light of the analyte partitioning between 

the droplet interior and droplet surface, which in turn influences the probability of being 

ionized via a charged residue-type pathway or a chain extrusion-type pathway. 



Introduction 

In addition to the well-known Watson-Crick double helix, nucleic acids can form several 

non-canonical structures, which are likely involved in the regulation of gene expression. One 

of them is the i-motif (intercalated motif) structure [1-4], formed by cytosine-rich DNA 

sequences, wherein the strands are inter-connected by intercalated hemiprotonated C‒H+‒C 

base pairs (Figure 1). i-motif formation is pH-dependent, and the pH of mid-transition from 

i-motif to unfolded structure depends on the C-tract length. The interest in i-motifs was 

boosted by recent reports showing that i-motifs can form in vitro in at physiological pH [5], 

in the genomic DNA of the nuclei of fixed cells [6] and in DNA constructs introduced in the 

nuclei of living cells [7].  

The typical biophysical methods to probe the presence of i-motifs in solution are UV 

absorption spectroscopy [8] (i-motifs have a higher molar extinction coefficient at 295 nm 

than single strands), circular dichroism spectroscopy [9] (maximum  at 295 nm and 

minimum at 260 nm), and NMR (imino 1H signals around 15—16 ppm for the C‒H+‒C base 

pair, and unusual inter-residue sugar-sugar NOEs H1'-H1', H1'-H2" and H1'-H4' [1]). Here 

we evaluated whether electrospray ion mobility mass spectrometry could be used to assess 

whether a sequence is folded or not into an i-motif in solution. 

 

 

Figure 1. A) Hemiprotonated C‒H+‒C base pair. B) The i-motif structure of the human 

telomeric DNA sequence d(CCCTAA)3CCCT resolved using NMR (BDP: 1EL2) [10].  

 

The coupling of ion mobility spectrometry to mass spectrometry [11-14] has indeed opened 

new avenues for the characterization of biomolecules by mass spectrometry. The mass alone 

does not indicate the conformation, but ion mobility spectrometry (IMS) separates ions 



according to their electrophoretic mobility in a buffer gas, and hence, for each charge state, 

according to their compactness. IMS thus directly probes the conformation of gas-phase ions. 

For biomolecule mass spectrometry, the other historical landmark was the introduction of 

electrospray ionization [15, 16], which transfers intact analytes to the mass spectrometer 

directly from solutions and confers them one or several charges [17]. It was soon realized that 

non-covalent interactions could be preserved upon electrospray [18, 19], and this paved the 

way for “native” ESI-MS [20], wherein one uses the least possibly energetic instrumental 

conditions to preserve weak non-covalent bonds present in solution, and then probe the 

secondary, tertiary and/or quaternary structures in the gas phase.  

An important fundamental question underlying native MS is thus how biomolecule structures 

are affected while the analytes get charged and desolvated during electrospray. As 

electrospray generally preserves intramolecular non-covalent interactions, and as ion mobility 

spectrometry probes gas-phase compactness, it seems logical that ion mobility spectrometry 

should probe the compactness of solution phase structures. Several studies have validated this 

logic by showing that folded structures in solution end up compact in the gas phase, while 

unfolded structures in solution end up much more extended in the gas phase [21-23]. 

However, the electrospray (charging) mechanism also plays a role in the gas-phase 

conformation. Indeed, unfolded structures in solution generally end up adopting higheer 

charge states than disordered structures [24-27], and Coulomb repulsion between like charges 

may also cause gas-phase unfolding. If Coulomb repulsion overcomes the native 

intramolecular interactions, the resulting conformation in the gas-phase will be extended. The 

opposite is also possible: if Coulomb repulsion is not high enough, non-native non-covalent 

contacts (not pre-existing in solution) can form in the gas phase and the resulting 

conformation will be compact. Such gas-phase compaction at low charge states was observed 

in partially re-neutralized unfolded proteins [28, 29], in antibodies [30, 31], and in nucleic 

acid duplexes [32]. A fundamental question in electrospray is thus also what drives a large 

molecule to adopt a given charge state. 

Here we report intriguing effects of the electrospray process, modulated by the electrolyte 

concentration more than by solution pre-folding, on the ion mobility of DNA polyanions. We 

showed previously by IRMPD ion spectroscopy that electrosprayed i-motif structures 

preserved the C‒H+‒C base pairs, at least for low charge states (4- to 6-) [33]. However, 

Fernandez-Lima and collaborators had found no difference in ion mobility profiles of the 

human telomeric i-motif sequence d(CCCTAA)3CCC in 10 mM NH4OAc as a function of the 



pH [34], casting doubt on the potential utility of ESI-IMS-MS to study i-motif solution 

folding. Here, we show that the ion mobility spectra depend strongly on the electrolyte 

(NH4OAc) concentration used for electrospray, and we show the importance of control 

experiments (different pH, NH4OAc concentrations, activation energies, and experiments 

with control sequences) to infer information on the solution structures from ion mobility 

measurements.  

 

Materials and Methods 

DNA 

All strands were purchased from either IDT (Leuven, Belgium, HPLC purification) or 

Eurogentec (Seraing, Belgium, with RP cartridge – Gold™ purification), dissolved in 

nuclease-free water from Ambion (Applied Biosystems, Lennik, Belgium), and used without 

further purification. The stock concentrations were determined using the Beer-Lambert law. 

The absorbance was recorded at 260 nm on a Uvikon XS, and molar extinction coefficients 

calculated using the IDT website by applying the Cavaluzzi-Borer Correction [35].  

dT6 (MM = 1763.2) and dTG4T (MM = 1863.3) were used to verify the instrument each day 

for the determination of collision cross section (CCS) values (DTCCSHe = 306 Å² for dT6
2-, 

see supporting information of [36], and 788 Å² for [(dTG4T)4(NH4)3]5- [37]). The 

[(dTG4T)4(NH4)3] G-quadruplex was formed in 150 mM ammonium acetate from 200 µM 

single strand, incubated overnight at 4°C. Final solution used in IMS analysis contained 150 

mM NH4OAc, 2.5 µM dT6 and 5 µM [(dTG4T)4(NH4)3]. The C-rich oligodeoxynucleotides 

d[(CCCTAA)3CCC] (21C, MM =6200.1), d[(CTCTAA)3CTC] (21CTC, MM = 6260.2), 

d[(TAACCC)5] (30C, MM = 8928.9) and d[(TAACTC)5] (30CTC, MM = 9003.9) were used 

for the native IM-MS study. Samples were prepared at 20 µM single strand concentration in 

15, 50 or 100 mM ammonium acetate at two pH values 5.5 and 7.5, and let fold overnight at 

4 °C. Acetic acid or ammonium hydroxide were used to adjust the pH. The pH was measured 

using a Multi9420 digital pH conductivity meter (WTW, Weilheim, Germany) calibrated on 

the day of measurement. 

Ion mobility spectrometry-mass spectrometry 

Experiments were performed on an Agilent 6560 DTIMS-Q-TOF instrument (Agilent 

Technologies, Santa Clara, CA), equipped with the dual-ESI source operated in the negative 



ion mode. The DNA solutions were injected at 20 µM strand concentration. The pre-IMS 

introduction conditions were optimized for softness as described elsewhere [38]. The drift 

tube was filled with helium and the pressure was fixed at 3.89 ± 0.01 Torr, measured 

accurately by a capacitance diaphragm gauge (CDG-500, Agilent Technologies). The 

following IMS parameters were used fragmentor 250 V, trap fill time 1000 µs, trap release 

time 100 µs, trap entrance grid delta (TEGD) 2 V. For the CCS determination, the step-field 

experiment included 5 segments (1 min each) where drift tube entrance voltage was - 600 V, 

- 700 V, - 800 V, - 900, V, - 1000 V. For CIU experiments, the drift tube entrance voltage 

was fixed at - 600 V, and the activation was performed by varying the TEGD voltage from 1 

to 12 V.  

The IMS data were extracted using the IM-MS Browser software version B.06.01 (Agilent 

Technologies). The arrival time and signal intensity was extracted for the m/z range of 

interest (encompassing the isotopic distribution of the non-adducted species) using in-house 

RStudio script. For the CIU data processing, the intensities in each IMS segment were 

normalized by the maximum intensity in a given segment. All figures were prepared using 

SigmaPlot or OriginPro softwares. 

In order to estimate the CCS values the ion mobility peaks were fitted by Gaussian functions 

using PeakFit v4.11 (Systat Softwares, San Jose, CA). The arrival time for the center of each 

peak was determined for each segment and plotted as a function of the inverse of the drift 

voltage V, to extract the CCS value from the slope according to Equation (1).  

𝑡 𝑡 CCS ∙
µ

∙
∆

     (1) 

Where 𝑡  is the measured arrival time, t0 is the time spent outside the drift tube and is 

deduced from the intercept, 𝐿 length of the mobility cell (L = 78.1 cm), 𝜇 is the reduced mass 

of the analyte/gas couple, 𝑘  the Boltzmann constant, 𝑇 the temperature (T = 23.5 ± 1 °C), p 

the pressure in the drift tube (p = 3.89 ± 0.01 Torr), 𝑁 2.687 10 𝑚 , 𝑃 760 𝑇𝑜𝑟𝑟 

and 𝑇 273.15 𝐾.  

Circular dichroism spectroscopy 

CD experiments were performed on solutions prepared following the same protocol as for 

ESI-IM-MS. CD spectra were recorded on spectrophotometer Jasco J-1500 at 20°C. The 



measured CD ellipticity (θ, in milidegrees) was transformed to molar circular dichroic 

absorption (ε) using Equation (2):  

∆𝜀  
  

      (2) 

where 𝐶 is the DNA concentration in mol/L (C = 2  10-5 mol/L) and 𝑙 is the path length in 

cm (l = 0.2 cm). 

Thermal denaturation 

The UV absorbance of DNA sequences was recorded as a function of temperature using 

SAFAS UV mc2 spectrophotometer (Monaco). The DNA concentration in the ammonium 

acetate solutions was 10 µM, to avoid saturation. The temperature ramp was 0.2 °C/min from 

4 to 90 °C and back to 4 °C. The absorbance was monitored at 295 nm.  

Nuclear magnetic resonance 

NMR spectra were recorded on a Varian Unity INOVA 700 MHz spectrometer equipped with 

a cryo-probe unit. One-dimensional proton spectra were recorded at 10 °C using the pulsed-

field gradient DPFGSE for water suppression. The oligonucleotides d[(CCCTAA)3CCCT] and 

d[(CTCTAA)3CTC] were prepared at 0.25 mM concentration in 0.2 mL of solution (H2O/D2O 

9:1) containing 15, 50 or 150 mM ammonium chloride at pH 5.7 and 7.0. NMR data were 

processed on an iMAC running iNMR software (www.inmr.net).  

 

Results 

Solution folding of the human telomeric i-motif sequence d(CCCTAA)3CCC, and 

controls 

The well-studied telomeric C-rich DNA sequence 21C (d(CCCTAA)3CCC) was used as a 

model i-motif structure. We analyzed 21C at pH = 5.5 and at pH = 7.5. We also studied the 

control DNA sequence 21CTC (d(CTCTAA)3CTC), which is not supposed to form an i-motif 

at any pH. We conducted classical spectroscopy analyses to confirm the formation / absence 

of i-motif structure in electrospray-compatible NH4OAc solutions of different ionic strengths.  

The CD spectra of 21C at pH 5.5 showed a profile characteristic of i-motif structure with a 

positive peak around 290 nm and negative peak at 260 nm, and were very similar for 



solutions with different ionic strengths (Figure 2A). The CD spectra recorded at pH 7.5 

presented the decrease in intensity and blue shift of positive peak – a profile assigned to 

random coil structure in previous studies [39] (Figure 2B). Also, CD spectra at pH 7.5 were 

similar between solutions with different ammonium acetate concentration. The CD spectra of 

21CTC at pH 5.5 (Figure 2C) or 7.5 (supplementary Figure S1) were similar with CD of 

21C at pH 7.5, i.e. the profile corresponding to a random coil structure.  

The thermal denaturation data showed the predominance of the i-motif structure at pH 5.5 at 

room temperature for all ammonium acetate concentrations (Figure 2D). Interestingly, 

decreasing the NH4OAc concentration increases the i-motif stability: the melting transition 

occurs at a higher temperature in 15 mM NH4OAc (black curve) than in 100 mM NH4OAc 

(blue curve). This is a known behavior of i-motif structures [40]: in i-motifs there must be a 

subtle balance between screening of the phosphate groups and changes in local pKa of the 

cytosines, and thus in contrast to double helices, i-motifs are more stable at lower ionic 

strength. The melting analysis of 21C at pH 7.5 and 21CTC at pH 5.5 showed low 

absorbance at 295 nm and no melting, suggesting the absence of i-motif (Figure 2E-F). 

NMR spectroscopy was further employed to investigate the i-motif formation in solutions 

with ammonium concentrations ranging from 15 to 150 mM. The sequence 

d(CCCTAA)3CCCT (named 22CT), containing one additional thymine at 3’-end, was used 

for these experiments because it has been well characterized by NMR [10, 41]. The imino and 

aromatic proton regions of 22CT and 21CTC are shown in Figure 2G-I. Regardless of the 

ionic strength, 22CT forms a well-defined i-motif structure at slightly acidic pH (5.7), 

characterized by three well-resolved imino protons peaks between 15 and 15.5 ppm, 

corresponding to the six intercalated C‒H+‒C pairs (Figure 2G). In addition, the aromatic 

proton region of 22 CT at pH 5.7 matches well with that reported in literature for the 

telomeric i-motif structure [10]. Regardless of ammonium concentration, no imino proton 

signals (whether for C‒H+‒C base pairs or any other base pairs) were detected for 22CT at 

neutral pH, as well as for 21CTC at acidic pH (Figure 2H-I), clearly indicating the absence 

of secondary structures in these cases. The DINAMelt web server was used to find possible 

sub-optimal structures [42]. The only predicted sub-optimal structures had at most two AT 

base pairs, with melting temperatures below -30°C in 100 mM salt. It does not mean that 

single strand do not adopt some preferential conformations involving the stacking of adjacent 

bases [43]. In fact, CD data show a positive band around 270-280 nm and a negative one at 

250 nm, indicating that the single strand is not totally a random coil. 



Therefore, 21C at pH = 7.5 and 21CTC at pH = 5.5 do not form i-motif structures and will be 

considered as our negative controls. An important point for the coming discussion is that the 

NMR spectra or CD spectra of both the i-motifs and the single-stranded DNAs are unaffected 

by the NH4
+ concentration (this also holds for the aromatic proton region at 7—8 ppm). Thus, 

if IM-MS data reflect the solution folding, we would anticipate the IM-MS results to be the 

same at all NH4OAc concentrations. 

 

Figure 2. A-C) CD spectra of 21C at pH 5.5 (A), 21C at pH 7.5 (B) and 21CTC at pH 5.5 (C) 

in 15, 50 and 100 mM of NH4OAc. D-F) Thermal denaturation (Tm) monitored by the 

absorbance at 295 nm for 21C at pH 5.5 (D), 21C at pH 7.5 (E) and 21CTC at pH 5.5 (F) in 

15, 50 and 100 mM of NH4OAc. G-I) 1H NMR spectra of 21C at pH 5.5 (G), 21C at pH 7.5 

(H) and 21CTC at pH 5.5 (I) in 15, 50 and 150 mM of NH4Cl. CD and melting data for 

21CTC at pH = 7.5 are shown in Supplementary Figure S1. 
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Electrospray mass spectra of the 21-mer i-motif and its controls 

Mass spectra of 21C and 21CTC acquired at three (15, 50 and 100 mM) concentrations of 

ammonium acetate show different charge state distributions (CSD) (Figure 3). The highest 

average charge states were observed for the solutions with the lowest ionic strength. This 

phenomenon was previously reported for oligonucleotide in the negative mode [44, 45]. 

Moreover, the charge state distributions at 15 mM NH4OAc are bimodal, independently of 

whether we have an i-motif or a random coil structure in solution.  

For proteins, bimodal CSD are usually interpreted as due to the coexistence of two structural 

ensembles in solution [25, 27]: a low-charge state distribution corresponding to the folded 

ensemble, and a high-charge state distribution corresponding to the unfolded ensemble. This 

is not what we observe with our nucleic acids. Here, the CSDs of fully folded i-motif and 

random coil structures show the same behavior at each concentration of ammonium acetate. 

However, the NH4OAc concentration has the greatest influence on the CSDs, despite the 

solution structures are unchanged (see NMR data). In particular, the bimodal charge 

distribution appears only at low (15 mM) NH4OAc concentration. ESI-MS spectra for 50 mM 

NH4OAc and higher presented a narrow CSD (ion with 4- to 6- charges). The traditional 

interpretation of charge state distributions in terms of solution folding would lead to 

erroneous conclusions regarding the nucleic acid folding status in solution. 

 



 

Figure 3. Mass spectra acquired for folded i-motif 21C at pH 5.5 (A) and its controls 21C at 

pH 7.5 (B) and 21CTC at pH 5.5 (C) in 15, 50 and 100 mM NH4OAc. The data for 21CTC at 

pH = 7.5 are shown in Supplementary Figure S2. 
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Ion mobility spectrometry of the 21-mer i-motif and its controls 

The ions with the lowest charge states (4- and 5-) have CCS values below 700 Å² (Figure 4), 

indicative of a compact structure, whatever the solution folding state. On close inspection, a 

very slight shift is observable between folded 21C (pH = 5.5) and unfolded 21C (pH = 7.5) 

(Table 1), but the relative shift in the peak maximum is only of 1.5% for the 4- ions and 2.5% 

for the 5- ions. The CCS values of ions with 4- and 5- charge states do not show significant 

changes with the NH4OAc concentration (Table 1). Similarly, the CCS values of the 4- and 

5- ions of 21CTC at pH 5.5 were similar at all NH4OAc concentrations.  

Ions with 7- and 11- charge states all have CCS values ≥ 1000 Å2, independently of the 

solution conformations (Figure 4 and Table 1). Presumably, this charge density disrupts most 

intramolecular interactions, native and non-native ones alike. As a result, the DNA structures 

get elongated. However, the presence of highly charged ions strongly depends on initial 

solution ionic strength: high charge states are mostly produced at lower NH4OAc 

concentration.  

Finally, the intermediate charge state 6- showed the greatest sensitivity to solution folding. 

When the i-motif is formed in solution, the CCS distribution shows a single peak at 714 ± 3 

Å² (mean value over all NH4OAc concentrations and standard error on the estimate of the 

mean). For all controls, the CCS is larger and the CCS distribution shows multiple peaks. 

However, the CCS profile of the unfolded structure is very sensitive to the NH4OAc 

concentration, even though the solution NMR spectra are the same: at 15 mM NH4OAc, the 

6- ion conformations are more compact; at 100 mM NH4OAc, only an extended form (CCS = 

897 Å²) is observed. Note that the previous study Fernandez-Lima and collaborators [34], 

who found no marked effect of the pH on the ion mobility of 21C, had been carried out in 10 

mM NH4OAc, so our results are consistent with theirs. 

 



 

Figure 4. CCS distributions for ions with different charge states of folded i-motif 21C at pH 

5.5 (A) and its controls 21C at pH 7.5 (B) and 21CTC at pH 5.5 (C) in 15, 50 and 100 mM 

NH4OAc. All distributions are scaled to 1 for visualization of the least abundant charge 

states. The data for 21CTC at pH = 7.5 are shown in Supplementary Figure S2. 
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Table 1. Helium collision cross sections (DTCCSHe, in Å²) at 23.5 °C for the sequence 21C 

(d(CCCTAA)3CCC) in different solution conditions, at different charge states. When standard 

deviation is provided, N=3 (except for 21C (6-) 50 mM pH 5.5 N = 5). 

Solution conditions 

CCS 

(4-) / 

Å² 

CCS 

(5-) / 

Å² 

CCS (6-) / 

Å² 

CCS 

(7-) / 

Å² 

CCS 

(8-) / 

Å² 

CCS 

(9-) / 

Å² 

[NH4OAc] 

= 15 mM 

pH = 5.5 

(folded) 

631.5 

± 3.3  

653.9 

± 2.7 
717 ± 6 984 1061  1111  

pH = 7.5 

(not folded) 

640.9 

± 0.5 

671.1 

± 1.3 

740 ± 4 

(first peak) 
984 1063 1111 

[NH4OAc] 

= 50 mM 

pH = 5.5 

(folded) 

630.3 

± 1.6 

654.4 

± 2.9   
717 ± 5  983 1042 1106 

pH = 7.5 

(not folded) 

638.9 

± 0.9 

668.5 

± 4.7 

733 ± 26 

(first peak) 
987 1062 1108 

[NH4OAc] 

= 100 mM 

pH = 5.5 

(folded) 
631.2 

± 2.8 /  

655.5 

± 2.9 /  

705 ± 12 

(almost no 

signal)  

No 

signal 

No 

signal 

No 

signal 

pH = 7.5 

(not folded) 
641.9 

± 2.5 

673.5 

± 2.5 

897 ± 7 

(main 

peak) 

987 1074 
No 

signal 

 

 



Effect of pre-IMS ion activation 

21-mers 

The 6- charge state of the 21-mers, which is the most sensitive to solution folding and to 

solution conditions (NH4OAc concentration), is also remarkably sensitive to collisional 

activation prior to IMS. The collision-induced unfolding (CIU) upon increasing the trap 

entrance grid delta (TEGD) voltage can be visualized in Figure 5 for the 6- charge state, and 

in Supplementary Figure S3 for charge states 5- and 7- of 21C.  

The CIU profile of the i-motif structure (pH = 5.5) is similar for all NH4OAc concentrations 

(although the signal is higher at low NH4OAc concentration), and shows a transition around 

TEGD = 7 V (Figure 5A-C). In contrast, the CIU profile of the random coil controls varies 

significantly with the NH4OAc concentration. First, the profile reflects the different fraction 

of compact/extended structures at the start (TEGD = 1 V), which varies with the NH4OAc 

concentration (Figure 5D-I). At 15 mM NH4OAc the compact conformation predominates, 

and unfolds around TEGD = 5 V (Figure 5D). Thus, this compact conformation is not the 

same as a folded i-motif, and we propose that these compact structures result from a 

nonspecific compaction upon electrospray, with weaker intramolecular interactions than the 

pre-folded i-motif.  

The control DNA sequences 21C at pH = 7.5 in 50 mM NH4OAc and 21CTC at pH = 5.5 in 

15 or 50 mM NH4OAc present the wide variety of conformations, with CCSHe values from 

700 to 900 Å2, at TEGD up to 5 V, and final extension at TEGD ≥ 5 V (Figure 5E,G,H). 

Finally, only the extended conformation (CCSHe = 897 Å2) is present when random coils are 

sprayed from 100 mM NH4OAc, independently of the pre-IMS activation (Figure 5F,I).  

In summary, the CIU profiles can highlight the differences between folded and unfolded 

structures, but a caveat is that the CIU profiles of the solution random coils markedly depend 

on the NH4OAc concentration. At low NH4OAc concentration, the shape of the CIU plot of 

the random coil could be easily mistaken for one of a folded i-motif of lesser stability.  



 

 Figure 5. Heatmap reconstructions showing the collisional induced unfolding (CIU) for 

charge states 6- of i-motif structures 21C at pH 5.5 (A, B, C) and its controls 21C at pH 7.5 

(D, E, F) and 21CTC at pH 5.5 (G, H, I) in 15, 50 and 100 mM of NH4OAc (top to bottom). 

The data for 21CTC at pH = 7.5 are shown in Supplementary Figure S2. 

 

30-mers 

To see if these observations hold for longer sequences, we studied the 30-mer analogues 30C 

(d(TAACCC)5) and 30CTC (d(TAACTC)5). In solution at pH = 5.7, 30C forms an i-motif 

structure and 30CTC a random coil, according to CD and melting experiments 

(Supplementary Figure S4). The mass spectra, CCS distributions at low collision energy, 

and CIU profiles for charge state 8- are shown in Figure 6, and the CCS values are given in 

Table 2. Again, the charge state distribution becomes bimodal at low NH4OAc concentration. 

The CCS distributions show a series of charge states with compact conformations (5-, 6- and 

7-, < 1000 Å²), a series of charge states with extended conformations (charge states 10- and 

higher, > 1400 Å²)), and charge states that lie in between (8-, 9- and, at [NH4OAc] = 100 

mM, 7-).  
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Interestingly, like the 6- charge state of the 21-mers, these charge states are those lying at the 

intersection of the bimodal charge state distribution of low NH4OAc concentration and again, 

the conformations ending up under these charge states depends on the NH4OAc 

concentration. Finally, these three charge states were also the most sensitive to collision-

induced unfolding (see Figure 6 for 8-, Supplementary Figure S5 for 7-). Thus, the most 

analytically useful charge states on the point of view of CIU are also those giving the most 

puzzling behavior with regard to their sensitivity to electrolyte concentration in addition to 

solution pre-folding. Also, these charge states have a very low abundance at physiological 

ionic strength (which would correspond to [NH4OAc] = 150 mM).  

 

Table 2. DTCCSHe at 23.5 °C values calculated for different charge states of i-motif (30C at 

pH 5.7) and random coil (30CTC at pH 5.7) in 15, 50 and 100 mM of NH4OAc. Each CCS 

value was calculated on a single sample.  

[NH4OAc] 

Sequence 

(structure in 

solution) 

CCS 

(5-) / 

Å² 

CCS 

(6-) / 

Å² 

CCS 

(7-) / 

Å² 

CCS 

(8-) / 

Å² 

CCS 

(9-) / 

Å² 

CCS 

(10-) / 

Å² 

15 mM  

30C  

(i-motif) 
819  851  904  1013  1165  1217  

30CTC  

(unstructured) 
846 882 939 1145 1398 1506 

50 mM  

30C  

(i-motif) 
820  850  907  1009  1145  

No 

Signal 

30CTC  

(unstructured) 
842 883 928 1275 1393 1504 

100 mM  

30C  

(i-motif) 
820 853 874  

No 

Signal 

No 

Signal 

No 

Signal 

30CTC  

(unstructured) 
844 886 1111 1276 1404 1521 

 



 

Figure 6. Mass spectra acquired for folded i-motif 30C (A) and its control 30CTC (B) at pH 

5.5 in 15, 50 and 100 mM of NH4OAc. The CCS distributions for ions with different charge 

states of 30C (C) and 30CTC at pH 7.5 (E) in 15, 50 and 100 mM of NH4OAc. The heatmaps 

show the collisional induced unfolding (CIU) for charge states 8- of i-motif structures 30C 

(D) and its control 30CTC (F) at pH 5.5 in 15, 50 and 100 mM of NH4OAc. 
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Discussion 

Non-folded DNA solution structures become compact in the gas phase at the main 

charge states produced from “native” conditions 

All spectroscopy results demonstrate an that i-motif structure is formed by 21C at pH 5.5 in 

solutions with 15, 50 and 100 mM NH4OAc at room temperature, and that there is no i-motif 

for 21C at pH 7.5 or with the control sequence, whatever the NH4OAc concentration. So, 

compaction of random coils observed in the ion mobility data is not coming from solution 

pre-folding. We investigated several possible scenarios that could explain the compactness of 

gas-phase ion structures produced from the random coils at low ionic strength. 

“Unstructured” does not necessarily mean “extended”. Could random coil structures exhibit a 

compact conformation in solution? Ren et al. recently investigated the hydrodynamic radius 

of folded and unfolded 21C analogue at different ionic strengths (0 – 100 mM NaCl) and pH 

values, using fluorescence correlation spectroscopy [46]. They found a hydrodynamic radius 

of 1.8 nm for the folded i-motif (pH = 5.5) and of 2.2 nm for the random coil (pH = 7.5), 

independently of the ionic strength. Converting radii to surface areas would translate into a 

CCS change of +50% in the random coils compared to the i-motifs. The gas-phase CCS 

values are much closer than that, and depend on the ionic strength, so the gas-phase 

compactness of random coil structures is not explained by their compactness in solution. 

Compaction occurs upon electrospray.  

Second, could the pH of droplets change significantly and induce i-motif formation from the 

random coil structures during ESI process? The Cook and Dugourd groups demonstrated that 

indeed the pre-sprayed pH value changes during ESI process [47, 48], but in negative ion 

mode, droplets initially at pH = 7.5 undergo an increase in their pH, up to 8.0. This would 

further disfavor i-motif formation. We also calculated that, at pH values between 5.5 and 7.5, 

ammonium acetate was always mostly in the ionic forms OAc- and NH4
+ (at most, there is 

16% HOAc at pH = 5.5, and 2% NH3 at pH = 7.5). Besides, compaction was seen at pH = 5.5 

for the control sequences unable to form i-motifs. 

Thus, compaction must occur elsewhere than in the droplet’s bulk. For the lowest charge 

states (4- and 5- for the 21-mers, 5- to 7- for the 30-mers), compaction may occur in the gas 

phase because, if the Coulomb repulsion is low enough, forming new nonspecific non-

covalent interactions can be energetically favorable. Pre-IMS activation fails to extend the 



conformations at these charge states. We observed this phenomenon previously for DNA and 

RNA duplexes, at the main charge states produced from 100 mM or 150 mM NH4OAc [32]. 

G-quadruplexes of low charge states (5- for 22-mers) can also get more compact upon 

activation [49]. Lower CCS values for lower charge states of single strand (sprayed from 

water, 70% methanol and 1% trimethylamine) were also reported recently [50]. However, for 

the charge states that are sensitive to CIU, the energetically most favored conformation is the 

extended one, and thus the compact conformations must have been kinetically trapped 

following the electrospray process. In summary, if such compact structures can be formed 

neither in the bulk, nor in the gas phase, it means that they must result from processes 

occurring in the “intermediate regime” [51] of electrospray droplets, i.e. at the charged 

water/air interface. 

How to spot the differences between specifically folded gas-phase structures and 

nonspecifically compacted gas-phase structures  

First, differences can only be spotted when working with the least energetic pre-IMS 

conditions. The optimization of all parameters for softness was particularly crucial for the 

smallest system (21-mer): with the default instrument tuning, we would have found all the 6- 

ions extended (right part of the CIU plot). For larger systems, the number of charge states 

increases, and thus the chances of finding one that will be discriminatory will increase. 

Second, even in soft conditions, the differences in CCS are extremely small (as low as 1% for 

the lowest charge states), and can only be evidenced by carrying a control experiment in 

solution conditions that affect the folding, for example here by changing the pH. Note 

however that varying the ionic strength is not a good option to alter the solution folding for 

control experiments, because the electrolyte concentration largely affects the CCS via other 

electrospray-related phenomena discussed below.  

Recording the entire CIU profile helps spotting differences: although the low-energy CCS 

profile can be similar at some charge states and NH4OAc concentrations, and although the 

high-energy profile may be the same, the collision energy at which unfolding occurs reflects 

the strength of intramolecular non-covalent bonds present following electrospray. However, 

this can be revealed only for a limited range of charge states, high enough for Coulomb 

repulsion to cause significant CCS increase, but not too high, otherwise all relevant 

intramolecular interactions would be disrupted already at the lowest energies. Annoyingly, 

the most interesting charge states for CIU are the least abundant of the charge state 



distributions, and they are almost not present at physiological ionic strength, mimicked at 

[NH4OAc] ≈ 150 mM.  

The NH4OAc concentration affects the gas-phase ion structures through its influence on 

the electrospray charging pathways 

The observations we need to explain are summarized as follows:  

 Bimodal charge distributions can be obtained even when the DNA in solution is fully 

unstructured, and thus the charge state distribution cannot be used to infer solution 

folding/unfolding fractions of DNA. 

 At high electrolyte concentrations, the fraction of the high-charge state distribution 

decreases, and the average charge state of each distribution decreases. At 50 or 100 mM 

NH4OAc, it is not possible to differentiate folded and unfolded structures based on the 

charge state distribution. 

 At low electrolyte concentrations, the fraction of the high-charge state distribution 

increases. Although it increases less for the folded structures than for the unfolded ones, it 

is not possible to recommend an electrolyte concentration at which the charge state 

distribution would convey quantitative information on the folded/unfolded fractions in 

solution. 

 The non-folded DNA solution structures that end up in the low charge state distribution 

are nearly as compact in the gas phase as initially folded structures. 

 The “critical” charge state(s) where Coulomb repulsion almost balances intramolecular 

interactions is both the most sensitive to internal energy changes (collision-induced 

unfolding) and the most sensitive to electrospray effects (electrospray-induced unfolding 

or electrospray-induced compaction). 

 The electrolyte concentration influences the fraction of compact/extended conformations 

ending up under these critical charge states: at low electrolyte concentrations, the fraction 

of compact conformation under these critical charge states increases. 



We interpret these results in light of a partitioning of the analytes between two electrospray 

pathways, understood here as limiting cases: a charged residue pathway (CRM), wherein the 

analyte ions stay in the droplet interior until the last moment, and a chain ejection pathway 

(CEM), wherein the analyte ions migrate to the surface of the charged droplets, where they 

can change conformation and then lose contact with the droplet (Figure 7). The fraction of 

the analytes undergoing CRM vs. CEM depends on:  

(1) The folding state in solution. Folded structures are generally thought to take the CRM 

pathway. This is likely to be valid for nucleic acids as well: nucleobases are more 

hydrophobic than the sugar-phosphate backbone, and thus base pairing and stacking 

buries hydrophobic groups while hydrophilic groups are in contact with the solvent. 

Counterions in solution (here: NH4
+) partially neutralize the phosphate groups [52], and 

thus the final charges state are much lower than the number of phosphate groups.  

(2) The concentration of electrolyte. Electrolytes and analytes compete for the excess charges 

on the surface of the electrospray droplets [53, 54]. If the electrolyte concentration is high 

enough, analytes that are not particularly surface-active will stay in the bulk of the 

droplets, and will thus be more likely to take the CRM pathway. However, if the 

electrolyte concentration is decreased, the electrolyte may not be present in sufficient 

amounts to provide all the excess charges on the surface of the droplets, and ionic 

analytes will contribute populating the droplet surface. As a result, a higher fraction of 

analytes may end up taking the CEM pathway. We currently don’t know how the cations 

partition between the center and the surface of negative droplets, and thus how phosphate-

cation interactions is affected at the droplet surface or at the droplet/air interface. We 

however presume that cation concentration close to the negative surface the droplets is 

lower than in the bulk, and that for this reason higher charge states are produced by the 

CEM (fewer phosphate groups neutralized). The folding state in solution also influences 

the probability to take the CEM pathway, as exposure of hydrophobic residues may 

enhance surface activity. Yet our results show that, for nucleic acids, the folding state in 

solution has a lesser influence than the electrolyte concentration.  

 



 

Figure 7. Electrospray ionization of unfolded DNA: illustration of the partitioning between 

the CRM and CEM pathways at different electrolyte concentrations, which affects the 

resulting charge state distributions and the population ending up under the critical charge 

states in-between the two distributions. The mass spectra are those of 21CTC at pH = 5.5 

(random coil). (A) When the sprayed solution contains low electrolyte concentration, lack of 

electrolyte charge carriers on the droplet surface is partially compensated by the negatively 

charged DNA. In turn, the presence of charged DNA on the droplet surface makes the 

ionization via a chain ejection model (CEM) more probable. Another fraction of DNA, 

remaining in the bulk, is ionized via the charged residue (CRM) pathway. (B) When the 

sprayed solution contains high electrolyte concentration, the charge density on the droplet 

surface is mostly provided by electrolyte, and the DNA has a lesser tendency to reach the 

surface and to be ionized by the CEM pathway. The major fraction of DNA remains in the 

bulk and is ionized via CRM. Both charge state distributions shift to lower values when the 

electrolyte concentration increases. As a consequence, under the critical charge state 6-, the 

fraction of ions having undergone CEM (extended) is larger when sprayed from high 

electrolyte concentrations, and the fraction of ions having undergone the CRM (compact) is 

larger when sprayed from low electrolyte concentrations.  
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Electrolyte concentration effects: nucleic acids vs. proteins 

Given that these mechanisms should be general, why are electrospray effects (electrolyte 

concentration effects) so prominent for nucleic acids, but remained under the radar for 

proteins? The main difference lies in the nature of the charge carriers. Nucleic acids carry 

multiple negative charges in solution, at each phosphate group. They can thus serve as excess 

charge carriers on the surface of electrospray droplets in the negative mode. If a nucleic acid 

is close to the surface when the droplet fissions, it will be entrained in the “intermediate 

regime” of electrospray [51], a highly charged solvated environment in which it can change 

conformation, unfold, and extend if the Coulomb repulsion is high enough. This intermediate 

regime may be close to the chain ejection model (CEM) [55]. Note that in positive mode, 

nucleic acids can never carry as many charges as in the negative mode [34], even in the 

presence of supercharging additives [45]. The explanation is that they have no reason to sit on 

the surface of a positively charged droplet and thus no chance to undergo CEM. 

In bulk solution, the phosphate groups are partially neutralized by electrolyte cations, and the 

extent of neutralization depends on the ionic strength. Some folding motifs can involve cation 

or proton binding to the bases, but nucleic acids still carry a net negative charge. Folding can 

thus reduce the propensity to undergo CEM, but not totally prevent it if the electrolyte 

concentration is low enough. This is why a fraction of the i-motif (pH = 5.5) ends up taking 

high charges in 15 mM NH4OAc. Conversely, having an unfolded nucleic acid structure in 

solution is not sufficient to ensure that ionization occurs through the CEM pathway, and thus 

gain high charges and extended conformations. Unfolded nucleic acids indeed remain very 

hydrophilic because the phosphate groups are distributed all along the backbone, and they 

would thus tend to stay in the droplet center rather than at the surface if possible. Unfolded 

structures thus also undergo CRM, and by doing so they attain low charge states and can even 

undergo gas-phase compaction by forming new non-native hydrogen bonds.  

Proteins, in contrast, usually have a clearer partitioning between the CRM and CEM pathway, 

depending on whether they are folded or unfolded in aqueous solution. Unfolded proteins 

usually expose many hydrophobic residues to the solvent. This increases their surface 

activity, and thus their propensity to take the CEM pathway. Folded proteins, on the other 

hand, bury hydrophobic residues in their center and display hydrophilic ones on their solvent 

accessible surface area, and are thus more likely to undergo the CRM. When the ionic 

strength decreases, for most proteins the partitioning does not change, because they have both 



acidic and basic residues, and the counter-ion effects of the electrolytes apply to both. 

However, very acidic proteins behave like nucleic acids: when sprayed at low ionic strength 

in negative mode, folded acidic proteins take up many charges, and this results in gas-phase 

unfolding [56].  

In summary, the same principles of analyte partitioning between the CRM and CEM 

pathways apply to nucleic acids and proteins alike, but because the nature and relative 

strength of the noncovalent interaction forces and the distribution of the charge carriers differ, 

the typically observed outcome differs.  

 

Conclusion 

By studying nucleic acids, which have different distributions of charge carriers on their 

backbone than proteins, we reveal some general features of electrospray mechanisms, which 

influence the interpretation of ion mobility data for native mass spectrometry. The gas-phase 

conformations are intimately tied to the electrospray charging mechanism, and the charging 

mechanism is itself intimately tied to the solution structure (the folding status and the nature 

of the exposed residues). Whether folded or non-folded structures in solution end up at low or 

high charge states depends on the nature of the charge carriers and on the competition with 

electrolytes to serve as excess charge carriers in the electrospray droplets. This process can be 

understood in the framework of a partitioning of the analyte between the droplet bulk and the 

droplet surface, which then influences the probability that the analyte is ionized via the 

charged residue mechanism (CRM) or the chain ejection mechanism (CEM), respectively. In 

turn, whether biomolecules at each charge state end up compact or extended in the gas phase 

depends on the balance between Coulomb repulsion and intramolecular forces, and on how 

much internal energy was provided to overcome rearrangement barriers.  

Our study highlights the importance of control experiments to interpret ion mobility results to 

assign whether a biomolecule was initially folded or unfolded in solution. The controls 

include studying the dependence of ion mobility spectra on the activation conditions, and 

carrying out experiments with mutant sequences, ideally of the same size, having a known 

folding status in solution. However, before ascribing the effects of solution parameters 

(electrolyte concentration, pH, presence of additives,…) to an effect on the solution folding 

status, it is important to check the extent to which these solution parameters may also 



influence the electrospray charging process. When bimodal distributions are observed in 

native MS, it does not always mean that two conformational ensembles are present in 

solution. Varying the electrolyte concentration is a useful test to check the possibility of a 

competition between different electrospray charging mechanisms, before interpreting the 

results in terms of solution conformations. Much remains to be learned, however, on the 

partitioning of cations, anions, and neutral co-solutes between the droplet bulk and surface, 

how they interact with one another in each of these phases, and how these phenomena 

influence the electrospray process.   
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