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1. Introduction  

 
  Basic considerations on transient heating and dynamic response of an 

evaporating droplet are discussed.  

  It seems that thermal exchange inside the droplet has an important effect 

on transient behavior and on the vaporization stability. A two-layer model is 

proposed here to take into account heat transfer inside the droplet (assuming a 

finite heat exchange coefficient between both layers).  

  High frequency combustion instability in liquid rocket engines is a result 

of coupling between combustion processes and the chamber acoustics. Droplet 

evaporation is one possible driving mechanism of combustion instability.  

  In order to investigate this possibility, we consider an evaporating droplet 

submitted to an acoustic field. The objective of the study is to determine 

droplet response.  
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2  Two-layer model for droplet transient heating 
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Temperature profiles inside the liquid droplet for three models 
a)       Conductive heat exchange  (Law & Sirignano, 1977 [21]) 

b)       Infinite thermal conductivity (cf. Chin & Lefebvre, 1985 [7]) 

Two-layer model (Present work)  
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-          -  With no evaporation, we have ,                       and we find           
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-         -  For one layer:                                              , and we find evaporation with a droplet at 

uniform temperature: 
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 - If we assume coefficients                    and the Spalding parameter BT  to be constant. The 

parameter BT  associated with heat exchange can be deduced from the mass Spalding parameter 

BM. In the particular case Le=1,                   ,and  we obtain  
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3. Analysis of frequency response characteristics  

V ’

T ’, p ’

Droplet at a velocity node  

in a closed cavity  

       Vddtt,V'pdVdtt,V'pt,V'qN
t,Vt,V


2

Response factor: 

For sinusoidal oscillations with the same period  

        , where                are modulus and  

     the phase difference between q’ and p’. 

 

  cosp̂q̂N pq ˆ,ˆ
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A vaporizing drop of radius r, continuously  

supplied by a steady flow rate      .  M

The mean droplet of Heidmann  

and Wieber  
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The case of a droplet at uniform temperature  

without external flow  
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Droplet with a temperature field (without convection): two-layer model  
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Influence of  for liquid Nusselt  

number equal to 2:  
 MLL BDck  1ln33
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4. Conclusions and prospects: 

A linearized model is developed on the basis of Heidmann and Wieber theory . 

A dynamic model is investigated on the basis of the two previous models, and 

is then used in the stability analysis to determine the complex transfer function 

and the response factor of a vaporizing droplet submitted to small periodic 

perturbations. Only the case of a pressure perturbation is considered.  

 In every case the results shows the important effect of thermal exchange 

inside the droplet on the vaporization stability. 

 

To continue these investigations, it should be interesting: 

- To conceive a N-layer model to compare with the two-layer model and find 

the volume fraction  

- To study the effect of convection due to relative velocity gas/droplet 

- For the future, to validate numerically the results 
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who has performed the numerical calculation for this report and to Yves MAURIOT who has verified 

equations 

 

 


