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SUBGROUP GROWTH OF VIRTUALLY CYCLIC RIGHT-ANGLED
COXETER GROUPS AND THEIR FREE PRODUCTS

HYUNGRYUL BAIK, BRAM PETRI AND JEAN RAIMBAULT

ABSTRACT. We determine the asymptotic number of index n subgroups in virtually cyclic
Coxeter groups and their free products as n — o0.

1. INTRODUCTION

Given a finitely generated group I'" and a natural number n, the number s, (") of index n
subgroups of T' is finite. This leads to the question how, given a group, the number s,(T")
behaves as a function of n and which geometric information about the group is encoded in it.
It is quite rare that an explicit expression for s, (I") can be written down and even if so, the
expression one obtains might still be so complicated that it’s hard to extract any information
out of it. As such, one usually considers the asymptotic behavior of s, (I") for large n.

In our previous paper [I], we considered the factorial growth rate of s, (I") for right-angled
Artin and Coxeter groups. That is, we studied limits of the form

o os(s(T)
n—0 nlog(n)

In the case of right-angled Artin groups we were able to determine this limit explicitly and in
the case of right-angled Coxeter groups, we determined it for a large class of groups. Moreover,
we conjectured an explicit formula for this limit. Our methods were mainly based on counting
arguments.

1.1. New results. In this paper, we further study the case of right-angled Coxeter groups.
We consider a very specific sequence of such groups: virtually cyclic Coxeter groups and their
free products. The upshot of this is that we can access much finer asymptotics than we can
in the general case.

Recall that the right-angled Coxeter group associated to a graph G with vertex set V' and
edge set E is given by

LY%(G) = {0y, ve V|02 =eVYv eV, [04,00] = e V{v,w} € E).

Since Miiller’s results [15] already cover all finite groups, we focus on the infinite case. It
turns out that it’s not hard to classify infinite virtually cyclic right-angled Coxeter groups.
Indeed they are exactly those groups whose defining graph is a suspension over a complete
graph /C, on r € N vertices (see Lemma. Let us denote these graphs by A,.

Our first result is that for a virtually cyclic Coxeter group, an explicit formula for its number
of subgoups can be written down. In this formula and throughout the paper (whenever no
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confusion arises from it), sy; will denote the number index 27 subgroups of (Z/27Z)" and is
given by

5@ -2)

s = (B = o)

forall j =0,...,r.

Corollary Let r € N and let

[ =T%%(A,).
Then
sp(l)=n |1+ Z 2 sy |+ Z 27 53,
O<y<r oy<r
s.t. 27 |n s.t. 20t n
for all n e N,

One thing to note in the formula above is that the number of subgroups is not a monotone
function in n: if n is divisible by a large power of 2 then there is a jump. In particular, no
smooth asymptote is to be expected for this sequence. This is very different from the situation
for non-trivial free products of virtually cyclic right-angled Coxeter groups[l:

Theorem Let m € Nxo, r1,...,7m € N and
= *ﬁlI‘COX(An).
Then there exist explicit constants Ar, Br > 0 and Cr € Q (see Deﬁnition so that
$n(T) ~ Ap n'*C" exp(Br v/n) nI™~L.
as n — 0.

For the sake of simplicity, we have not included finite factors in the free product above.
But, using Miiller’s results [15], the theorem above can easily be extended to also allow free
products with finite factors.

Because the definitions of the constants Ap, Br and Cr (especially the former) are rather
lengthy, we will postpone them to Section [6.2 We do however note that they behave nicely
with respect to free products. That is

AFZﬁA”, BF:iBrl and CF:iCTl'
=1 =1 I=1

where A, = Apcox( An)» Bro= Breox(y,) and Cr = Croox( A,,)- The values for some low
complexity cases are

IRecall that for functions f,g: N — R the notation f(n) ~ g(n) as n — o indicates that f(n)/g(n) — 1 as
n — .
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Exact values Numerical values
r A, B, G A, B,
0 7= exp (—3) 2 —3| 0.1210... 2
1 5= -ep(—]) 2v2 —3| 0.01457... 2.8284...
2| smomen (%) 2v6 3 | 67020-1077 44721
3 | swromemsevs &P (%) 8 4 |5.0248-107% 8

TABLE 1. The first four values of A,, B, and C,.

We derive the asymptote above from the number of permutation representations of I'.
Define

hy(T) = [Hom(T', &,,)|,
where &,, denotes the symmetric group on n letters. We have:
Theorem Letry,...,mm €N and
I = 5%, T (A,,),
Then
hn(T) ~ Ap n°T exp(Br v/n) nI™.

as n — 0.

Note that this asymptote does hold in the case where m = 1. Moreover, in the case m =1
and r = 0, it recovers the asynmptote implied by the classical result of Chowla, Herstein and
Moore [3].

The results above are all based on the fact that the exponential generating function for the
sequence (h,(I")), converges. In fact, it follows from [Il, Proposition 2.1] that the exponential

generating function for this sequence converges if and only if I' is virtually abelian. Let us
write I' = T'C%(4,.) and

200 hn(r) n
Gr(x) - n=0 n! v
We have:

Theorem 4.1l Let r € N. Then

r

. —$,i/2 . 2] :
Grla =TT (1) o (-2 50+ 222

7=0

where sq; = Soj ((Z/2Z)").

Besides asymptotic information on the sequence (h,,(I'°**(A,))),, Theorem 4.1]also allows
us to derive the following recurrence for this sequence:
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Corollary Let r € N and write
hn,r = hn(FCOX(AT))'
Then

hoyrr Z Ponjel 1,0 ﬁ(_l)fj,ﬁfj&
| _ |
n eelr\{0} (n— le])! Jj=0
<

n+1 Qj—|6| 24 5 +e
2 J k,1 k,2

7=0 c¢el, k;é]
€5,1=E€42
=€y, 3=0

hn+172.7'+17|s| r 1 i
’ . (9 2j _1)Ek,1+Ek,2
+Z Z (n+1—27+1 —[¢])! si - (2/ +27) H( 1)

j=0 e€el, k#j
€j,1=E€52
=¢g;,3=0

hs1-3.2ifef,r Jerate
— 2] k,1 k,2
Z Z (n+1-3-27 —|¢])! H

7=0 e€l, k#j
€5,1=E€42
=€y, 3=0

for allm = 0, with the initial conditions
hoyr =1 and hy ., =0 for allm <0,

where I, = ({0, 1}”1)3, lel = Xj—o(€j1 + €52 +€53) 27 for all ¢ € I, and sq; = 39;((Z/2Z)").

1.2. Idea of the proof. First of all, we derive a closed formula for the number of permutation
representations h,(I') of an infinite virtually cyclic right-angled Coxeter group (Proposition
3.5). Even though this expression is reasonably explicit, it seems hard to use it directly to
extract information on the asymptotic behavior of the sequence.

Instead, we use it to derive the exponential generating function G, (x) for the sequence. We
do this by deriving recurrences for factors that appear in the expression, which then lead to
an ordinary differential equation for the generating function G, (x).

Once we have determined G,(x), we use estimates on a contour integral to estimate its
coefficients. It turns out that G,(x) is what is called H-admissible, which means that classical
results due to Hayman [§] allow us to determine the asymptotic behavior of its coefficients.
Concretely, in Theorem [6.5| we prove an asymptote for a class of functions that contains G ().

This then leads to Theorem To obtain the asymptote for s, (I") we use the fact that,
when I is a non-trivial free product, h,(I") grows so fast that most of the permutation repre-
sentations of I' need to be transitive.

1.3. Notes and references. The first work on the number of permutation representations
of a group goes back to the fifties of the previous century. In [3], Chowla, Herstein and Moore
determined the asymptotic behavior of h,(Z/27) as n — oo. Their work was generalized by
Moser and Wyman in [11} [12] to finite cyclic groups of prime order and by Miiller in [I5] to
all finite groups. Miiller proved that for a given finite group G, we have

hn(G) ~ Rag n~ Y2 exp Z SdElG) nd/1G| (n!)1,1/|G|
d||G|

as n — o0, where Rg > 0 is a constant only depending on G.
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The subgroup growth of non-abelian free groups can be derived from Dixon’s theorem on
generating the symmetric group with random permutations [5]. In [14], Miiller determined
the subgroup growth of free products of finite groups. In [I3], Miiller also determined the
asymptotic number of free subgroups in virtually free groups. More recently, Ciobanu and
Kolpakov studied connections between such counts for (Z/2Z)*3, the RACG associated to the
graph on 3 vertices with no edges, and other combinatorial objects [4]. The subgroup growth
of surface groups was determined by Miiller and Schlage-Puchta in [16], which was generalized
to Fuchsian groups by Liebeck and Shalev in [9]. For a general introduction to the topic of
subgroup growth we refer to the monograph by Lubotzky and Segal [10].

There is also a vast body of literature available on the asymptotics of the coefficients in
power series. In the case of the exponential generating functions of finite groups, Miiller
[15] uses a set of techniques developped by Hayman [8] and Harris and Schoenfeld [7]. Our
generating function also resembles the functions that were considered by Wright in [19] [1§].
For more background on these techniques we refer the reader to [17, [].

Acknowledgement. We are very grateful to an anonymous referee for proposing a simplified
proof of Lemma [3.2] and spotting a crucial mistake in a previous version of Proposition

2. PRELIMINARIES

2.1. Notation and set-up. Given n € N, set [n] := {1,...,n}. Given a set A, S(A) will
denote the symmetric group on A and e € &(A) will denote the trivial element. We will write
S, = 6([n)).
We let
Z(A) = {r € 6(A); n? = e}
be the set of involutions in &(A) and will again write Z,, = Z([n]). Given k < n/2, we write
I, for the subset of Z,, consisting of involutions with k& 2-cycles.

If U ¢ &, is a subset, we will denote the centralizer of U in &,, by Z(U) and the subgroup
of &,, generated by U by (U). Moreover, if V c &,, is another subset, we will write

Zy(U) = Z(U) A V.

Given a finite graph G we will denote its vertex and edge sets by V(G) and E(G) respectively.
I'°°X(G) will denote the associated right-angled Coxeter group. That is

FCOX(Q) = {0y, vEV(G)| 02 = e Vv e V(G), [04, 0] = e V{v,w} € E(G)).

2.2. The exponential generating function. Let G be a finitely generated group. The
exponential generating function for the seqeuence hy,(G) is well known (see for instance [15]).
Let us write

|
= !
for this exponential generating function. It takes the following form:
Lemma 2.1. Let G be a finitely generated group. For all x € C we have

Fg(x) = exp (Z Si(iG) x’) .

i=1
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3. VIRTUALLY CYCLIC RIGHT-ANGLED COXETER GROUPS

3.1. Classification. Now we specialize to virtually cyclic right-angled Coxeter groups. An
example of such a group is FCOX(.AT). Here, for r € N, A, is the graph obtained by taking the
completee graph K, and attaching two vertices that share an edge with each vertex in KC,. but
not with each other. For example, A consists of two vertices that do not share an edge and
Ay is the line on three vertices.

We have

TC%(A,) ~ (Z/27 + 727 x (Z/27)" .

since the infinite dihedral group (Z/27Z * Z/2Z) has an index 4 subgroup isomorphic to Z,
[Co%(A,) is indeed virtually cyclic.

Our first observation is that all infinite virtually cyclic right-angled Coxeter groups are of
form above:

Lemma 3.1. Let T' be an infinite virtually cyclic right-angled Coxzeter group. Then there
exists an r € N so that

I =T%%(A,).

Proof. Suppose T' = T¢°%(G) for some finite graph G.

Label the vertices of G by 1,...,s. Since I' is assumed to be infinite, at least one pair of
vertices of G does not share an edge. Let us suppose these are the vertices 1 and 2. We will
argue that all other vertices need to be connected to both 1 and 2 and also to each other.

First suppose vertex j > 2 is not connected to the vertex 1. Then o10; and o102 are two
infinite order elements. Moreover, there do not exist m,n € N so that (o102)™ = (010;)".
This violates being virtually cyclic.

We conclude that vertices 3,...,s are all connected to both 1 and 2. Now suppose there
exists a pair of vertices j,k > 2 that do not share an edge. Then o102 and o0y, are a pair of
infinite order elements without a common power.

Putting the two observations together implies the lemma. O

3.2. A closed formula. Since the case of finite right-angled Coxeter groups is well under-
stood, we will from hereon consider TC%%(A,.).

In order to obtain the asymptotes we are after, we are in need of a closed formula for the
number of permutation representations of I'°“*(A,). To this end, we first record two lemmas
on the permutation representations of (Z/27)".

Lemma 3.2. (a) Let H < Sor be a transitive subgroup so that H ~ (Z/2Z)". Then
Zz,.(H) = H.

(b) Suppose | < r and let ¢ € Hom ((Z/2Z)", &) be so that ¢ ((Z/2Z)") acts on [2']
transitively. Then

v ((Z/22)") ~ (Z/2Z)".

Proof. For item (a) we note that Zg,, (H) is an abelian group that acts transitively on [2"],
from which it follows that it acts freely, which implies our claim.

For item (b), write ¢ ((Z/2Z)") = Q@ < G4. Since (Z/2Z)" surjects onto @, @ is a finite
abelian group in which every non-trivial element has order 2. The fact that Q acts on [2!]
transitively, implies it has order 2!. The only groups that fit the description above is (Z/27Z)*
for some k > [. Item (a) implies that k& = [. O
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We can split each ¢ € Hom ((Z/2Z)",S,,) into a product of homomorphisms into small
symmetric groups according to the orbits of ¢ ((Z/2Z)"). That is, we can identify ¢ =
©1 X ... X P, where o; ((Z/27)") acts transitively on [2] for some 0 < i < r. Lemma (b)
above implies that we can identify ¢; with a surjective homomorphism (Z/2Z)" — (Z/2Z)%.
With a slight abuse of notation, we will also call this homomorphism ;. Moreover, given a
surjective homomorphism ¢ : (Z/27)" — (7Z/2Z)" and k € N, we will write

"= x...xp:(Z/22) — <(Z/2Z)l>k'

The next lemma is about how the centralizer Zg, (¢ ((Z/2Z)")) depends on the decompo-
sition of ¢ as a product of homomorphisms.

Lemma 3.3. Suppose s € N and G1,...Gs < (Z/2Z)" are all distinct subgroups. Moreover,
let
vij : (Z/22)" — (Z/22)"
j=1,...my,i=1,...,s be distinct surjective homomorphisms so that
ker(p; ;) = Gi

forallj=1,...m;,i=1,...,s. Let
pi= X ¢ (Z22) - X (Z/Qz)lz) <& <(Z/QZ)ZZ zli) ~ 6,

1=1,...;s, i=1,...,s
7=1,..m;

where n = 22i™ili . Then
Ze, (¢ (2/22)") = X ((2/22)16,)
=1

Proof. The lemma essentially consists of two claims: the fact that the centralizer decomposes
as a product and the fact that the factors take the form of a wreath product.

To see the product structure, note that when given G < &,, and 7 € Zg,, (G), 7 acts on the
orbits of G on [n]. That is, for every G-orbit A of cardinality k, there exists a G-orbit B of
cardinality k, so that

m(A) = B.
Because 7 is a bijection, it can only permute orbits of the same size. This already implies
that the centralizer splits as a product over the different orbit sizes.

To get the full product decomposition, we need to understand which orbits can be permuted.
We claim that two ¢ ((Z/2Z)")-orbits A, B < [n] of the same cardinality can be permuted
by an element of Zg, (¢ ((Z/2Z)")) if and only if the homomorphisms 4, ¢p : (Z/22)" —
(Z/27)! they define have the same kernel. What we really need to show is that if ker(p4) #
ker(¢p), then these orbits cannot be permuted. So, suppose o € &,, so that

o(A) = B.
Because ker(p4) # ker(¢p) and both ¢4 and ¢p are surjections onto (Z/27Z)! for the same

[, we have that ker(pa) \ ker(pp) # . So, let g € ker(¢a) \ ker(¢p) and let a € A. Since
g ¢ ker(¢p), there exists an a € A so that

p(g) (0(a)) # o(a).

However, because ¢(g)a = a, we obtain

o (p(g)a(a)) = a(a).
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So, o cannot lie in Zg, (¢ ((Z/2Z2)")).

This implies that Zg,, (¢ ((Z/2Z)")) indeed splits as a product according to the decomposi-
tion of ¢ into homomorphisms with distinct kernels. Moreover, the fact that two orbits that
define the same homomorphism can be permuted, together with Lemma a) implies that
the factos take the form we claim. O

In order to count the involutions in these centralizers, we record the following;:

Lemma 3.4. The number of involutions in (Z/27) 1 &y, equals

[%/2]
3 k! Lk—(I+1)r
= (k—2r)!-r! '

Proof. In order to count the number of involutions, we need to understand the wreath product
structure. We can write

k
(Z/27)' 1 &), = {(a,ﬂ'); ae ((Z/2Z)l> , TE Gk} .

Multiplication of two elements is given by:

((al,...,ak), 7r) : ((bl,... ,bk), U) = ((aa(l)bl,. . .,ag(k)bk),wa).

This means that an element (a,7) is an involution if and only if

((aw(l)ala LR aw(k)ak)7 7T2) = ((67 cees 6), 6),
which is equivalent to 7 being an involution and that (using the fact that (Z/2Z)" consists
entirely of involutions) a,;y = a; for alli =1,... k.

In order to count the number of involutions, note that & contains (ri) (2r)!! involutions
with k — 2r fixed points. Here (2r)!! = (2r—1)(2r—3)---3-1 = (2r)!/(2"-r!). After choosing
the involution 7 in &}, there is a choice of one element of (Z/2Z)! left per orbit of 7. So the
number of involutions in (Z/27)" 1 &y, is

k2l o) k/2] ! A
Wolth=r) — NN P bk (1)
Z (27’) (2r)2 z;) (k—2r)-r!

r=0 r=

O

This now gives us the following expression for the number of permutation representations
of TC(A,):

Proposition 3.5. Let r € N and T' = T®°%(A,). Then

r sy [kj.m /2] ) o ?
_ 15 . —U+1)lim
hu(T) =nl ), 2 L2 Hl’%m! lZo Gom =2 Lol
m= Gm= 9 ] ]

iOa--wir kj,17---7kj,32j7j20
2552 =N S k=i
for all n € N, where
Jj—1 or _ 2l
sy = sy (2/22)) = izeZ 22)
H?:O (2J - 2l)

forallj=0,...,r.
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Proof. We have
hn (L) = > |Zz, (¢ (Z/22)"))[?
¢ € Hom((Z/2Z)",6r)

Lemma tells us that the cardinality |Z7, (¢ ((Z/2Z)"))| only depends on the way ¢ de-
composes into homomorphisms with distinct kernels.
So

ha(D) = ) Y hik((Z22)) - 2y

105eeslr kj,1,~~-ykj,s2j7
920 —n Y
ZJ J 2im Kjm=i;

where for each j, labeling the subgroups of (Z/2Z)" of index 27 by
Gj,la e

5,520
we write h;  ((Z/2Z)") for the number of homomorphisms (Z/2Z)" — &,, so that
© ((Z/2Z)") has i; orbits of size 2/ for j = 0,...,r and

e for j =0,...,7, kjm of the orbits correspond to a map p : (Z/2Z)" — (Z/2Z)’ with
kernel G.

Moreover, z; j is the number of involutions in the centralizer Zg,, (¢ ((Z/2Z)")) for any such
homomorphism .
In order to count h;y ((Z/27Z)"), note that there are

Ty e

,0 Z]

ways to partition [n] into orbits whose sizes are given by 4, and

r . Soj 1
[t ]]

J koo |
j=0 m=1"2"

to choose which groups belong to which orbits.
Furthermore, there are (27 —1)! different tansitive homomorphisms with kernel G}, for all
j=0,....,7,m=1,...,s9;. So we obtain

82] 823

e (2/22)) —n'H( H<<2j—1>!>‘%) eI
=1

where we used that >, kj., = i;.
Lemmas and imply that

kjm/2|

ﬁ H > m! iy

_ )"
j=0m= 1zjm—0 213’” Ljm!

Soi |kjm/2]

—1_[2”1_[ P r— )lw 2o
— 4lym jm

m=1 l]m—[)

Putting the two together, we obtain the formula we claimed. O
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4. AN EXPONENTIAL GENERATING FUNCTION

Our next step is to compute the exponential generating function for the sequence
(hn(TC*(A;))n. That is, we define

0 Cox
n(T
_ BT A))
n=0
Theorem 4.1. Let r € N. Then

r

i1\ —S9j /2 ; 2j Soj
Gr(x) = H ((1 — 2" ) ¥ exp (—23 Soi + . ;;))

J=0

where sy5 = $9i((Z/27)").
Proof. Proposition [3.5] tells us that

0 ) Soj
ORI YLD Y § B 1 Fimt
§0,ereyir =0 kg seekigs, 5 =0
kaj,m—lj
[kj,m/2j 1 2
9—(+1)Ljm
Lty (Rgm = 2lm)t - L
ro Sy Ly /2] ) , ’
=112 (2]“"2) > lE=t| 2 7 T
j=01;=0 kjtse ks, m=1 lj,m=0 ( j’m_2j’m)'. gim:
2im Kjm=1;
2
r © 857 [Kj.m /2]
: j kajv”” 2 % 1 :
J .2 ) =[G+ ljm
H Z (2 v ) H Fjm! Z (k.m_Ql.m)!.l.m!Q ’
Jj=0 317 7k332j:0 m=1 lj,m:O Js D> s
. CEORITN [y ————
VAT N
=6 \iiZo /= (kj —20;)!- 15!

which leads us to define two sequences
k21 o—(j+1) 1

bj,k = 0
& (k=20

and b) = K1 b2,

for all ¢, j € N and the corresponding generating functions

0¢] e ¢]
Fj(z) = Z b ¥ and Fj(g) () = Z b§2,2 z*
k=0 k=0
so that o
Gr(@) = [T (FP @)™

j=0
We will now prove the theorem by first determining F}j(x), which leads to a recurrence for

()

the sequence (b; )i. From that, we will derive a recurrrence for the sequence (b : 4 )i> which in
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turn leads to an ODE for ij (x). The solution to this ODE then gives us Fj(Q) () and hence
Gy (z).
We have
o |k/2] 9—(+1)! (F+1)

Fj(iﬂ)222m ;; —2z'k'k

k=0 1=0
Changing the index in the innermost sum, we obtain
v 270D —(j+1),.2
Fj(x)zlz(:)kZo N = exp(z + 2 x“).

Using that dFj(z)/dx = (1 + 277 x)Fj(z) and equating coefficients, we get the recurrence
(k + 1) bj7k+1 =05 + 277 bj7k_1.
forall k=0

The recurrence for the sequence (b; 1), implies that

2 _ (k—1)!
Ik k

(bjk—1+277 bjp_2)?

1 22 (k — 1 PAEAR
~ Lo <k) b2+ T (5= 1)! byt o,

To get the recurrence we are after, we need to compute the cross terms in the above. Again
using the recurrence for the sequence (b; 1 )r, we obtain

(k:—l)'bjk 1b]k Q—b(lz 2+2 J (k‘—Q)!ijk_g bj,k—3~

Hence
(k= 1)1 bjp—1 bjh—s = i 2723 )
and =2
- b it ot S,
1=2

or equivalently

k
2 95 (2 2 95 (2 ; 142
(-2 o) < e Y

Using the recurrence, we obtain
d

- (Fj(2) (2) — 2% 42 Fj(2)(x)> _

B
i18
<)
™
Ve
}P:\
I
~
[\&]
<
>
AN
S
no
N———
I
T
—

[l
78
N
<
elv\’ﬁ
iR
|
[\}
N
<
S
.
®
)
4
[\~}
o
+
AR
[N}
<
=0

: (
i1, k-1
bj’ IR B
1=2

2 —2j,(2 - —9j 2
(bgk) 12 2jb§',12—2) 2"l = (1-27%g) Fj( )(37)
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and
SRy 2 k1_N\ l(2 L1 )
22 2 et =y Y 2T M = e B ().
k=01=2 =2 k=0
Because
a (F(2)( ) - 272 4?2 F(2)( )) —(1-27% 42 iF(2)($) _9-2j+1 F(Z)(:E)
dp \'3 N v W)= dr I J ’
our generating function satisfies the following ODE:
d : ; T
_972j ;.2 (2) () = —2j (2) —+1__* (@)
(1-2""2%) —F"(x)=Q1+2"" 2) F;7(z) + 2 1_2_ijj (x),

dx
which is equivalent to

1+ (2% +270)z—27% 22 (o
(1277 2)2(1 427 1) /

which leads to
(2) B 1 -1
Fi7 @) =a = o <2—2f o 2—j> !
where a € C is some constant. Filling this in for G,(x) leads to

r : —555/2 2j .
Gr(z) = a'H ((1 - x2j+1> » exp (1 _ij;))

7=0

for some constant a’ € C. Equating the constant coefficient gives

r
a' = exp (— Z 2j52j> .
j=0

5. IMMEDIATE CONSEQUENCES

Before we turn to the asymptotic behavior of the sequence (h,(I'°*(A,))),, we derive two
immediate consequences to Theorem a closed formula for the number index n subgroups

of T®(A,) and a recurrence for the sequence (h,,(T¢*(A,)))n.

5.1. Subgroups of virtually cyclic Coxeter groups. Theorem allows us to derive a

closed form for the number of subgroups of a virtually cyclic Coxeter group. We have:

Corollary 5.1. Let r € N and let
T = FCOX(AT)'
Then

sn(M)=n |1+ Z 27 595 [+ Z 27 sy,
0<j<sr osgsr
s.t. 29 |n s.t. 27+ n

for all n € N.
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Proof. Lemma [2.1] implies that

o o
n=1 " =

Using Theorem this means that

o8] T 5
su() ., 1 St 2
- (=2 - 2 (1 . ) L
Z - x ;)823 5 og x + 12

Using the Taylor expansions for —log(l — z) and 1/(1 — x) at z = 0, we obtain

0 T 0
T 11 j , ;
sn(l) " = E Soi E T Y

=1 " o A
This means that
1 9j+1 )
= - i J oo
sp(T) =n 1+2 Z - Soi + 2 27 595 |,
osy<r O<j<r
s.t. 20t n s.t. 29|n
which gives the corollary. O

5.2. A recurrence. As a corollary to Theorem[4.1] or rather its proof, we obtain the following
recurrence for the sequence (hy(A;)),,:

Corollary 5.2. Let r € N and write

i = hn (T (Ay)).
Then
Pire Z Rt o (—1)ci1tes2

| _ |
n! cel (0} (n—|e|)! ol
lel<n

Ppg1-2i— |e],r 2j s +e
+ .92 J k,1T€k,2
Z Z (n+1—27 —|e])! H

7=0 e€l, k#j
€j,1=E€52
=€j, 3=0

n+1 2J'+1 lel,r )  (of 2j 1\ek.1ter,
5T @ [y

j=0 e€l, k#j
EJ 1= EJ 2
=&j, 3=0

T I

7=0 e€l, k#j
€j,1=E€52
=€j, 3=0

for alln = 0, with the initial conditions

hoyr =1 and hy,, =0 for allm <0,
where I, = ({0, 1}”1)3, el = 2j—o(€j1 + €52 +€53) 27 for all € € I, and so; = 89;((Z)27)7).
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Proof. Recall the differential equation for the functions Fj(Q) defined in the proof of Theorem
4.1k

d 1+ (27% +277) g — 273 22
4 p@) gy o L@ 2 ) v 2T a7 po
dx 7 (1—-277x)2(1+27x) J
for j =0,...,r. Using the fact that
Gyp(x) = H (FJ‘(Q)(ij2j)>52j .
j=0
we obtain _ -
dG,(x) - 9i oi_q 1+ (277 +1) 2% — 277 2%
_ - 92j / v (1),
dx Z;)SZJ “ (1—2%)2 (1+2%) Gr(2)

or equivalently

dG, () - 29\2 27 N 25 291 j 24y 20+l 1 i 3291
T -2 a+a) - ;} (2ﬂx + (2 +2%) o — g )

sgr - [ [(1—2%)? (14 ka)} - Gr().

k+#j

So,

0 r , "

h n . . L n o | |
3 "+7117;"5” [Ja -2 a+2%) = > { 3 n;;i'x 5y (22J$2]_1 i i
=0 ' J=0 j=0 Y n=0 :
+(2) +2%) x2j+171) ‘ H(l — 2 1+ xzk)}
k#j

Equating the coefficients of ™ now gives the corollary. 0

6. ASYMPTOTICS

The goal of this section is to prove Theorems and the asymptotes for the number
of permutation representations and the number of subgroups of a free product of virtually
cyclic right-angled Coxeter groups. The largest part of the section is taken up by the proof
of Theorem [6.5] which gives an asymptotic expression for the coefficients in functions of the
form of G, ().

6.1. The asymptotics of coefficients of power series. There are many methods available
to determine the asymptotics of the coefficients of a given power series F(z). We will use
Hayman’s techniques from [8]. Hayman’s results hold for functions that are by now called
H-admissible functions. In the following definition we will write

DR:{ZEC; ‘Z|<R}7

for R > 0.

Definition 6.1. Let R > 0 and let F' : D — C. Define A, B : [0, R) — R by
1 d d

1 A(p) =p —— —F(p) and B(p) =p —A(p),

) (0) =0 55 S F(p) and Bp) = p 2 A()

Then F is called H-admissible if there exists a function d; [0, R] — (0,7) so that F satisfies
the following conditions
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(H1) As p — R,
. 1
Flpe™®) ~ F(p) exp (wA<p> -l B<p>) ,

uniformly for || < d(p)
(H2) As p — R,

F(p€i0)=O< F(p) >7

uniformly for 6(p) < 0| <7
(H3) As p — R,
B(p) — .

Hayman [8, Theorem 1] proved that
Theorem 6.2. Let R > 0 and let F': D — C be given by

F(z) = Z fn 2"
n=0

and suppose F' is H-admissible. Then

o P (1 -n?
o = s (129 (1 o)

as p — R uniformly for all natural numbers n € N.

Our strategy now consists of three steps. First, we use Hayman’s results to get a uniform
estimate on the coefficients of F' in terms of a radius p and two functions A(p) and B(p)
(Proposition . The standard trick after this (that already appears in Hayman’s paper)
is to simplify the estimates by finding a sequence (p,), that solves the equation A(p,) = n.
In order to get good estimates on such a sequence, we first prove a lemma (Lemma on
the solutions to polynomial equations. This relies on Newton’s method. Finally, we put our
estimates together, which gives us the asymptotic we are after (Theorem [6.5]).

In this section, we will just present the results. The proofs of these results, that are
independent of the rest of the material, will be postponed to later sections.

Theorem leads to the following estimate:

Proposition 6.3. For r € Ny, let by j,baj > 0 and kj € N for j = 0,...,7, so that kg = 1
and
ko < k; forallje{1,2,3,...,1}.
Moreover, let
F:D; —»C
be defined by

F(z) = Z fn 2" = li[ (1 — z%a')_bl’j exp <1327;k]> .

n=0 §=0

n__ Flp) 1(A(p) —n)®
Jnp" = 27r7B(p)eXp < ) (1 + 0(1))

Then
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as p — 1 uniformly for all natural numbers n € N, where

T 2k

p J
Alp) = ) bij2kj ———+boj kj ———
j;) T = ph T (1= phi)?

and

r 2k ; 2k ; 2 % k.
p 7 ,0 J 2 pJ p J
B(p)=§4b1,-/.c2 ,+< ) +b2,k«< — +2 : >
=0 SR 1 — ps T\ (1= ph)? (1—phi)3

The proof of this proposition, which essentially consists of proving that F' is H-admissible,
can be found in Section [6.4l
In order to control the function A(p), we will need the following lemma:

Lemma 6.4. Let r € N, o, 5 € (0,00) and kj € N>y, for j =0,...,r. Consider forte (0,1)
the equation in y given by

yhi

Y
t ZO‘J 1— 2% + 0 (1= yh)2

This equation has a solution y = y(t) that satisfies
y(t) =1 —ert'? + eot + O (1)

as t — 0 for some v € Q=1, where the constant ¢ > 0 is given by

The proof of this lemma, which is an application of the Newton-Puiseux method, can be
found in Section We also note that this method also allows us to determine cg, it will
however not be needed in what follows, it disappears in the proof of the following:

Theorem 6.5. Let (fn)nen be as above. Then
fn ~ Cl(ba ka ’I”) ’ n_3/4+2;:0 buif2 eXp (CQ(ba ka ’l“) : \/ﬁ) ;

as n — o0, where

N\ 1/4 b1,
(Z§:o b/%’) " b Coki—1) 1 ’
Cy(bk,7) = d exp Z 2.7 Z J
vV 471' j=0 2]6‘]' j= Qk‘j ]=0 ij Z;:O b]%j
and
02(b7 kv 7") =

We will prove this theorem in Section [6.6]
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6.2. The number of permutation representations. Using Theorem we can now de-
termine the asymptotic number of permutation representations of a free product of virtually
cyclic right-angled Coxeter groups. Before we state it, we define some constants depending
on a given Coxeter group.

Definition 6.6. Let r1,...,7,, € N and
D = 52, T (A,,),
Then we define

m 1/4—Stot(r)/4 Tl
(stot(r1)) rotlra) ; 1 1 1 1
Ar =] 4 — Y sy + tom—c+—= |,
T a2 sp F g Fgn g ¥ g

and

m
Cr = —3m/4 + Z Stot (17) /4.
1=0
Here siot(7) denotes the total number of subgroups of (Z/2Z)". In other words,

T
Stot (1) = 2 S9; -
j=0

This now allows us to write down the asymptote for A, (T):

Theorem 6.7. Letry,...,ry, € N and
D = s DO (A,,).

Then
hn(T) ~ Ap n€T exp(Br +/n) n!™.

as n — 0.

Proof. For the case m = 1 and 1 = 0, this follows directly from the classical result by Chowla,
Herstein and Moore [3]. However, our methods also apply.

Since .
= [ [rn(T(A)),
=1

we can determine the asymptote for each factor independently. In other words, all we need
to determine is the asymptote for h,,(I'°**(A,.))
In the language of Theorem and using Theorem we have

blvj = SQj/27 b2,j = 2j35j and kj = 2]

So, filling in the constants, we get

/2
(sl et} o N N
Cl(b, ]ﬂ,?“) = \/E exp 23t0t + Z 2]—}-1 H 2j+1 Stot(r>

j=0

s /2
(Stot (7”))1/4 ( 1 L = ! ) 1 2J
= e 55tot(7) + or— 5+ 20+ /ot ()
T xp (5 tot(7) 9 2 " ortl ]1_[ 201 /10t ()
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and

So, using Theorem [6.5] and the extra multiplicative factor from Theorem [4.1} we obtain

Cox (StOt(T))1/4 . _ N Jo. . 1 1 _§ i
hin (TY%(A;)) i exp ;}2 Soj + 23tot(r) t3r5t o

r

1 555/2
11 <2j+1 5 (T)) e e <2 stor(7) n) ’
tot

7=0

as n — 0. O

6.3. The number of subgroups. Theorem also allows us to determine the asymptotic
of the number of subgroups of a free product of virtually cyclic Coxeter groups. We start
with the following lemma:

Lemma 6.8. Suppose I' is a group so that
hn(I') ~ f(n)(n!)*
as n — oo, where o > 1 and f(n) ~ AnCePV™ as n — 400. Then

sn(T) ~n - (n)*~ f(n)
as n — .

Proof. The proof for the free group in [10, Section 2.1] applies almost verbatim to our situation:
following it we get first that

n—lnl—a
hn(T) — (1) < (n)® fR)f(n—k
O -am < S (1) @5

and using their inequality (Z) > 28~ /2 and the asymptotic equivalent for f we get that

I (D) — tn(T) _ 4+ 0(1) v ok (K =R\ _pavivih
(nh)e <n;2<n> |

It remains to see that the sum on the right is o(n). This is easily done by separating in
k,n —k = n'/2*¢ (for some £ > 0 small enough), terms for which the summand is < 2(1=9)"
for some 0 < § < 1 (depending on &) and the remainder O(n'/?*¢) terms which are O(1)
individually. O

Theorem 6.9. Let m € Nxo, r1,...,7 € N and
R ')

Then,
$n(T) ~ Ap n'+CT exp(Br v/n) nI™ L

as n — 0.

Proof. This follows directly from Theorem [6.7] and Lemma [6.8 O
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6.4. Proof of Proposition [6.3

Proposition Forr e Nxq, let by j,ba; >0 and kj € N for j =0,...,7r, so that kg = 1
and

ko <kj forallje{1,2,3,...,7}.
Moreover, let

F:D; —-C
be defined by
— N\ 0 ba
F(z) = Zofnz = H)(l—z%J) exp <1_;ch> :
n= 7=

Then

WP 1A -m?
" = S B p< 1B )(1+ (1)

as p — 1 uniformly for all natural numbers n € N, where

r kaj ,ij
Alp) = Y\ byj 2k ——— 4+ boj by ———
;) J J 1— ka;J J I (1 o pkj)Q

and

r 2k; 2k; 2 k; 2k;
B 2 pri p-ri 12 P pri
B(p) _]2041)1,] ki (1—;)% * <1—p2kf> ) bk ((1—p’“j)2 2 (l—p’“f)?’)'

Proof. Our goal is of course to prove that F' is H-admissible.

By assumption, all the singularities of F' lie on the unit circle |z| = 1.

It follows from the conditions (H1-3) that, for p close enough to 1, the maximum of an
H-admissible function on the circle of radius p is realized at z = p. The assumption that
1 = ko < kj for all j > 0 implies that this is indeed the case.

Writing

I bo -
2] — E . 2k, 2,5

we obtain F'(z) = exp(P(z)). As such, our first goal is to understand the behavior of

P(pe') — P(p)
as a function of 6 near 6 = 0.
Let us consider P term by term. We have
_ 2kj i02k; 2k;
W—; — 1 P (1 ey,
1 — p=hi 1— p2 i
Using a Taylor expansion, we obtain
1— €M = —i02k; + 20°k7 + O (%)

and hence ,
1 — p2kieit2k; , 2k
1—p2k 11— pky

Again using a Taylor expansion, we have

(i02k; — 26%k7 + O (6%)) .

log(1—2)=—2+ —%z2 +0 (2°)
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as z — 0. So

1 — p2kieit2k; p2ki . -
log (1 — % = 1% e (19 2k; — 20 k:j)

2% ; 2 3
o P\ 2 _ v
J

We have
1 B 1
1— pkj e’iekj - 1— pk‘j _ pk’]‘ (eiak’]‘ _ 1)
B 1 1
= 1= pk?j L o ge_w;;jj_l) .
p
With yet another Taylor expansion, we get
1 1 ki (et — 1) ki (et — 1) 2
- +
1 — pFi ci%k; 1— ok 1— phs 1— pki
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Putting everything together yields

i 1 i (ewkj _ 1) ki 1 5.9
1— phieik; Tl (1— pki)2 1+ 1— (10k; — 59 k3)
N 3
1 pi 242 4
—= k0% +0O
2 (1—,0’“3') T
k. 2k;
pri . 1 5.9 p 27.2
_ Ok; — —0%k3) — 02k
(i ) T et

As such, we have

1—p
where
p J p J
Alp) = Z brj 2k 55 T b2 ki (1= )2
7=0
and

r 2k ; 2k; 2 kj 2kj
_ Y P 2 r
B(p) —;)4 b1, k‘] <1 —p%f + <1 —P%j) ) + by k'] <(1 —pkj)2 +2 a _pk‘j)3> .

Note that A(p) and B(p) are exactly of the form of (I)). This is of course no coincidence.

We now set
B 1 3/4
=(1-p)? 1 —_— .
o1 = (- (10 (1))

Note that this function is small enough for (H1) to hold. (H3) also readily follows from the
form of B(p).
All that remains is to check (H2). Indeed, we need to check that

[E(pe)VBlp)
F(p)

uniformly in § < |#] < 7, we claim that this is guaranteed from our choice of 6(r).
To this end, set K = lem{k;; j =0,...,7} and

9j=j'27T/K

for j =0,..., K. Once we prove that
|F(pe®))| \/B(p)
F(p)

— 0
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and

[Fpe™)|[VBb)
F(p)
for all 0 < j < K, we are done, since F'(z) has no other singularities on the circle |z| = 1.

For the first of these, we can use our approximation of P(pe'®) for 6 close to 0. Indeed,
since §(p)/(1 — p?) — 0 as p — 1 and i A(p)d(p) is purely imaginary, we have that

|F(pe®))| /B(p)
F(p)

for some C' > 0 independent of p. It follows from the form of §(p) that there exist constants
C’',C" > 0 so that

~B(p)o() + 3 loa(B(p)) < ~C’ log <1_p> 4" log (p) S

< exp(~B(0)3(p)? + 3 og(B(p)) + C)

as p — 1.
For the second type of terms we have

[F(pe'3)| A/ B(p) ~ lexp Z bai o boy + by log ( 1 — phi >
F(p) 0<i<r 1-— pkiej'ki‘27r/K 1— pki v 1— pkiej~ki-27r/K
JrkitK
Whenever K does not divide j - k;, 1/(1 — pFied*27/K) and log(1 — pied *:27/K) are bounded
as functions of p. So there exists a constant C' > 0 such that:

|F(pe'®)| /B(p)

b ; v
< |exp Z S +bl7ilog<1—pkl>+0 — 0,

— ki
F(p) oGz 1P
JkifK
as p — 1, which proves that F' is indeed H-admissible. O

6.5. Proof of Lemma [6.4l

Lemma LetreN, aj,83; € (0,0) and kj € Nxy, for j =0,...,r. Consider forte (0,1)
the equation in y given by

i y2ki

t Q; -+ f3; — = 1.
= 1— kaJ (1 _ yk_7>2

This equation has a solution y = y(t) that satisfies

y(t) =1 —ert'? + cot + O (1)

ast — 0 for some v € Qx1, where the constant c1 > 0 is given by

>

j=0"Jj

Cl1 =

Proof. We will turn the equation into a polynomial equation (depending on the parameter t)
and then develop the Puiseux series for y(¢). Recall that Puiseux’s theorem tells us that we
can find an m € N and kg € Z so that

y(t) = Z cp tRm.

k=ko
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We will apply Newton’s method to find the first three coefficients near 1.
This method can be given a nice geometric description. Namely, given a polynomial equa-
tion of the form

(2) F(t,y) = > A(t) y* =0,
k=0

the first power v of ¢ in y can be found by considering the Newton polytope P < R? of this
polynomial. This polytope is the convex hull of all points (ord(Ak(t)), k), where ord(A(t))
denotes the lowest power of ¢ that appears in Ag(t). Now consider all the sides of P. If the
line L spanned by a side of P supports P and P lies above L, then —~1, where -1 is the slope
of L, is the first power of a branch of solutions to the equation.
Writing y = ¢1 t7* + y1, we obtain a new polynomial equation
F(tye1 " +41) =0

in y; and the process can be iterated, with the only condition that at each step, only those lines
are considered that have a larger negative slope than the slopes that have already appeared.
Since the powers of t increase in each iteration, this allows us to compute y(¢) up to any order.

For more information on these methods see [2].
Now we return to our equation, which is equivalent to

tZ(ajl— Yy + B(1 + ’“J)y’fj)Hu— 2(1 4 k) H1— 2(1 + yh).

1] =0
ertmg y = 1+ y1, we obtain

5 {(aju — (L)) + 9™ 4 551+ (14 ))(1+ )"
=0

JTa =@+ + @+ m)’”)} =[] =@ +y)")?(+ (1 +y)¥).
1#] j=0

The lowest power of y; on the right hand side of the equation is y3". On the left hand side,
this is y7"t2. This means that (2r,1), (2r + 1,1) and (2r + 2,0) are the first vertices of the
Newton polytope and hence that 4 = 1/2. Soy = 1+ at’2 + 0 (t”*/) for some ~' > %
To obtain the coefficient ¢1, we now solve equate the terms that lie on the line of slope —y;
supporting the Newton polygon. In the notation of , we need to solve

Z akc’f =0,
ord(Ag)+vy-k=r+1
Here the r + 1 is the lowest power of ¢ that appears and ay is so that
Ap(t) = ag t°"44%) 1 higher order terms.

So, for our polynomial, we get the equation

r

Zﬁj 2] [2kict =) 2k21_[2kl 1_H2k§c%
=0

1#j 701110

and hence

Sy

S B
B!

7=0 "7
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We choose the branch corresponding to the negative solution of this equation.

Writing y = 1 — ¢1 t1/2 4 5 for the second iteration, we obtain

ty, {(O‘j(l — (L= 2 4 g)P0) (1 = ey £1/7 4 yp)
j=0

+ 8,1+ (1 — ey 2 4+ yo)Ri) (1 — ¢y Y2 + m)‘%‘)

JIO = (= 72+ )21+ (1= e1 12 + y2)™)

I#3

}

=[]0 == 2 +92)8)2 (1 + (1 = er 12 + o)),

j=0

Since the power t"*! in the yg coefficient disappears, the lowest power in the constant
coefficient is t"13/2. For 0 < m < 2r + 2, the lowest power of ¢ in the y4'-term is tri-m/2 - gq
the Newton polytope contains the vertices (0,7 +3/2), (m,r+1—m/2) form =1,...,2r +2.

This implies that v = 1.

So we may write yo = cot + O (t7) for some v > 1. We could determine the constant ¢z in
a similar fashion to how we determined c;. It however turns out that in our application, we

will not need the value of the constant.

6.6. Proof of Theorem [6.5
Theorem Let (fn)nen be as above. Then

fo ~ Ci(by k) - n ™34T 25-0003/2 oxp (Cy (b, k1) - /)

as n — o0, where

Cl (b7 k7 T) =

and

Proof. The standard trick is to find a sequence (py,), so that

A(pn) = n.

2k;

2

o bay

=0 &,

b1,

We claim that there exists a choice of (p,)n so that p, € (0,1) for n large enough and

Pnﬂla

as n — 0. As such, we can then apply Proposition [6.3] and we obtain that

fn

as n — 0.

F(pn)

- V21 B(pn) piy
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Let us start by finding p,,. Using Proposition we obtain

b1j 2k; bk — " — =n
2 e L NTa

Write ¢t = 1/n.
So we obtain from Lemma [6.4] that

pn:1_671+cl+0(n7),

N

as n — o0 for some 7y > 1, where ¢; and ¢ are the constants in that lemma, with a; = b1 ; 2k;
and 3; = by ; kj. So, in particular

So we obtain

n C1 C2 " C%
Pr ~ 1_%+E ~ exp —5-1—02—01\/5 )

d 1 n3? & 2b
Blpn) ~ > 2 by k] e sy 2.j
j=0 ( — Pn ) ¢ j=0 Y
as n — 00. Likewise,
r N b bo
F(p,) = <1 - p?ﬁ) " exp <2jk>
§=0 1—pn

r 7,L1/2 b, b27j
- 2k xp —1/2 1 kN 2 1
=0 j C1 kjcin —kjcan —(QJ)cln
bij
r 1/2 7 bo bo ki —1
- H n exp ( 20 p1/2 4 0% 022 1l )
5=0 ij C1 k‘j C1 kj & ij
as n — 00. Putting all of the above together, we obtain
—-1/2 b1,
4 o b2,j c? b27] C2 kj -1 r 1 1.J
fnw(C?Z ka‘) exp<_62+2 kjct 2k 2k; 61)
1 T
n 34+ 0 b1,5/2 exp [vn|el + = Z
1 =
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Now we see why we don’t need the value of co: it cancels, and we obtain that

1 "\ by s "
In~ i Z;zj exp | )]

1/4

boj e kj— 1) 1 1\
eIyl Bl <2k: )
j=0 j=0 M jmo H ) jmo NE A

. n_3/4+Z;:O blv]/2 €Xp 2

as n — 00, which proves our claim. [l
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