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SUBGROUP GROWTH OF VIRTUALLY CYCLIC RIGHT-ANGLED

COXETER GROUPS AND THEIR FREE PRODUCTS

HYUNGRYUL BAIK, BRAM PETRI AND JEAN RAIMBAULT

Abstract. We determine the asymptotic number of index n subgroups in virtually cyclic
Coxeter groups and their free products as nÑ8.

1. Introduction

Given a finitely generated group Γ and a natural number n, the number snpΓq of index n
subgroups of Γ is finite. This leads to the question how, given a group, the number snpΓq
behaves as a function of n and which geometric information about the group is encoded in it.
It is quite rare that an explicit expression for snpΓq can be written down and even if so, the
expression one obtains might still be so complicated that it’s hard to extract any information
out of it. As such, one usually considers the asymptotic behavior of snpΓq for large n.

In our previous paper [1], we considered the factorial growth rate of snpΓq for right-angled
Artin and Coxeter groups. That is, we studied limits of the form

lim
nÑ8

logpsnpΓqq

n logpnq
.

In the case of right-angled Artin groups we were able to determine this limit explicitly and in
the case of right-angled Coxeter groups, we determined it for a large class of groups. Moreover,
we conjectured an explicit formula for this limit. Our methods were mainly based on counting
arguments.

1.1. New results. In this paper, we further study the case of right-angled Coxeter groups.
We consider a very specific sequence of such groups: virtually cyclic Coxeter groups and their
free products. The upshot of this is that we can access much finer asymptotics than we can
in the general case.

Recall that the right-angled Coxeter group associated to a graph G with vertex set V and
edge set E is given by

ΓCoxpGq “ xσv, v P V | σ2
v “ e @v P V, rσv, σws “ e @tv, wu P Ey.

Since Müller’s results [15] already cover all finite groups, we focus on the infinite case. It
turns out that it’s not hard to classify infinite virtually cyclic right-angled Coxeter groups.
Indeed they are exactly those groups whose defining graph is a suspension over a complete
graph Kr on r P N vertices (see Lemma 3.1). Let us denote these graphs by Ar.

Our first result is that for a virtually cyclic Coxeter group, an explicit formula for its number
of subgoups can be written down. In this formula and throughout the paper (whenever no
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2 HYUNGRYUL BAIK, BRAM PETRI AND JEAN RAIMBAULT

confusion arises from it), s2j will denote the number index 2j subgroups of pZ{2Zqr and is
given by

s2j “ s2j ppZ{2Zqrq “
śj´1
l“0 p2

r ´ 2lq
śj´1
l“0 p2

j ´ 2lq
.

for all j “ 0, . . . , r.

Corollary 5.1. Let r P N and let

Γ “ ΓCoxpArq.

Then

snpΓq “ n

¨

˚

˚

˝

1`
ÿ

0ăjďr
s.t. 2j |n

2j s2j

˛

‹

‹

‚

`
ÿ

0ďjďr
s.t. 2j`1|n

2j s2j ,

for all n P N.

One thing to note in the formula above is that the number of subgroups is not a monotone
function in n: if n is divisible by a large power of 2 then there is a jump. In particular, no
smooth asymptote is to be expected for this sequence. This is very different from the situation
for non-trivial free products of virtually cyclic right-angled Coxeter groups1:

Theorem 6.9. Let m P Ně2, r1, . . . , rm P N and

Γ “ ˚m
l“1ΓCoxpArlq.

Then there exist explicit constants AΓ, BΓ ą 0 and CΓ P Q (see Definition 6.6) so that

snpΓq „ AΓ n
1`CΓ exppBΓ

?
nq n!m´1.

as nÑ8.

For the sake of simplicity, we have not included finite factors in the free product above.
But, using Müller’s results [15], the theorem above can easily be extended to also allow free
products with finite factors.

Because the definitions of the constants AΓ, BΓ and CΓ (especially the former) are rather
lengthy, we will postpone them to Section 6.2. We do however note that they behave nicely
with respect to free products. That is

AΓ “

m
ź

l“1

Arl , BΓ “

m
ÿ

l“1

Brl and CΓ “

m
ÿ

l“1

Crl .

where Ar “ AΓCoxpArl q
, Br “ BΓCoxpArl q

and Cr “ CΓCoxpArl q
. The values for some low

complexity cases are

1Recall that for functions f, g : NÑ R the notation fpnq „ gpnq as nÑ8 indicates that fpnq{gpnq Ñ 1 as
nÑ8.
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Exact values Numerical values

r Ar Br Cr Ar Br

0 1?
8 π
¨ exp

`

´1
2

˘

2 ´1
2 0.1210 . . . 2

1 1
4?

2048 π2
¨ exp

`

´7
4

˘

2
?

2 ´1
4 0.01457 . . . 2.8284 . . .

2 1
320

?
π
¨ exp

`

´63
8

˘

2
?

5 1
2 6.7020 ¨ 10´7 4.4721 . . .

3 1
68719476736

?
π

exp
`

´671
16

˘

8 13
4 5.0248 ¨ 10´30 8

Table 1. The first four values of Ar, Br and Cr.

We derive the asymptote above from the number of permutation representations of Γ.
Define

hnpΓq “ |HompΓ,Snq| ,

where Sn denotes the symmetric group on n letters. We have:

Theorem 6.7. Let r1, . . . , rm P N and

Γ “ ˚m
l“1ΓCoxpArlq.

Then

hnpΓq „ AΓ n
CΓ exppBΓ

?
nq n!m.

as nÑ8.

Note that this asymptote does hold in the case where m “ 1. Moreover, in the case m “ 1
and r “ 0, it recovers the asynmptote implied by the classical result of Chowla, Herstein and
Moore [3].

The results above are all based on the fact that the exponential generating function for the
sequence phnpΓqqn converges. In fact, it follows from [1, Proposition 2.1] that the exponential
generating function for this sequence converges if and only if Γ is virtually abelian. Let us
write Γ “ ΓCoxpArq and

Grpxq “
8
ÿ

n“0

hnpΓq

n!
xn.

We have:

Theorem 4.1. Let r P N. Then

Grpxq “
r
ź

j“0

ˆ

´

1´ x2j`1
¯´s

2j
{2

exp

ˆ

´2j s2j `
2j s2j

1´ x2j

˙˙

where s2j “ s2j ppZ{2Zqrq.

Besides asymptotic information on the sequence phnpΓ
CoxpArqqqn, Theorem 4.1 also allows

us to derive the following recurrence for this sequence:
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Corollary 5.2. Let r P N and write

hn,r “ hnpΓ
CoxpArqq.

Then

hn`1,r

n!
“ ´

ÿ

εPIrzt0u
|ε|ďn

hn´|ε|`1,r

pn´ |ε|q!

r
ź

j“0

p´1qεj,1`εj,2

`

r
ÿ

j“0

ÿ

εPIr
εj,1“εj,2
“εj,3“0

hn`1´2j´|ε|,r

pn` 1´ 2j ´ |ε|q!
¨ s2j ¨ 2

2j
ź

k‰j

p´1qεk,1`εk,2

`

r
ÿ

j“0

ÿ

εPIr
εj,1“εj,2
“εj,3“0

hn`1´2j`1´|ε|,r

pn` 1´ 2j`1 ´ |ε|q!
¨ s2j ¨ p2

j ` 22jq
ź

k‰j

p´1qεk,1`εk,2

´

r
ÿ

j“0

ÿ

εPIr
εj,1“εj,2
“εj,3“0

hn`1´3¨2j´|ε|,r

pn` 1´ 3 ¨ 2j ´ |ε|q!
¨ s2j ¨ 2

j
ź

k‰j

p´1qεk,1`εk,2

for all n ě 0, with the initial conditions

h0,r “ 1 and hm,r “ 0 for all m ă 0,

where Ir “
`

t0, 1ur`1
˘3

, |ε| “
řr
j“0pεj,1 ` εj,2 ` εj,3q 2j for all ε P Ir and s2j “ s2j ppZ{2Zqrq.

1.2. Idea of the proof. First of all, we derive a closed formula for the number of permutation
representations hnpΓq of an infinite virtually cyclic right-angled Coxeter group (Proposition
3.5). Even though this expression is reasonably explicit, it seems hard to use it directly to
extract information on the asymptotic behavior of the sequence.

Instead, we use it to derive the exponential generating function Grpxq for the sequence. We
do this by deriving recurrences for factors that appear in the expression, which then lead to
an ordinary differential equation for the generating function Grpxq.

Once we have determined Grpxq, we use estimates on a contour integral to estimate its
coefficients. It turns out that Grpxq is what is called H-admissible, which means that classical
results due to Hayman [8] allow us to determine the asymptotic behavior of its coefficients.
Concretely, in Theorem 6.5 we prove an asymptote for a class of functions that contains Grpxq.

This then leads to Theorem 6.7. To obtain the asymptote for snpΓq we use the fact that,
when Γ is a non-trivial free product, hnpΓq grows so fast that most of the permutation repre-
sentations of Γ need to be transitive.

1.3. Notes and references. The first work on the number of permutation representations
of a group goes back to the fifties of the previous century. In [3], Chowla, Herstein and Moore
determined the asymptotic behavior of hnpZ{2Zq as n Ñ 8. Their work was generalized by
Moser and Wyman in [11, 12] to finite cyclic groups of prime order and by Müller in [15] to
all finite groups. Müller proved that for a given finite group G, we have

hnpGq „ RG n
´1{2 exp

¨

˝

ÿ

d||G|

sdpGq

d
nd{|G|

˛

‚pn!q1´1{|G|

as nÑ8, where RG ą 0 is a constant only depending on G.
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The subgroup growth of non-abelian free groups can be derived from Dixon’s theorem on
generating the symmetric group with random permutations [5]. In [14], Müller determined
the subgroup growth of free products of finite groups. In [13], Müller also determined the
asymptotic number of free subgroups in virtually free groups. More recently, Ciobanu and
Kolpakov studied connections between such counts for pZ{2Zq˚3, the RACG associated to the
graph on 3 vertices with no edges, and other combinatorial objects [4]. The subgroup growth
of surface groups was determined by Müller and Schlage-Puchta in [16], which was generalized
to Fuchsian groups by Liebeck and Shalev in [9]. For a general introduction to the topic of
subgroup growth we refer to the monograph by Lubotzky and Segal [10].

There is also a vast body of literature available on the asymptotics of the coefficients in
power series. In the case of the exponential generating functions of finite groups, Müller
[15] uses a set of techniques developped by Hayman [8] and Harris and Schoenfeld [7]. Our
generating function also resembles the functions that were considered by Wright in [19, 18].
For more background on these techniques we refer the reader to [17, 6].

Acknowledgement. We are very grateful to an anonymous referee for proposing a simplified
proof of Lemma 3.2 and spotting a crucial mistake in a previous version of Proposition 3.5.

2. Preliminaries

2.1. Notation and set-up. Given n P N, set rns :“ t1, . . . , nu. Given a set A, SpAq will
denote the symmetric group on A and e P SpAq will denote the trivial element. We will write
Sn “ Sprnsq.

We let

IpAq “
 

π P SpAq; π2 “ e
(

be the set of involutions in SpAq and will again write In “ Iprnsq. Given k ď n{2, we write
In,k for the subset of In consisting of involutions with k 2-cycles.

If U Ă Sn is a subset, we will denote the centralizer of U in Sn by ZpUq and the subgroup
of Sn generated by U by xUy. Moreover, if V Ă Sn is another subset, we will write

ZV pUq “ ZpUq X V.

Given a finite graph G we will denote its vertex and edge sets by V pGq and EpGq respectively.
ΓCoxpGq will denote the associated right-angled Coxeter group. That is

ΓCoxpGq “ xσv, v P V pGq| σ2
v “ e @v P V pGq, rσv, σws “ e @tv, wu P EpGqy.

2.2. The exponential generating function. Let G be a finitely generated group. The
exponential generating function for the seqeuence hnpGq is well known (see for instance [15]).
Let us write

FGpxq “
8
ÿ

n“0

hnpGq

n!
xn

for this exponential generating function. It takes the following form:

Lemma 2.1. Let G be a finitely generated group. For all x P C we have

FGpxq “ exp

˜

8
ÿ

i“1

sipGq

i
xi

¸

.
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3. Virtually cyclic right-angled Coxeter groups

3.1. Classification. Now we specialize to virtually cyclic right-angled Coxeter groups. An
example of such a group is ΓCoxpArq. Here, for r P N, Ar is the graph obtained by taking the
completee graph Kr and attaching two vertices that share an edge with each vertex in Kr but
not with each other. For example, A0 consists of two vertices that do not share an edge and
A1 is the line on three vertices.

We have

ΓCoxpArq » pZ{2Z ˚ Z{2Zq ˆ pZ{2Zqr.
since the infinite dihedral group pZ{2Z ˚ Z{2Zq has an index 4 subgroup isomorphic to Z,
ΓCoxpArq is indeed virtually cyclic.

Our first observation is that all infinite virtually cyclic right-angled Coxeter groups are of
form above:

Lemma 3.1. Let Γ be an infinite virtually cyclic right-angled Coxeter group. Then there
exists an r P N so that

Γ “ ΓCoxpArq.

Proof. Suppose Γ “ ΓCoxpGq for some finite graph G.
Label the vertices of G by 1, . . . , s. Since Γ is assumed to be infinite, at least one pair of

vertices of G does not share an edge. Let us suppose these are the vertices 1 and 2. We will
argue that all other vertices need to be connected to both 1 and 2 and also to each other.

First suppose vertex j ą 2 is not connected to the vertex 1. Then σ1σj and σ1σ2 are two
infinite order elements. Moreover, there do not exist m,n P N so that pσ1σ2q

m “ pσ1σjq
n.

This violates being virtually cyclic.
We conclude that vertices 3, . . . , s are all connected to both 1 and 2. Now suppose there

exists a pair of vertices j, k ą 2 that do not share an edge. Then σ1σ2 and σjσk are a pair of
infinite order elements without a common power.

Putting the two observations together implies the lemma. �

3.2. A closed formula. Since the case of finite right-angled Coxeter groups is well under-
stood, we will from hereon consider ΓCoxpArq.

In order to obtain the asymptotes we are after, we are in need of a closed formula for the
number of permutation representations of ΓCoxpArq. To this end, we first record two lemmas
on the permutation representations of pZ{2Zqr.

Lemma 3.2. (a) Let H ă S2r be a transitive subgroup so that H » pZ{2Zqr. Then

ZI2r
pHq “ H.

(b) Suppose l ď r and let ϕ P Hom ppZ{2Zqr,S2lq be so that ϕ ppZ{2Zqrq acts on r2ls
transitively. Then

ϕ ppZ{2Zqrq » pZ{2Zql.

Proof. For item (a) we note that ZS2r
pHq is an abelian group that acts transitively on r2rs,

from which it follows that it acts freely, which implies our claim.
For item (b), write ϕ ppZ{2Zqrq “ Q ă S2l . Since pZ{2Zqr surjects onto Q, Q is a finite

abelian group in which every non-trivial element has order 2. The fact that Q acts on r2ls
transitively, implies it has order 2l. The only groups that fit the description above is pZ{2Zqk
for some k ě l. Item (a) implies that k “ l. �
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We can split each ϕ P Hom ppZ{2Zqr,Snq into a product of homomorphisms into small
symmetric groups according to the orbits of ϕ ppZ{2Zqrq. That is, we can identify ϕ “

ϕ1ˆ . . .ˆϕm, where ϕi ppZ{2Zqrq acts transitively on r2lis for some 0 ď i ď r. Lemma 3.2(b)
above implies that we can identify ϕi with a surjective homomorphism pZ{2Zqr Ñ pZ{2Zqli .
With a slight abuse of notation, we will also call this homomorphism ϕi. Moreover, given a
surjective homomorphism ϕ : pZ{2Zqr Ñ pZ{2Zql and k P N, we will write

ϕk “ ϕˆ . . .ˆ ϕ : pZ{2Zqr Ñ
´

pZ{2Zql
¯k
.

The next lemma is about how the centralizer ZSnpϕ ppZ{2Zqrqq depends on the decompo-
sition of ϕ as a product of homomorphisms.

Lemma 3.3. Suppose s P N and G1, . . . Gs ă pZ{2Zqr are all distinct subgroups. Moreover,
let

ϕi,j : pZ{2Zqr Ñ pZ{2Zqli

j “ 1, . . .mi, i “ 1, . . . , s be distinct surjective homomorphisms so that

kerpϕi,jq “ Gi

for all j “ 1, . . .mi, i “ 1, . . . , s. Let

ϕ :“
ą

i“1,...,s,
j“1,...mi

ϕ
ki,j
i,j : pZ{2Zqr Ñ

ą

i“1,...,s

´

Z{2Zqli
¯mi

ă S
´

pZ{2Zq
ř

imili
¯

» Sn

where n “ 2
ř

imili. Then

ZSnpϕ ppZ{2Zqrqq »
s

ą

i“1

´

pZ{2Zqli oSmi

¯

Proof. The lemma essentially consists of two claims: the fact that the centralizer decomposes
as a product and the fact that the factors take the form of a wreath product.

To see the product structure, note that when given G ă Sn and π P ZSnpGq, π acts on the
orbits of G on rns. That is, for every G-orbit A of cardinality k, there exists a G-orbit B of
cardinality k, so that

πpAq “ B.

Because π is a bijection, it can only permute orbits of the same size. This already implies
that the centralizer splits as a product over the different orbit sizes.

To get the full product decomposition, we need to understand which orbits can be permuted.
We claim that two ϕ ppZ{2Zqrq-orbits A,B Ă rns of the same cardinality can be permuted
by an element of ZSn pϕ ppZ{2Zqrqq if and only if the homomorphisms ϕA, ϕB : pZ{2Zqr Ñ
pZ{2Zql they define have the same kernel. What we really need to show is that if kerpϕAq ‰
kerpϕBq, then these orbits cannot be permuted. So, suppose σ P Sn so that

σpAq “ B.

Because kerpϕAq ‰ kerpϕBq and both ϕA and ϕB are surjections onto pZ{2Zql for the same
l, we have that kerpϕAq r kerpϕBq ‰ H. So, let g P kerpϕAq r kerpϕBq and let a P A. Since
g R kerpϕBq, there exists an a P A so that

ϕpgq pσpaqq ‰ σpaq.

However, because ϕpgqa “ a, we obtain

σ pϕpgqσpaqq “ σpaq.
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So, σ cannot lie in ZSn pϕ ppZ{2Zqrqq.
This implies that ZSn pϕ ppZ{2Zqrqq indeed splits as a product according to the decomposi-

tion of ϕ into homomorphisms with distinct kernels. Moreover, the fact that two orbits that
define the same homomorphism can be permuted, together with Lemma 3.2(a) implies that
the factos take the form we claim. �

In order to count the involutions in these centralizers, we record the following:

Lemma 3.4. The number of involutions in pZ{2Zql oSk equals

tk{2u
ÿ

r“0

k!

pk ´ 2rq! ¨ r!
2l¨k´pl`1q¨r.

Proof. In order to count the number of involutions, we need to understand the wreath product
structure. We can write

pZ{2Zql oSk “

#

pa, πq; a P

ˆ

pZ{2Zql
˙k

, π P Sk

+

.

Multiplication of two elements is given by:

ppa1, . . . , akq, πq ¨ ppb1, . . . , bkq, σq “ ppaσp1qb1, . . . , aσpkqbkq, πσq.

This means that an element pa, πq is an involution if and only if

ppaπp1qa1, . . . , aπpkqakq, π
2q “ ppe, . . . , eq, eq,

which is equivalent to π being an involution and that (using the fact that pZ{2Zqr consists
entirely of involutions) aπpiq “ ai for all i “ 1, . . . , k.

In order to count the number of involutions, note that Sk contains
`

k
2r

˘

p2rq!! involutions
with k´ 2r fixed points. Here p2rq!! “ p2r´ 1qp2r´ 3q ¨ ¨ ¨ 3 ¨ 1 “ p2rq!{p2r ¨ r!q. After choosing
the involution π in Sk, there is a choice of one element of pZ{2Zql left per orbit of π. So the
number of involutions in pZ{2Zql oSk is

tk{2u
ÿ

r“0

ˆ

k

2r

˙

p2rq!! 2lpk´rq “

tk{2u
ÿ

r“0

k!

pk ´ 2rq! ¨ r!
2l¨k´pl`1q¨r.

�

This now gives us the following expression for the number of permutation representations
of ΓCoxpArq:

Proposition 3.5. Let r P N and Γ “ ΓCoxpArq. Then

hnpΓq “ n!
ÿ

i0,...,ir
ř

j ij2
j“n

ÿ

kj,1,...,kj,s
2j
,

ř

m kj,m“ij

r
ź

j“0

2j ij
s
2j
ź

m“1

kj,m!

¨

˝

tkj,m{2u
ÿ

lj,m“0

1

pkj,m ´ 2lj,mq! ¨ lj,m!
2´pj`1q¨lj,m

˛

‚

2

,

for all n P N, where

s2j “ s2j ppZ{2Zqrq “
śj´1
l“0 p2

r ´ 2lq
śj´1
l“0 p2

j ´ 2lq
.

for all j “ 0, . . . , r.
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Proof. We have

hnpΓq “
ÿ

ϕ P HomppZ{2Zqr,Snq
|ZIn pϕ ppZ{2Zqrqq|

2

Lemma 3.3 tells us that the cardinality |ZIn pϕ ppZ{2Zqrqq| only depends on the way ϕ de-
composes into homomorphisms with distinct kernels.

So

hnpΓq “
ÿ

i0,...,ir
ř

j ij2
j“n

ÿ

kj,1,...,kj,s
2j
,

ř

m kj,m“ij

hi,k ppZ{2Zqrq ¨ z2
i,k,

where for each j, labeling the subgroups of pZ{2Zqr of index 2j by

Gj,1, . . . , Gj,s2j ,

we write hi,k ppZ{2Zqrq for the number of homomorphisms pZ{2Zqr Ñ Sn so that

‚ ϕ ppZ{2Zqrq has ij orbits of size 2j for j “ 0, . . . , r and
‚ for j “ 0, . . . , r, kj,m of the orbits correspond to a map ρ : pZ{2Zqr Ñ pZ{2Zqj with

kernel Gj .

Moreover, zi,k is the number of involutions in the centralizer ZSn pϕ ppZ{2Zqrqq for any such
homomorphism ϕ.

In order to count hi,k ppZ{2Zqrq, note that there are

n!
r
ź

j“0

1

ij !pp2jq!qij

ways to partition rns into orbits whose sizes are given by i, and

r
ź

j“0

ij !

s
2j
ź

m“1

1

kj,m!

to choose which groups belong to which orbits.

Furthermore, there are p2j ´1q! different tansitive homomorphisms with kernel Gj,m for all
j “ 0, . . . , r, m “ 1, . . . , s2j . So we obtain

hi,k ppZ{2Zqrq “ n!
r
ź

j“0

˜

1

pp2jq!qij

s
2j
ź

m“1

pp2j ´ 1q!qkj,m
1

kj,m!

¸

“ n!
r
ź

j“0

1

2j ij

s
2j
ź

m“1

1

kj,m!
,

where we used that
ř

m kj,m “ ij .

Lemmas 3.3 and 3.4 imply that

zi,k “
r
ź

j“0

s
2j
ź

m“1

tkj,m{2u
ÿ

lj,m“0

kj,m!

pk ´ 2lj,mq! ¨ lj,m!
2j¨kj,m´pj`1q¨lj,m

“

r
ź

j“0

2j ij
s
2j
ź

m“1

tkj,m{2u
ÿ

lj,m“0

kj,m!

pk ´ 2lj,mq! ¨ lj,m!
2´pj`1q¨lj,m

Putting the two together, we obtain the formula we claimed. �
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4. An exponential generating function

Our next step is to compute the exponential generating function for the sequence
phnpΓ

CoxpArqqn. That is, we define

Grpxq “
8
ÿ

n“0

hnpΓ
CoxpArqq

n!
xn.

Theorem 4.1. Let r P N. Then

Grpxq “
r
ź

j“0

ˆ

´

1´ x2j`1
¯´s

2j
{2

exp

ˆ

´2j s2j `
2j s2j

1´ x2j

˙˙

where s2j “ s2j ppZ{2Zqrq.

Proof. Proposition 3.5 tells us that

Grpxq “
8
ÿ

i0,...,ir“0

x
ř

j ij2
j ÿ

kj,1,...,kj,s
2j
,

ř

m kj,m“ij

r
ź

j“0

2j ij
s
2j
ź

m“1

kj,m!

¨

¨

˝

tkj,m{2u
ÿ

lj,m“0

1

pkj,m ´ 2lj,mq! ¨ lj,m!
2´pj`1q¨lj,m

˛

‚

2

“

r
ź

j“0

8
ÿ

ij“0

´

2jx2j
¯ij ÿ

kj,1,...,kj,s
2j
,

ř

m kj,m“ij

s
2j
ź

m“1

kj,m!

¨

˝

tkj,m{2u
ÿ

lj,m“0

1

pkj,m ´ 2lj,mq! ¨ lj,m!
2´pj`1q¨lj,m

˛

‚

2

“

r
ź

j“0

8
ÿ

kj,1,...,kj,s
2j
“0

´

2jx2j
¯

ř

m kj,m
s
2j
ź

m“1

kj,m!

¨

˝

tkj,m{2u
ÿ

lj,m“0

1

pkj,m ´ 2lj,mq! ¨ lj,m!
2´pj`1q¨lj,m

˛

‚

2

“

r
ź

j“0

¨

˝

8
ÿ

kj“0

´

2jx2j
¯kj

kj !

¨

˝

tkj{2u
ÿ

lj“0

1

pkj ´ 2ljq! ¨ lj !
2´pj`1q¨lj

˛

‚

2˛

‚

s
2j

which leads us to define two sequences

bj,k :“

tk{2u
ÿ

l“0

2´pj`1q l

pk ´ 2lq! l!
and b

p2q
j,k :“ k! b2j,k

for all i, j P N and the corresponding generating functions

Fjpxq “
8
ÿ

k“0

bj,k x
k and F

p2q
j pxq “

8
ÿ

k“0

b
p2q
j,k x

k

so that

Grpxq “
ź

j“0

´

F
p2q
j p2jx2j q

¯s
2j

.

We will now prove the theorem by first determining Fjpxq, which leads to a recurrence for

the sequence pbj,kqk. From that, we will derive a recurrrence for the sequence pb
p2q
j,kqi, which in
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turn leads to an ODE for F
p2q
j pxq. The solution to this ODE then gives us F

p2q
j pxq and hence

Grpxq.
We have

Fjpxq “
8
ÿ

k“0

tk{2u
ÿ

l“0

2´pj`1ql

pk ´ 2lq! l!
xk “

8
ÿ

l“0

8
ÿ

k“2l

2´pj`1ql

pk ´ 2lq! k!
xk.

Changing the index in the innermost sum, we obtain

Fjpxq “
8
ÿ

l“0

8
ÿ

k“0

2´pj`1ql

k! l!
xk`2l “ exppx` 2´pj`1qx2q.

Using that dFjpxq{dx “ p1` 2´j xqFjpxq and equating coefficients, we get the recurrence

pk ` 1q bj,k`1 “ bj,k ` 2´j bj,k´1.

for all k ě 0.
The recurrence for the sequence pbj,kqk implies that

b
p2q
j,k “

pk ´ 1q!

k
pbj,k´1 ` 2´j bj,k´2q

2

“
1

k
b
p2q
j,k´1 `

2´2jpk ´ 1q

k
b
p2q
j,k´2 `

2´j`1

k
pk ´ 1q! bj,k´1 bj,k´2.

To get the recurrence we are after, we need to compute the cross terms in the above. Again
using the recurrence for the sequence pbj,kqk, we obtain

pk ´ 1q! bj,k´1 bj,k´2 “ b
p2q
j,k´2 ` 2´j pk ´ 2q! bj,k´2 bj,k´3.

Hence

pk ´ 1q! bj,k´1 bj,k´2 “

k
ÿ

l“2

2´pl´2qj b
p2q
j,k´l

and

b
p2q
j,k “

1

k
b
p2q
j,k´1 ` 2´2j k ´ 1

k
b
p2q
j,k´2 ` 2´j`1 1

k

k
ÿ

l“2

2´j pl´2q b
p2q
j,k´l,

or equivalently

k
´

b
p2q
j,k ´ 2´2j b

p2q
j,k´2

¯

“ b
p2q
j,k´1 ´ 2´2j b

p2q
j,k´2 ` 2j`1

k
ÿ

l“2

2´j l b
p2q
j,k´l.

Using the recurrence, we obtain

d

dx

´

F
p2q
j pxq ´ 2´2j x2 F

p2q
j pxq

¯

“

8
ÿ

k“0

k
´

b
p2q
j,k ´ 2´2j b

p2q
j,k´2

¯

xk´1

“

8
ÿ

k“0

˜

b
p2q
j,k´1 ´ 2´2j b

p2q
j,k´2 ` 2j`1

k
ÿ

l“2

2´j l b
p2q
j,k´l

¸

xk´1.

We have
8
ÿ

k“0

pb
p2q
j,k´1 ´ 2´2jb

p2q
j,k´2q x

k´1 “ p1´ 2´2jxq F
p2q
j pxq
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and
8
ÿ

k“0

k
ÿ

l“2

2´j l b
p2q
j,k´l x

k´1 “

8
ÿ

l“2

8
ÿ

k“0

2´j l b
p2q
j,k x

k`l´1 “
2´2j x

1´ 2´j x
F
p2q
j pxq.

Because

d

dx

´

F
p2q
j pxq ´ 2´2j x2 F

p2q
j pxq

¯

“ p1´ 2´2j x2q
d

dx
F
p2q
j pxq ´ 2´2j`1 x F

p2q
j pxq,

our generating function satisfies the following ODE:

p1´ 2´2j x2q
d

dx
F
p2q
j pxq “ p1` 2´2j xq F

p2q
j pxq ` 2´j`1 x

1´ 2´j x
F
p2q
j pxq,

which is equivalent to

d

dx
F
p2q
j pxq “

1` p2´2j ` 2´jq x´ 2´3j x2

p1´ 2´j xq2 p1` 2´j xq
F
p2q
j pxq,

which leads to

F
p2q
j pxq “ a

1
?

1´ 2´2jx2
exp

ˆ

´1

2´2j x´ 2´j

˙

,

where a P C is some constant. Filling this in for Grpxq leads to

Grpxq “ a1
r
ź

j“0

ˆ

´

1´ x2j`1
¯´s

2j
{2

exp

ˆ

2j s2j

1´ x2j

˙˙

for some constant a1 P C. Equating the constant coefficient gives

a1 “ exp

˜

´

r
ÿ

j“0

2js2j

¸

.

�

5. Immediate consequences

Before we turn to the asymptotic behavior of the sequence phnpΓ
CoxpArqqqn, we derive two

immediate consequences to Theorem 4.1: a closed formula for the number index n subgroups
of ΓCoxpArq and a recurrence for the sequence phnpΓ

CoxpArqqqn.

5.1. Subgroups of virtually cyclic Coxeter groups. Theorem 4.1 allows us to derive a
closed form for the number of subgroups of a virtually cyclic Coxeter group. We have:

Corollary 5.1. Let r P N and let

Γ “ ΓCoxpArq.

Then

snpΓq “ n

¨

˚

˚

˝

1`
ÿ

0ăjďr
s.t. 2j |n

2j s2j

˛

‹

‹

‚

`
ÿ

0ďjďr
s.t. 2j`1|n

2j s2j ,

for all n P N.
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Proof. Lemma 2.1 implies that

8
ÿ

n“1

snpΓq

n
xn “ log

˜

8
ÿ

n“0

hnpΓq

n!
xn

¸

Using Theorem 4.1, this means that

8
ÿ

n“1

snpΓq

n
xn “

r
ÿ

j“0

s2j ¨

ˆ

´2j ´
1

2
log

´

1´ x2j`1
¯

`
2j

1´ x2j

˙

.

Using the Taylor expansions for ´ logp1´ xq and 1{p1´ xq at x “ 0, we obtain

8
ÿ

n“1

snpΓq

n
xn “

r
ÿ

j“0

s2j

8
ÿ

k“1

1

2

1

k
xk 2j`1

` 2j xk 2j .

This means that

snpΓq “ n

¨

˚

˚

˝

1`
1

2

ÿ

0ďjďr
s.t. 2j`1|n

2j`1

n
s2j `

ÿ

0ăjďr
s.t. 2j |n

2j s2j

˛

‹

‹

‚

,

which gives the corollary. �

5.2. A recurrence. As a corollary to Theorem 4.1, or rather its proof, we obtain the following
recurrence for the sequence phnpArqqn:

Corollary 5.2. Let r P N and write

hn,r “ hnpΓ
CoxpArqq.

Then

hn`1,r

n!
“ ´

ÿ

εPIrzt0u
|ε|ďn

¨
hn´|ε|`1,r

pn´ |ε|q!

r
ź

j“0

p´1qεj,1`εj,2

`

r
ÿ

j“0

ÿ

εPIr
εj,1“εj,2
“εj,3“0

hn`1´2j´|ε|,r

pn` 1´ 2j ´ |ε|q!
¨ s2j ¨ 2

2j
ź

k‰j

p´1qεk,1`εk,2

`

r
ÿ

j“0

ÿ

εPIr
εj,1“εj,2
“εj,3“0

hn`1´2j`1´|ε|,r

pn` 1´ 2j`1 ´ |ε|q!
¨ s2j ¨ p2

j ` 22jq
ź

k‰j

p´1qεk,1`εk,2

´

r
ÿ

j“0

ÿ

εPIr
εj,1“εj,2
“εj,3“0

hn`1´3¨2j´|ε|,r

pn` 1´ 3 ¨ 2j ´ |ε|q!
¨ s2j ¨ 2

j
ź

k‰j

p´1qεk,1`εk,2

for all n ě 0, with the initial conditions

h0,r “ 1 and hm,r “ 0 for all m ă 0,

where Ir “
`

t0, 1ur`1
˘3

, |ε| “
řr
j“0pεj,1 ` εj,2 ` εj,3q 2j for all ε P Ir and s2j “ s2j ppZ{2Zqrq.
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Proof. Recall the differential equation for the functions F
p2q
j defined in the proof of Theorem

4.1:
d

dx
F
p2q
j pxq “

1` p2´2j ` 2´jq x´ 2´3j x2

p1´ 2´j xq2 p1` 2´j xq
F
p2q
j pxq,

for j “ 0, . . . , r. Using the fact that

Grpxq “
ź

j“0

´

F
p2q
j p2jx2j q

¯s
2j

.

we obtain
dGrpxq

dx
“

r
ÿ

j“0

s2j 22j x2j´1 1` p2´j ` 1q x2j ´ 2´j x2j`1

p1´ x2j q2 p1` x2j q
Grpxq,

or equivalently

dGrpxq

dx

r
ź

j“0

p1´ x2j q2 p1` x2j q “

r
ÿ

j“0

"

´

22jx2j´1 ` p2j ` 22jq x2j`1´1 ´ 2j x3¨2j´1
¯

¨s2j ¨
ź

k‰j

p1´ x2kq2 p1` x2kq

*

¨Grpxq.

So,
8
ÿ

n“0

hn`1,r x
n

n!

r
ź

j“0

p1´ x2j q2 p1` x2j q “

r
ÿ

j“0

" 8
ÿ

n“0

hn,r x
n

n!
¨ s2j ¨

´

22jx2j´1 ´ 2j x3¨2j´1

`p2j ` 22jq x2j`1´1
¯

¨
ź

k‰j

p1´ x2kq2 p1` x2kq

*

.

Equating the coefficients of xn now gives the corollary. �

6. Asymptotics

The goal of this section is to prove Theorems 6.7 and 6.9: the asymptotes for the number
of permutation representations and the number of subgroups of a free product of virtually
cyclic right-angled Coxeter groups. The largest part of the section is taken up by the proof
of Theorem 6.5, which gives an asymptotic expression for the coefficients in functions of the
form of Grpxq.

6.1. The asymptotics of coefficients of power series. There are many methods available
to determine the asymptotics of the coefficients of a given power series F pzq. We will use
Hayman’s techniques from [8]. Hayman’s results hold for functions that are by now called
H-admissible functions. In the following definition we will write

DR “ tz P C; |z| ă Ru ,

for R ą 0.

Definition 6.1. Let R ą 0 and let F : DR Ñ C. Define A,B : r0, Rq Ñ R by

(1) Apρq “ ρ
1

F pρq

d

dρ
F pρq and Bpρq “ ρ

d

dρ
Apρq,

Then F is called H-admissible if there exists a function δ; r0, Rs Ñ p0, πq so that F satisfies
the following conditions
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(H1) As ρÑ R,

F pρeiθq „ F pρq exp

ˆ

iθApρq ´
1

2
θ2 Bpρq

˙

,

uniformly for |θ| ď δpρq
(H2) As ρÑ R,

F pρeiθq “ o

˜

F pρq
a

Bpρq

¸

,

uniformly for δpρq ď |θ| ď π
(H3) As ρÑ R,

Bpρq Ñ 8.

Hayman [8, Theorem 1] proved that

Theorem 6.2. Let R ą 0 and let F : DR Ñ C be given by

F pzq “
8
ÿ

n“0

fn z
n

and suppose F is H-admissible. Then

fnρ
n “

F pρq
a

2πBpρq
exp

˜

´
1

4

pApρq ´ nq2

Bpρq

¸

`

1` op1q
˘

as ρÑ R uniformly for all natural numbers n P N.

Our strategy now consists of three steps. First, we use Hayman’s results to get a uniform
estimate on the coefficients of F in terms of a radius ρ and two functions Apρq and Bpρq
(Proposition 6.3). The standard trick after this (that already appears in Hayman’s paper)
is to simplify the estimates by finding a sequence pρnqn that solves the equation Apρnq “ n.
In order to get good estimates on such a sequence, we first prove a lemma (Lemma 6.4) on
the solutions to polynomial equations. This relies on Newton’s method. Finally, we put our
estimates together, which gives us the asymptotic we are after (Theorem 6.5).

In this section, we will just present the results. The proofs of these results, that are
independent of the rest of the material, will be postponed to later sections.

Theorem 6.2 leads to the following estimate:

Proposition 6.3. For r P Ně1, let b1,j , b2,j ą 0 and kj P N for j “ 0, . . . , r, so that k0 “ 1
and

k0 ă kj for all j P t1, 2, 3, . . . , ru.

Moreover, let

F : D1 Ñ C
be defined by

F pzq “
ÿ

ně0

fn z
n “

r
ź

j“0

´

1´ z2kj
¯´b1,j

exp

ˆ

b2,j

1´ zkj

˙

.

Then

fnρ
n “

F pρq
a

2πBpρq
exp

˜

´
1

4

pApρq ´ nq2

Bpρq

¸

`

1` op1q
˘
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as ρÑ 1 uniformly for all natural numbers n P N, where

Apρq “
r
ÿ

j“0

b1,j 2kj
ρ2kj

1´ ρ2kj
` b2,j kj

ρkj

p1´ ρkj q2

and

Bpρq “
r
ÿ

j“0

4 b1,j k
2
j

˜

ρ2kj

1´ ρ2kj
`

ˆ

ρ2kj

1´ ρ2kj

˙2
¸

` b2,j k
2
j

ˆ

ρkj

p1´ ρkj q2
` 2

ρ2kj

p1´ ρkj q3

˙

.

The proof of this proposition, which essentially consists of proving that F is H-admissible,
can be found in Section 6.4.

In order to control the function Apρq, we will need the following lemma:

Lemma 6.4. Let r P N, αj , βj P p0,8q and kj P Ně1, for j “ 0, . . . , r. Consider for t P p0, 1q
the equation in y given by

t
r
ÿ

j“0

αj
y2kj

1´ y2kj
` βj

ykj

p1´ ykj q2
“ 1.

This equation has a solution y “ yptq that satisfies

yptq “ 1´ c1t
1{2 ` c2t`O pt

γq

as tÑ 0 for some γ P Qą1, where the constant c1 ą 0 is given by

c1 “

g

f

f

e

r
ÿ

j“0

βj
k2
j

.

The proof of this lemma, which is an application of the Newton-Puiseux method, can be
found in Section 6.5. We also note that this method also allows us to determine c2, it will
however not be needed in what follows, it disappears in the proof of the following:

Theorem 6.5. Let pfnqnPN be as above. Then

fn „ C1pb, k, rq ¨ n
´3{4`

řr
j“0 b1,j{2 exp

`

C2pb, k, rq ¨
?
n
˘

,

as nÑ8, where

C1pb, k, rq “

´

řr
j“0

b2,j
kj

¯1{4

?
4π

exp

˜

r
ÿ

j“0

b2,j
2kj

`

r
ÿ

j“0

kj ´ 1

2kj

¸

r
ź

j“0

¨

˝

1

2kj

b

řr
j“0

b2,j
kj

˛

‚

b1,j

and

C2pb, k, rq “ 2

g

f

f

e

r
ÿ

j“0

b2,j
kj
.

We will prove this theorem in Section 6.6.
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6.2. The number of permutation representations. Using Theorem 6.5 we can now de-
termine the asymptotic number of permutation representations of a free product of virtually
cyclic right-angled Coxeter groups. Before we state it, we define some constants depending
on a given Coxeter group.

Definition 6.6. Let r1, . . . , rm P N and

Γ “ ˚m
l“1ΓCoxpArlq.

Then we define

AΓ “

m
ź

l“1

pstotprlqq
1{4´stotprlq

{4

?
4π 2

řrl
j“0pj`1qs

2j
{2

exp

˜

´

rl
ÿ

j“0

2js2j `
1

2
stotprlq `

1

2
rl ´

1

2
`

1

2rl`1

¸

,

BΓ “ 2
m
ÿ

l“0

a

stotprlq

and

CΓ “ ´3m{4`
m
ÿ

l“0

stotprlq{4.

Here stotprq denotes the total number of subgroups of pZ{2Zqr. In other words,

stotprq “
r
ÿ

j“0

s2j .

This now allows us to write down the asymptote for hnpΓq:

Theorem 6.7. Let r1, . . . , rm P N and

Γ “ ˚m
l“1ΓCoxpArlq.

Then
hnpΓq „ AΓ n

CΓ exppBΓ

?
nq n!m.

as nÑ8.

Proof. For the case m “ 1 and r1 “ 0, this follows directly from the classical result by Chowla,
Herstein and Moore [3]. However, our methods also apply.

Since

hnpΓq “
m
ź

l“1

hnpΓ
CoxpArlqq,

we can determine the asymptote for each factor independently. In other words, all we need
to determine is the asymptote for hnpΓ

CoxpArqq

In the language of Theorem 6.5 and using Theorem 4.1, we have

b1,j “ s2j{2, b2,j “ 2jssj and kj “ 2j

So, filling in the constants, we get

C1pb, k, rq “
pstotprqq

1{4

?
4π

exp

˜

1

2
stotprq `

r
ÿ

j“0

2j ´ 1

2j`1

¸

r
ź

j“0

˜

1

2j`1
a

stotprq

¸s
2j
{2

“
pstotprqq

1{4

?
4π

exp

ˆ

1

2
stotprq `

1

2
r ´

1

2
`

1

2r`1

˙ r
ź

j“0

˜

1

2j`1
a

stotprq

¸s
2j
{2
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and

C2pb, k, rq “ 2

g

f

f

e

r
ÿ

j“0

s2j “ 2
a

stotprq.

So, using Theorem 6.5 and the extra multiplicative factor from Theorem 4.1, we obtain

hnpΓ
CoxpArqq „

pstotprqq
1{4

?
4π

¨ exp

˜

´

r
ÿ

j“0

2js2j `
1

2
stotprq `

1

2
r ´

3

2
`

1

2r

¸

¨

r
ź

j“0

˜

1

2j`1
a

stotprq

¸s
2j
{2

¨ nstotprq{4´3{4 exp
´

2
a

stotprq ¨ n
¯

,

as nÑ8. �

6.3. The number of subgroups. Theorem 6.7 also allows us to determine the asymptotic
of the number of subgroups of a free product of virtually cyclic Coxeter groups. We start
with the following lemma:

Lemma 6.8. Suppose Γ is a group so that

hnpΓq „ fpnqpn!qα

as nÑ8, where α ą 1 and fpnq „ AnCeB
?
n as nÑ `8. Then

snpΓq „ n ¨ pn!qα´1fpnq

as nÑ8.

Proof. The proof for the free group in [10, Section 2.1] applies almost verbatim to our situation:
following it we get first that

hnpΓq ´ tnpΓq ď pn!qα
n´1
ÿ

k“1

ˆ

n

k

˙1´α

fpkqfpn´ kq

and using their inequality
`

n
k

˘

ě 2k´1n{2 and the asymptotic equivalent for f we get that

hnpΓq ´ tnpΓq

pn!qα
ď

4` op1q

n

n´1
ÿ

k“1

2´k
ˆ

kpn´ kq

n

˙C

e´Bp
?
n´
?
k´
?
n´kq.

It remains to see that the sum on the right is opnq. This is easily done by separating in

k, n ´ k ě n1{2`ε (for some ε ą 0 small enough), terms for which the summand is ď 2p1´δqn

for some 0 ă δ ă 1 (depending on ε) and the remainder Opn1{2`εq terms which are Op1q
individually. �

Theorem 6.9. Let m P Ně2, r1, . . . , rm P N and

Γ “ ˚m
l“1ΓCoxpArlq.

Then,

snpΓq „ AΓ n
1`CΓ exppBΓ

?
nq n!m´1.

as nÑ8.

Proof. This follows directly from Theorem 6.7 and Lemma 6.8. �
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6.4. Proof of Proposition 6.3.

Proposition 6.3. For r P Ně1, let b1,j , b2,j ą 0 and kj P N for j “ 0, . . . , r, so that k0 “ 1
and

k0 ă kj for all j P t1, 2, 3, . . . , ru.

Moreover, let
F : D1 Ñ C

be defined by

F pzq “
ÿ

ně0

fn z
n “

r
ź

j“0

´

1´ z2kj
¯´b1,j

exp

ˆ

b2,j

1´ zkj

˙

.

Then

fnρ
n “

F pρq

2
a

πBpρq
exp

˜

´
1

4

pApρq ´ nq2

Bpρq

¸

`

1` op1q
˘

as ρÑ 1 uniformly for all natural numbers n P N, where

Apρq “
r
ÿ

j“0

b1,j 2kj
ρ2kj

1´ ρ2kj
` b2,j kj

ρkj

p1´ ρkj q2

and

Bpρq “
r
ÿ

j“0

4 b1,j k
2
j

˜

ρ2kj

1´ ρ2kj
`

ˆ

ρ2kj

1´ ρ2kj

˙2
¸

` b2,j k
2
j

ˆ

ρkj

p1´ ρkj q2
` 2

ρ2kj

p1´ ρkj q3

˙

.

Proof. Our goal is of course to prove that F is H-admissible.
By assumption, all the singularities of F lie on the unit circle |z| “ 1.
It follows from the conditions (H1-3) that, for ρ close enough to 1, the maximum of an

H-admissible function on the circle of radius ρ is realized at z “ ρ. The assumption that
1 “ k0 ă kj for all j ą 0 implies that this is indeed the case.

Writing

P pzq “
r
ÿ

j“0

´b1,j logp1´ z2kj q `
b2,j

1´ zkj

we obtain F pzq “ exppP pzqq. As such, our first goal is to understand the behavior of

P pρeiθq ´ P pρq

as a function of θ near θ “ 0.
Let us consider P term by term. We have

1´ ρ2kjeiθ2kj

1´ ρ2kj
“ 1`

ρ2kj

1´ ρ2kj
p1´ eiθ2kj q.

Using a Taylor expansion, we obtain

1´ eiθ2kj “ ´iθ2kj ` 2θ2k2
j `O

`

θ3
˘

and hence
1´ ρ2kjeiθ2kj

1´ ρ2kj
“ 1´

ρ2kj

1´ ρ2kj

`

iθ2kj ´ 2θ2k2
j `O

`

θ3
˘˘

.

Again using a Taylor expansion, we have

logp1´ zq “ ´z `´
1

2
z2 `O

`

z3
˘
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as z Ñ 0. So

log

ˆ

1´ ρ2kjeiθ2kj

1´ ρ2kj

˙

“ ´
ρ2kj

1´ ρ2kj

`

iθ 2kj ´ 2θ2k2
j

˘

`2k2
j

ˆ

ρ2kj

1´ ρ2kj

˙2

θ2 `O

˜

ˆ

θ

1´ ρ2kj

˙3
¸

“ ´i 2kj
ρ2kj

1´ ρ2kj
θ ` 2k2

j

˜

ρ2kj

1´ ρ2kj
`

ˆ

ρ2kj

1´ ρ2kj

˙2
¸

θ2

`O

˜

ˆ

θ

1´ ρ2kj

˙3
¸

For the second type of terms in P pzq we have

1

1´ ρkjeiθkj
´

1

1´ ρkj
“

1

1´ ρkj
ρkj

`

eiθkj ´ 1
˘

1´ ρkjeiθkj
.

We have

1

1´ ρkjeiθkj
“

1

1´ ρkj ´ ρkj peiθkj ´ 1q

“
1

1´ ρkj
1

1´ ρkj peiθkj´1q

1´ρkj

.

With yet another Taylor expansion, we get

1

1´ ρkjeiθkj
“

1

1´ ρkj

˜

1`
ρkj peiθkj ´ 1q

1´ ρkj
`

ˆ

ρkj peiθkj ´ 1q

1´ ρkj

˙2

`O

˜

ˆ

eiθkj ´ 1

1´ ρkj

˙3
¸¸

.

Using the expansion for eiθkj ´ 1 again, we obtain

1

1´ ρkjeiθkj
“

1

1´ ρkj

ˆ

1`
ρkj

1´ ρkj
piθkj ´

1

2
θ2k2

j q

´
1

2

ˆ

ρkj

1´ ρkj

˙2

k2
j θ

2 `O

˜

ˆ

θ

1´ ρkj

˙3
¸¸

.
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Putting everything together yields

1

1´ ρkjeiθkj
´

1

1´ ρkj
“

ρkj
`

eiθkj ´ 1
˘

p1´ ρkj q2

ˆ

1`
ρkj

1´ ρkj
piθkj ´

1

2
θ2k2

j q

´
1

2

ˆ

ρkj

1´ ρkj

˙2

k2
j θ

2 `O

˜

ˆ

θ

1´ ρkj

˙3
¸¸

“
ρkj

p1´ ρkj q2
piθkj ´

1

2
θ2k2

j q ´
ρ2kj

p1´ ρkj q3
θ2k2

j

`O

˜

ˆ

θ

1´ ρkj

˙3
¸

“ i
ρkj

p1´ ρkj q2
θkj ´

ˆ

1

2

ρkj

p1´ ρkj q2
`

ρ2kj

p1´ ρkj q3

˙

θ2k2
j

`O

˜

ˆ

θ

1´ ρkj

˙3
¸

.

As such, we have

P pρeiθq ´ P pρq “ i Apρq θ ´
1

2
Bpρq θ2 `O

˜

ˆ

θ

1´ ρ2

˙3
¸

where

Apρq “
r
ÿ

j“0

b1,j 2kj
ρ2kj

1´ ρ2kj
` b2,j kj

ρkj

p1´ ρkj q2

and

Bpρq “
r
ÿ

j“0

4 b1,j k
2
j

˜

ρ2kj

1´ ρ2kj
`

ˆ

ρ2kj

1´ ρ2kj

˙2
¸

` b2,j k
2
j

ˆ

ρkj

p1´ ρkj q2
` 2

ρ2kj

p1´ ρkj q3

˙

.

Note that Apρq and Bpρq are exactly of the form of (1). This is of course no coincidence.
We now set

δpρq “ p1´ ρq3{2
ˆ

log

ˆ

1

1´ ρ

˙˙3{4

.

Note that this function is small enough for (H1) to hold. (H3) also readily follows from the
form of Bpρq.

All that remains is to check (H2). Indeed, we need to check that
ˇ

ˇF pρeiθq
ˇ

ˇ

a

Bpρq

F pρq
Ñ 0

uniformly in δ ď |θ| ď π, we claim that this is guaranteed from our choice of δprq.
To this end, set K “ lcm tkj ; j “ 0, . . . , ru and

θj “ j ¨ 2π{K

for j “ 0, . . . ,K. Once we prove that
ˇ

ˇF pρeiδpρqq
ˇ

ˇ

a

Bpρq

F pρq
Ñ 0



22 HYUNGRYUL BAIK, BRAM PETRI AND JEAN RAIMBAULT

and
ˇ

ˇF pρeiθj q
ˇ

ˇ

a

Bpρq

F pρq
Ñ 0

for all 0 ă j ă K, we are done, since F pzq has no other singularities on the circle |z| “ 1.
For the first of these, we can use our approximation of P pρeiθq for θ close to 0. Indeed,

since δpρq{p1´ ρ2q Ñ 0 as ρÑ 1 and i Apρqδpρq is purely imaginary, we have that
ˇ

ˇF pρeiδpρqq
ˇ

ˇ

a

Bpρq

F pρq
ď expp´Bpρqδpρq2 `

1

2
logpBpρqq ` Cq

for some C ą 0 independent of ρ. It follows from the form of δpρq that there exist constants
C 1, C2 ą 0 so that

´Bpρqδpρq2 `
1

2
logpBpρqq ď ´C 1 log

ˆ

1

1´ ρ

˙3{2

` C2 log

ˆ

1

1´ ρ

˙

Ñ ´8

as ρÑ 1.
For the second type of terms we have

ˇ

ˇF pρeiθj q
ˇ

ˇ

a

Bpρq

F pρq
“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

exp

¨

˚

˚

˝

ÿ

0ďiďr
j¨ki-K

b2,i

1´ ρkiej¨ki¨2π{K
´

b2,i
1´ ρki

` b1,i log

ˆ

1´ ρki

1´ ρkiej¨ki¨2π{K

˙

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Whenever K does not divide j ¨ ki, 1{p1´ ρkiej¨ki¨2π{Kq and logp1´ ρkiej¨ki¨2π{Kq are bounded
as functions of ρ. So there exists a constant C ą 0 such that:

ˇ

ˇF pρeiθj q
ˇ

ˇ

a

Bpρq

F pρq
ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

exp

¨

˚

˚

˝

ÿ

0ďiďr
j¨ki-K

´
b2,i

1´ ρki
` b1,i log

´

1´ ρki
¯

` C

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0,

as ρÑ 1, which proves that F is indeed H-admissible. �

6.5. Proof of Lemma 6.4.

Lemma 6.4. Let r P N, αj , βj P p0,8q and kj P Ně1, for j “ 0, . . . , r. Consider for t P p0, 1q
the equation in y given by

t
r
ÿ

j“0

αj
y2kj

1´ y2kj
` βj

ykj

p1´ ykj q2
“ 1.

This equation has a solution y “ yptq that satisfies

yptq “ 1´ c1t
1{2 ` c2t`O pt

γq

as tÑ 0 for some γ P Qą1, where the constant c1 ą 0 is given by

c1 “

g

f

f

e

r
ÿ

j“0

βj
k2
j

.

Proof. We will turn the equation into a polynomial equation (depending on the parameter t)
and then develop the Puiseux series for yptq. Recall that Puiseux’s theorem tells us that we
can find an m P N and k0 P Z so that

yptq “
ÿ

kěk0

ck t
k{m.
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We will apply Newton’s method to find the first three coefficients near 1.
This method can be given a nice geometric description. Namely, given a polynomial equa-

tion of the form

(2) F pt, yq “
r
ÿ

k“0

Akptq y
k “ 0,

the first power γ0 of t in y can be found by considering the Newton polytope P Ă R2 of this
polynomial. This polytope is the convex hull of all points pordpAkptqq, kq, where ordpAkptqq
denotes the lowest power of t that appears in Akptq. Now consider all the sides of P. If the
line L spanned by a side of P supports P and P lies above L, then ´γ1, where γ1 is the slope
of L, is the first power of a branch of solutions to the equation.

Writing y “ c1 t
γ1 ` y1, we obtain a new polynomial equation

F pt, c1 t
γ1 ` y1q “ 0

in y1 and the process can be iterated, with the only condition that at each step, only those lines
are considered that have a larger negative slope than the slopes that have already appeared.
Since the powers of t increase in each iteration, this allows us to compute yptq up to any order.
For more information on these methods see [2].

Now we return to our equation, which is equivalent to

t
r
ÿ

j“0

´

αjp1´ y
kj qy2kj ` βjp1` y

kj qykj
¯

ź

l‰j

p1´ yklq2p1` yklq “
r
ź

j“0

p1´ ykj q2p1` ykj q.

Writing y “ 1` y1, we obtain

t
r
ÿ

j“0

#

´

αjp1´ p1` y1q
kj qp1` y1q

2kj ` βjp1` p1` y1q
kj qp1` y1q

kj
¯

¨
ź

l‰j

p1´ p1` y1q
klq2p1` p1` y1q

klq

+

“

r
ź

j“0

p1´ p1` y1q
kj q2p1` p1` y1q

kj q.

The lowest power of y1 on the right hand side of the equation is y2r
1 . On the left hand side,

this is y2r`2
1 . This means that p2r, 1q, p2r ` 1, 1q and p2r ` 2, 0q are the first vertices of the

Newton polytope and hence that γ1 “ 1{2. So y “ 1 ` c1t
1{2 ` O

´

tγ
1
¯

for some γ1 ą 1
2 .

To obtain the coefficient c1, we now solve equate the terms that lie on the line of slope ´γ1

supporting the Newton polygon. In the notation of (2), we need to solve
ÿ

ordpAkq`γ¨k“r`1

akc
k
1 “ 0,

Here the r ` 1 is the lowest power of t that appears and ak is so that

Akptq “ ak t
ordpAkq ` higher order terms.

So, for our polynomial, we get the equation
r
ÿ

j“0

βj ¨ 2
ź

l‰j

2 k2
l c

2
1 “

r
ÿ

j“0

βj
c2

1k
2
j

r
ź

l“0

2 k2
l c

2
1 “

r
ź

j“0

2 k2
j c

2
1

and hence

c2
1 “

r
ÿ

j“0

βj
k2
j

.
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We choose the branch corresponding to the negative solution of this equation.

Writing y “ 1´ c1 t
1{2 ` y2 for the second iteration, we obtain

t
r
ÿ

j“0

#

ˆ

αjp1´ p1´ c1 t
1{2 ` y2q

kj qp1´ c1 t
1{2 ` y2q

2kj

` βjp1` p1´ c1 t
1{2 ` y2q

kj qp1´ c1 t
1{2 ` y2q

kj

˙

¨
ź

l‰j

p1´ p1´ c1 t
1{2 ` y2q

klq2p1` p1´ c1 t
1{2 ` y2q

klq

+

“

r
ź

j“0

p1´ p1´ c1 t
1{2 ` y2q

kj q2p1` p1´ c1 t
1{2 ` y2q

kj q.

Since the power tr`1 in the y0
2 coefficient disappears, the lowest power in the constant

coefficient is tr`3{2. For 0 ă m ď 2r` 2, the lowest power of t in the ym2 -term is tr`1´m{2. So
the Newton polytope contains the vertices p0, r` 3{2q, pm, r` 1´m{2q for m “ 1, . . . , 2r` 2.
This implies that γ2 “ 1.

So we may write y2 “ c2t`O pt
γq for some γ ą 1. We could determine the constant c2 in

a similar fashion to how we determined c1. It however turns out that in our application, we
will not need the value of the constant. �

6.6. Proof of Theorem 6.5.

Theorem 6.5. Let pfnqnPN be as above. Then

fn „ C1pb, k, rq ¨ n
´3{4`

řr
j“0 b1,j{2 exp

`

C2pb, k, rq ¨
?
n
˘

,

as nÑ8, where

C1pb, k, rq “

´

řr
j“0

b2,j
kj

¯1{4

?
4π

exp

˜

r
ÿ

j“0

b2,j
2kj

`

r
ÿ

j“0

kj ´ 1

2kj

¸

r
ź

j“0

¨

˝

1

2kj

b

řr
j“0

b2,j
kj

˛

‚

b1,j

and

C2pb, k, rq “ 2

g

f

f

e

r
ÿ

j“0

b2,j
kj
.

Proof. The standard trick is to find a sequence pρnqn so that

Apρnq “ n.

We claim that there exists a choice of pρnqn so that ρn P p0, 1q for n large enough and

ρn Ñ 1,

as nÑ8. As such, we can then apply Proposition 6.3 and we obtain that

fn „
F pρnq

a

2πBpρnq ρnn
as nÑ8.
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Let us start by finding ρn. Using Proposition 6.3, we obtain

r
ÿ

j“0

b1,j 2kj
ρ

2kj
n

1´ ρ
2kj
n

` b2,j kj
ρ
kj
n

p1´ ρ
kj
n q

2
“ n

Write t “ 1{n.

So we obtain from Lemma 6.4 that

ρn “ 1´
c1
?
n
`
c2

n
`O pnγq ,

as nÑ8 for some γ ą 1, where c1 and c2 are the constants in that lemma, with αj “ b1,j 2kj
and βj “ b2,j kj . So, in particular

c1 “

g

f

f

e

r
ÿ

j“0

b2,j
kj
.

So we obtain

ρnn „

ˆ

1´
c1
?
n
`
c2

n

˙n

„ exp

ˆ

´
c2

1

2
` c2 ´ c1

?
n

˙

,

as nÑ8. Because ρn Ñ 1 as nÑ8,

Bpρnq „
r
ÿ

j“0

2 b2,j k
2
j

1

p1´ ρ
kj
n q

3
„
n3{2

c3
1

r
ÿ

j“0

2 b2,j
kj

as nÑ8. Likewise,

F pρnq “

r
ź

j“0

´

1´ ρ
2kj
n

¯´b1,j
exp

˜

b2,j

1´ ρ
kj
n

¸

„

r
ź

j“0

˜

n1{2

2kj c1

¸b1,j

exp

˜

b2,j

kj c1 n´1{2 ´ kj c2 n´1 ´
`

kj
2

˘

c2
1 n

´1

¸

„

r
ź

j“0

˜

n1{2

2kj c1

¸b1,j

exp

ˆ

b2,j
kj c1

n1{2 `
b2,j c2

kj c2
1

`
kj ´ 1

2kj

˙

as nÑ8. Putting all of the above together, we obtain

fn „

˜

4π

c3
1

r
ÿ

j“0

b2,j
kj

¸´1{2

exp

˜

c2
1

2
´ c2 `

r
ÿ

j“0

b2,j c2

kj c2
1

`
kj ´ 1

2kj

¸

r
ź

j“0

ˆ

1

2kj c1

˙b1,j

¨ n´3{4`
řr
j“0 b1,j{2 exp

˜

?
n

˜

c1 `
1

c1

r
ÿ

j“0

b2,j
kj

¸¸
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Now we see why we don’t need the value of c2: it cancels, and we obtain that

fn „
1
?

4π

˜

r
ÿ

j“0

b2,j
kj

¸1{4

exp

˜

r
ÿ

j“0

b2,j
2kj

`

r
ÿ

j“0

kj ´ 1

2kj

¸

r
ź

j“0

ˆ

1

2kj c1

˙b1,j

¨ n´3{4`
řr
j“0 b1,j{2 exp

¨

˝2

g

f

f

e

r
ÿ

j“0

b2,j
kj

?
n

˛

‚

as nÑ8, which proves our claim. �
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