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Introduction

Given a finitely generated group Γ and a natural number n, the number s n pΓq of index n subgroups of Γ is finite. This leads to the question how, given a group, the number s n pΓq behaves as a function of n and which geometric information about the group is encoded in it. It is quite rare that an explicit expression for s n pΓq can be written down and even if so, the expression one obtains might still be so complicated that it's hard to extract any information out of it. As such, one usually considers the asymptotic behavior of s n pΓq for large n.

In our previous paper [START_REF] Baik | Subgroup growth of right-angled Artin and Coxeter groups[END_REF], we considered the factorial growth rate of s n pΓq for right-angled Artin and Coxeter groups. That is, we studied limits of the form lim nÑ8 logps n pΓqq n logpnq .

In the case of right-angled Artin groups we were able to determine this limit explicitly and in the case of right-angled Coxeter groups, we determined it for a large class of groups. Moreover, we conjectured an explicit formula for this limit. Our methods were mainly based on counting arguments.

1.1. New results. In this paper, we further study the case of right-angled Coxeter groups. We consider a very specific sequence of such groups: virtually cyclic Coxeter groups and their free products. The upshot of this is that we can access much finer asymptotics than we can in the general case.

Recall that the right-angled Coxeter group associated to a graph G with vertex set V and edge set E is given by

Γ Cox pGq " xσ v , v P V | σ 2
v " e @v P V, rσ v , σ w s " e @tv, wu P Ey. Since Müller's results [START_REF]Finite group actions and asymptotic expansion of e P pzq[END_REF] already cover all finite groups, we focus on the infinite case. It turns out that it's not hard to classify infinite virtually cyclic right-angled Coxeter groups. Indeed they are exactly those groups whose defining graph is a suspension over a complete graph K r on r P N vertices (see Lemma 3.1). Let us denote these graphs by A r .

Our first result is that for a virtually cyclic Coxeter group, an explicit formula for its number of subgoups can be written down. In this formula and throughout the paper (whenever no confusion arises from it), s 2 j will denote the number index 2 j subgroups of pZ{2Zq r and is given by s 2 j " s 2 j ppZ{2Zq r q " ś j´1 l"0 p2 r ´2l q ś j´1 l"0 p2 j ´2l q . for all j " 0, . . . , r.

Corollary 5.1. Let r P N and let Γ " Γ Cox pA r q.

Then s n pΓq " n ¨1 `ÿ 0ăjďr

s.t. 2 j |n 2 j s 2 j ‹ ‹ ' `ÿ 0ďjďr s.t. 2 j`1 |n 2 j s 2 j ,
for all n P N.

One thing to note in the formula above is that the number of subgroups is not a monotone function in n: if n is divisible by a large power of 2 then there is a jump. In particular, no smooth asymptote is to be expected for this sequence. This is very different from the situation for non-trivial free products of virtually cyclic right-angled Coxeter groups 1 : Theorem 6.9. Let m P N ě2 , r 1 , . . . , r m P N and Γ " ˚m l"1 Γ Cox pA r l q.

Then there exist explicit constants A Γ , B Γ ą 0 and C Γ P Q (see Definition 6.6) so that s n pΓq " A Γ n 1`C Γ exppB Γ ? nq n! m´1 .

as n Ñ 8.

For the sake of simplicity, we have not included finite factors in the free product above. But, using Müller's results [START_REF]Finite group actions and asymptotic expansion of e P pzq[END_REF], the theorem above can easily be extended to also allow free products with finite factors.

Because the definitions of the constants A Γ , B Γ and C Γ (especially the former) are rather lengthy, we will postpone them to Section 6.2. We do however note that they behave nicely with respect to free products. That is

A Γ " m ź l"1 A r l , B Γ " m ÿ l"1 B r l and C Γ " m ÿ l"1 C r l .
where A r " A Γ Cox pAr l q , B r " B Γ Cox pAr l q and C r " C Γ Cox pAr l q . The values for some low complexity cases are 1 Recall that for functions f, g : N Ñ R the notation f pnq " gpnq as n Ñ 8 indicates that f pnq{gpnq Ñ 1 as

n Ñ 8.

Exact values

Numerical values 

r A r B r C r A r B r 0 1 ? 8 π ¨exp `´1 2 ˘2 ´1 2 0.1210 . . . 2 
Γ " ˚m l"1 Γ Cox pA r l q. Then h n pΓq " A Γ n C Γ exppB Γ ? nq n! m .
as n Ñ 8.

Note that this asymptote does hold in the case where m " 1. Moreover, in the case m " 1 and r " 0, it recovers the asynmptote implied by the classical result of Chowla, Herstein and Moore [START_REF] Chowla | On recursions connected with symmetric groups. I[END_REF].

The results above are all based on the fact that the exponential generating function for the sequence ph n pΓqq n converges. In fact, it follows from [1, Proposition 2.1] that the exponential generating function for this sequence converges if and only if Γ is virtually abelian. Let us write Γ " Γ Cox pA r q and G r pxq "

8 ÿ n"0 h n pΓq n! x n .
We have:

Theorem 4.1. Let r P N. Then G r pxq " r ź j"0 ˆ´1 ´x2 j`1 ¯´s 2 j {2 exp ˆ´2 j s 2 j `2j s 2 j 1 ´x2 j ˙ẇhere s 2 j " s 2 j ppZ{2Zq r q.
Besides asymptotic information on the sequence ph n pΓ Cox pA r qqq n , Theorem 4.1 also allows us to derive the following recurrence for this sequence: Corollary 5.2. Let r P N and write h n,r " h n pΓ Cox pA r qq.

Then h n`1,r n! " ´ÿ εPIrzt0u |ε|ďn h n´|ε|`1,r pn ´|ε|q! r ź j"0 p´1q ε j,1 `εj,2 `r ÿ j"0 ÿ εPIr ε j,1 "ε j,2 "ε j,3 "0 h n`1´2 j ´|ε|,r pn `1 ´2j ´|ε|q! ¨s2 j ¨22j ź k‰j p´1q ε k,1 `εk,2 `r ÿ j"0 ÿ εPIr ε j,1 "ε j,2 "ε j,3 "0 h n`1´2 j`1 ´|ε|,r pn `1 ´2j`1 ´|ε|q! ¨s2 j ¨p2 j `22j q ź k‰j p´1q ε k,1 `εk,2 ´r ÿ j"0 ÿ εPIr ε j,1 "ε j,2 "ε j,3 "0 h n`1´3¨2 j ´|ε|,r pn `1 ´3 ¨2j ´|ε|q! ¨s2 j ¨2j ź k‰j p´1q ε k,1 `εk,2
for all n ě 0, with the initial conditions h 0,r " 1 and h m,r " 0 for all m ă 0, where I r " `t0, 1u r`1 ˘3, |ε| " ř r j"0 pε j,1 `εj,2 `εj,3 q 2 j for all ε P I r and s 2 j " s 2 j ppZ{2Zq r q. 1.2. Idea of the proof. First of all, we derive a closed formula for the number of permutation representations h n pΓq of an infinite virtually cyclic right-angled Coxeter group (Proposition 3.5). Even though this expression is reasonably explicit, it seems hard to use it directly to extract information on the asymptotic behavior of the sequence.

Instead, we use it to derive the exponential generating function G r pxq for the sequence. We do this by deriving recurrences for factors that appear in the expression, which then lead to an ordinary differential equation for the generating function G r pxq.

Once we have determined G r pxq, we use estimates on a contour integral to estimate its coefficients. It turns out that G r pxq is what is called H-admissible, which means that classical results due to Hayman [START_REF] Hayman | A generalisation of Stirling's formula[END_REF] allow us to determine the asymptotic behavior of its coefficients. Concretely, in Theorem 6.5 we prove an asymptote for a class of functions that contains G r pxq.

This then leads to Theorem 6.7. To obtain the asymptote for s n pΓq we use the fact that, when Γ is a non-trivial free product, h n pΓq grows so fast that most of the permutation representations of Γ need to be transitive. 1.3. Notes and references. The first work on the number of permutation representations of a group goes back to the fifties of the previous century. In [START_REF] Chowla | On recursions connected with symmetric groups. I[END_REF], Chowla, Herstein and Moore determined the asymptotic behavior of h n pZ{2Zq as n Ñ 8. Their work was generalized by Moser and Wyman in [START_REF] Moser | Asymptotic expansions[END_REF][START_REF]Asymptotic expansions[END_REF] to finite cyclic groups of prime order and by Müller in [START_REF]Finite group actions and asymptotic expansion of e P pzq[END_REF] to all finite groups. Müller proved that for a given finite group G, we have

h n pGq " R G n ´1{2 exp ¨ÿ d||G| s d pGq d n d{|G| 'pn!q 1´1{|G|
as n Ñ 8, where R G ą 0 is a constant only depending on G.

The subgroup growth of non-abelian free groups can be derived from Dixon's theorem on generating the symmetric group with random permutations [START_REF] Dixon | The probability of generating the symmetric group[END_REF]. In [START_REF] Müller | Subgroup growth of free products[END_REF], Müller determined the subgroup growth of free products of finite groups. In [START_REF] Müller | Combinatorial aspects of finitely generated virtually free groups[END_REF], Müller also determined the asymptotic number of free subgroups in virtually free groups. More recently, Ciobanu and Kolpakov studied connections between such counts for pZ{2Zq ˚3, the RACG associated to the graph on 3 vertices with no edges, and other combinatorial objects [START_REF] Ciobanu | Three-dimensional maps and subgroup growth[END_REF]. The subgroup growth of surface groups was determined by Müller and Schlage-Puchta in [START_REF] Müller | Character theory of symmetric groups and subgroup growth of surface groups[END_REF], which was generalized to Fuchsian groups by Liebeck and Shalev in [START_REF] Liebeck | Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks[END_REF]. For a general introduction to the topic of subgroup growth we refer to the monograph by Lubotzky and Segal [START_REF] Lubotzky | Subgroup growth[END_REF].

There is also a vast body of literature available on the asymptotics of the coefficients in power series. In the case of the exponential generating functions of finite groups, Müller [START_REF]Finite group actions and asymptotic expansion of e P pzq[END_REF] uses a set of techniques developped by Hayman [START_REF] Hayman | A generalisation of Stirling's formula[END_REF] and Harris and Schoenfeld [START_REF] Harris | The number of idempotent elements in symmetric semigroups[END_REF]. Our generating function also resembles the functions that were considered by Wright in [START_REF] Wright | On the Coefficients of Power Series Having Exponential Singularities[END_REF][START_REF] Wright | On the coefficients of power series having exponential singularities[END_REF]. For more background on these techniques we refer the reader to [START_REF] Odlyzko | Asymptotic enumeration methods[END_REF][START_REF] Flajolet | Analytic combinatorics[END_REF].

Acknowledgement. We are very grateful to an anonymous referee for proposing a simplified proof of Lemma 3.2 and spotting a crucial mistake in a previous version of Proposition 3.5.

Preliminaries

2.1. Notation and set-up. Given n P N, set rns :" t1, . . . , nu. Given a set A, SpAq will denote the symmetric group on A and e P SpAq will denote the trivial element. We will write S n " Sprnsq.

We let IpAq " π P SpAq; π 2 " e ( be the set of involutions in SpAq and will again write I n " Iprnsq. Given k ď n{2, we write I n,k for the subset of I n consisting of involutions with k 2-cycles. If U Ă S n is a subset, we will denote the centralizer of U in S n by ZpU q and the subgroup of S n generated by U by xU y. Moreover, if V Ă S n is another subset, we will write

Z V pU q " ZpU q X V.
Given a finite graph G we will denote its vertex and edge sets by V pGq and EpGq respectively. Γ Cox pGq will denote the associated right-angled Coxeter group. That is

Γ Cox pGq " xσ v , v P V pGq| σ 2
v " e @v P V pGq, rσ v , σ w s " e @tv, wu P EpGqy.

The exponential generating function.

Let G be a finitely generated group. The exponential generating function for the seqeuence h n pGq is well known (see for instance [START_REF]Finite group actions and asymptotic expansion of e P pzq[END_REF]).

Let us write

F G pxq " 8 ÿ n"0 h n pGq n! x n
for this exponential generating function. It takes the following form:

Lemma 2.1. Let G be a finitely generated group. For all x P C we have

F G pxq " exp ˜8 ÿ i"1 s i pGq i x i ¸.

Virtually cyclic right-angled Coxeter groups

3.1. Classification. Now we specialize to virtually cyclic right-angled Coxeter groups. An example of such a group is Γ Cox pA r q. Here, for r P N, A r is the graph obtained by taking the completee graph K r and attaching two vertices that share an edge with each vertex in K r but not with each other. For example, A 0 consists of two vertices that do not share an edge and A 1 is the line on three vertices. We have Γ Cox pA r q » pZ{2Z ˚Z{2Zq ˆpZ{2Zq r .

since the infinite dihedral group pZ{2Z ˚Z{2Zq has an index 4 subgroup isomorphic to Z, Γ Cox pA r q is indeed virtually cyclic.

Our first observation is that all infinite virtually cyclic right-angled Coxeter groups are of form above: Lemma 3.1. Let Γ be an infinite virtually cyclic right-angled Coxeter group. Then there exists an r P N so that Γ " Γ Cox pA r q.

Proof. Suppose Γ " Γ Cox pGq for some finite graph G.

Label the vertices of G by 1, . . . , s. Since Γ is assumed to be infinite, at least one pair of vertices of G does not share an edge. Let us suppose these are the vertices 1 and 2. We will argue that all other vertices need to be connected to both 1 and 2 and also to each other.

First suppose vertex j ą 2 is not connected to the vertex 1. Then σ 1 σ j and σ 1 σ 2 are two infinite order elements. Moreover, there do not exist m, n P N so that pσ 1 σ 2 q m " pσ 1 σ j q n . This violates being virtually cyclic.

We conclude that vertices 3, . . . , s are all connected to both 1 and 2. Now suppose there exists a pair of vertices j, k ą 2 that do not share an edge. Then σ 1 σ 2 and σ j σ k are a pair of infinite order elements without a common power.

Putting the two observations together implies the lemma.

3.2.

A closed formula. Since the case of finite right-angled Coxeter groups is well understood, we will from hereon consider Γ Cox pA r q.

In order to obtain the asymptotes we are after, we are in need of a closed formula for the number of permutation representations of Γ Cox pA r q. To this end, we first record two lemmas on the permutation representations of pZ{2Zq r . Lemma 3.2.

(a) Let H ă S 2 r be a transitive subgroup so that H » pZ{2Zq r . Then

Z I 2 r pHq " H.
(b) Suppose l ď r and let ϕ P Hom ppZ{2Zq r , S 2 l q be so that ϕ ppZ{2Zq r q acts on r2 l s transitively. Then ϕ ppZ{2Zq r q » pZ{2Zq l .

Proof. For item (a) we note that Z S 2 r pHq is an abelian group that acts transitively on r2 r s, from which it follows that it acts freely, which implies our claim.

For item (b), write ϕ ppZ{2Zq r q " Q ă S 2 l . Since pZ{2Zq r surjects onto Q, Q is a finite abelian group in which every non-trivial element has order 2. The fact that Q acts on r2 l s transitively, implies it has order 2 l . The only groups that fit the description above is pZ{2Zq k for some k ě l. Item (a) implies that k " l.

We can split each ϕ P Hom ppZ{2Zq r , S n q into a product of homomorphisms into small symmetric groups according to the orbits of ϕ ppZ{2Zq r q. That is, we can identify ϕ " ϕ 1 ˆ. . . ˆϕm , where ϕ i ppZ{2Zq r q acts transitively on r2 l i s for some 0 ď i ď r. Lemma 3.2(b) above implies that we can identify ϕ i with a surjective homomorphism pZ{2Zq r Ñ pZ{2Zq l i . With a slight abuse of notation, we will also call this homomorphism ϕ i . Moreover, given a surjective homomorphism ϕ : pZ{2Zq r Ñ pZ{2Zq l and k P N, we will write

ϕ k " ϕ ˆ. . . ˆϕ : pZ{2Zq r Ñ ´pZ{2Zq l ¯k .
The next lemma is about how the centralizer Z Sn pϕ ppZ{2Zq r qq depends on the decomposition of ϕ as a product of homomorphisms. Lemma 3.3. Suppose s P N and G 1 , . . . G s ă pZ{2Zq r are all distinct subgroups. Moreover, let ϕ i,j : pZ{2Zq r Ñ pZ{2Zq l i j " 1, . . . m i , i " 1, . . . , s be distinct surjective homomorphisms so that kerpϕ i,j q " G i for all j " 1, . . . m i , i " 1, . . . , s. Let ϕ :"

ą i"1,...,s, j"1,...m i ϕ k i,j i,j : pZ{2Zq r Ñ ą i"1,...,s ´Z{2Zq l i ¯mi ă S ´pZ{2Zq ř i m i l i ¯» S n where n " 2 ř i m i l i . Then Z Sn pϕ ppZ{2Zq r qq » s ą i"1 ´pZ{2Zq l i S m i Proof.
The lemma essentially consists of two claims: the fact that the centralizer decomposes as a product and the fact that the factors take the form of a wreath product.

To see the product structure, note that when given G ă S n and π P Z Sn pGq, π acts on the orbits of G on rns. That is, for every G-orbit A of cardinality k, there exists a G-orbit B of cardinality k, so that πpAq " B. Because π is a bijection, it can only permute orbits of the same size. This already implies that the centralizer splits as a product over the different orbit sizes.

To get the full product decomposition, we need to understand which orbits can be permuted. We claim that two ϕ ppZ{2Zq r q-orbits A, B Ă rns of the same cardinality can be permuted by an element of Z Sn pϕ ppZ{2Zq r qq if and only if the homomorphisms ϕ A , ϕ B : pZ{2Zq r Ñ pZ{2Zq l they define have the same kernel. What we really need to show is that if kerpϕ A q ‰ kerpϕ B q, then these orbits cannot be permuted. So, suppose σ P S n so that σpAq " B.

Because kerpϕ A q ‰ kerpϕ B q and both ϕ A and ϕ B are surjections onto pZ{2Zq l for the same l, we have that kerpϕ A q kerpϕ B q ‰ H. So, let g P kerpϕ A q kerpϕ B q and let a P A. Since g R kerpϕ B q, there exists an a P A so that ϕpgq pσpaqq ‰ σpaq.

However, because ϕpgqa " a, we obtain σ pϕpgqσpaqq " σpaq.

So, σ cannot lie in Z Sn pϕ ppZ{2Zq r qq.

This implies that Z Sn pϕ ppZ{2Zq r qq indeed splits as a product according to the decomposition of ϕ into homomorphisms with distinct kernels. Moreover, the fact that two orbits that define the same homomorphism can be permuted, together with Lemma 3.2(a) implies that the factos take the form we claim.

In order to count the involutions in these centralizers, we record the following:

Lemma 3.4. The number of involutions in pZ{2Zq l S k equals tk{2u ÿ r"0 k! pk ´2rq! ¨r! 2 l¨k´pl`1q¨r .
Proof. In order to count the number of involutions, we need to understand the wreath product structure. We can write

pZ{2Zq l S k " # pa, πq; a P ˆpZ{2Zq l ˙k, π P S k + .
Multiplication of two elements is given by: ppa 1 , . . . , a k q, πq ¨ppb 1 , . . . , b k q, σq " ppa σp1q b 1 , . . . , a σpkq b k q, πσq.

This means that an element pa, πq is an involution if and only if ppa πp1q a 1 , . . . , a πpkq a k q, π 2 q " ppe, . . . , eq, eq, which is equivalent to π being an involution and that (using the fact that pZ{2Zq r consists entirely of involutions) a πpiq " a i for all i " 1, . . . , k.

In order to count the number of involutions, note that S k contains `k 2r ˘p2rq!! involutions with k ´2r fixed points. Here p2rq!! " p2r ´1qp2r ´3q ¨¨¨3 ¨1 " p2rq!{p2 r ¨r!q. After choosing the involution π in S k , there is a choice of one element of pZ{2Zq l left per orbit of π. So the number of involutions in pZ{2Zq l S k is

tk{2u ÿ r"0 ˆk 2r ˙p2rq!! 2 lpk´rq " tk{2u ÿ r"0 k! pk ´2rq! ¨r! 2 l¨k´pl`1q¨r .
This now gives us the following expression for the number of permutation representations of Γ Cox pA r q: Proposition 3.5. Let r P N and Γ " Γ Cox pA r q. Then

h n pΓq " n! ÿ i 0 ,...,ir ř j i j 2 j "n ÿ k j,1 ,...,k j,s 2 j , ř m k j,m "i j r ź j"0 2 j i j s 2 j ź m"1 k j,m ! ¨tk j,m {2u ÿ l j,m "0 1 pk j,m ´2l j,m q! ¨lj,m ! 2 ´pj`1q¨l j,m
'2 , for all n P N, where s 2 j " s 2 j ppZ{2Zq r q " ś j´1 l"0 p2 r ´2l q ś j´1 l"0 p2 j ´2l q . for all j " 0, . . . , r.

Proof. We have

h n pΓq " ÿ ϕ P HomppZ{2Zq r ,Snq
|Z In pϕ ppZ{2Zq r qq| 2 Lemma 3.3 tells us that the cardinality |Z In pϕ ppZ{2Zq r qq| only depends on the way ϕ decomposes into homomorphisms with distinct kernels. So

h n pΓq " ÿ i 0 ,...,ir ř j i j 2 j "n ÿ k j,1 ,...,k j,s 2 j , ř m k j,m "i j h i,k ppZ{2Zq r q ¨z2 i,k ,
where for each j, labeling the subgroups of pZ{2Zq r of index 2 j by G j,1 , . . . , G j,s 2 j , we write h i,k ppZ{2Zq r q for the number of homomorphisms pZ{2Zq r Ñ S n so that ' ϕ ppZ{2Zq r q has i j orbits of size 2 j for j " 0, . . . , r and ' for j " 0, . . . , r, k j,m of the orbits correspond to a map ρ : pZ{2Zq r Ñ pZ{2Zq j with kernel G j .

Moreover, z i,k is the number of involutions in the centralizer Z Sn pϕ ppZ{2Zq r qq for any such homomorphism ϕ. In order to count h i,k ppZ{2Zq r q, note that there are n! r ź j"0 1 i j !pp2 j q!q i j ways to partition rns into orbits whose sizes are given by i, and

r ź j"0 i j ! s 2 j ź m"1 1 k j,m !
to choose which groups belong to which orbits.

Furthermore, there are p2 j ´1q! different tansitive homomorphisms with kernel G j,m for all j " 0, . . . , r, m " 1, . . . , s 2 j . So we obtain

h i,k ppZ{2Zq r q " n! r ź j"0 ˜1 pp2 j q!q i j s 2 j ź m"1 pp2 j ´1q!q k j,m 1 k j,m ! ¸" n! r ź j"0 1 2 j i j s 2 j ź m"1 1 k j,m ! ,
where we used that ř m k j,m " i j . Lemmas 3.3 and 3.4 imply that

z i,k " r ź j"0 s 2 j ź m"1 tk j,m {2u ÿ l j,m "0 k j,m ! pk ´2l j,m q! ¨lj,m ! 2 j¨k j,m ´pj`1q¨l j,m " r ź j"0 2 j i j s 2 j ź m"1 tk j,m {2u ÿ l j,m "0 k j,m ! pk ´2l j,m q! ¨lj,m ! 2 ´pj`1q¨l j,m
Putting the two together, we obtain the formula we claimed.

An exponential generating function

Our next step is to compute the exponential generating function for the sequence ph n pΓ Cox pA r qq n . That is, we define

G r pxq " 8 ÿ n"0 h n pΓ Cox pA r qq n! x n . Theorem 4.1. Let r P N. Then G r pxq " r ź j"0 ˆ´1 ´x2 j`1 ¯´s 2 j {2 exp ˆ´2 j s 2 j `2j s 2 j 1 ´x2 j
˙ẇhere s 2 j " s 2 j ppZ{2Zq r q.

Proof. Proposition 3.5 tells us that G r pxq "

8 ÿ i 0 ,...,ir"0 x ř j i j 2 j ÿ k j,1 ,...,k j,s 2 j , ř m k j,m "i j r ź j"0 2 j i j s 2 j ź m"1 k j,m ! ¨¨t k j,m {2u ÿ l j,m "0 1 pk j,m ´2l j,m q! ¨lj,m ! 2 ´pj`1q¨l j,m '2 " r ź j"0 8 ÿ i j "0 ´2j x 2 j ¯ij ÿ k j,1 ,...,k j,s 2 j , ř m k j,m "i j s 2 j ź m"1 k j,m ! ¨tk j,m {2u ÿ l j,m "0 1 pk j,m ´2l j,m q! ¨lj,m ! 2 ´pj`1q¨l j,m '2 " r ź j"0 8 ÿ k j,1 ,...,k j,s 2 j "0 ´2j x 2 j ¯řm k j,m s 2 j ź m"1 k j,m ! ¨tk j,m {2u ÿ l j,m "0 1 pk j,m ´2l j,m q! ¨lj,m ! 2 ´pj`1q¨l j,m '2 " r ź j"0 ¨8 ÿ k j "0 ´2j x 2 j ¯kj k j ! ¨tk j {2u ÿ l j "0 1 pk j ´2l j q! ¨lj ! 2 ´pj`1q¨l j '2 's 2 j
which leads us to define two sequences b j,k :"

tk{2u ÿ l"0 2 ´pj`1q l pk ´2lq! l! and b p2q j,k :" k! b 2 j,k
for all i, j P N and the corresponding generating functions

F j pxq " 8 ÿ k"0 b j,k x k and F p2q j pxq " 8 ÿ k"0 b p2q j,k x k so that G r pxq " ź j"0
´F p2q j p2 j x 2 j q ¯s2 j .

We will now prove the theorem by first determining F j pxq, which leads to a recurrence for the sequence pb j,k q k . From that, we will derive a recurrrence for the sequence pb p2q j,k q i , which in turn leads to an ODE for F p2q j pxq. The solution to this ODE then gives us F p2q j pxq and hence G r pxq.

We have

F j pxq " 8 ÿ k"0 tk{2u ÿ l"0 2 ´pj`1ql pk ´2lq! l! x k " 8 ÿ l"0 8 ÿ k"2l 2 ´pj`1ql pk ´2lq! k! x k .
Changing the index in the innermost sum, we obtain

F j pxq " 8 ÿ l"0 8 ÿ k"0 2 ´pj`1ql k! l! x k`2l " exppx `2´pj`1q x 2 q.
Using that dF j pxq{dx " p1 `2´j xqF j pxq and equating coefficients, we get the recurrence

pk `1q b j,k`1 " b j,k `2´j b j,k´1 .
for all k ě 0. The recurrence for the sequence pb j,k q k implies that

b p2q j,k " pk ´1q! k pb j,k´1 `2´j b j,k´2 q 2 " 1 k b p2q j,k´1 `2´2j pk ´1q k b p2q j,k´2 `2´j`1 k pk ´1q! b j,k´1 b j,k´2 .
To get the recurrence we are after, we need to compute the cross terms in the above. Again using the recurrence for the sequence pb j,k q k , we obtain 

p1 ´2´2j x 2 q d dx F p2q j pxq " p1 `2´2j xq F p2q j pxq `2´j`1 x 1 ´2´j x F p2q j pxq,
which is equivalent to

d dx F p2q j pxq " 1 `p2 ´2j `2´j q x ´2´3j x 2 p1 ´2´j xq 2 p1 `2´j xq F p2q j pxq,
which leads to

F p2q j pxq " a 1 ? 1 ´2´2j x 2 exp ˆ´1 2 ´2j x ´2´j ˙,
where a P C is some constant. Filling this in for G r pxq leads to

G r pxq " a 1 r ź j"0 ˆ´1 ´x2 j`1 ¯´s 2 j {2 exp ˆ2j s 2 j 1 ´x2 j
˙ḟor some constant a 1 P C. Equating the constant coefficient gives a 1 " exp ˜´r ÿ j"0 2 j s 2 j ¸.

Immediate consequences

Before we turn to the asymptotic behavior of the sequence ph n pΓ Cox pA r qqq n , we derive two immediate consequences to Theorem 4.1: a closed formula for the number index n subgroups of Γ Cox pA r q and a recurrence for the sequence ph n pΓ Cox pA r qqq n . 

Subgroups of virtually cyclic

s n pΓq n x n " r ÿ j"0 s 2 j ¨ˆ´2 j ´1 2 log ´1 ´x2 j`1 ¯`2 j 1 ´x2 j ˙.
Using the Taylor expansions for ´logp1 ´xq and 1{p1 ´xq at x " 0, we obtain

8 ÿ n"1 s n pΓq n x n " r ÿ j"0 s 2 j 8 ÿ k"1 1 2 1 k x k 2 j`1 `2j x k 2 j .
This means that

s n pΓq " n ¨1 `1 2 ÿ 0ďjďr s.t. 2 j`1 |n 2 j`1 n s 2 j `ÿ 0ăjďr s.t. 2 j |n 2 j s 2 j ‹ ‹ ' ,
which gives the corollary.

A recurrence.

As a corollary to Theorem 4.1, or rather its proof, we obtain the following recurrence for the sequence ph n pA r qq n :

Corollary 5.2. Let r P N and write h n,r " h n pΓ Cox pA r qq.

Then

h n`1,r n! " ´ÿ εPIrzt0u |ε|ďn ¨hn´|ε|`1,r pn ´|ε|q! r ź j"0 p´1q ε j,1 `εj,2 `r ÿ j"0 ÿ εPIr ε j,1 "ε j,2 "ε j,3 "0 h n`1´2 j ´|ε|,r pn `1 ´2j ´|ε|q! ¨s2 j ¨22j ź k‰j p´1q ε k,1 `εk,2 `r ÿ j"0 ÿ εPIr ε j,1 "ε j,2 "ε j,3 "0 h n`1´2 j`1 ´|ε|,r pn `1 ´2j`1 ´|ε|q! ¨s2 j ¨p2 j `22j q ź k‰j p´1q ε k,1 `εk,2 ´r ÿ j"0 ÿ εPIr ε j,1 "ε j,2 "ε j,3 "0 h n`1´3¨2 j ´|ε|,r pn `1 ´3 ¨2j ´|ε|q! ¨s2 j ¨2j ź k‰j p´1q ε k,1 `εk,2
for all n ě 0, with the initial conditions h 0,r " 1 and h m,r " 0 for all m ă 0, where I r " `t0, 1u r`1 ˘3, |ε| " ř r j"0 pε j,1 `εj,2 `εj,3 q 2 j for all ε P I r and s 2 j " s 2 j ppZ{2Zq r q.

Proof. Recall the differential equation for the functions F p2q j defined in the proof of Theorem 4.1:

d dx F p2q j pxq " 1 `p2 ´2j `2´j q x ´2´3j x 2 p1 ´2´j xq 2 p1 `2´j xq F p2q j pxq,
for j " 0, . . . , r. Using the fact that G r pxq " ź j"0 ´F p2q j p2 j x 2 j q ¯s2 j .

we obtain dG r pxq dx "

r ÿ j"0 s 2 j 2 2j x 2 j ´1 1 `p2 ´j `1q x 2 j ´2´j x 2 j`1 p1 ´x2 j q 2 p1 `x2 j q G r pxq,
or equivalently

dG r pxq dx r ź j"0 p1 ´x2 j q 2 p1 `x2 j q " r ÿ j"0 " ´22j x 2 j ´1 `p2 j `22j q x 2 j`1 ´1 ´2j x 3¨2 j ´1s 2 j ¨ź k‰j p1 ´x2 k q 2 p1 `x2 k q * ¨Gr pxq. So, 8 ÿ n"0 h n`1,r x n n! r ź j"0 p1 ´x2 j q 2 p1 `x2 j q " r ÿ j"0 " 8 ÿ n"0 h n,r x n n! ¨s2 j ¨´2 2j x 2 j ´1 ´2j x 3¨2 j ´1 `p2 j `22j q x 2 j`1 ´1¯¨ź k‰j p1 ´x2 k q 2 p1 `x2 k q * .
Equating the coefficients of x n now gives the corollary.

Asymptotics

The goal of this section is to prove Theorems 6.7 and 6.9: the asymptotes for the number of permutation representations and the number of subgroups of a free product of virtually cyclic right-angled Coxeter groups. The largest part of the section is taken up by the proof of Theorem 6.5, which gives an asymptotic expression for the coefficients in functions of the form of G r pxq.

The asymptotics of coefficients of power series.

There are many methods available to determine the asymptotics of the coefficients of a given power series F pzq. We will use Hayman's techniques from [START_REF] Hayman | A generalisation of Stirling's formula[END_REF]. Hayman's results hold for functions that are by now called H-admissible functions. In the following definition we will write Then F is called H-admissible if there exists a function δ; r0, Rs Ñ p0, πq so that F satisfies the following conditions

(H1) As ρ Ñ R, F pρe iθ q " F pρq exp ˆiθApρq ´1 2 θ 2 Bpρq ˙, uniformly for |θ| ď δpρq (H2) As ρ Ñ R, F pρe iθ q " o ˜F pρq a Bpρq ¸, uniformly for δpρq ď |θ| ď π (H3) As ρ Ñ R, Bpρq Ñ 8.
Hayman [8, Theorem 1] proved that Theorem 6.2. Let R ą 0 and let F : D R Ñ C be given by

F pzq " 8 ÿ n"0 f n z n
and suppose F is H-admissible. Then

f n ρ n " F pρq a 2πBpρq exp ˜´1 4 pApρq ´nq 2 Bpρq ¸`1 `op1q ȃs ρ Ñ R
uniformly for all natural numbers n P N.

Our strategy now consists of three steps. First, we use Hayman's results to get a uniform estimate on the coefficients of F in terms of a radius ρ and two functions Apρq and Bpρq (Proposition 6.3). The standard trick after this (that already appears in Hayman's paper) is to simplify the estimates by finding a sequence pρ n q n that solves the equation Apρ n q " n. In order to get good estimates on such a sequence, we first prove a lemma (Lemma 6.4) on the solutions to polynomial equations. This relies on Newton's method. Finally, we put our estimates together, which gives us the asymptotic we are after (Theorem 6.5).

In this section, we will just present the results. The proofs of these results, that are independent of the rest of the material, will be postponed to later sections. Theorem 6.2 leads to the following estimate: Proposition 6.3. For r P N ě1 , let b 1,j , b 2,j ą 0 and k j P N for j " 0, . . . , r, so that k 0 " 1 and k 0 ă k j for all j P t1, 2, 3, . . . , ru.

Moreover, let

F : D 1 Ñ C be defined by F pzq " ÿ ně0 f n z n " r ź j"0 ´1 ´z2k j ¯´b 1,j exp ˆb2,j 1 ´zk j ˙.
Then

f n ρ n " F pρq a 2πBpρq exp ˜´1 4 pApρq ´nq 2 Bpρq ¸`1 `op1q ˘
as ρ Ñ 1 uniformly for all natural numbers n P N, where

Apρq " r ÿ j"0 b 1,j 2k j ρ 2k j 1 ´ρ2k j `b2,j k j ρ k j p1 ´ρk j q 2 and Bpρq " r ÿ j"0 4 b 1,j k 2 j ˜ρ2k j 1 ´ρ2k j `ˆρ 2k j 1 ´ρ2k j ˙2¸`b 2,j k 2 j ˆρk j p1 ´ρk j q 2 `2 ρ 2k j p1 ´ρk j q 3
˙.

The proof of this proposition, which essentially consists of proving that F is H-admissible, can be found in Section 6. [START_REF] Ciobanu | Three-dimensional maps and subgroup growth[END_REF].

In order to control the function Apρq, we will need the following lemma: Lemma 6.4. Let r P N, α j , β j P p0, 8q and k j P N ě1 , for j " 0, . . . , r. Consider for t P p0, 1q the equation in y given by t r ÿ j"0 α j y 2k j 1 ´y2k j `βj

y k j p1 ´yk j q 2 " 1.
This equation has a solution y " yptq that satisfies yptq " 1 ´c1 t 1{2 `c2 t `O pt γ q as t Ñ 0 for some γ P Q ą1 , where the constant c 1 ą 0 is given by

c 1 " g f f e r ÿ j"0 β j k 2 j .
The proof of this lemma, which is an application of the Newton-Puiseux method, can be found in Section 6.5. We also note that this method also allows us to determine c 2 , it will however not be needed in what follows, it disappears in the proof of the following: Theorem 6.5. Let pf n q nPN be as above. Then

f n " C 1 pb, k, rq ¨n´3{4`ř r j"0 b 1,j {2 exp `C2 pb, k, rq ¨?n ˘,
as n Ñ 8, where

C 1 pb, k, rq " ´řr j"0 b 2,j k j ¯1{4 ? 4π exp ˜r ÿ j"0 b 2,j 2k j `r ÿ j"0 k j ´1 2k j ¸r ź j"0 ¨1 2k j b ř r j"0 b 2,j k j 'b 1,j and 
C 2 pb, k, rq " 2 g f f e r ÿ j"0 b 2,j k j .
We will prove this theorem in Section 6.6.

6.2.

The number of permutation representations. Using Theorem 6.5 we can now determine the asymptotic number of permutation representations of a free product of virtually cyclic right-angled Coxeter groups. Before we state it, we define some constants depending on a given Coxeter group. Definition 6.6. Let r 1 , . . . , r m P N and Γ " ˚m l"1 Γ Cox pA r l q.

Then we define

A Γ " m ź l"1
ps tot pr l qq 1{4´s totpr l q {4 ? 4π 2

ř r l j"0 pj`1qs 2 j {2 exp ˜´r l ÿ j"0

2 j s 2 j `1 2 s tot pr l q `1 2 r l ´1 2 `1 2 r l `1 ¸, B Γ " 2 m ÿ l"0 a s tot pr l q and C Γ " ´3m{4 `m ÿ l"0
s tot pr l q{4.

Here s tot prq denotes the total number of subgroups of pZ{2Zq r . In other words,

s tot prq " r ÿ j"0 s 2 j .
This now allows us to write down the asymptote for h n pΓq: Theorem 6.7. Let r 1 , . . . , r m P N and Γ " ˚m l"1 Γ Cox pA r l q.

Then h n pΓq " A Γ n C Γ exppB Γ ? nq n! m . as n Ñ 8.

Proof. For the case m " 1 and r 1 " 0, this follows directly from the classical result by Chowla, Herstein and Moore [START_REF] Chowla | On recursions connected with symmetric groups. I[END_REF]. However, our methods also apply.

Since

h n pΓq " m ź l"1 h n pΓ Cox pA r l qq,
we can determine the asymptote for each factor independently. In other words, all we need to determine is the asymptote for h n pΓ Cox pA r qq In the language of Theorem 6.5 and using Theorem 4. It remains to see that the sum on the right is opnq. This is easily done by separating in k, n ´k ě n 1{2`ε (for some ε ą 0 small enough), terms for which the summand is ď 2 p1´δqn for some 0 ă δ ă 1 (depending on ε) and the remainder Opn 1{2`ε q terms which are Op1q individually.

Theorem 6.9. Let m P N ě2 , r 1 , . . . , r m P N and Γ " ˚m l"1 Γ Cox pA r l q.

Then,

s n pΓq " A Γ n 1`C Γ exppB Γ ? nq n! m´1 .
as n Ñ 8.

Proof. This follows directly from Theorem 6.7 and Lemma 6.8.

6.4. Proof of Proposition 6.3. Proposition 6.3. For r P N ě1 , let b 1,j , b 2,j ą 0 and k j P N for j " 0, . . . , r, so that k 0 " 1 and k 0 ă k j for all j P t1, 2, 3, . . . , ru. Moreover, let F : D 1 Ñ C be defined by

F pzq " ÿ ně0 f n z n " r ź j"0 ´1 ´z2k j ¯´b 1,j exp ˆb2,j 1 ´zk j ˙.
Then

f n ρ n " F pρq 2 a πBpρq exp ˜´1 4 
pApρq ´nq 2 Bpρq ¸`1 `op1q ȃs ρ Ñ 1 uniformly for all natural numbers n P N, where

Apρq " r ÿ j"0 b 1,j 2k j ρ 2k j 1 ´ρ2k j `b2,j k j ρ k j p1 ´ρk j q 2 and Bpρq " r ÿ j"0 4 b 1,j k 2 j ˜ρ2k j 1 ´ρ2k j `ˆρ 2k j 1 ´ρ2k j ˙2¸`b 2,j k 2 j ˆρk j p1 ´ρk j q 2 `2 ρ 2k j p1 ´ρk j q 3 ˙.
Proof. Our goal is of course to prove that F is H-admissible.

By assumption, all the singularities of F lie on the unit circle |z| " 1.

It follows from the conditions (H1-3) that, for ρ close enough to 1, the maximum of an H-admissible function on the circle of radius ρ is realized at z " ρ. The assumption that 1 " k 0 ă k j for all j ą 0 implies that this is indeed the case. Writing P pzq " r ÿ j"0 ´b1,j logp1 ´z2k j q `b2,j 1 ´zk j we obtain F pzq " exppP pzqq. As such, our first goal is to understand the behavior of P pρe iθ q ´P pρq as a function of θ near θ " 0. Let us consider P term by term. We have 1 ´ρ2k j e iθ2k j 1 ´ρ2k j " 1 `ρ2k j 1 ´ρ2k j p1 ´eiθ2k j q.

Using a Taylor expansion, we obtain

1 ´eiθ2k j " ´iθ2k j `2θ 2 k 2 j `O `θ3 ȃnd hence 1 ´ρ2k j e iθ2k j 1 ´ρ2k j " 1 ´ρ2k j 1 ´ρ2k j `iθ2k j ´2θ 2 k 2 j `O `θ3 ˘˘.
Again using a Taylor expansion, we have

logp1 ´zq " ´z `´1 2 z 2 `O `z3 ˘ as z Ñ 0. So log ˆ1 ´ρ2k j e iθ2k j 1 ´ρ2k j ˙" ´ρ2k j 1 ´ρ2k j `iθ 2k j ´2θ 2 k 2 j 2k 2 j ˆρ2k j 1 ´ρ2k j ˙2 θ 2 `O ˜ˆθ 1 ´ρ2k j ˙3" ´i 2k j ρ 2k j 1 ´ρ2k j θ `2k 2 j ˜ρ2k j 1 ´ρ2k j `ˆρ 2k j 1 ´ρ2k j ˙2¸θ 2 `O ˜ˆθ 1 ´ρ2k j ˙3F
or the second type of terms in P pzq we have

1 1 ´ρk j e iθk j ´1 1 ´ρk j " 1 1 ´ρk j ρ k j `eiθk j ´11
´ρk j e iθk j .

We have 1 1 ´ρk j e iθk j " 1 1 ´ρk j ´ρk j pe iθk j ´1q " 1 1 ´ρk j 1 1

´ρk j pe iθk j ´1q 1´ρ k j

.

With yet another Taylor expansion, we get

1 1 ´ρk j e iθk j " 1 1 ´ρk j ˜1 `ρk j pe iθk j ´1q 1 ´ρk j `ˆρ k j pe iθk j ´1q 1 ´ρk j ˙2 `O ˜ˆe iθk j ´1 1 ´ρk j ˙3¸¸.
Using the expansion for e iθk j ´1 again, we obtain

1 1 ´ρk j e iθk j " 1 1 ´ρk j ˆ1 `ρk j 1 ´ρk j piθk j ´1 2 θ 2 k 2 j q ´1 2 ˆρk j 1 ´ρk j ˙2 k 2 j θ 2 `O ˜ˆθ 1 ´ρk j ˙3¸¸.
Putting everything together yields

1 1 ´ρk j e iθk j ´1 1 ´ρk j " ρ k j `eiθk j ´1p 1 ´ρk j q 2 ˆ1 `ρk j 1 ´ρk j piθk j ´1 2 θ 2 k 2 j q ´1 2 ˆρk j 1 ´ρk j ˙2 k 2 j θ 2 `O ˜ˆθ 1 ´ρk j ˙3¸" ρ k j p1 ´ρk j q 2 piθk j ´1 2 θ 2 k 2 j q ´ρ2k j p1 ´ρk j q 3 θ 2 k 2 j `O ˜ˆθ 1 ´ρk j ˙3" i ρ k j p1 ´ρk j q 2 θk j ´ˆ1 2 
ρ k j p1 ´ρk j q 2 `ρ2k j p1 ´ρk j q 3 ˙θ2 k 2 j `O ˜ˆθ 1 ´ρk j ˙3¸.
As such, we have

P pρe iθ q ´P pρq " i Apρq θ ´1 2 Bpρq θ 2 `O ˜ˆθ 1 ´ρ2 ˙3w here Apρq " r ÿ j"0 b 1,j 2k j ρ 2k j 1 ´ρ2k j `b2,j k j ρ k j p1 ´ρk j q 2 and Bpρq " r ÿ j"0 4 b 1,j k 2 j ˜ρ2k j 1 ´ρ2k j `ˆρ 2k j 1 ´ρ2k j ˙2¸`b 2,j k 2 j ˆρk j p1 ´ρk j q 2 `2 ρ 2k j p1 ´ρk j q 3
˙.

Note that Apρq and Bpρq are exactly of the form of (1). This is of course no coincidence. We now set δpρq " p1 ´ρq 3{2 ˆlog ˆ1 1 ´ρ ˙˙3{4 .

Note that this function is small enough for (H1) to hold. (H3) also readily follows from the form of Bpρq.

All that remains is to check (H2). Indeed, we need to check that ˇˇF pρe iθ q ˇˇa Bpρq F pρq Ñ 0 uniformly in δ ď |θ| ď π, we claim that this is guaranteed from our choice of δprq. To this end, set K " lcm tk j ; j " 0, . . . , ru and θ j " j ¨2π{K for j " 0, . . . , K. Once we prove that ˇˇF pρe iδpρq q ˇˇa Bpρq F pρq Ñ 0 and ˇˇF pρe iθ j q ˇˇa Bpρq F pρq Ñ 0 for all 0 ă j ă K, we are done, since F pzq has no other singularities on the circle |z| " 1.

For the first of these, we can use our approximation of P pρe iθ q for θ close to 0. Indeed, since δpρq{p1 ´ρ2 q Ñ 0 as ρ Ñ 1 and i Apρqδpρq is purely imaginary, we have that ˇˇF pρe iδpρq q ˇˇa Bpρq F pρq ď expp´Bpρqδpρq 2 `1 2 logpBpρqq `Cq for some C ą 0 independent of ρ. It follows from the form of δpρq that there exist constants C 1 , C 2 ą 0 so that Whenever K does not divide j ¨ki , 1{p1 ´ρk i e j¨k i ¨2π{K q and logp1 ´ρk i e j¨k i ¨2π{K q are bounded as functions of ρ. So there exists a constant C ą 0 such that:

´Bpρqδpρq
ˇˇF pρe iθ j q ˇˇa Bpρq F pρq ď ˇˇˇˇˇˇˇe xp ¨ÿ 0ďiďr j¨k i K ´b2,i 1 ´ρk i `b1,i log ´1 ´ρk i ¯`C ‹ ‹ ' ˇˇˇˇˇˇˇÑ 0, as ρ Ñ 1, which proves that F is indeed H-admissible.

6.5. Proof of Lemma 6.4. Lemma 6.4. Let r P N, α j , β j P p0, 8q and k j P N ě1 , for j " 0, . . . , r. Consider for t P p0, 1q the equation in y given by t r ÿ j"0 α j y 2k j 1 ´y2k j `βj y k j p1 ´yk j q 2 " 1.

This equation has a solution y " yptq that satisfies yptq " 1 ´c1 t 1{2 `c2 t `O pt γ q as t Ñ 0 for some γ P Q ą1 , where the constant c 1 ą 0 is given by Proof. We will turn the equation into a polynomial equation (depending on the parameter t) and then develop the Puiseux series for yptq. Recall that Puiseux's theorem tells us that we can find an m P N and k 0 P Z so that yptq "

ÿ kěk 0 c k t k{m .
We choose the branch corresponding to the negative solution of this equation.

Writing y " 1 ´c1 t 1{2 `y2 for the second iteration, we obtain t r ÿ j"0 # ˆαj p1 ´p1 ´c1 t 1{2 `y2 q k j qp1 ´c1 t 1{2 `y2 q 2k j `βj p1 `p1 ´c1 t 1{2 `y2 q k j qp1 ´c1 t 1{2 `y2 q k j ź l‰j p1 ´p1 ´c1 t 1{2 `y2 q k l q 2 p1 `p1 ´c1 t 1{2 `y2 q k l q + " r ź j"0 p1 ´p1 ´c1 t 1{2 `y2 q k j q 2 p1 `p1 ´c1 t 1{2 `y2 q k j q.

Since the power t r`1 in the y 0 2 coefficient disappears, the lowest power in the constant coefficient is t r`3{2 . For 0 ă m ď 2r `2, the lowest power of t in the y m 2 -term is t r`1´m{2 . So the Newton polytope contains the vertices p0, r `3{2q, pm, r `1 ´m{2q for m " 1, . . . , 2r `2. This implies that γ 2 " 1.

So we may write y 2 " c 2 t `O pt γ q for some γ ą 1. We could determine the constant c 2 in a similar fashion to how we determined c 1 . It however turns out that in our application, we will not need the value of the constant. 6.6. Proof of Theorem 6.5. Theorem 6.5. Let pf n q nPN be as above. Then Proof. The standard trick is to find a sequence pρ n q n so that Apρ n q " n.

We claim that there exists a choice of pρ n q n so that ρ n P p0, 1q for n large enough and

ρ n Ñ 1,
as n Ñ 8. As such, we can then apply Proposition 6.3 and we obtain that f n " F pρ n q a 2πBpρ n q ρ n n as n Ñ 8.

  pk ´1q! b j,k´1 b j,k´2 " b p2q j,k´2 `2´j pk ´2q! b j,k´2 b j,k´3 .Hence pk ´1q! b j,k´1 b j,k´2 " q x k´1 " p1 ´2´2j xq F satisfies the following ODE:

D

  R " tz P C; |z| ă Ru , for R ą 0. Definition 6.1. Let R ą 0 and let F : D R Ñ C. Define A, B : r0, Rq Ñ R by (1) Apρq " ρ 1 F pρq d dρ F pρq and Bpρq " ρ d dρ Apρq,

  f n " C 1 pb, k, rq ¨n´3{4`ř r j"0 b 1,j {2 exp `C2 pb, k, rq ¨?n ˘,as n Ñ 8, where C 1 pb, k, rq "

Table 1 .

 1 The first four values of A r , B r and C r .

	1	1 2048 π 2 ¨exp `´7 ? 4 4	˘2? 2 ´1 4	0.01457 . . .	2.8284 . . .
	2	1 320 ? π ¨exp `´63 8	˘2? 5 1 2	6.7020 ¨10 ´7 4.4721 . . .
	3	1 68719476736 ? π exp `´671 16	˘8	13 4	5.0248 ¨10 ´30	8

We derive the asymptote above from the number of permutation representations of Γ. Define h n pΓq " |HompΓ, S n q| , where S n denotes the symmetric group on n letters. We have: Theorem 6.7. Let r 1 , . . . , r m P N and

  Coxeter groups. Theorem 4.1 allows us to derive a closed form for the number of subgroups of a virtually cyclic Coxeter group. We have: Corollary 5.1. Let r P N and let Γ " Γ Cox pA r q.

	Proof. Lemma 2.1 implies that						
	8 ÿ n"1	s n pΓq n	x n " log	n"0 ˜8 ÿ	h n pΓq n!	x n	Using
	Theorem 4.1, this means that					
	8						
	ÿ						
	n"1						
	Then						
	s n pΓq " n ¨1	`ÿ 0ăjďr	2 j s 2 j ‹ ‹ '	`ÿ 0ďjďr
				s.t. 2 j |n			

s.t. 2 j`1 |n 2 j s 2 j ,

for all n P N.

  1, we have b 1,j " s 2 j {2, b 2,j " 2 j s s j and k j " 2 j The number of subgroups. Theorem 6.7 also allows us to determine the asymptotic of the number of subgroups of a free product of virtually cyclic Coxeter groups. We start with the following lemma: Lemma 6.8. Suppose Γ is a group so that h n pΓq " f pnqpn!q α as n Ñ 8, where α ą 1 and f pnq " An C e B

	and										
												g
												f	r
						C 2 pb, k, rq " 2	f e	ÿ	s 2 j " 2	a s tot prq.
												j"0
	So, using Theorem 6.5 and the extra multiplicative factor from Theorem 4.1, we obtain
	h n pΓ Cox pA r qq "	? ps tot prqq 1{4 4π	¨exp	ÿ j"0 ˜´r	2 j s 2 j	`1 2	s tot prq	`1 2	r	´3 2 `1 2 r	ŗ
							ź j"0 ˜1 2 j`1 a s tot prq	¸s2 j {2	¨nstotprq{4´3{4 exp	´2a s tot prq	¨n¯,
	as n Ñ 8.										
	6.3. ? n as n Ñ `8. Then
									s n pΓq " n ¨pn!q α´1 f pnq
	as n Ñ 8.										
	Proof. The proof for the free group in [10, Section 2.1] applies almost verbatim to our situation:
	following it we get first that					
				h n pΓq ´tn pΓq ď pn!q α	n´1 ÿ k"1 ˆn k	˙1´α	f pkqf pn ´kq
	and using their inequality `n k ˘ě 2 k´1 n{2 and the asymptotic equivalent for f we get that
	h n pΓq ´tn pΓq pn!q α	ď	4 `op1q n	n´1 ÿ k"1	2 ´k ˆkpn ´kq n	˙C e ´Bp ? n´?k´?n´kq .
	So, filling in the constants, we get		
	C 1 pb, k, rq "	ps tot prqq 1{4 ? 4π	exp	˜1 2	s tot prq	`r ÿ j"0	2 j ´1 2 j`1	¸r ź j"0 ˜1 2 j`1 a s tot prq	¸s2 j {2
			"	ps tot prqq 1{4 ? 4π	exp	ˆ1 2	s tot prq	`1 2	r	´1 2 `1 2 r`1	˙r ź j"0 ˜1 2 j`1 a s tot prq	¸s2 j {2
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We will apply Newton's method to find the first three coefficients near 1.

This method can be given a nice geometric description. Namely, given a polynomial equation of the form [START_REF] Basu | Algorithms in real algebraic geometry[END_REF] F pt, yq " r ÿ k"0 A k ptq y k " 0, the first power γ 0 of t in y can be found by considering the Newton polytope P Ă R 2 of this polynomial. This polytope is the convex hull of all points pordpA k ptqq, kq, where ordpA k ptqq denotes the lowest power of t that appears in A k ptq. Now consider all the sides of P. If the line L spanned by a side of P supports P and P lies above L, then ´γ1 , where γ 1 is the slope of L, is the first power of a branch of solutions to the equation. Writing y " c 1 t γ 1 `y1 , we obtain a new polynomial equation F pt, c 1 t γ 1 `y1 q " 0 in y 1 and the process can be iterated, with the only condition that at each step, only those lines are considered that have a larger negative slope than the slopes that have already appeared. Since the powers of t increase in each iteration, this allows us to compute yptq up to any order. For more information on these methods see [START_REF] Basu | Algorithms in real algebraic geometry[END_REF]. Now we return to our equation, which is equivalent to t r ÿ j"0 ´αj p1 ´yk j qy 2k j `βj p1 `yk j qy k j ¯ź l‰j p1 ´yk l q 2 p1 `yk l q " r ź j"0 p1 ´yk j q 2 p1 `yk j q.

Writing y " 1 `y1 , we obtain t r ÿ j"0 # ´αj p1 ´p1 `y1 q k j qp1 `y1 q 2k j `βj p1 `p1 `y1 q k j qp1 `y1 q k j ź l‰j p1 ´p1 `y1 q k l q 2 p1 `p1 `y1 q k l q + " r ź j"0 p1 ´p1 `y1 q k j q 2 p1 `p1 `y1 q k j q.

The lowest power of y 1 on the right hand side of the equation is y 2r 1 . On the left hand side, this is y 2r`2 1 . This means that p2r, 1q, p2r `1, 1q and p2r `2, 0q are the first vertices of the Newton polytope and hence that γ 1 " 1{2. So y " 1 `c1 t 1{2 `O ´tγ 1 ¯for some γ 1 ą 1 2 . To obtain the coefficient c 1 , we now solve equate the terms that lie on the line of slope ´γ1 supporting the Newton polygon. In the notation of (2), we need to solve ÿ

Here the r `1 is the lowest power of t that appears and a k is so that A k ptq " a k t ordpA k q `higher order terms.

So, for our polynomial, we get the equation r ÿ j"0

and hence

Let us start by finding ρ n . Using Proposition 6.3, we obtain

" n Write t " 1{n. So we obtain from Lemma 6.4 that

as n Ñ 8 for some γ ą 1, where c 1 and c 2 are the constants in that lemma, with α j " b 1,j 2k j and β j " b 2,j k j . So, in particular

So we obtain

as n Ñ 8. Likewise,

`kj ´1 2k j ȧs n Ñ 8. Putting all of the above together, we obtain

¸¸

Now we see why we don't need the value of c 2 : it cancels, and we obtain that