Journal Articles Nature Communications Year : 2019

Reversed size-dependent stabilization of ordered nanophases

Abstract

The size increase of a nanoscale material is commonly associated with the increased stability of its ordered phases. Here we give a counterexample to this trend by considering the formation of the defect-free L1 1 ordered phase in AgPt nanoparticles, and showing that it is better stabilized in small nanoparticles (up to 2.5 nm) than in larger ones, in which the ordered phase breaks in multiple domains or is interrupted by faults. The driving force for the L1 1 phase formation in small nanoparticles is the segregation of a monolayer silver shell (an Ag-skin) which prevents the element with higher surface energy (Pt) from occupying surface sites. With increasing particle size, the Ag-skin causes internal stress in the L1 1 domains which cannot thus exceed the critical size of~2.5 nm. A multiscale modelling approach using full-DFT global optimization calculations and atomistic modelling is used to interpret the findings.
Fichier principal
Vignette du fichier
Nat_Comm_10_1982_2019.pdf (2) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

hal-02358141 , version 1 (27-01-2020)

Identifiers

Cite

J. Pirart, A. Front, D. Rapetti, Caroline Andreazza-Vignolle, Pascal Andreazza, et al.. Reversed size-dependent stabilization of ordered nanophases. Nature Communications, 2019, 10 (1), ⟨10.1038/s41467-019-09841-3⟩. ⟨hal-02358141⟩
62 View
62 Download

Altmetric

Share

More