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THE TORSION IN SYMMETRIC POWERS ON CONGRUENCE
SUBGROUPS OF BIANCHI GROUPS

JONATHAN PFAFF AND JEAN RAIMBAULT

Abstract. In this paper we prove that for a fixed neat principal congruence subgroup
of a Bianchi group the order of the torsion part of its second cohomology group with
coefficients in an integral lattice associated to the m-th symmetric power of the standard
representation of SL2(C) grows exponentially in m2. We give upper and lower bounds for
the growth rate. Our result extends a a result of W. Müller and S. Marshall, who proved
the corresponding statement for closed arithmetic 3-manifolds, to the finite-volume case.
We also prove a limit multiplicity formula for combinatorial Reidemeister torsions on
higher dimensional hyperbolic manifolds.
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1. Introduction

1.1. Torsion homology growth of arithmetic groups. An arithmetic group is, roughly
speaking, a group of the form G(Z) where G is a semisimple Q-subgroup of some GLn. It
is then a lattice (discrete subgroup with finite covolume) in the Lie group G(R). If Γ is
such a group, given a Q-representation ρ of G on a vector space V there exists a lattice
Λ ⊂ V (R) which is preserved by ρ(Γ). The cohomology groups H∗(Γ; Λ) are then finitely
generated Abelian groups and as such they split noncanonically as a direct sum

Hk(Γ; Λ) = Hk(Γ; Λ)free ⊕Hk(Γ; Λ)tors

where Hk(Γ; Λ)free is free abelian and Hk(Γ; Λ)tors is finite. The classes in the free sum-
mand can be interpreted as automorphic forms for the group G and have been extensively
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2 JONATHAN PFAFF AND JEAN RAIMBAULT

studied both from the theoretical and the computational perspective. More recently the
torsion subgroup and mod-p classes have attracted a lot of interest from number theorists,
as it gained significance in a mod-p analogue of the Langlands programme (see for example
the work of N. Bergeron–A. Venkatesh [BV13], F. Calegari–A. Venkatesh [CV12] and P.
Scholze [Sch15]) and, perhaps less prominentely, for links with the K-theory of number
fields (see [CV12, 9.7] and V. Emery’s paper [Eme14]).

Our topic of interest in this paper lies purely on the side of the study of the groups
H∗(Γ; Λ), without any further number-theoretical considerations (though number theory
will feature prominently in our arguments). More precisely, motivated in particular by
the above it is interesting to study the growth rate of the size |Hk(Γ; Λ)tors| when either
the group Γ or the representation ρ (and thus the Γ-module Λ) varies. The question of
studying sequences of congruence lattices in a fixed Lie group G(R) is the topic of the
seminal work [BV13]. We note that this reference dealt only with uniform lattices and
that further work on non-uniform lattices by the authors of the present paper is in [Pfa14]
and [Rai13]. In [BV13] it is conjectured that, for a lattice Γ ⊂ G(R)and a fixed Γ-module Λ
as above and a sequence of congruence subgroups Γm ⊂ Γ,1 the size of the group Hk(Γm,Λ)
is asymptotically exponential in the covolume of Γm\G(R), with a rate depending only on
G(R), if the following two conditions are satisfied:

(1) k = (d+ 1)/2 where d is the dimension of the symmetric space of G(R);
(2) G(R) has “fundamental rank” equal to 1, for example G(R) ∼= SO(n, 1) or G(R) ∼=

SL3(R).

Otherwise they conjecture that the size of Hk(Γn,Λ) is always subexponential in the co-
volume. They prove their conjecture when G(R) ∼= SL2(C)×K (with K compact, so that
d = 3 and the fundamental rank is 1) and ρ is a symmetric power of the adjoint represen-
tation. The general case is completely open at present, though they prove that exponential
growth occurs in at least one of the groups Hk(Γn; Λ) in the cases where it is expected
(when G(R) has fundamental rank one). Let us note that is this cas G(R) = SL2(C) the
conjecture is also of interest to topologists, see for example [Le14].

We will study what happens when we fix the arithmetic lattice Γ and vary the represen-
tation ρ. In this setting it is expected that a statement similar to the Bergeron–Venkatesh
conjecture should hold, with covolume replaced by a function of the Z-rank rankZ(Λ(m))
(see e.g. [MP14b]). We only study the case where G(R) = SL2(C) and the sequence of
representations ρm = Symmm(ρ1) of G(R), where ρ1 is the tautological representation of
G(R) on C2. The most obvious Q-forms of SL2(C) which admit Q-representations which
become ρ1 over the reals are the Weil restrictions of the groups SL2 /F where F is an
imaginary quadratic field, that is F = Q(

√
−D) for some square-free integer D. The

associated arithmetic lattices are (up to commensurability) the so-called Bianchi groups
ΓD = SL2(OD) where OD is the ring of integers in Q(

√
−D). Note that they represent

all commensurability classes of nonuniforms arithmetic lattices in SL2(C). Fixing D, it is
obvious that the lattice O2

D ⊂ C2 is stable under ρ1(ΓD) and we are thus interested in the

1In fact Bergeron and Venkatesh only consider exhaustive towers of such groups, but in view of [ABB+17,
Section 8] it is natural to extend their conjecture to all congruence subgroups.
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groups Hk(Γ; Λ(m))tors as m tends to infinity, where

Λ(m) = Symmm(OD)

and Γ ⊂ ΓD is a fixed subgroup of finite index. We will restrict to the case where Γ is a
principal congruence subgroup, that is

Γ = Γ(a) :=

{(
a b
c d

)
∈ SL2(OD) : a, d ∈ 1 + a, b, c ∈ a

}
.

Our main result is then the following.

Theorem A. There exist constants C1(ΓD) > 0, C2(ΓD) > 0, which depend only on ΓD
such that for each non-zero ideal a of OD with N(a) > C1(ΓD) one has

lim inf
m→∞

(
log |H2(Γ(a); Λ(m))tors|

m2

)
≥ 1

4
· vol(Xa)

π

(
1− C1(ΓD)

N(a)

)
> 0(1.1)

and

lim sup
m→∞

(
log |H2(Γ(a); Λ(m))tors|

m2

)
≤ vol(Xa)

π

(
1 +

C2(ΓD)

N(a)

)
.(1.2)

Finally, we also have

|H1(Γ(a); Λ(m))tors| = O(m logm),(1.3)

as m→∞.

We were not able to prove the expected limit

(1.4) lim
m→∞

log |H2(Γ(a); Λ(m))tors|
m2

=
1

2
· vol(Xa)

π

but it is conceivable that various refinements of our arguments could be used to do this. The
constants C1, C2(ΓD) can be made explicit, and if the class number of F is one and O∗D =
{±1}, we can take C1(ΓD) = 4 (this is the case exactly for D = −7,−11,−19,−43,−67
and −163 by the Heegner–Stark Theorem).

We end this introductory section with a few comments on the analogue of our result for
a uniform Γ, which was studied by S. Marshall and W. Müller in [MM13]. The simplest
case is then when G is the group of norm 1 elements in a quaternion algebra A over an
imaginary quadratic field F , and Γ is (a torsion-free congruence subgroup in) the set of
units in an order O of A. The representation ρ2 is the adjoint representation and it can
be defined as a rational representation for G since it is isomorphic to the conjugation
action of G on the subspace U of purely imaginary quaternions in A⊗F C, and the lattice
Λ(2) = U ∩O is stable under Γ as are its symmetric powers Λ(2m) ⊂ Symm2m(C2). Then
Marshall and Müller prove that

lim
m→∞

log |H2(Γ; Λ(2m))tors|
m2

=
2 vol(Xa)

π
.

For higher-dimensional groups G(R) there are results of the first author together with W.
Müller [MP14b].
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1.2. Sketch of proof. The statement (1.3) on H1 is deduced from explicit computations,
see Lemma 7.2. For H2 the upper and lower bound are proven separately, and by very
different methods. Since the proof for the upper bound is much shorter and more straight-
forward we will explain it first.

In general it is very easy to get rough bounds for the order of all torsion subgroups of
Hk(Γ; Λ(m)) of the same order as in (1.2). We will first explain the idea for the similar
case where one considers a sequence Γm ⊂ Γ of finite index subgroups and want to get
exponential bounds in [Γ : Γm] for the torsion subgroup of or Hk(Γm; Λ). Let X̃ be the
symmetric space of G(R) and X = Γ\X̃, which is a K(Γ, 1). There exists a local system
L of Z-modules Λ on X such that H∗(Γ; Λ) = H∗(X;L). There exists a triangulation
T of X, and lifting it to Xm = Γm\X̃ we get a triangulation Tm of Xm with at most
C[Γ : Γm] simplices in each dimension, and where each simplex is incident to at most C
other simplices of the same dimension (for some constant C depending only on X). This
means that the cohomology H∗(Γm; Λ) = H∗(Xm;L) can be computed from the cochain
complex (C∗(Tm;L), d∗) which satisfies

rankZ(Ck(Tm;L))� rankZ(Λ) · [Γ : Γm]

and the entries of each differential dk are uniformly bounded (depending on coefficients of
ρ(γ) for γ in a finite subset of Γ) and at most C are nonzero in each column. So Hk(Γn; Λ)
embeds into Zr/AZs where r, s � [Γ : Γm] and A is a matrix with at most C nonzero
entries in each column, and by a well-known lemma in elementary linear algebra it follows
that the torsion is at most (C ′)[Γ:Γm] (see Lemma 8.1). This method was used in [Sau16]
in a different context.

When varying Λ things are different since entries in the differentials dk can be arbitrarily
large, but in our case where ρm = Symmm(ρ1) they can be at most Cm (for some C
depending on Γ). Since the rank of the Ck(X; Λ(m)) is linear in rankZ(Λ(m)) = m it follows

from the same lemma that the torsion in Hk(Γ; Λ(m)) is (roughly) at most (Cm)m = Cm2
.

To get the more precise estimate (1.2) we use a few more tricks.

Getting a lower bound for the torsion in H2 is much more involved. In fact we, following
the earlier work [BV13] and [MM13], prove the abundance of torsion classes via a some-
what indirect path. First we need a “limit multiplicity formula” for the analytic torsion
TX0(X;Eρm) (see Section 2 for the definition—here and later Eρ is the flat vector bundle
over X associated to the representation ρ) as in [BV13, Section 4]. This means that

lim
m→+∞

(
log TX0(X;Eρm)

m2

)
= −vol(X)

2π
.

In our context such a limit is proven to hold by the first author and W. Müller in [MP12].
Then we use an equality relating the analytic torsion to a Reidemeister torsion τEis(X;Eρm)
(see Section 4 and [Pfa17] for the definition), and following [BV13] we relate the latter to
torsion homology. Bergeron and Venkatesh as well as Müller and Marshall use an extension
of the classical Cheeger–Müller theorem due to Müller and J.-M. Bismut– W. Zhang, but
for non-compact manifolds we need a recent result of the first author [Pfa17]. There are
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actually some additional terms in the formula for cusped manifolds (see Proposition 2.3
below), and while a more thorough analysis might show that they disappear in the limit
we use a simpler trick, which gives us only a lower bound on the exponential growth of
Reidemeister torsion (Proposition 3.2). A similar result was proven by P. Menal-Ferrer
and J. Porti in [MFP14], for a different normalisation of the Reidemeister torsion that we
cannot use here and using very different methods.

Once we get this exponential growth it remains to extract the behaviour of the specific
torsion subgroup H2(X; Λ(m)) from that of τEis(X;Eρm). This is the main new contribu-
tion of our work, and we will now detail a bit how this is done. The relation of Reidemeister
torsion with cohomological torsion is given by:

(1.5) τEis(X;Eρm) =
|H1(Γ; Λ(m))tors| ·R2(X,L(m))

|H2(Γ; Λ(m))tors| ·R1(X,L(m))

where the “regulator” terms Rk(X;L(m)) are defined as the covolume of the lattice
Hk(X;L(m)) ⊂ Hk(X;Eρm) where the right-hand space is identified with a space of har-
monic forms with the L2-metric. For the Bianchi groups this is somewhat tricky since when
X is noncompact there is no natural L2-metric on the space Hk(X;Eρm). However, the
theory of Eisenstein cohomology developed by G. Harder in [Har87] allows to “transport”
the L2-metric from the harmonic forms on the boundary ∂X of the Borel–Serre compacti-
fication X (see Section 4). This way of defining regulators is similar to that used in [CV12,
Section 6.3].

In view of (1.5), to prove exponential growth of H2(Γ; Λ(m))tors we would like to show
that

lim
m→+∞

(
logRk(X;L(m))

m2

)
= 0.

This only causes serious problems for R1, so let us explain more precisely how this regulator
defined and how to deal with it. Whenm > 0 there is an isomorphism E : H1(∂X;Eρm)− →
H1(X;Eρm) defined through Eisenstein series (where the right-hand side is the (0, 1)-part
of the cohomology in the Hodge decomposition, see (4.2) below). The problem is then
that, while the map E is rational it is not integral. This means that we do not have
E(H1(∂X;L(m))− ⊂ H1(X;L(m)) but there exists a N ∈ Z>0 such that

E(H1(∂X;L(m))− ⊂ N−1 ·H1(X;L(m)).

So to estimate R1(X;L(m)) we need to get an upper bound on N (it is easy to estimate
the covolume of the integral lattice H1(∂X;L(m))− in H1(∂X;Eρm)−, see Lemma 7.1).

We will not deal with this problem completely in this paper (but it is very likely that
this could be done using additional arguments from [CV12]). However, using the long
exact sequence we can estimate R1 in terms of the torsion in H2 and an integer M such
that ι∗E(H1(∂X;L(m))− ⊂ M−1H1(∂X;L(m))− (where ι is the inclusion ∂X ⊂ X), see
Lemma 4.1. This allows us to balance the two against each other, and thus instead of N
we need only to control the smaller number M (at the expense of getting a less precise
result, halving the lower bound). This is easier since we need only to deal with boundary
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integrals and it boils down to evaluating the denominator of the “intertwining matrix”
C ∈ Hom(H1(∂X;Eρm)−, H

1(∂X;Eρm)) defined by

ι∗E(ω) = ω + Cω

(see also Section 6.6 in [CV12]). After classical computations summarised in (5.17) this in
turn reduces to controlling a ratio of values of Hecke L-functions. To deal with this we use
two papers of R. Damerell [Dam70, Dam71]: we have to give an effective version of one
of his results and analyse [Dam70] to this effect in Appendix 6.10. In the end we obtain
in Proposition 6.1 an estimate M ≤ (m!)A. This essentially finishes the proof, and the
wrapping up is done in Proposition 7.3.

In this sketch we were not completely accurate. In particular, we will work with the
self-dual lattices Λ̄(m) = Λ(m) ⊕ Λ∨(m) to avoid some issues with duality, and relate
H∗(Γ; Λ̄(m)) with H∗(Γ; Λ(m)) using Proposition 7.4 at the end.

1.3. Some further comments. Theorem A also holds with the same proof for slightly
more general rays of local systems. Namely, the finite dimensional irreducible represen-
tations of SL2(C) are parametrised as Symmn1 ⊗Symm

n2
, where n1, n2 ∈ N and where

Symmn2 is the complex conjugate of Symmn2 . Each such representation space carries a
canonical Z-lattice preserved by the action of ΓD. If we fix n1 and n2 with n1 6= n2 and
let ρm(n1, n2) be the representation Symmmn1 ⊗Symmmn2 , then the analog of Theorem A
holds if we replace the factor m2 by m dim ρm(n1, n2) which grows as m3 if both n1 and
n2 are not zero. However, we can by no means remove the assumption n1 6= n2. In other
words, the ray ρm(1, 1) = Symmm⊗Symmm, which is the ray carrying cuspidal cohomol-
ogy, cannot be studied by our methods. For a fixed Γ(a), we can only show that the size of
cohomological torsion with coefficients in the canonical lattice associated to ρm(1, 1, ) grows
at most as m rk ρm(1, 1) = O(m3), but we can say nothing about the existence of torsion
along this ray, i.e. we cannot establish any bound from below. The reason is that here
0 belongs to the essential spectrum of the Laplacian in the middle dimension. Therefore,
essentially none of the results on analytic torsion we use in our proof is currently available
for ρm(1, 1) and also the regulator would be more complicated. We remark that, as far as
we know, even in the compact case no result for the growth of torsion along this particular
ray has been obtained. For an investigation of the dimension of the (cuspidal) cohomology
along this ray, we refer to [FGT10].

The results we use on limit multiplicity for analytic torsion and its relation with Reide-
meister torsion are valid for hyperbolic manifolds in all odd dimensions, i.e. for lattices in
the groups SO(d, 1) for odd d > 3. However intertwining operators in higher dimensions
are more difficult to deal with in groups other than SL2, which are of absolute rank > 1.
This implies that the L-functions one needs to deal with are no longer Hecke L-functions.
We have no idea about how to estimate the absolute value and denominators of normalised
L-values in this more general class of functions, and are in consequence unable to extend
our result on cohomology growth to higher dimensions even in a weaker form similar to
what was done for uniform lattices in [MP14b].
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Using the first author’s result relating analytic and Reidemeister torsion and his result
with Müller on limit multiplicities for analytic torsion in sequences of manifolds [MP14a]
we prove in Corollary 2.4 that in the case where G = SO(d, 1) for any odd d ≥ 1, and Γm
is a sequence of principal congruence subgroups in G(Z), and Xm = Γm\Hd we have:

lim
m→+∞

(
log τEis(Xm;Eρ)

vol(Xw)

)
= c 6= 0

For Bianchi groups a similar result is proven in [Rai13]. However even in this absolute
rank 1 setting we are currently not able to deduce exponential growth for the torsion
cohomology. This is because it is harder to deal with absolute norms of Hecke L-functions
when allowing the characters to change at finite places rather than infinite ones as we do
in this paper.

Acknowledgements. The first author was financially supported by the DFG-grant PF
826/1-1. He gratefully acknowledges the hospitality of Stanford University in 2014 and
2015. We are very grateful to a referee for their careful reading of our manuscript and
numerous corrections, remarks on the clarity of our exposition and suggestions to improve
it.

2. The regularized analytic torsion for coverings

In this section we shall review the definition of regularized traces and the regularized
analytic torsion of hyperbolic manifolds X of finite volume. These objects are defined in
terms of a fixed choice of truncation parameters on X and there are two different ways to
perform such a trunctation which are relevant in the present paper. Firstly, one can define
a truncation of X via a fixed choice of Γ-cuspidal parabolic subgroups of G. Secondly, if X
is a finite covering of a hyperbolic orbifold X0, then a choice of truncation parameters on
X0 gives a truncation on X in terms of which one can define another regularized analytic
torsion. We shall compute the difference between the associate regularized analytic torsions
explicitly. For more details we refer to [MP12], [MP14a].

2.1. Hyperbolic manifolds with cusps. We denote by SO0(d, 1) the identity-component
of the isometry group of the standard quadratic form of signature (d, 1) on Rd+1. Let
Spin(d, 1) denote the universal covering of SO0(d, 1). We let either G := SO0(d, 1) or
G := Spin(d, 1). We assume that d is odd and write d = 2n + 1. Let K := SO(d), if
G = SO0(d, 1) or K := Spin(d), if G = Spin(d, 1). We let g be the Lie algebra of G. Let θ
denote the standard Cartan involution of g and let g = k⊕ p denote the associated Cartan
decomposition of g, where k is the Lie algebra of K. Let B be the Killing form. Then

(2.1) 〈X, Y 〉 := − 1

2(d− 1)
B(X, θY )

is an inner product on g. Moreover, the globally symmetric space G/K, equipped with the
G-invariant metric induced by the restriction of (2.1) to p is isometric to the d-dimensional
real hyperbolic space Hd. Let Γ ⊂ G be a discrete, torsion-free subgroup. Then X := Γ\Hd,
equipped with the push-down of the metric on Hd, is a d-dimensional hyperbolic manifold.
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We let P be a fixed parabolic subgroup of G with Langlands decomposition P = MPAPNP

as in [MP12]. Let a denote the Lie algebra of AP and exp : a→ AP the exponential map.
Then we fix a restricted root e1 of a in g, let H1 ∈ a be such that e1(H1) = 1 and define
ιP : (0,∞) → AP by ιP (t) := exp(log tH1). If P1 is another parabolic subgroup of G,
we fix kP ∈ K with P1 = kP1Pk

−1
P1

and define AP1 := kP1APk
−1
P1

, MP1 := kP1MP1k
−1
P1

,

NP1 := kP1NP1k
−1
P1

. Moreover, for t ∈ (0,∞) we define ιP1(t) := kP1ιP (t)k−1
P1
∈ AP1 . For

Y > 0 we let AP1 [Y ] := ιP1([Y,∞)).
A parabolic subgroup P1 of G is called Γ-cuspidal if Γ ∩ NP1 is a lattice in NP1 . From

now on, we assume that vol(X) is finite and that Γ is neat in the sense of Borel, i.e. that
Γ ∩ P1 = Γ ∩NP1 for each Γ-cuspidal P1. If P1 is Γ-cuspidal, then for Y > 0 we put

FP1;Γ(Y ) := (Γ ∩NP1)\NP1 × AP1 [Y ] ∼= (Γ ∩NP1)\NP1 × [Y,∞).

We equip FP1;Γ(Y ) with the metric y−2gNP1
+ y−2dy2 where gNP1

is the push-down of the
invariant metric on NP1 induced by the innerer product (2.1) restricted to nP1 .

2.2. Trace formula and analytic torsions. Let Rep(G) denote the set of finite-dimensional
irreducible representations of G. For ρ ∈ Rep(G) the associated vector space Vρ possesses
a distinugished inner product 〈·, ·〉ρ which is called admissible and which is unique up to

scaling. We shall fix an admissible inner product on each Vρ. If ρ ∈ Rep(G), then the

restriction of ρ to Γ induces a flat vector bundle Eρ := X̃ ×ρ|Γ Vρ. This bundle is canon-
ically isomorphic to the locally homogeneous bundle E ′ρ := Γ\G ×ρ|K Vρ induced by the
restriction of ρ to K. In particular, since ρ|K is a unitary representation on (Vρ, 〈·, ·〉ρ),
the inner product 〈·, ·〉ρ induces a smooth bundle metric on E ′ρ and therefore on Eρ. For

p = 0, . . . , d let ∆p(ρ) denote the flat Hodge Laplacian acting on the smooth Eρ-valued
p-forms of X. Since X is complete, ∆p(ρ) with domain the smooth, compactly supported
Eρ-valued p-forms is essentially selfadjoint and its L2-closure shall be denoted by the same
symbol. Let e−t∆p(ρ) denote the heat semigroup of ∆p(ρ) and let

Kρ,p
X (t, x, y) ∈ C∞(X ×X;Eρ � E∗ρ)

be the integral kernel of e−t∆p(ρ).
We let PΓ be a fixed set of representatives for the Γ-conjugacy classes of Γ-cuspidal

parabolic subgroups of G. Then PΓ is finite, and it is non-empty if and only if X is
non-compact. Moreover, κ(Γ) := |PΓ| equals the number of cusps of X which from now
on we assume to be nonzero. The choice of PΓ and of a fixed base-point in X̃ determine
an exhaustion of X by smooth compact manifolds XPΓ

(Y ) with boundary, Y � 0. This
exhaustion depends on the choice of PΓ. Then one can show that the integral ofKρ,p

X (t, x, x)
over XPΓ

(Y ) has an asymptotic expansion∫
XPΓ

(Y )

TrKρ,p
X (t, x, x)dx = α−1(t) log Y + α0(t) + o(1),(2.2)

as Y →∞, [MP12][section 5]. Now one can define the regularized trace Trreg;X;PΓ
e−t∆p(ρ)

of e−t∆p(ρ) with respect to the choice of PΓ by Trreg;X;PΓ
e−t∆p(ρ) := α0(t), where α0(t) is

the constant term in the asymptotic expansion in (2.2).
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From now on, we also assume that there is a hyperbolic orbifold X0 := Γ0\Hd such that
X is a finite covering of X0. Let π : X → X0 denote the covering map. Then if a set of
truncation parameters on X0, or in other words a set PΓ0 of representatives of Γ0-cuspidal
parabolic subgroups are fixed, one obtains truncation parameters on X by pulling back
the truncation on X0 via π. One can again show that there is an asymptotic expansion

(2.3)

∫
π−1XPΓ0

(Y )

TrKρ,p
X (t, x, x)dx = α̃−1(t) log Y + α̃0(t) + o(1),

as Y → ∞ and one can define the regularized trace with respect to the truncation pa-
rameters on X0 as Trreg;X;X0 e

−t∆p(ρ) := α̃0(t). This regularized trace depends only on the
choice of a set PΓ0 of representatives of Γ0-cuspidal parabolic subgroups of G. Put
(2.4)

KX;PΓ
(t, ρ) :=

∑
p

(−1)ppTrreg;PΓ
e−t∆p(ρ); KX;X0(t, ρ) :=

∑
p

(−1)ppTrreg;X;X0 e
−t∆p(ρ).

Now assume that ρ satisfies ρ 6= ρθ. Then one defines the analytic torsion with respect to
the two truncations of X by

log TPΓ
(ρ) :=

1

2

d

ds

∣∣∣∣
s=0

(
1

Γ(s)

∫ ∞
0

ts−1KX;PΓ
(t, ρ)dt

)
;(2.5)

log TX0(ρ) :=
1

2

d

ds

∣∣∣∣
s=0

(
1

Γ(s)

∫ ∞
0

ts−1KX;X0(t, ρ)

)
.(2.6)

Here the integrals converge absolutely and locally uniformly for <(s) > d/2 and are defined
near s = 0 by analytic continuation, [MP12, section 7], [MP14a, section 9].

To compare the two analytic torsions in (2.5) and (2.6), we need to introduce some more
notation. We fix PΓ0 = {P0,1, . . . , P0,κ(Γ0)} and PΓ = {P1, . . . , Pκ(Γ)}. Then for each Pj ∈
PΓ there exists a unique l(j) ∈ {1, . . . , κ(Γ0)} and a γj ∈ Γ0 such that γjPjγ

−1
j = P0,l(j).

Write

(2.7) γj = n0,l(j)ιP0,l(j)
(tPj)k0,l(j),

n0,l(j) ∈ NP0,l(j)
, tPj ∈ (0,∞), ιP0,l(j)

(tPj) ∈ AP0,l(j)
as above, and k0,l(j) ∈ K. Since P0,l(j)

equals its normalizer, the projection of γj to
(
Γ0 ∩ P0,l(j)

)
\Γ0 is unique. Moreover, since

P0,l(j) is Γ0-cuspidal, one has Γ0 ∩ P0,l(j) = Γ0 ∩ NP0,l(j)
MP0,l(j)

. Thus tPj depends only on
PΓ0 and Pj.

Now the analytic torsions log TPΓ
(X;Eρ) and log TX0(X;Eρ) are compared in the follow-

ing proposition. The representation σρ,k of MP and the positive number λρ,k are defined
respectively in [Pfa17, (6.5) and (6.6)].

Proposition 2.1. One has

log TPΓ
(X;Eρ) = log TX0(X;Eρ) +

∑
Pj∈PΓ

log(tPj)

(
n∑
k=0

(−1)k dim(σρ,k)λρ,k
2

)
.
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Proof. This follows by an application of a theorem of Kostant [Kos61] on nilpotent Lie
algebra cohomology. For p ∈ {0, . . . , d} define a representation of K on Λpp∗ ⊗ V (ρ) by
νp(ρ) := Λp Ad∗⊗ρ. Let Ẽνp(ρ) := G ×νp(ρ) K, which is a homogeneous vector bundle
over Hd = G/K. Let Ω be the Casimir element of g. Then −Ω + ρ(Ω) induces canon-
ically a Laplace-type operator ∆̃p(ρ) which acts on the smooth sections of Ẽνp(ρ). The

heat semigroup of e−t∆̃p(ρ) is canonically represented by a smooth function Hp,ρ
t : G →

End(Λpp∗ ⊗ Vρ), [MP12, section 4, section 7]. Let hp,ρt := TrHp,ρ
t and put

kp,ρt :=
∑
p

(−1)pphp,ρt .

Then by the definition of the regularized traces, one has

(2.8)

∫
XPΓ(Y )

(∑
γ∈Γ

kp,ρt (x−1γx)

)
dx = α−1(t; ρ) log Y +KX;PΓ

(t, ρ) + o(1),

as Y →∞, resp.

(2.9)

∫
π−1(XPΓ0

(Y ))

(∑
γ∈Γ

kp,ρt (x−1γx)

)
dx = α̃−1(t; ρ) log Y +KX;X0(t, ρ) + o(1),

as Y → ∞, where we use the notation (2.4). On the other hand, for k = 0, . . . , n let
h
σρ,k
t ∈ C∞(G) be defined as in [MP12, (8.7)]. If we apply the same considerations as in

[MP14a, section 6] to the functions h
σρ,k
t , then combining [MP12, Proposition 8.2], (2.8)

and (2.9) we obtain

KX;X0(t, ρ) = KX;PΓ
(t, ρ)−

∑
Pj∈PΓ

log tPj

(
n∑
k=0

(−1)k dim(σρ,k)e
−tλ2

ρ,k

√
4πt

)
.

The Proposition follows by aking the Mellin transform of this expression. �

Next, as in [Pfa17], for each Pj ∈ PΓ and for Y > 0 one can define the regularized
analytic torsion T (FPj ;Γ(Y ), ∂FPj ;Γ(Y );Eρ) of FPj ;Γ(Y ) and the bundle Eρ|FPj ;Γ(Y ), where

one takes relative boundary conditions (that is, we restrict the Laplacian to smooth forms
whose normal component at the boundary vanishes). For different Y , these torsions are
compared by the following gluing formula.

Lemma 2.2. Let c(n) ∈ R be as in [Pfa17, equation 15.10]. Then for Y1 > 0 and Y2 > 0
one has

log T (FPj ;Γ(Y1), ∂FPj ;Γ(Y1);Eρ)− c(n) vol(∂FPj ;Γ(Y1)) rk(Eρ)

= log T (FPj ;Γ(Y2), ∂FPj ;Γ(Y2);Eρ)− c(n) vol(∂FPj ;Γ(Y2)) rk(Eρ)

+
n∑
k=0

(−1)k+1λρ,k dim(σρ,k)(log(Y2)− log(Y1)).

Proof. This follows immediately from [Pfa17, Corollary 15.4, equation (15.11) and Corol-
lary 16.2]. �



TORSION IN SYMMETRIC POWERS 11

2.3. Comparison of anaytic and Reidemeister torsions. We let X denote the Borel-
Serre compactification of X and we let τEis(X;Eρ) be the Reidemeister torsion of X with
coefficients in Eρ, defined as in [Pfa17, section 9]. For simplicity, we assume that Γ is
normal in Γ0. Then for the torsion TX0(X;Eρ), the main result of [Pfa17] can be restated
as follows.

Proposition 2.3. For l = 1, . . . , κ(Γ0) let al = |{Pj ∈ PΓ : γjPjγ
−1
j = P0,l}| be the number

of cusps of X lying over the lth cusp of X0. For the analytic torsion TX0(X;Eρ) we have:

log τEis(X;Eρ) = log TX0(X;Eρ)−
1

4

d−1∑
k=0

(−1)k log |λρ,k| dimHk(∂X;Eρ)

−
κ(Γ0)∑
l=1

al
(
log T

(
FP0,l;Γ

(1), ∂FP0,l;Γ
(1);Eρ

)
− c(n) vol(∂FP0,l;Γ

(1)) rk(Eρ)
)
.

Proof. By [Pfa17, Theorem 1.1] and by Proposition 2.1 we have

log τEis(X;Eρ) = log TX0(X;Eρ) +
∑
Pj∈PΓ

log(tPj)

(
n∑
k=0

(−1)k dim(σρ,k)λρ,k
2

)
−
∑
Pj∈PΓ

(
log T

(
FPj ;Γ(1), ∂FPj ;Γ(1);Eρ

)
− c(n) vol(∂FPj ;Γ(1)) rk(Eρ)

)
− 1

4

d−1∑
k=0

(−1)k log |λρ,k| dimHk(∂X;Eρ)

where we recall that the regularized analytic torsion used in [Pfa17, Theorem 1.1] is the
torsion denoted TPΓ

(X;Eρ) here. Using that Γ is normal in Γ0, it easily follows from the
definition of tPj that for each Pj ∈ PΓ one has a canonical isometry ιPj ;P0,l(j)

: FPj ;Γ(1) ∼=
FP0,l(j);Γ(tPj). It is easy to see that also ι∗Pj ;P0,l(j)

(
Eρ|FP0,l(j);Γ(tPj )

)
is isometric to Eρ|FPj ;Γ(1).

Thus we have

(2.10) log T (FPj ;Γ(1), ∂FPj ;Γ(1);Eρ)− c(n) vol(∂FPj ;Γ(1)) rk(Eρ)

= log T (FP0,l(j);Γ
(tPj), ∂FP0,l(j);Γ(tPj);Eρ)− c(n) vol(∂FP0,l(j);Γ(tPj)) rk(Eρ).

Applying Lemma 2.2, the Proposition follows. �

2.4. Limit multiplicity property for Reidemeister torsions. Although the main
topic of this paper is the behaviour of cohomological torsion of congruence subgroups
of Bianchi groups under a variation of the local system, we now state the following limit
multiplicity formula for Reidemeister torsion in arithmetic hyperbolic congruence towers
of arbitrary odd dimension, since the latter is an easy corollary. It is easy to generalise
this result to more general arithmetic lattices and sequences of congruence subgroup but
for convenience we restrict to the simplest case.
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Corollary 2.4. Let G := SO0(d, 1), d odd, and for q ∈ N let Γ(q) := ker(G(Z)→ G(Z/qZ)
denote the principal congruence subgroup of level q. Let Xq := Γ(q)\Hd. Then for any
ρ ∈ Rep(G) with ρ 6= ρθ one has

lim
q→∞

log τEis(Xq;Eρ)

vol(Xq)
= t

(2)

Hd(ρ),

where t
(2)
H (ρ) is the L2-invariant associated to ρ and Hd which is defined as in [BV13],

[MP14a] and which is never zero. The same holds for every sequence Xa of arithmetic
hyperbolic 3-manifolds associated to principal congruence subgroups Γ(a) of Bianchi groups
if N(a)→∞.

Proof. Let us give a rough idea of the proof before getting more formal. For analytic torsion
the corresponding result is known, so we need to prove that in the sequence Γ(q) the terms
on the right-hand side in the equality of Proposition 2.3 are all o([Γ : Γ(q)]). This is easy
since the number of cusps is an o([Γ : Γ(q)]) and the geometry of the cusps stays within a
finite number of conformal classes of flat manifolds, with only mild rescaling in addition.

First we assume that G = SO0(d, 1). Let Γ0 := G(Z) and X0 := Γ0\Hd. By [MP14a,
Corollary 1.3], for the analytic torsion TX0(Xq;Eρ) one has

(2.11) lim
q→∞

log TX0(Xq;Eρ)

vol(Xq)
= t

(2)

Hd(ρ),

as q →∞. Next it is well-known that for the number κ(Γ(q)) of cusps of Γ(q) one has

(2.12) lim
q→∞

κ(Γ(q))

vol(Xq)
= 0,

see for example [MP14a, Proposition 8.6]. For P0,l ∈ PΓ0 we let ΛΓ(q)(P0,l) := log((Γ(q) ∩
NP0,l

), which is a lattice in nP0,l
. By a result of Deitmar and Hoffmann [DH99, Lemma 4], for

each P0,l ∈ PΓ0 , there exists a finite set of lattices LP0,l
= {Λ1(P0,l), . . . ,Λm(P0,l)} in nP0,l

such that for each q ∈ N the lattice ΛΓ(q)(P0,l) arises by scaling one of the lattices Λj(P0,l),
j = 1, . . . ,m, see [MP14a, Lemma 10.1]. For Λj(P0,l) ∈ LP0,l

we let TΛj(P0,l
:= Λj(P0,l)\nP0,l

,
equipped with the flat metric (2.1) restricted to nP0,l

which we shall denote by gΛj(P0,l).
Then we let FΛj(P0,l)(1) := [1,∞)× Λj(P0,l), equipped with the metric y−2(dy2 + gΛj(P0,l)),
y ∈ [1,∞). If ΛΓ(q)(P0,l) = µq;P0,l

Λj(P0,l) with Λj(P0,l) ∈ LP0,l
and µq;P0,l

∈ (0,∞), then by
Lemma 2.2 one has

log T
(
FP0,l;Γ(q)

(1), ∂FP0,l;Γ(q)
(1);Eρ

)
− c(n) vol(∂FP0,l;Γ(q)

(1)) rk(Eρ)

= log T
(
FΛj(P0,l)(1), ∂FΛj(P0,l)(1);Eρ

)
− c(n) vol(Λj(P0,l)) rk(Eρ)

+ log µq;P0,l

n∑
k=0

(−1)kλρ,k dim(σρ,k).

We can obviously estimate µq;P0,l
≤ C1[Γ0 ∩ NP0,l

: Γ(q) ∩ NP0,l
], where C1 is a constant

which is independent of q. Thus there exists a constant C2 such that for all q one can
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estimate

(2.13)
∣∣∣log T

(
FP0,l;Γ(q)

(1), ∂FP0,l;Γ(q)
(1);Eρ

)
− c(n) vol(∂FP0,l;Γ(q)

(1)) rk(Eρ)
∣∣∣

≤ C2 log[Γ0 ∩NP0,l
: Γ(q) ∩NP0,l

].

Recall that al = |{Pj ∈ PΓ(q), γjPjγ
−1
j = P0,l}|. For each l ∈ {1, . . . , κ(Γ0)} one has

al
[Γ0 : Γ(q)]

=
|(Γ(q)\Γ0/(Γ0 ∩ P0,l))|

[Γ0 : Γ(q)]
≤ 1

[Γ0 ∩NP0,l
: Γ(q) ∩NP0,l

]
.

Thus for all q one can estimate

(2.14)

κ(Γ0)∑
l=1

al
[Γ0 : Γ(q)]

| log T
(
FP0,l;Γ(q)

(1), ∂FP0,l;Γ
(1);Eρ

)
− c(n) vol(∂FP0,l;Γ(q)

(1)) rk(Eρ)|

≤ C2

κ(Γ0)∑
l=1

log[Γ0 ∩NP0,l
: Γ(q) ∩NP0,l

]

[Γ0 ∩NP0,l
: Γ(q) ∩NP0,l

]
.

Since ∩qΓ(q) = {1}, [Γ0 ∩ NP0,l
: Γ(q) ∩ NP0,l

] as q → ∞ and thus the last term in

(2.14) goes to zero as q tends to infinity. Since dimHk(∂Xq) = O(κ(Γq)), the corollary
follows by applying Proposition 2.3, equation (2.11) and equation (2.12). For a sequence
Xa associated to principal congruence subgroups of Bianchi groups, one argues in the same
way. �

3. Analytic and combinatorial torsion for congruence subgroups of
Bianchi groups

From now on, we let G = Spin(3, 1) = SL2(C), K = Spin(3) = SU(2). We take P to be
the standard parabolic subgroup of G consiting of all upper triangular matrices in G. Then
the unipotent radical NP of P is given by all upper triangular matrices whose diagonal
entries are one. Moreover, we let MP and AP denote the subgroups of SL2(C) defined by

(3.1) MP :=

{(
eiθ 0
0 e−iθ

)
: θ ∈ [0, 2π]

}
; AP :=

{(
t 0
0 t−1

)
: t ∈ (0,∞)

}
.

Then P = MPAPNP . Let nP denote the Lie algebra of NP and let aP denote the Lie
algebra of AP . For k ∈ Z, λ ∈ C we let σk : MP → C, ξλ : AP → C be defined by

σk

((
eiθ 0
0 e−iθ

))
:= eikθ; ξλ

((
t 0
0 t−1

))
:= t2λ.

Then the assignment λ → ξλ is consistent with our earlier identification C ∼= (a∗P )C. The
group K∞ acts on g/k by Ad and we let K∞ act on aP ⊕ nP by using the canonical
identification g/k ∼= aP ⊕ nP .

Let F := Q(
√
−D) be an imaginary quadratic number field and let dF be its class

number. Let OD denote the ring of integers of F . Let O∗D be the group of units of OD, i.e.

O∗D = {±1} for D 6= 1, 3, O∗D = {±1,±
√
−1} for D = 1, O∗D = {±1,±1±

√
−3

2
} for D = 3.
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Let ΓD := SL2(OD). The quotient X0 := ΓD\H3 is a hyperbolic orbifold of finite volume,
see for example [EGM98]. We have

(3.2) ΓD ∩NP =

{(
1 b
0 1

)
: b ∈ OD

}
We fix a set PΓD = {P0,1, . . . , P0,κ(ΓD)} of representatives of ΓD-cuspidal parabolic sub-
groups of G, where we require each parabolic to be F -rational and where we assume that
P0,1 = P . Let P1(F ) be the one-dimensional projective space of F . As usual, we write
∞ for the element [1, 0] ∈ P1(F ). Then SL2(F ) acts transitively on P1(F ) and P is the
stabilizer of ∞. In particular for each subgroup Γ of ΓD one has κ(Γ) = |(Γ\G/P )| =
|(Γ\P1(F ))|. Moreover, by [EGM98, Chapter 7.2, Theorem 2.4], one has κ(ΓD) = dF . Let
{ηl : l = 1, . . . , ηdF } denote fixed representatives of ΓD\P1(F ) such that P0,l ∈ PΓ0 is the
stabilizer of ηl in SL2(C) for each l.

For a a non-zero ideal of OD we let Γ(a) denote the principal congruence subroup of ΓD of
level a. This group is normal in ΓD; moreover, for N(a) sufficiently large (N(a) ≥ 3 in the
case O∗D = ±1), the group Γ(a) is neat. We shall assume from now on that this is the case.
Then Xa := Γ(a)\H3 is a hyperbolic 3-manifold of finite volume. According to the previous
section, for ρ ∈ Rep(G) with ρ 6= ρθ, we can define the analytic torsion log TX0(Xa;Eρ) of
Xa with coefficients in Eρ with respect to the choice of truncation parameters coming from
the covering π : Xa → X0 and the choice of PΓD .

We shall now simplify the formula in Proposition 2.1 a bit further for the specific mani-
folds Xa. Let b be a non-zero ideal of OD. Taking the identification (3.2), we shall regard
b as a lattice in nP . We denote this latttice by ΛP (b) and we let TΛP (b) := exp(ΛP (b))\NP

denote the corresponding torus. As above, for r > 0 we let FΛP (b)(r) := [r,∞) × TΛP (b)

denote the corresponding cusp. We fix ideals sl, l = 1, . . . , dF in OD which represent the
class group of F . Then we have:

Proposition 3.1. There exist n1,Γ(a), . . . , ndF ,Γ(a) ∈ N∪{0}, with n1,Γ(a)+· · ·+ndF ,Γ(a) = dF ,
and there exist µ1,Γ(a), . . . , µdF ,Γ(a) ∈ (0,∞) such that

log τEis(Xa;Eρ) = log TX0(Xa;Eρ)−
dF∑
l=1

[ΓD : Γ(a)]

|O∗D|N(a)

(
nl,Γ(a) log T

(
FΛP (sl)(1), ∂FΛP (sl)(1);Eρ

)
− nl,Γ(a)c(1) vol (ΛP (sl)) rk(Eρ) + (λρ,1 − λρ,0)µl,Γ(a) log µl,Γ(a)

)
− κ(Γ(a))

2
(λρ,0 − λρ,1).

Here the n1,Γ(a), . . . , ndF ,Γ(a) ∈ N∪{0} and the µ1,Γ(a), . . . , µdF ,Γ(a) ∈ (0,∞) depend on Γ(a),
but not on the representation ρ.

Proof. Let {ηl : l = 1, . . . , ηdF } denote fixed representatives of ΓD\P1(F ) such that P0,l ∈
PΓ0 is the stabilizer of ηl in SL2(C) for each l. For each l = 1, . . . , dF we fix Bηl ∈ SL2(F )
with Bηlηl = ∞. Then P0,l =: Pηl = B−1

ηl
PBηl . Let (ΓD)ηl = ΓD ∩ Pηl resp. Γ(a)ηl =
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Γ(a) ∩ Pηl be the stabilizers of ηl in ΓD resp. Γ(a). One has

(3.3) Bηl(ΓD)ηlB
−1
ηl

=

{
J(Bηl(ΓD)ηB

−1
ηl
∩N), J ∈

{(
α 0
0 α−1

)
, α ∈ O∗D

}}
.

In particular, one has BηlΓ(a)ηB
−1
ηl
∩ P = BηlΓ(a)ηB

−1
ηl
∩ N for N(a) sufficiently large.

Write Bηl =

(
αl βl
γl δl

)
∈ SL2(F ) and let ul be the OD-module generated by γl and δl.

Then one has: (
Bηl(ΓD)ηlB

−1
ηl

)
∩N =

{(
1 ω
0 1

)
, ω ∈ u−2

l

}
and (

BηlΓ(a)ηB
−1
ηl

)
∩N =

{(
1 ω′

0 1

)
; ω′ ∈ au−2

l

}
(the first equality is proved in [EGM98, Chapter 8.2, Lemma 2.2] and the second can be
proved using the same arguments). Thus one has

[Bηl(ΓD)ηlB
−1
ηl
∩N : BηlΓ(a)ηlB

−1
ηl
∩N ] = N(a).

Thus by (3.3), for each l = 1, . . . , dF and N(a) suffciently large one has [(ΓD)ηl : Γ(a)ηl ] =
|O∗D|N(a) and so one gets

|{Pj ∈ PΓ(a), γjPjγ
−1
j = P0,l}| =

[ΓD : Γ(a)]

|O∗D|N(a)
.

For each l there is a constant κl > 0 which depends only on Bηl such that one has
a canonical isometry ι : FP0,l;Γ(a)(1) ∼= FΛP (κlau

−2
l )(1) which induces an isometry ι∗ :

Eρ|F
ΛP (κlau

−2
l

)
(1)
∼= Eρ|FP0,l;Γ(a)(1). Next, there exists a unique map σ from {1, . . . , dF} into

itself such that for each l = 1, . . . , dF there exists a µ̃l,Γ(a) ∈ F ∗ with au−2
l = µ̃l,Γ(a)sσ(l). We

let µl,Γ(a) := κl|µ̃l,Γ(a)|. Then it follows that there is a canonical isometry ι : FP0,l;Γ(a)(1) ∼=
FΛP (sσ(l))(µ

−1
l,Γ(a)) which extends to an isometry ι∗ : Eρ|FΛP (sσ(l))(µ

−1
l,Γ(a)

)
∼= Eρ|FP0,l;Γ(a)(1). Thus

it follows from Lemma 2.2 that

log T (FP0,l;Γ(a)(1), ∂FP0,l;Γ(a)(1);Eρ)− c(1) vol(∂FP0,l;Γ(a)(1)) rk(Eρ)

= log T
(
FΛP (sσ(l))(1), ∂FΛP (sσ(l))(1);Eρ

)
− c(1) vol

(
∂FΛP (sσ(l))(1)

)
+ log µl,Γ(a)(λρ,1 − λρ,0).

For each l = 1, . . . , dF we let nl,Γ(a) := |{σ−1(l)}|. Then, since dim(σρ,k) = 1 in the case of
G = SL2(C), the Proposition follows from Proposition 2.3. �

We let ρ1 denote the standard representation of SL2(C) on C2 and for m ∈ N we
consider the representation ρm := Symmm ρ1 on V (m) := SymmmC2. We can now deduce
the following result on the growth of the torsion τEis(Xa;E(ρm)) if m→∞. .
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Proposition 3.2. Let a and a0 be two ideals in OD such that Γ(a) and Γ(a0) are neat
and such that, in the notation of the previous proposition, one has nl,Γ(a) = nl,Γ(a0) for each
l = 1, . . . , dF . Then one has

[ΓD : Γ(a0)]

|O∗D|N(a0)
log τEis(Xa;E(ρm))− [ΓD : Γ(a)]

|O∗D|N(a)
log τEis(Xa0 ;E(ρm))

= − [ΓD : Γ(a0)][ΓD : Γ(a)]

2|O∗D|π

(
1

N(a0)
− 1

N(a)

)
vol(ΓD\H3)m2 +O(m logm),

as m→∞.

Proof. In the notation of [MP12], the representation ρm is the representation of highest
weight (m/2,m/2). If Γ is a neat finite index subgroup of ΓD and if we let X := Γ\H3,
then specializing [MP12, Theorem 1.1] to the present situation, we obtain

log TX0(X;Eρm) = − 1

2π
vol(X)m2 +O(m logm),

as m→∞. Moreover, one has λρm,0 = (m+ 1)/2 and λρm,1 = m/2. Thus the proposition
follows from the previous Proposition 3.1. �

There is a constant C ′1(Γ) such that Γ(a) is neat for all ideals a of OD with N(a) ≥ C ′1(Γ).
If O∗D = {±1}, one has C ′1(Γ) = 3. Next we remark that by the requirement n1,Γ(a) + · · ·+
ndF (a) = dF there is a finite set A of ideals of OD such that N(a0) ≥ C ′1(Γ) for each a0 ∈ A
and such that for each non-zero ideal a of OD with N(a) ≥ C ′1(Γ) there is an a0 ∈ A such
that nl,Γ(a) = nl,Γ(a0) for each l = 1, . . . , dF . We let C̃1(Γ) := max{N(a0) : a0 ∈ A} and we

let C1(Γ) := max{C̃1(Γ), C ′1(Γ)}.

4. Torsion in cohomology and Reidemeister torsion

4.1. Local systems and cohomology. We keep the notation of the preceding section.
Let Λ(m) := SymmmOD. Then Λ(m) is a lattice in V (m) which is preserved by Γ(D); we
denote the representation of Γ(D) on AutZ(Λ(m)) by ρm;Z. Let Λ∨(m) := HomZ(Λ(m),Z)
denote the dual lattice of Λ(m) and let ρ̌m;Z denote the contragredient representations of
Γ(D) on Λ∨m. We let ρ̄Z;m := ρZ;m ⊕ ρ̌Z;m denote the corresponding integral representation
of Γ(D) on the lattice

Λ̄(m) := Λ(m)⊕ Λ∨(m).

We let ρ̄m denote the corresponding real representation of Γ on V̄ (m) := V (m)⊕ V (m)∗.
Over R, the representation ρm is self-dual, i.e. one has ρ̄m ∼= ρm ⊕ ρm. In particular, no
irreducible summand of ρ̄m is invariant under the Cartan involution θ.

Let Γ be any neat, finite index subgroup of Γ(D). Then we may regard each Λ̄(m) as
a Γ-module. Let H∗(Γ, Λ̄(m)) be the cohomology groups of Γ with coefficients in Λ̄(m).
These groups are finitely generated abelian groups and thus they admit a (non-canonical)
decomposition as a direct sum

H∗(Γ, Λ̄(m)) = H∗(Γ, Λ̄(m))free ⊕H∗(Γ, Λ̄(m))tors,
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whereH∗(Γ, Λ̄(m))free are free, finite-rank Z-modules andH∗(Γ, Λ̄(m))tors are finite abelian
groups. Let X be the hyperbolic manifold Γ\H3 and let X denote its Borel-Serre com-
pactification. The latter is a compact manifold with toric boundary which is homotopy
equivalent to X. In particular, ρ̄Z,m defines an integral local system L(m) over X. Since
the universal covering of X resp. X is contractible, one has a canonical isomorphism
H∗(Γ, Λ̄(m)) ∼= H∗(X,L(m)). Let Eρ̄m denote the flat vector bundle over X resp. X
corresponding to ρ̄m and let H∗(X;Eρ̄m) denote the singular cohomology groups of X with
coefficients in Eρ̄m . Then H∗(Γ, Λ̄(m))free is a lattice in H∗(X;Eρ̄m).

4.2. Eisenstein bases for the characteristic zero homology. We now recall the de-
scription of the canonical bases in the cohomology H∗(X;Eρ̄m) which are used to define
the Reidemeister torsion τEis(X;Eρ̄m). For more details, we refer [Pfa17, section 8], the
notation of which we shall also use. Let ∂X denote the boundary of X and ι : ∂X → X
denote the inclusion map. The corresponding maps ι∗k : Hk(X;Eρ̄m) → Hk(∂X;Eρ̄m) in
cohomology are injective for k ∈ {1, 2}, see [Pfa17, Lemma 8.3]. Thus the cohomology
H∗(X;Eρ̄m) is completely described in terms of the Eisenstein cohomology described by
Harder in [Har87], which we will explain below in our particular case.

For each Pj ∈ PΓ let Hk(nPj ; V̄ (m)) denote the harmonic forms of degree k in the Lie
algebra cohomology complex of nPj with coefficients in V̄ (m). We equip this space with
the inner product induced by the restriction of the inner product (2.1) on g to nPj and the

admissible inner product on V̄ (m). Let σ−ρ̄m,1 ∈ M̂P and λ−ρ̄m,1 ∈ (−∞, 0) resp. σρ̄m,2 ∈ M̂P

and λρ̄m,2 ∈ (−∞, 0) be defined as in [Pfa17, section 6]. In the present situation, we
have σ−ρ̄m,1 = σ−m−2 and λ−ρ̄m,1 = −m/2 resp. σρ̄m,2 = σ−m and λρ̄m,2 = −(m + 1)/2.
By the finite-dimensional Hodge theorem and a theorem of van Est one has a canonical
isomorphism

(4.1) Hk(∂X;Eρ̄m) ∼=
⊕
Pj∈PΓ

Hk(nPj , V̄ (m)).

In degree 1, Kostant’s theorem gives a splitting

H1(nPj , V̄ (m)) = H1(nPj , V̄ (m))− ⊕H1(nPj , V̄ (m))+.

We define the positive and negative parts of the cohomology by:

(4.2) H1(∂X;Eρ̄m)± :=

κ(Γ)⊕
j=1

H1(nPj , V̄ (m))±.

An essential ingredient in the theory of Eisenstein series, which will be central to our
argument as well, is the intertwining operator

C(σ−m−2,m/2) : H1(∂X;Eρ̄m)− → H1(∂X;Eρ̄m)+.

We will give other interpretations of this map in later sections, but for the moment we will
only observe that it can be defined out of the following relation: for any Φ ∈ H1(∂X;Eρ̄m)−
we have

ι∗1E(Φ,m/2) = Φ + C(σ−m−2,m/2)Φ.
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Now let us describe the cohomology in degree 1. We have dimH1(nPj ; V̄ (m))± =
2 dimH1(nPj ;V (m))± = 2. For each Pj ∈ PΓ let Φ1

i,j be an orthonormal basis ofH1(nPj ; V̄ (m))−.
Then the set

B1(Γ; ρ̄m) := {E(Φ1
i,j,m/2), j = 1, . . . , κ(Γ), i = 1, . . . , dimH1(nPj ; V̄ (m))−}

forms a basis of H1(X;Eρ̄m), where E(Φn
i,j,m/2) denotes again the Eisenstein series eval-

uated at m/2 as in [Pfa17, (7.3)], which is regular at this point by [Pfa17, Proposition
8.4]. As noted above for Φ1

i,j ∈ H1(nPj ; V̄ (m))− one has (pending the definition of the
intertwining operators):

(4.3) ι∗1E(Φ1
i,j,m/2) = Φ1

i,j + C(σ−m−2,m/2)Φ1
i,j.

Things are simpler in degree 2, since we have dimH2(nPj ; V̄ (m)) = 2 dimH2(nPj ;V (m)) =
2 and the map ι∗2 is an isomorphism. Let Φ2

i,j be an orthonormal basis of H2(nPj ; V̄ (m)).
Then the family

B2(Γ; ρ̄m) := {E(Φ2
i,j, (m+ 1)/2) : j = 1, . . . , κ(Γ) : i = 1, . . . , dimH2(nPj ; V̄ (m))}

forms a basis of H2(X;Eρ̄m). Here E(Φ2
i,j, (m+ 1)/2) denotes the Eisenstein series associ-

ated to Φ2
i,j evaluated at (m+1)/2 (which is regular at this point). For Φ2

i,j ∈ H2(nPj ; V̄ (m))
one has the simpler restriction formula:

(4.4) ι∗2E(Φ2
i,j, (m+ 1)/2) = Φ2

i,j.

4.3. The Reidemeister torsion τEis. We will use the expression for the Reidemeister
torsion in terms of the “regulators” introduced in [BV13], which in our case are similar
to those studied in [CV12, 6.3.2] and [Rai13]. We need some notation and terminology to
define those. If L is a discrete subgroup (not necessarily a lattice) in an Euclidean space
V then we denote by vol(L) (with implicit reference to V ) as the covolume of L is the
subspace of V it spans, alternatively it equals the square root of the determinant of the
Gram matrix of a Z-basis of L (which also makes sense in Hermitian spaces).

By the definition of [Pfa17, section 9], the Reidemeister torsion τEis(X;Eρ̄m) is taken
using the bases in the cohomology defined in the previous subsection. We can also endow
the spaces Hk(X; V̄ (m)) with an Euclidean structure by taking the bases Bk(Γ, ρ̄m) to be
orthonormal. The size of the groups H∗(Γ, Λ̄(m))tors is then related to the combinatorial
torsion τEis(X;Eρ̄m) in the following way: by [BV13, section 2.2] one has

(4.5) τEis(X;Eρ̄m) =
|H1(Γ; Λ̄(m))tors| · vol(H2(X, Λ̄(m))free)

|H2(Γ; Λ̄(m))tors| · vol(H1(X, Λ̄(m))free)

In the notation of [BV13], the term in the second line of (4.5) is called the regulator.
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4.4. Boundary denominators of Eisenstein classes. We denote by H∗(∂X; Λ̄(m))
resp. H∗(∂X;E(ρ̄m)) the cohomology of ∂X with coefficients in L(m) resp. E(ρ̄m) re-
stricted to ∂X. Again there is a (noncanonical) splitting of H∗(∂X; Λ̄(m)) into a direct sum
H∗(∂X; Λ̄(m))free⊕H∗(∂X; Λ̄(m))tors and H∗(∂X; Λ̄(m))free is a lattice in H∗(∂X;Eρ̄m).
It is easy to see that the subgroups defined by

H1(∂X; Λ̄(m))± := H1(∂X; Λ̄(m))free ∩H1(∂X;Eρ̄m)±

are Z-lattices in H1(∂X;Eρ̄m)±. This is a particular case of results in [Har87], see also
[Rai13, Lemma 6.3] for a more hands-on proof in our case. Thus H1(∂X; Λ̄(m))− ⊕
H1(∂X; Λ̄(m))+ is a Z-sublattice of finite index in H1(∂X; Λ̄(m))free. Moreover, with
respect to the lattices H1(∂X; Λ̄(m))±, the matrix C(σ−m−2,m/2) is Q-rational. This is
something that will be proven along with more precise results (see Proposition 6.1) but it
is also proven by Harder in [Har87] (see Corollary 4.2.1 there).

As a consequence of the rationality of intertwing operators there exists N ∈ N such that
N ·C(σ−m−2,m/2) defines a map

(4.6) N ·C(σ−m−2,m/2) : H1(∂X; Λ̄(m))− → H1(∂X; Λ̄(m))+.

We let dEis,C(Γ, ρ̄m) denote the smallest N ∈ N such that (4.6) holds.

4.5. Inequalities for regulators. We will not deal with the denominator of Eisenstein
cohomology classes which would be needed, but only with the denominator of the constant
term matrix (equivalently that of its restriction to the boundary). We will be able to
use this to establish exponential growth of the torsion part of H2 thanks to the following
crucial result which allows us to avoid a more detailed analysis.

Lemma 4.1. We have

vol(H1(X, Λ̄(m)))free ≤ |H2(X, Λ̄(m)tors| · (dEis,C(Γ, ρ̄m))κ(Γ) · vol(H1(∂X; Λ̄(m))−).

Proof. For convenience we will denote H1(X, Λ̄(m)))free by H1(X) and similarly for other
integral cohomology groups. The rough idea of the proof is to compare volumes between
H1(X) and the lattice B of Eisenstein classes whose restriction to the boundary has an
integral component on H1(∂X; V̄ (m))−: the quotient will depend on the default of inte-
grality dEis of the intertwining operator, and the default of integrality of Eisenstein classes
whose restriction is integral which is controlled by the torsion in H2(X) via a long exact
sequence.

Let A be the submodule of H1(∂X) defined by

A = (ι∗1H
1(X)⊗Q) ∩H1(∂X).

Then the finite abelian group A/ι∗1H
1(X)free embeds into H1(∂X)/ι∗1H

1(X), and from the
long exact sequence in cohomology for the pair (X, ∂X) we see that the torsion subgroup
of the latter latter embeds in H2(X, ∂X)tors. So we get that:

[A : ι∗1H
1(X)] ≤ |H2(X, ∂X)tors|.
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It follows from Poincaré duality [Bro82, p. 222] that H2(X, ∂X) ∼= H1(X), and from the
universal coefficient theorem that H1(X)tors ∼= H2(X)tors. We will explain a bit more how
to get this last isomorphism, as in [Pfa14]. Since Λ̄(m) is self-dual we have an isomorphism
C∗(X) ∼= Hom(C∗(X),Z). By the universal coefficient theorem as stated in [Bro82, p. 8]
we get an exact sequence :

0→ Ext1
Z(H1(X),Z)→ H2(X)→ Hom(H2(X),Z)→ 0

which proves our claim since Ext1
Z(M,Z) = Mtors for any Z-module M , and the term on

the right is torsion-free. Together with the inequality above this implies that:

(4.7) [A : ι∗1H
1(X)] ≤ |H2(X)tors|.

Since restrictions of rational Eisenstein classes span ι∗1H
1(X) ⊗ Q we get that A is a

subgroup of finite index in:

B = {η + C(η) : η ∈ H1(∂X)−}.

Moreover, by definition of dEis we have that B ⊂ d−1
EisA and as κ(Γ) = dim(A ⊗ Q) we

deduce that

(4.8) [B : A] ≤ (dEis)
κ(Γ).

Now let π be the orthogonal projection of H1(∂X) ⊗ R onto H1(∂X)− ⊗ R. Since
π(ι∗1E(Φ,m/2)) = Φ by (4.3), the map π◦ι∗1 is by definition an isometry between H1(X)⊗R
and H1(∂X)− ⊗ R. Since π(B) = H1(∂X)− we deduce that

vol(H1(X)) = vol π(ι∗1H
1(X))

= [B : ι∗1H
1(X)] · volπ(B) = [B : ι∗1H

1(X)] · vol(H1(∂X)−)

= [B : A] · [A : ι∗1H
1(X)] · vol(H1(∂X)−)

and the lemma follows from the last line together with (4.8) and (4.7). �

In degree 2 the situation is much simpler and we have complete control over the regulator.

Lemma 4.2. We have :

vol(H2(∂X; Λ̄(m))) ≤ vol(H2(X, Λ̄(m)))free ≤ |H1(X, Λ̄(m))|tors · vol(H2(∂X; Λ̄(m))).

Proof. The map ι∗2 : H2(X)⊗ R→ H2(∂X)⊗ R is by definition an isometry and thus we
need only to show that

[ι∗2H
2(X) : H2(∂X)] ≤ |H1(X)tors|

which follows immediately from the long exact sequence of (X, ∂X). �

5. The adelic intertwining operators

The main goal of this section and the next one is to establish an estimate of dEis,C(Γ, ρ̄m).
For this we will use the computation of intertwining operators via integrals over adèle
groups.
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5.1. Adélic setting. We let G := SL2 as an algebraic group over F . Let A denote the
adèle ring of F and let Af be the finite adèles. For a linear algebraic group H defined over
F let H(A) denote its adelic points. For v a finite place we let Fv denote the completion
of F at v, we let Ov denote the integers in Fv and we let πv ∈ Ov be a fixed uniformizer.
We let Γ be a fixed neat congruence subgroup of SL2(OD) of level a =

∏
v finite p

nv
v , where

pv is the prime ideal corresponding to v.
Let P be the parabolic subgroup of G consisting of upper triangular matrices and let

T denote the set of diagonal matrices of determinant one. Let NP denote the unipotent
radical of P , that is the subgroup of upper triangular matrices with 1 as diagonal entries.
We regard both P and NP as algebraic groups over F . Then P = TNP .

For notational convenience we shall write K∞ := SU(2). Let

Kmax := K∞ ×
∏
v finite

SL2(Ov).

Then one has the Iwasawa decomposition G(A) = P (A)Kmax. Let K(Γ)f ⊂ Kmax be the
compact subgroup of G(Af ) corresponding to Γ, meaning that Γ = G(F ) ∩K(Γ)f where
Γ and G(F ) are embedded diagonally into G(Af ).

Let h = κ(Γ) and P1, . . . , Ph be representatives of the Γ-conjugacy classes of parabolic
subgroups in G(F ) (these are F -algebraic subgroups of G). Let gPi ∈ G(F ) such that
Pi := g−1

Pi
PgPi , so that gP1 , . . . , gPh are representatives of P (F )\G(F )/Γ. We will assume

that P1 = P . In this section and the next one, we let NPi denote the unipotent radical of
Pi regarded as an algebraic group over F and we shall denote by NPi,∞ the corresponding
real subgroup of SL2(C).

We embed G(F ), P (F ) as well as the elements gP1 , . . . , gPh diagonally into G(A). Then
we have a canonical isomorphism

(5.1) IA : P (F )\G(A)/K(Γ)f
∼−→

h⊔
i=1

(Γ ∩NPi,∞)\ SL2(C)

which is defined as follows. By the strong approximation theorem one has G(A) =
G(F ) SL2(C)K(Γ)f . This implies that each g ∈ G(A) can be written as

(5.2) g = bgPig∞kf ,

where b ∈ P (F ), gPi ∈ {gP1 , . . . , gPh} is uniquely determined and g∞ is unique up to
Γ ∩ Pi(F ) = Γ ∩NPi,∞. Let π : G(A) → P (F )\G(A)/K(Γ)f denote the projection. Then
according to (5.2), for g ∈ G(A) we set IA(π(g)) := (Γ ∩ NPi,∞)g∞, where (Γ ∩ NPi,∞)g∞
denotes the equivalence class of g∞ in (Γ ∩NPi,∞)\ SL2(C). We also denote by

I−1
A,Pi : (Γ ∩NPi,∞)\ SL2(C)→ P (F )\G(A)/K(Γ)f

the maps induced by IA (each corresponding to the embedding of a cusp into the disjoint
union (5.1)).
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5.2. Function spaces. Let

W =
(
C∞(P (F )N(A)\G(A)/K(Γ)f )⊗ (nP ⊕ aP )∗ ⊗ V̄ (m)

)K∞
.

The map IA induces an isomorphism

(5.3) (IA)∗ :

κ(Γ)⊕
i=1

(
C∞(NPi,∞\ SL2(C))⊗ (nP ⊕ aP )∗ ⊗ V̄ (m)

)K∞ ∼−→ W.

Here K∞ acts on the C∞-spaces by right translation and on (aP ⊕ nP )∗ ⊗ V̄ (m) by
Ad∗⊗ρ(m). We shall denote this representation also by ν1(ρ(m)).

We regard the real subgroups MP and AP of SL2(C) from (3.1) or more generally the
real subgroups MPi and APi for a parabolic Pi introduced above as subgroups of G(A). For

σ ∈ M̂P with [ν1(ρ(m)) : σ] 6= 0 and λ ∈ C we let Wρ̄m(σ, λ) be the subspace of W defined
by:

(5.4) Wρ̄m(σ, λ) =
{
f ∈ W : ∀g ∈ G(A), a ∈ AP , t ∈MP , f(atg) = ξλ+1(a)σ−1(t)f(g)

}
.

If we view W as a space of (vector-valued) differential forms on the cusps of X = Γ\H3

then the spaces Wρ̄m(σ, λ) correspond to the summands of the Mellin decomposition of
compactly-supported elements of W (with a further refinement corresponding to the MP -
equivariance). See also [CV12, 6.6] for further explanations. The functions in Wρ̄m(σ, λ)
are eigenforms for the Laplace operator (with eigenvalue depending on λ, ρ), and we will
be intereted in the harmonic ones which will serve to describe the Eisenstein cohomology
classes.

Let KPi,∞ := g−1
Pi
K∞gPi . Then KPi,∞ acts on (nP ⊕ aP )∗ ⊗ V̄ (m) by conjugating with

gPi . We let EPi(σ, λ, ν1(ρm)) be the space of all f ∈ (C∞(NPi,∞\ SL2(C)) ⊗ (nP ⊕ aP )∗ ⊗
V̄ (m))KPi,∞ which additionally satisfy

f(aPimPig) = ξPi,λ+1(aPi)σPi(m
−1
Pi

)f(g) ∀g ∈ SL2(C), ∀aPi ∈ APi , ∀mPi ∈MPi .

Here ξPi,λ+2 and σPi are the characters which arise from ξλ and σ by conjugating with gPi .
If ν is a finite-dimensional representation of K on a complex vector space V , we let V σPi

denote the σPi-isotypical component of the restriction of the representation ν to MPi . Then
we have the following Lemma.

Lemma 5.1. For f ∈ Wρ̄m(σ, λ) define µσ,λ(f) ∈
⊕κ(Γ)

i=1

(
(aP ⊕ nP )∗ ⊗ V̄ (m)

)σPi by

µσ,λ(f) :=

κ(Γ)∑
i=1

(
I−1
A,Pi

)∗
f(1) =

κ(Γ)∑
i=1

f(gPi)

Then µσ,λ defines an isomorphism

µσ,λ : Wρ̄m(σ, λ) ∼=
κ(Γ)⊕
i=1

(
(aP ⊕ nP )∗ ⊗ V̄ (m)

)σPi
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Proof. It is easy to see that each function
(
I−1
A,Pi

)∗
f belongs to EPi(σ, λ, ν1(ρm)) and is

therefore determined by its value at 1, which moreover belongs to
(
(aP ⊕ nP )∗ ⊗ V̄ (m)

)σPi .
On the other hand, for ΦPi ∈

(
(aP ⊕ nP )∗ ⊗ V̄ (m)

)σPi we define ΦPi;λ ∈ EPi(σ, λ, ν1(ρm))
by

ΦPi;λ(nPiaPik) := ξPi;λ+1(aPi)ν1(ρm)(k−1)ΦPi .(5.5)

Let µ(σ, λ)−1(ΦPi) := I∗A(ΦPi,λ). Then it immediately follows from the definitions that
µ(σ, λ) and µ(σ, λ)−1 are inverse to each other. �

We shall from now on identify T (A) with the ring of ideles A∗ by sending x ∈ A∗ to the
diagonal matrix diag(x, x−1). Let U(Γ)f := T (A) ∩ K(Γ)f . Let σ = σk, k ∈ Z and let
λ ∈ C. Then we combine σ−1 and λ to a character χ∞,σ,λ of MA = T∞ ∼= C∗ by putting

(5.6) χ∞,σ,λ(z) := |z|2(λ+1)

(
z̄

|z|

)k
.

We let H(σ, λ,K(Γ)f ) denote the set of all Hecke characters χ : F ∗\A∗ → C which are
trivial on U(Γ)f and which satisfy χ∞ = χ∞,σ,λ. If |·|A denotes the usual norm on the
adèles, then each χ ∈ H(σ, λ,K(Γ)f ) can be uniquely written as

χ = |·|2(λ+1)
A χ1,(5.7)

where χ1 is unitary. For χ ∈ H(σ, λ,K(Γ)f ) with χ as in (5.7) we define

w0χ = χ−1 = |·|2(−λ+1)
A χ̄1 ∈ H(w0σ,−λ,K(Γ)f ).

Since T (A) normalizes N(A) and T is abelian the group T (A) acts on Wρ̄m(σ, λ) by left
translations and thus we obtain a decomposition of Wρ̄m(σ, λ) into χ-isotypical subspaces:

Wρ̄m(σ, λ) =
⊕

χ∈H(σ,λ,K(Γ)f )

Wρ̄m(σ, λ)χ.(5.8)

Let tP1 , . . . , tPh ∈ T (Af ) denote fixed representatives of T (F )\T (Af )/U(Γ)f . Then for
f ∈ Wρ̄m(σ, λ), its projection fχ onto Wρ̄m(σ, λ)χ is given by

fχ(g) =
1

κ(Γ)

κ(Γ)∑
i=1

χ̄(t−1
Pi

)f(tPig).(5.9)

5.3. Cohomology spaces as function spaces. Now we use the the notations of the
previous sections for the various cohomology groups. We can canonically identify the Lie
algebra nPi of NPi,∞ with nP . Then we have canonical embeddings

κ(Γ)⊕
i=1

H1(nP ; V̄ (m))+ ↪→
κ(Γ)⊕
i=1

(aP⊕nP )∗⊗V̄ (m);

κ(Γ)⊕
i=1

H1(nP ; V̄ (m))− ↪→
κ(Γ)⊕
i=1

(aP⊕nP )∗⊗V̄ (m).
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Moreover, an easy computation shows that in the present case these embeddings in fact
give isomorphisms

κ(Γ)⊕
i=1

H1(nP ; V̄ (m))+
∼=

κ(Γ)⊕
i=1

(
(aP ⊕ nP )∗ ⊗ V̄ (m)

)σm+2 = (CX+ ⊗ v+)2;

κ(Γ)⊕
i=1

H1(nP ; V̄ (m))− ∼=
κ(Γ)⊕
i=1

(
(aP ⊕ nP )∗ ⊗ V̄ (m)

)σ−m−2 = (CX− ⊗ v−)2

where X± are the vectors of weight ±2 for su(2) in p∗ and v± the vectors of weight ±m
for su(2) in V (m) (recall that V̄ (m) ∼= V (m)2). Thus together with Lemma 5.1, we obtain
isomorphisms:

µ+(m) : Wρ̄m(σm+2,−m/2) ∼=
κ(Γ)⊕
i=1

H1(nP ; V̄ (m))+
∼= H1(∂X; V̄ (m))+(5.10)

and

µ−(m) : Wρ̄m(σ−m−2,m/2) ∼=
κ(Γ)⊕
i=1

H1(nP ; V̄ (m))− ∼= H1(∂X; V̄ (m))−.(5.11)

5.4. Integral formula for the intertwining operators. The various function spaces
we consider are subspaces of the invariant subspace(

L2(G(F )\G(A))⊗ p∗ ⊗ V̄ (m)
)K∞Kf (Γ)

.

This is naturally isomorphic the ν1(ρ̄m)-isotypic component of L2(G(F )\G(A)) and in the
sequel we will view it as such, so that we implicitely interpret all vector-valued functions
on various quotients of X as scalar-valued functions on G(A) (we will use an explicit
isomorphism when needed).

We shall denote the operator from Wρ̄m(σ−m−2,m/2) to Wρ̄m(σm+2,−m/2) induced by
C(σ−m−2,m/2) and the isomorphisms µ±(m) by C(σ−m−2,m/2) too. The constant term
of a differential form ω ∈ Ω∗(Ti; V̄ (m)) is defined by

1

vol((Γ ∩Ni)\Ni)

∫
(Γ∩Ni)\Ni

n∗ωdn.

It follows immediately from the fact that the group action T2 y H∗(Ti; V̄ (m)) is trivial
that the de Rham class of a differential form is the same as that of its constant term.
In turn, this implies that the intertwining operators are given by the constant term of
Eisenstein series and it follows that for f ∈ Wρ̄m(σ−m−2,m/2) and g ∈ G(A) one has

C(σ−m−2,m/2)f(g) =

∫
N(A)

f(w0ng)dn, w0 =

(
0 −1
1 0

)
(see e.g. [Rai13, 2.2.4] or [CV12, 6.6.2], we use the same normalisation of Haar measure on
N(A) as in these references). With respect to the decompositions of Wρ̄m(σ−m−2,m/2) resp.
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Wρ̄m(σm+2,−m/2) into Hecke-isotypical subspaces given in (5.8), the operator C(σ−m−2,m/2)
splits as

C(σ−m−2,m/2) =
⊕

χ∈H(σ−m−2,m/2,K(Γ)f )

C(χ),

where C(χ) : Wρ̄m(σ−m−2,m/2)χ → Wρ̄m(σm+2,−m/2)w0χ. Let f ∈ W (σ−m−2,m/2)χ. For
our later purposes we can assume that f = f∞ ⊗

⊗
v finite fv. Then one has for Re(s) large

enough so that the product converges (in general we need analytic continuation of the
global expression):

C(χ)f = C∞(σ−m−2,m/2)f∞ ⊗
⊗
v finite

Cv(χv)fv.

where the operators Cv(χv) for v finite or infinite are defined by

(5.12) Cv(χv)fv(g) =

∫
Fv

fv

(
w0

(
1 x
0 1

)
g

)
dx

The integrals above can be computed more or less explicitly at each place, which we will
do separately for finite and infinite places.

5.4.1. Finite places. Let us set some further notation. Recall that nv is the v-valuation of
the level of the congruence subgroups Γ. Let χ1 be as in (5.7). For v a finite place of F
we let χ1,v be the local component of χ1 at v. Then we say that χ1 is unramified at v if
χ1,v is trivial on O×v . Otherwise we say that χ1 is ramified at v. If χ1 is unramified at v,
then χ1,v(πv) does not depend on the choice of πv (this happens in particular if nv = 0).
Let q = |Ov/πvOv|. For v a finite place, χ1 unramified at v and s ∈ C the local L-factor
Lv(χ1,v, s) is defined by

(5.13) Lv(χ1,v, s) :=
1

1− χ1,v(πv)q−s
.

Then the following Lemma holds.

Lemma 5.2. Let f ∈ Wρ̄m(σ−m−2,m/2) and v be a finite place of F . Suppose that fv tales
integral values on SL2(Ov) = Kmax,v. Then we have:

(1) If nv = 0, one has

Cv(χv)fv(1v) =
Lv(χ1,v,m+ 2)

Lv(χ1,v,m+ 1)
fv(1v).

(2) If nv > 0 and χ is ramified at v, then for kv ∈ Kmax,v one has

Cv(χv)fv(kv) = Iv(kv)fv(kv),

where Iv(kv) ∈ q−2nv(m+2)Z.
(3) If nv > 0 and χ is unramified at v, then for kv ∈ Kmax,v one has

Cv(χv)fv(kv) =
Lv(χ1,v,m+ 2)

Lv(χ1,v,m+ 1)
Iv(kv)fv(kv),

where Iv(kv) ∈ q−2nvmZ.
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Proof. For convenience we will denote n = nv and s = 1 + m/2 during the whole proof.
We prove (i) first. For x ∈ Fv, |x|v > 1 we have the Iwasawa decomposition

w0

(
1 x
0 1

)
=

(
x−1 −1
0 x

)(
1 0
x−1 1

)
.

On the other hand for g = nak we have fv(g) = α(a)sχ1,v(a)f(Id). Hence we get

Iv =

∫
|x|v>1

|x|−2s
v χ1,v(x)−1fv

(
1 0
x−1 1

)
dx+

∫
Ov
fv

(
0 −1
1 x

)
dx

=

(∫
|x|v>1

|x|−2s
v χ1,v(x)−1dx+

∫
Ov

1dx

)
fv(Id)

=

(∑
k≥1

(1− q−1)qk · χ1,v(πv)
kq−2sk + 1

)
fv(Id)

=

(
1 +

(χ1,v(πv)q
2s−1)−1(1− q−1)

1− χ1,v(πv)q−2s+1

)
fv(Id) =

1− χ1,v(πv)q
−2s

1− χ1,v(πv)q−2s+1
· fv(Id).

Now let us prove (ii). It obviously suffices to deal with kv = Id. Recall from the preceding
proof that :

(5.14) Iv =

∫
|x|v>1

|x|−2sχ1,v(x)fv

(
1 0
x−1 1

)
dx+

∫
Ov
fv

(
0 −1
1 x

)
dx.

The second term is a linear combination of integers (values of fv) with coefficients in q−nZ
(the measure of a coset on which fv is constant is equal to q−n) and hence lies in q−n Z. It
remains to deal with the second term. Since χ1 is ramified at v we have for any k ∈ Z the
equality ∫

|x|v=qk
χ1,v(x)dx = 0.

It follows that :∫
|x|v>1

|x|−2sχ1,v(x)fv

(
1 0
x−1 1

)
dx =

∫
1<|x|v≤qn

|x|−2sχ1,v(x)fv

(
1 0
x−1 1

)
dx

=
∑

a∈vOF /vn
|a|2s−2

v χ1,v(a)fv

(
1 0
a 1

)
|a|−1

∫
1+a−1vnOv

χ1,v(x)dx.

Now there are two possibilities for the integral on the second line: either χ1,v is trivial on
1 + a−1vn, in which case the integral equals q−n|a|−1, or the integral vanishes. In either
case it lies in q−nZ, hence the sum lies in q−(2s−1)nZ.

The proof of (iii) is just a combination of those of (i) and (ii). The decomposition (5.14)
is still valid, and the estimate for the denominator of the first factor done there is still
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valid. For the first one we have :∫
|x|v<1

|x|2−2s
v χ1,v(x)f

(
1 0
x 1

)
dx =

∑
a∈OF /vn

fv

(
1 0
a 1

)∫
a+vnOv

|x|2−2s
v χ1,v(x)dx

= q−n
∑
a6=0

(
1 0
a 1

)
χ1,v(a)|a|2s−2

v + fv(Id)

∫
|x|v≤q−n

|x|vχ1,v(x)dx

(since χ1 is not ramified at v it is constant on every coset a+vnOv). The terms with a 6= 0

belong to q
−(2s−1)n
v Z, and the same computation as in the proof of (i) yields that the last

term lies in q−2sn Lv(χ1,2s)
Lv(χ1,2s−1)

Z. �

5.4.2. Infinite place. Finally, the term C∞(σ−m−2,m/2)(f∞), which is always a ratio of Γ-
functions, can be described explicitly in the present case. There is Φ ∈ ((nP ⊕ aP )∗ ⊗ V (ρ(m)))σ

such that f∞ = Φm/2. Moreover, there is an M∞-equivariant isomorphism

ν1(ρm)(w0) : ((nP ⊕ aP )∗ ⊗ V (ρ(m)))σ ∼= ((nP ⊕ aP )∗ ⊗ V (ρ(m)))w0σ .

The representation ν1(ρm) of K is not irreducible. However, if νm+2 denotes the represen-
tation of K of highest weight m + 2 in the canonical parametrization, then νm+2 occurs
with multiplicity one in ν1(ρm) and belong to the νm+2-isotypical subspace. Thus we have

C∞(σ−m−2,m/2)(Φm/2) = cνm+2(σ−m−2 : m/2) · (ν1(ρm)(w0)Φ)−m/2 ,(5.15)

where cνm+2(σ−m−2 : m/2) ∈ C is the value of generalized Harish-Chandra c-function. In
the present case, the latter is known explitly. Namely, by [Coh74, Appendix 2], taking the
different parametrizations into account, one has

cνm+2(σ−m−2 : m/2) =
1

π

1

im+m+ 2
.(5.16)

5.5. Final expression for C(σ−m−2,m/2). It follows from (5.16) and Lemma 5.2 that
we have an expression of the following form for C(σ−m−2,m/2):

(5.17) C(σ−m−2,m/2)Φ = N−m
1

π

L(χ1,m+ 2)

L(χ1,m+ 1)
Ψ

where

• L is the Hecke L-function associated with the character χ1;
• N is an integer depending on Γ (via the possible ramification of χ1);
• Ψ is a function taking integral values on Kf,max.

We will use this expression in the next section to study the integrality of the operator
C(σ−m−2,m/2).
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6. Estimation of the denominator of the C-matrix

We keep the notation of the preceding section. Our goal here is to prove the following
estimate for the denominator of the intertwining matrices.

Proposition 6.1. Let Γ be a (principal) congruence subgroup of ΓD. Then there exists a
constant C0(Γ) such that one can estimate

log |dEis,C(Γ, ρ̄m)| ≤ C0(Γ)m log(m)

for all m ∈ N.

Using the maps µ±(m) from (5.10) and (5.11) we obtain distinguished integral lattices
µ−1

+ (m)(H1(∂X; Λ̄(m))+) in the space Wρ̄m(σm+2,−m/2) and µ−1
− (m)(H1(∂X; Λ̄(m))−) in

Wρ̄m(σ−m−2,m/2). More generally, if R ⊂ C is a ring with Z ⊂ R we will say that f ∈
Wρ̄m(σm+2,−m/2) is defined over R if it is in the image of µ−1

+ (m)(H1(∂X; Λ̄(m))+ ⊗Z R)
and we make the corresponding definition for Wρ̄m(σ−m−2,m/2).

6.1. Reduction to the isotypic case. The decomposition of Wρ̄m(σ−m−2,m/2) with
respect to Hecke characters given in (5.8) does not respect the Z-structure on this space
just introduced. In other words, if f ∈ Wρ̄m(σ−m−2,m/2) is defined over Z and if we
decompose

f =
∑

χ∈H(σ−m−2,m/2,K(Γ)f )

fχ,(6.1)

then we cannot expect the fχ to be defined over Z. However, we have the following
Proposition which controls this defect.

Proposition 6.2. There exists an algebraic integer α ∈ Z which depends on the group Γ
but not on the representation ρ(m) such that if f ∈ Wρ̄m(σ−m−2,m/2) is defined over Z
then αmfχ is defined over Z for each fχ in the decomposition (6.1).

Proof. Recall that the character χ∞,σ−m−2,m/2 is the character

χ∞,m+2 : T (C)→ C, χ∞,m+2

((
z 0
0 z−1

))
:= zm+2(6.2)

on T (C). LetH1(nP ; Λ̄(m))− denote the integral lattice in corresponding toH1(∂X; Λ̄(m))−.
Without loss of generality, we may assume that f = µ−1

− (Φ), where Φ ∈ H1(nP ; Λ̄(m))−.
We fix χ ∈ H(σ−m−2,m/2, K(Γ)f ). We have

µ−
(
(µ−1
− (Φ))χ

)
=

κ(Γ)∑
i=1

(µ−1
− (Φ))χ(gPi).

On the other hand, by (5.9), for each i we have

(6.3) (µ−1
− (Φ))χ(gPi) =

1

κ(Γ)

κ(Γ)∑
j=1

χ(tPj)(µ
−1
− (Φ))(t−1

Pj
gPi)
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We will now evaluate the denominators of the χ(tPj) and of the (µ−1
− (Φ))(t−1

Pj
gPi) separately.

Essentially, we will see that these values which depend on m have denominators which are
(m+ 2)th-powers of a finite number of algebraic integers. For the χ(tPj) this follows from
the fact that the finite part of the characters χ that we need to consider does not change
on algebraic units, and for the (µ−1

− (Φ))(t−1
Pj
gPi) it follows from a simple computation using

the fact that Φ ∈ Wρ̄m(m/2, σ−(m+2)).

Each Hecke character χ : F ∗\A∗ → C which is trivial on U(Γ) and which satisfies
χ∞ = χm+2,∞ is of the form χ̃m+2, where χ̃ : F ∗\A∗ → C is a character which is trivial on
U(Γ) and satisfies χ̃∞(z) = z for z ∈ C∗. The set of such characters χ̃ is finite. Thus it
follow that there exists a β ∈ Z such that:

βm+2χ(tPj) ∈ Z(6.4)

for all j = 1, . . . , κ(Γ) and all χ ∈ H(σ−m−2,m/2, K(Γ)f ).

For each i, j there exists a unique l = l(i, j) ∈ {1, . . . , h} and a g∞ = g∞(i, j) ∈ SL2(C)
such that

t−1
Pj
gPi = bgPlg∞k,(6.5)

where b ∈ P (F ), k ∈ Kf (Γ). We fix g∞ satisfying (6.5). If gPl 6= gP1 = 1, then, by
definition one has (µ−1

− (Φ))(t−1
Pj
gPi) = 0. One the other hand, if gPl = 1, then by definition

one has

(µ−1
− (Φ))(t−1

Pj
gPi) = Φm/2(g∞(i, j)),(6.6)

where Φm/2 = ΦP,m/2 ∈ EP (σ−m−2,m/2, ν1(ρm)) is as in (5.5). Write the Iwasawa decom-
position g∞ = p∞k∞, where p∞ ∈ P∞, k∞ ∈ K∞. Then:

Φm/2(g∞(i, j)) = ν1(ρm)(k∞(i, j))−1)Φm/2(p∞(i, j)).

One has Φm/2(p∞) ∈ (aP ⊕ nP )∗ ⊗ V̄ (m))σ−m−2 and ν1(ρm)(k∞)−1Φm(p∞) ∈ (aP ⊕ nP )∗ ⊗
V̄ (m))σ−m−2 . It is easy to see that this implies k∞ ∈M∞, i.e. g∞ ∈ P∞. Moreover, together
with (6.5) it follow that g∞ ∈ P (F ). Thus one can write g∞ = t∞n∞ with t∞ ∈ T (F )
and n∞ ∈ N(F ). We write t∞ = diag(ti,j, t

−1
i,j ) with ti,j ∈ F ∗. Then by (6.2) and by the

definition of Φm/2 we have Φm/2(g∞) = tm+2
i,j Φ. Thus if αi,j ∈ O∗F is the denominator of

ti,j, i.e. αi,jti,j ∈ O∗F we get that

αm+2
i,j Φm/2(g∞(i, j)) ∈ H1(nP , Λ̄(m))− ⊗Z OF .(6.7)

Combining (6.3), (6.6), (6.7) and (6.4) we get the statement in the proposition. �

6.2. Integrality of quotients of L-values. For a unitary Hecke character χ1 recall the
Euler product formula for the Hecke L-function:

L(χ1, s) =
∏
v

Lv(χ1, v, s).

For a place v where χ does not ramify we defined the local factor Lv in (5.13); we take
the convention that Lv(χ1, s) := 1 if χ1 is ramified at v. The infinite product converges
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absolutely for Re(s) > 1 and admits a meromophic continuation to C. For a ∈ Q we shall
denote by |a|Q/Q or simply |a| its absolute norm given by

|a|Q/Q := |B| , B =
∏

b∈Gal(Q/Q)·a

b ∈ Q,

where Gal(Q/Q) is the absolute Galois group of Q. The following proposition evalu-
ates the denominator of the quotient of L-values appearing in the computation of the
intertwining operators in Lemma 5.2. It is essentially contained in the work of Damerell
[Dam70],[Dam71]: our argument consist in keeping track of norm estimates along the steps
in the proof of the main theorem of [Dam70]. We learned of Damerell’s theorem through
the book [CV12], which makes use of it for purposes similar to our own in Section 6.7.

Proposition 6.3. Let I be an ideal in OD. There is A ∈ Z>0 such that for all unitary Hecke
characters χ whose conductor divides I and whose infinite part χ∞(z) = (z/|z|)n = (z/z)n/2

for an even integer n, and for any integer s ∈ {0, . . . , n/2} there is an integer a′ ∈ Z such
that |a′| ≤ (n!)A and we have :

(6.8) 2n−2s+1a′
L(χ, s)

L(χ, s− 1)
∈ πZ.

Proof. The arguments used in [Dam70] can be adapted to yield the following effective
version of Theorem 1 in this reference; we will detail how to use Damerell’s calculations to
obtain this in the appendix A.

Lemma 6.4. There is an Ω ∈ C× (depending only on the field F ) such that the following
holds. Let n be an even integer, χ a unitary Hecke character of F with infinite part
χ∞(z) = (z/z)n/2 and s an integer in the range {0, . . . , n/2}. Then

(6.9) πn/2−sL(χ, s)/Ωn

is an algebraic number, whose degree over Q is bounded by a constant depending only on
F and the conductor f of χ and whose absolute norm is bounded by C(n!)A for positive
integers C,A depending only on F .

Bounds for the denominators of special values of L-functions are also given by the work
of Damerell. We will use the following statement to evaluate denominators of the L-part
of the intertwining integrals: let n be an even integer, χ be a unitary Hecke character of
F , with infinite part

χ∞(z) = (a/a)n/2

and finite part χf of conductor I. Then [Dam71, Theorem 2] states that for the complex

number Ω ∈ C× appearing in Lemma 6.4 there is an algebraic integer a ∈ Z, whose
absolute norm |a| = |a|Q/Q is bounded independently of s, χ∞, such that for all integers

s ∈ {0, . . . , n/2} we have

(6.10) 2n/2−sa · L(χ, s) ∈ Ωn/πn/2−s Z.
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The proposition follows from this and the bound for the abolute norm of normalized L-
values given in Lemma 6.4 (the transcendental factors cancel between the numerator and
denominator). �

6.3. Pairing and integrality. To be able to use Proposition 6.3 together with the formula
5.17 we need to relate the values of a function Φ ∈ W (σ−m−2,m/2) with the integrals of
the 1-form µ−(m)Φ against integral cycles in H1(∂X; V̄ (m)), since the 1-form is integral if
and only if these are integral.

First we describe the integral homology classes. Fix a component Ti of ∂X and identify
it with (Γ ∩Ni)\Ni. Let nPi,Z = exp−1(Γ ∩Ni); in this case since Ni is unipotent abelian
this just means that Γ ∩ Ni = {Id +Y : Y ∈ nPi,Z. Let Y ∈ nPi,Z and n = 1 + Y . Let
v ∈ Λ̄(m) such that v − ρ(n)v = 0. Then the 1-chain cY,v defined by:

cY,v(t) = (1 + tY )∗v, t ∈ [0, 1]

is an integral cycle, and the classes associated to these cycles span H1(Ti; Λ̄(m)).

Now let 〈·, ·〉 be the G(R)-invariant nondegenerate pairing on V̄ (m) for which Λ̄(m) is
self-dual. For an element Φ ∈ W and Y ∈ nPi , g ∈ G(A) let Φ(g)(Y ) ∈ V̄ (m) be defined
by

Φ(g)(Y ) =
n∑
i=1

fi(g)X∨i (Y )vi if Φ =
n∑
i=1

fi ⊗X∨i ⊗ vi ∈ C∞(G(A))⊗ (nPi ⊕ aPi)
∗ ⊗ V̄ (m).

The pairing on H1(Ti; V̄ (m))×H1(Ti; V̄ (m)) is given by

µ+(Φ)(cY,v) =

∫ 1

0

〈(1 + tY )∗v, (1 + tY )∗Φ(1 + tY )(Y )〉dt

and by the invariance property of Φ we have that t 7→ 〈c(t), exp(tY )∗Φ(exp(tY ))(Y )〉 is
constant, equal to 〈v,Φ(Id)(Y )〉. Let fY,v = 〈v,Φ(·)(Y )〉. We see that the class µ−(Φ)
is integral if and only if fY,v ∈ L2(G(F )\G(A) takes integral values on Kf (Γ) for any
given Y ∈ nP1,Z and v ∈ Λ̄(m) as above. Of course the same statement holds for Φ ∈
W (σm+2,m/2) with µ− replaced by µ+.

6.4. Proof of Proposition 6.1. According to the previous paragraph the statement in
the proposition reduces to the following claim: let K ′f be a compact-open subgroup in
G(Af ) and f ∈ Wρ̄m(σm+2,−m/2) corresponding to a rational integral cohomology class
(the space W being defined as above with Kf (Γ) replaced by K ′f ). Then we claim that
there are N,C,A ∈ Z>0 depending only on K ′f such that we have

C(s(m))f(Id) ∈ C−1N−m(m!)AZf(Id).

To prove we note that it suffices to prove a similar result over Z, namely that for all f as
above corresponding to a cohomology class with coefficients in Λ̄(m)⊗ Z we have

(6.11) C(s(m))f(Id) ∈ a−1Zf(Id)
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for an algebraic integer a with |a|Q/Q ≤ C(m!)A (indeed, since we know a priori that if the
right-hand side is defined over Q the proposition follows by taking the product of Galois
conjugates of each side).

Let us prove (6.11). First, it follows from Proposition 6.2 that it suffices to prove it for
f ∈ Wχ. By Lemma 5.2 and (5.17) we get that it suffices to prove that

1

π
· L(χ,m)

L(χ,m− 1)
∈ b−1Z

for an a ∈ Z with absolute norm |b| ≤ (m!)A. This last statement follows from Proposition
6.3.

7. Bounding the torsion from below

In this section we prove the estimate (1.1) (and also (1.3), which we actually need to
prove the former) from our main Theorem A.

7.1. Regulators on the boundary. We have evaluated most terms from the estimates
in Lemmas 4.1 and 4.2 but we still need to control the covolumes of integral homologies
from the boundary components. This is elementary and we give estimates in the next
lemma.

Lemma 7.1. We have

log vol(H1(∂X; Λ̄(m))−), log vol(H2(∂X, Λ̄(m))) = O(m logm)

as m→ +∞.

Proof. We will prove this for cohomology with coefficients in Λ(m). Since Λ̄(m) splits
as Λ(m) ⊕ Λ(m)∨ and Λ(m)∨ containes a sub-lattice of index at most (m!)c which is Γ-
equvariantly isomorphic to Λ(m) (see Lemma 7.7 below) it implies the statement for Λ̄(m).
We will be a bit sketchy in our arguments below.

Since H1(∂X; Λ(m))− splits as the direct sum
⊕κ(Γ)

i=1 H
1(Γ ∩Ni; Λ(m))− it is enough to

estimate the volume of each lattice H1(Γ∩Ni; Λ(m))−. We let ω be the cohomology class
corresponding to X− ⊗ v− in the isomorphism (5.11) where v− spans over OD the integral
vectors in V (m) of weight −m for the Cartan subalgebra aPi corresponding to Pi. The class
ω is not necessarily integral but we will see that it is rational and control its denominator.
Since its norm is clearly bounded independently of m this will imply the estimate we want.

Let i ∈ {1, . . . , κ(Γ)} and X1, X2 ∈ nPi such that Γ ∩ Pi is generated by 1 +X1, 1 +X2.
Let vl be a vector of weight m− 2l for aPi in V (m). There exists integral polynomials Ql

k

such that

ρ(1 + zX1)vl = vl +
m∑

j=l+1

Ql
k(z)vk.

and using this equality it is possible to produce cycles θ1, θ2 which span H1(Γ∩Ni, V (m))
over Q, which are not necessarily integral but whose denominators are controlled linearly
by the coefficients of the Ql

k appearing above. Moreover the integrals ω(θ1) = 0 and ω(θ2)
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also have denominators controlled by these coefficients. Since all of these are essentially
binomial coefficients, and thus at most exponential in m this finishes the proof.

In degree 2 the cohomology/homology for each component is 1-dimensional and the proof
is much simpler and left to the reader. �

7.2. Torsion in H∗(Γ, Λ̄(m)). We first show directly that the order of the groupH1(Γ; Λ̄(m))tors
grows slower in m than our leading term. Since we work with a split algebraic group the
proof of this is simpler than that of the corresponding statement in [MM13].

Lemma 7.2. Let Γ be a congruence subgroup of ΓD. Then

log |H1(Γ; Λ̄(m))tors| = O(m logm),

as m→∞.

Proof. One hasH1(Γ; Λ̄(m))tors ∼= H0(Γ; Λ̄(m))tors by the universal coefficient theorem. Let
Λ0(m) denote the submodule of Λ(m) generated by all (ρm(γ)− Id)v, where v ∈ Λ(m) and

γ ∈ Γ. Then H0(Λ(m)) = Λ(m)/Λ0(m). There exists an a ∈ N such that for na :=

(
1 a
0 1

)
and n̄a :=

(
1 0
a 1

)
one has na, n̄a ∈ Γ. If we let X, Y denote the standard basis of C2, then

Xm, Xm−1Y, . . . , Y m is a basis of Λ(m) and in this basis, ρm(na)− Id is represented by an
upper triangular nilpotent matrix. For j > i, the entry in the i-th row, j-th column of this

matrix is given by aj−i
(
j − 1
j − i

)
. Thus it follows inductively that (l+ 1)aXm−lY l ∈ Λ0(m)

for 0 ≤ l < m. On the other hand, one has (ρm(n̄a) − Id)XY m−1 = aY m. Thus one has
|H0(Λ(m))| ≤ am+1m!. i.e. log |H0(Λ(m))| = O(m logm) as m → ∞. For Λ∨(m) one can
argue similarly. �

The main result we prove here is the exponential growth of the torsion subgroup of
H2(Γ, Λ̄(m)); in the remainder of this subsection we will show how all the work done in
sections 4–6 implies the following result.

Proposition 7.3. We have

(7.1) lim inf
m→+∞

log |H2(Γ(a), Λ̄(m))tors|
m2

≥ vol(Xa)

π

(
1− N(a0)

N(a)

)
Proof. Let A and C1(Γ) be as in the end of section 3. Let a be a non-zero ideal of OD with
N(a) > C1(Γ) and let a0 ∈ A such that nl,Γ(a) = nl,Γ(a0) for each l = 1, . . . , dF . For brevity
we shall use the following notation in the remaining computations:

Ri(X, L̄(m)) = vol
(
H i(Γ, Λ̄(m))

)
.

With this notation (4.5) becomes

log τEis(X;Eρ̄m) = logR2(Xa, L̄(m)) + log |H1(Γ(a), Λ̄(m))tors|
− logR1(Xa, L̄(m))− log |H2(Γ(a), Λ̄(m))tors|.

(7.2)
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By Lemmas 4.2 and 7.2 we have that

(7.3)
∣∣log

(
|H1(Γ(a), Λ̄(m))tors|

)∣∣ , | logR2(Xa, L̄(m))| � m log(m).

On the other hand, applying by Lemma 7.1, Proposition 6.1 to the right-hand side of the
estimate in Lemma 4.1 we get that

lim inf
m→+∞

logR1(Xa, L̄(m))

m2
≤ lim inf

m→+∞

log |H2(Γ(a),Λ(m))tors|
m2

From (7.3) we get that in the expression (7.2) for the Reidemeister torsion τEis(Xa;Eρ̄m)
all terms but log |H2| and logR1 are O(m log(m)) and using the preceding inequality we
get that

(7.4) lim inf
m→+∞

(
2

log |H2(Γ(a),Λ(m))tors|
m2

)
≥ lim inf

m→+∞

(
− log τEis(Xa;Eρ̄m)

m2

)
.

On the other hand, we also get from Lemmas 4.1 and 7.1 that

lim inf
m→+∞

(
− logR1(Xa0 , L̄(m))

m2

)
≤ 0

from which and (7.3) (used for a0 instead of a) it follows that

(7.5) lim inf
m→+∞

(
log τEis(Xa0 ;Eρ̄m)

m2

)
≤ 0.

Putting together (7.4) and (7.5) we get that

lim inf
m→+∞

(
2

[ΓD : Γ(a0)]

|O∗D| ·N(a0)
· log |H2(Γ(a),Λ(m))tors|

m2

)
≥

lim inf
m→+∞

(
−[ΓD : Γ(a0)]

|O∗D| ·N(a0)
· log τEis(Xa;Eρ̄m)

m2
+

[ΓD : Γ(a)]

|O∗D| ·N(a)
· log τEis(Xa0 ;Eρ̄m)

m2

)
.

Finally, the right-hand side above converges to

2 · [ΓD : Γ(a0)] · [ΓD : Γ(a)]

2|O∗D|π

(
1

N(a0)
− 1

N(a)

)
vol(ΓD\H3)

=
[ΓD : Γ(a0)]

|O∗D|N(a0)
· vol(Xa)

π
·
(

1− N(a0)

N(a)

)
by Proposition 3.2 (which we are allowed to use for the representation ρm ⊕ ρm instead
of ρm since the analytic or Reidemeister torsion of the former is the square of that of the
latter). This finishes the proof of Proposition 7.3. �
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7.3. Independence from the lattice. Here we prove that log |H2(Γ,Λm)tors| does not
depend on the choice of lattices Λm ⊂ V (m) up to an error term of size m log(m).

Proposition 7.4. Let Γ be a finite-index subgroup of the Bianchi group ΓD. There is a
constant C depending only on Γ such that for any m ≥ 1 and any two Γ-invariant lattices
Λ1,Λ2 in V (m) we have ∣∣∣∣log

(
|H2(Γ,Λ1)tors|
|H2(Γ,Λ2)tors|

)∣∣∣∣ ≤ Cm log(m).

We will deduce the proposition from the two next lemmas.

Lemma 7.5. Let Γ be a subgroup of a Bianchi group, ρ be a representation of SL2(C) on
a vector space V and Λ,Λ′ two ρ(Γ)-invariant lattices in V such that M · Λ ⊂ Λ′ ⊂ Λ for
some integer M ∈ Z>0. Let L,L′ be the local systems on X = Γ\H3 induced by Λ,Λ′ and
Eρ the Euclidean bundle on X induced by ρ. Then we have

1 ≤ R1(X,L′)
R1(X,L)

≤MdimH1(X,Eρ).

Proof. Let h = dimH1(X,Eρ) and let c1, . . . , ch ∈ Z1(X,L) such that the cohomology
classes [c1], . . . , [ch] generate the free part of H1(X,L). Then each M · ci belongs to
Z1(X,L′) and together the M · [ci] generate a finite-index subgroup of H1(X,L′). Thus
we get

M ·H1(X,L) ⊂ H1(X,L′)
and the inequality

R1(X,L′) ≤ [H1(X,L) : M ·H1(X,L)]R1(X,L) = MhR1(X,L)

follows immediately. �

Lemma 7.6. There is a constant c ∈ Z>0 depending on Γ such that if Λ1,Λ2 are two
Γ-invariant lattices in V (m) then there exists a ∈ Q such that

aΛ1 ⊂ Λ2 ⊂ a(m!)−cΛ1.

Proof. Let 〈·, ·〉 be the pairing on V (m) = SymmmC2 induced by the determinant on
C2×C2 (which is hence nondegenerate and Γ-invariant) and let Λ′1 be the 〈·, ·〉-dual lattice
of Λ1 in V (m), that is

Λ′1 = {v ∈ V (m) : ∀u ∈ Λ1, 〈u, v〉 ∈ Z}.

Then

(7.6) m!Λ′1 ⊂ Λ1 ⊂ (m!)−1Λ′1

as follows from the expression of 〈, 〉 in coordinates (see for example [Ber08, 2.4]). Now
let u be a primitive vector in Λ2 which is a vector of maximal weight for the standard
parabolic subgroup of SL2(C) in V (m) (i.e. a rational multiple of Xm); there exists an
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a ∈ Q such that au is a primitive vector in Λ′1. Then Λ3 := 〈Γ · au〉 ⊂ Λ′1: indeed, for any
v ∈ Λ1 and γ ∈ Γ we have

〈v, γ · au〉 = 〈γ−1 · v, au〉 ∈ Z.

From this and (7.6) we get that Λ3 ⊂ (m!)−1Λ1. By arguments similar to those used in
the proof of Lemma 7.2 (which we will detail after we explain how to conclude the proof
from there) , we also have that

(7.7) aΛ2 ⊂ N−m(m!)−2Λ3

for some N ∈ Z>0 depending on Γ. It finally follows that

aΛ2 ⊂ N−m(m!)−3Λ1

which proves half the lemma ; the second half also follows by a completely symmetric
argument.

Let us explain how (7.7) is proved. For ease of notation we will suppose that au = Xm.
We put Λ0 = Λ(m) = ODXm ⊕ ODXm−1Y ⊕ . . . ⊕ ODY m. Let z ∈ Z such that nz ∈ Γ
and k ∈ {1, . . . ,m} ; suppose that bXm−kY k ∈ Λ2 for some b ∈ F . Then we get that

Λ2 3 nkz · bXm−kY k = bk!zkXm

so that bk!zm ∈ OD. Thus we get that Λ2 ⊂ (zmm!)−1Λ0. On the other hand the proof of
Lemma 7.2 yields that [Λ0 : Λ3] ≤ zmm!, hence Λ2 ⊂ (zmm!)−2Λ3. �

Proof of Proposition 7.4. Let Li be the local system on X induced by the lattice Λi. We
have by (7.2) that

R2(X,L1) · |H1(Γ,Λ1)tors|
R1(X,L1) · |H2(Γ,Λ1)tors|

= τEis(X, ρm) =
R2(X,L2) · |H1(Γ,Λ2)tors|
R1(X,L2) · |H2(Γ,Λ2)tors|

.

By Lemmas 4.2 and 7.2 we have that H1, R2 are� m log(m) for whichever lattice, and by
Lemmas 7.5 and 7.6 we get that∣∣∣∣log

(
R1(X,L1)

R1(X,L2)

)∣∣∣∣� m log(m)

and we can thus conclude that the remaining terms log(H2(Γ,Λi)) in the Reidemeister
torsion differ by at most Cm log(m) for some C > 0 depending on Γ. �

7.4. Conclusion. Let Λ̄′(m) be the lattice Λ(m)⊕Λ(m) in V (m)⊕V (m). By Propositions
7.4 and 7.3 we get that

lim inf
log |H2(Γ(a), Λ̄′(m))tors|

m2
≥ vol(Xa)

π

(
1− N(a0)

N(a)

)
.

Since H2(Γ(a), Λ̄′(m)) ∼= H2(Γ(a),Λ(m))2 we get (1.1). The estimate (1.3) is proven
exactly as in Lemma 7.2.
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8. Bounding the torsion from above

In this section we proof equation (1.2) from Theorem A : we give the proof for Λ̄(m)-
coefficients, the case of Λ(m) follows immediately by Proposition 7.4. The main ingredient
is the following lemma, usually attributed to O. Gabber and C. Soulé (we note that it is
also an important tool in V. Emery’s a priori bound for the torsion in the homology of
certain arithmetic lattices, see [Eme14]). We refer the reader to [Sau16, Lemma 3.2] for a
proof.

Lemma 8.1. Let A := Za with standard basis (ei)i=1,...,a and let B := Zb. Equip B ⊗Z R
with the Euclidan norm ‖·‖. Let φ : A→ B be Z-linear and assume that there exists α ∈ R
such that ‖φ(ei)‖ ≤ α for each i = 1, . . . , a. Then one has

| coker(φ)tors| ≤ αmin(a,b)

Next, we have the following elementary Lemma.

Lemma 8.2. Let {vj := em−i1 ej2 : i = 0, . . . ,m}, denote the standard integral basis of
the lattice Λm ⊂ V (m). Equip V (m) with the inner product such that the vi form an
orthonormal basis and let ‖·‖End(Vm) denote the corresponding norm on End(Vm). Then for
each γ ∈ ΓD one has

‖ρm(γ)‖End(Vm) ≤ ‖ρ1(γ)‖mEnd(V1)

Proof. This follows immediately from the definitions. �

Now we can estimate the torsion from above as follows.

Proposition 8.3. Let Γ be a finite index, torsion-free subgroup of ΓD. Then there exists
a consant cΓ such that one can estimate

log |H2(Γ, Λ̄(m))tors| ≤ cΓm
2

for each m ∈ N.

Proof. Let X := Γ\H3. Let K be a smooth triangulation of X and let K̃ denote its lift
to a smooth triangulation of H3. For each q let Cq(K) := {σ1,q, . . . , σN(Γ,q),q} denote the

simplicial q-chains of K, where N(Γ, q) ∈ N depends on K. Let Cq(K̃) denote the simplicial

q-chains of K̃ and let ∂̃q : Cq(K̃)→ Cq−1(K̃) be the corresponding boundary operator. For

each σi,q we fix a σ̃i,q ∈ K̃ such that π∗(σ̃i,q) = σi,q, where π : X̃ → X is the covering map.
The group Γ acts on Cq(K) and we denote the corresponding action simply by ·. For each
σi,q there exist elements γk,q−1 ∈ Γ, k = 1, . . . N(q − 1,Γ), such that

∂̃q(σ̃i,q) =

N(q−1,Γ)∑
k=1

γk,q−1 · σ̃k,q−1.

Let Cq(K; Λm) := Cq(K) ⊗Z[Γ] Λm. Then the homology groups H∗(Γ; Λm) are isomorphic
to the homology groups H∗(C∗(K; Λm)) of the complex

(C∗(K; Λm), ∂∗;ρm) := (C∗(K)⊗Z[Γ] Λm, ∂̃∗ ⊗ Id).
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Let {v0, . . . , vm} denote the standard integral basis of Λm as in Lemma 8.2. Then an
integral basis of Cq(K; Λm) is given by

Bq(K; Λm) := {σ̃i,q ⊗ vj : i = 1, . . . , N(Γ, q) : j = 0, . . . ,m}.

We equip Cq(K; Λm)⊗Z R with the inner product for which Bq(K; Λm) is an orthonormal
basis and denote the corresponding norm by ‖·‖Cq(K;V (m)). Then we have

∂q;ρm(σ̃i,q ⊗ vj) =

N(q−1,Γ)∑
k=1

σ̃k,q−1 ⊗ (ρm(γ−1
k,q−1)vj)

and thus by the definition of the norms we have

(8.1) ‖∂q;ρm(σ̃i,q ⊗ vj)‖Cq−1(K;V (m)) ≤ N(q − 1,Γ) max
k=1,...,N(q−1,Γ)

∥∥ρm(γ−1
k,q−1)

∥∥
End(Vm)

= N(q − 1,Γ)

(
max

k=1,...,N(q−1,Γ)

∥∥ρ1(γ−1
k,q−1)

∥∥
End(V1)

)m
,

where the last step follows from Lemma 8.2. We put

c0(Γ) := max
q

max
k=1,...,N(q−1,Γ)

∥∥ρ1(γ−1
k,q−1)

∥∥
End(V1)

.

Then c0(Γ) depends on Γ and the triangulation K, but not on the local system Λm. If
we apply Lemma 8.1 with A := Cq(K; Λm), B := Cq−1(K; Λm), φ := ∂q;ρm and α :=
N(Γ, q − 1)c0(Γ)m, then, using that rkZA = (m + 1)N(q,Γ), rkz B = (m + 1)N(q − 1,Γ)
we obtain from (8.1) that∣∣(coker(∂q;ρm))tors

∣∣ ≤ (N(Γ, q − 1)c0(Γ)m)(m+1) min{N(q,Γ),N(q−1,Γ)}

For Λ∨m one argues in the same way. Thus the proposition follows by applying the universal
coefficient theorem. �

Remark 1. Using the KAK-decomposition, it should be possible to generalize Lemma 8.2
and thus the proof of Proposition 8.3 to arithmetic subgroups Γ of arbitrary connected
semisimple Liegroups G defined over Q which satisfy δ(G) = 1. For suitable rays ρλ(m)
of Q-rational representations of G of highest weight mλ with Γ-invariant integral lattices
Λ(ρλ(m)), this should give an upper bound of the corresponding sizes of all cohomological
torsion subgroups H∗tors(Γ,Λ(ρλ(m))) by C(Γ)m dim ρλ(m). Such a bound can be regarded
as complementary to the lower bound obtained in the compact case in [MP14b].

Let a0 ∈ A be as in the previous section. If we apply Proposition 8.3 for the group Γ(a0)
instead of the group Γ(a) and also use Proposition 3.2, we can improve the constant in
the upper bound of the size of m−2 log |H2(Γ(a), Λ̄(m))tors| and thus prove (1.2). Namely,
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arguing similar as in the proof of (1.1) given in the previous section, we obtain

lim sup
m→∞

m−2 [ΓD : Γ(a0)]

|O∗D|N(a0)
log |H2

tors(Γ(a), Λ̄(m))| − [ΓD : Γ(a)]

|O∗D|N(a)
c(Γ0)

≤ lim sup
m→∞

m−2

(
− [ΓD : Γ(a0)]

|O∗D|N(a0)
log τEis(Xa;Eρ̄(m)) +

[ΓD : Γ(a)]

|O∗D|N(a)
log τEis(Xa0 ;Eρ̄(m))

)
+

[ΓD : Γ(a0)]

|O∗D|N(a)
c(Γ(a0)).

Invoking Proposition 3.2, equation (1.2) follows.

Appendix A. Getting effective bounds from Damerell’s paper

Here we give a proof of Lemma 6.4 following [Dam70]. Let us recall the statement first.
We are given an imaginary quadratic field F , and want to prove that there is Ω ∈ C×
such that for any even integer n and unitary Hecke character χ of F with infinite part
χ∞(z) = (z/z)n/2, for all integers s ∈ {0, . . . , n/2} we have that the normalised L-value

πn/2−sL(χ, s)/Ωn

is an algebraic number, whose degree over Q is bounded by a constant depending only on
F and the conductor f of χ and whose absolute norm is bounded by C(n!)A for positive
integers C,A depending only on F .

Before detailing Damerell’s arguments we give a brief explanation: the main step is to ex-
press the L-function as a rational fraction whose arguments are elliptic functions associated
to the elliptic curves C/Λ where Λ are ideals in OF (see (†) and (∗) below). When eval-
uating this expression we will evaluate the elliptic functions at finite-order points, where
they take algebric values of controlled degree.

From now on all our numbered references will be to Damerell’s paper [Dam70]. Damerell’s
statement includes only the algebraicity, but his arguments give the full statement above
as we shall now explain. Formula (6.2) yields the following expression for the normalised
L-value occuring above :

(†) πn/2−sL(χ, s)/Ωn = M ·
h∑
i=1

Âiχf (Âi)
−1

∑
β∈Ai/Bi

χf (β)ψpFn(βΩ, s,ΩBi)

where:

• M is an algebraic number depending on f and F ;
• A1, . . . ,Ah are integral ideals representing the elements in the class-group of F ;
• Bi = fAi ;
• ψ is a number depending on F and p = n/2− s;
• Fn is a particular function which we will analyse below;
• Ω ∈ C× is a particular number depending only on F .
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The next step is Lemma 5.2, which yields an expression of Fn(·, ·,Λ) in terms of arith-
metic invariants of the elliptic curve C/Λ. More precisely, let ℘ be the Weierstrass function
associated to this elliptic curve, and let s > 1. Then we have :

(∗) ψpFn(z, s,Λ) =
∑

t+u+v=p

p!

t!u!v!
h(z)t(−ϕ)u(−1)vKv

q−u(z).

where :

• h(z) is a rational fraction (with coefficients in Q) in ℘(kz), ℘′(kz), ℘′′(kz) where
k = 1, . . . , `− 2, with ` the exponent of the finite abelian group Ai/Bi (see Lemma
4.3) ;
• Ki

j is a polynomial (with coefficients in Q) in h, ℘(z), ℘′(z), g2(Λ) and g3(Λ) and ϕ
(Corollary 4.1) ;
• ϕ is a constant depending on the curve C/Λ.

The key fact is then that all points at which the various ℘ occuring in (†) are estimated
are of bounded finite order on the elliptic curves: this yields algebraic equations for the
relevant values of ℘ and its derivative whose degree is bounded (depending on F and f).
The values of g2 and g3 are algebraic of degree depending on the elliptic curve (this is where
the choice of x enters, see the remark after Lemma 2.1). It then follows that the values of
℘′′ are algebraic of bounded degree, as we can see by differentiating in z the equation

(d℘/dz)2 = 4℘3 − g2℘− g3

satisfied by ℘, which yields

([) d2℘/dz2 = 6℘2 − g2/2

(cf. (3.10),(3.11)). All of this proves that the factors h(z) and Kv
q−u in (∗) are algebraic

of bounded (depending on F, f) degree. It remains to deal with ϕ. Choosing a τ ∈ OF ,
equation (6.1) yields the expression

ϕ = (ττ − τ 2)−1
∑

ρ∈τbBi/xBi
ρ 6=0

℘(ρ/τ)

which is algebraic of bounded degree. This finishes the proof that all factors of the sum-
mands in (∗) are algebraic of bounded degree. To finish the proof that the normalised
L-value itself is so we need only note that since the character χf is of bounded finite order
(depending on f), its values in (†) are roots of unity of bounded degree. Thus all terms in
(†) are algebraic integers of bounded degree.

Now we must bound the absolute norm of the right-hand side in (†). It is obvious from
(†),(∗) and the proof that the degree is bounded that it suffices to prove that the valuation
of Kj

i , for 2 ≤ i + 2 ≤ j ≤ n is bounded by C(n!)A for some constant C. To do this we
must return to the arguments of Damerell; in the proof of Lemma 3.3 he shows that for
j ≥ 2 one has

K0
j (z) = (−1)j

dj−2℘(z)

dzj−2
.
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From this an easy recursive argument using the identity ([) allows to prove that for j ≥ 2
K0
j (z) is a polynomial in ℘(z), ℘′(z)/2 and g2/12 of degree less than 2j in each variable,

with coefficients in Z that are � (2j)! ·N j for some integer N ∈ Z>0 ; we will denote this
polynomial by P 0

j ∈ Z[X1, . . . , X4] (the last variable represents g3/4).

Damerell proves that for 0 ≤ i < j there is a polynomial P i
j ∈ Z[X1, . . . , X4] such

that Ki
j(z) = P i

j (℘(z), ℘′(z)/2, g2/12, g3/4). For this he uses the recurrence relation (3.12),
which is :

(]) Ki+1
j+1(z) = i

℘′(z)

2
· 1

j
Ki−1
j (z)− i g2

12
· 1

j
Ki−1
j−1(z)− 1

j
DKj

i (z)

where D is a differential operator (in both second variables of ℘). It is given explicitely for
℘, ℘′, g2 and g3 in the equalities (3.7), which we rewrite here :

Dg2 = −6g3, Dg3 = −1

3
g2

2,

D℘ = −2℘2 − g2

3
, D℘′ = −3℘ · ℘′.

Together with (]) these finally yield that the degree of P i
j in each variable is less than

2(i+ j) and the coefficients are majorised by 2(i+ j)!N (i+j) for some N ∈ Z>0. It follows
that for the values of z occuring in (†) we have |Kv

q−u(z)| � n!Nn at each place, hence the

absolute norm is bounded by (n!Nn)[E:Q]. This finishes the proof of our statement.
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Institut de Mathématiques de Toulouse ; UMR5219, Université de Toulouse ; CNRS,
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