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ASYMPTOTICS OF ANALYTIC TORSION FOR HYPERBOLIC

THREE–MANIFOLDS

JEAN RAIMBAULT

Abstract. We prove that for certain sequences of hyperbolic three–manifolds with cusps which
converge to hyperbolic three–space in a weak (“Benjamini-Schramm”) sense and certain coefficient
systems the regularised analytic torsion approximates the L2-torsion of the universal cover.

We also prove an asymptotic equality between the former and the Reidemeister torsion of the
truncated manifolds.
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1. Introduction

1.1. Integral homology of congruence manifolds. In [4] N. Bergeron and A. Venkatesh have
shown that for odd m, in sequences of compact arithmetic hyperbolic m-manifolds which converge
to Hm the homological torsion has an exponential growth for certain local systems. That is, there
exists Q-representations of SO(m, 1) on a space V such that if Γ is a uniform arithmetic lattice in
this Q-form of SO(m, 1), preserving a lattice VZ in V and Γn a sequence of finite-index subgroups
of Γ such that the injectivity radius of the Mn = Γn\Hm goes to infinity we have that

(1.1) lim inf
n→∞

∑
p=1,...,m−1

p=m−1
2

(mod 2)

log |Hp(Γn, VZ)tors|
volMn

> 0.

In [1] it is essentially proven that the limit (1.1) holds for any sequence of torsion-free congruence
subgroups of a uniform arithmetic lattice (see [35, 6.1] for a detailed argument). Moreover, when
m = 3 elementary arguments show that one can deduce from Bergeron and Venkatesh’s proof an
actual limit for the left-hand side, that is

(1.2) lim
n→+∞

|H1(Γn;VZ)|1/ volMn = c
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where c > 1 depends only on V . The present paper, originating from the author’s Ph.D. thesis [35],
aims at providing tools to prove an analogue of (1.2) for nonuniform lattices in SO(3, 1) ∼= SL2(C).
Weaker results (generalisations of (1.1)) were previously obtained by J. Pfaff in [32] and by the
author in [35, Section 6.5]. We refer to the introduction of [34] for more details and further questions,
and to [4],[12] and [37] for information on the number-theoretical significance of torsion homology
of congruence subgroups.

1.2. Analytic torsion and Cheeger-Müller equality. The main tools used in [4] are the Ray-
Singer analytic torsion T (Mn;V ) and the Cheeger-Müller theorem. Bergeron and Venkatesh prove
that the limit

(1.3) lim
n→∞

log T (Mn;V )

volMn
= t(2)(V )

holds, where the right-hand side t(2)(V ) is the L2-torsion associated to the representation (ρ, V ).
In the case m = 3, we have that SO(3, 1) is isogenous to G = SL2(C), and the real representations
of the latter are given by its natural action on the spaces

V (n1, n2) = Symn1
(
C2
)
⊗ Symn2

(
C2
)
, n1, n2 ∈ N

(where C2
means that the action of SL2(C) is by conjugate matrices). For V = V (n1, n2) Bergeron

and Venkatesh compute the numerical value of t(2) to be:
(1.4)

t(2)(V ) =
−1

48π

(
(n1 + n2 + 2)3 − |n1 − n2|3 + 3|n1 − n2|(n1 + n2 + 2)(n1 + n2 + 2− |n1 − n2|)

)
.

On the other hand, W. Müller’s generalisation [26] of the Cheeger–Müller Theorem (a more
general result was proven independently by J.M. Bismut and W. Zhang in [7]) yields that

T (Mn;V ) =

m∏
p=0

|Hp(Γn, VZ)tors|(−1)p

from which (1.1) follows at once since the L2-torsion t(2)(V ) is positive for m = 3 (mod 4) and
negative for m = 1 (mod 4); to deduce (1.2) when m = 3 one needs to study independently the
torsion in H0 and H2. One of the issues in [1] is then to prove that (1.3) holds under weaker
conditions than those of [4] and that these conditions are satisfied by sequences of congruence
subgroups. Following the work of I. Benjamini and O. Schramm on graphs the notion of Benjamini-
Schramm convergence of Riemannian manifolds is defined there (see 2.6 below) and it is then a
relatively easy matter to show that the proofs of [4] extend to this setting. Note that the first step
of the proof outlined above is purely differential-geometric and does not use the arithmeticity of
the manifolds.

1.3. Approximation for regularised analytic torsion. The first goal of the present paper is to
define an analytic torsion for non-compact, finite-volume hyperbolic three–manifolds and to prove a
generalisation of (1.3) in this context. The definition of the regularised analytic torsion TR(Mn;V )
is based on the Selberg trace formula; it is essentially the same torsion as that defined in [28] (but see
1.7.3 for some comments on the differences). The definition depends on a choice of parametrisations
(which we call ‘height functions’ on Mn—see 2.2) for the cusps of Mn as Tj × [1,+∞[ where the Tj
are flat tori. Let Mn be a sequence of finite-volume hyperbolic three–manifolds; the conditions we
need to prove approximation of the L2-torsion are as follows:

• Geometric conditions:
i) The sequence (Mn) is Benjamini–Schramm convergent to H3 (see 2.6);
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ii) We suppose that there is a δ > 0 such that sys(Mn) (the smallest length of a closed
geodesic on Mn) is larger than δ for all n.

iii) Some kind of regularity for the cusps: in this introduction we will take this to mean
that the sequence be cusp-uniform (i.e. the cross-sections Tj of the cusps of all lie in
a fixed compact subset of the set of Euclidean tori up to similarity), but this can be
relaxed a little (see (4.19)in the statement of Theorem 4.5).

• Analytic assumptions:
iv) As in [4], we need to use coefficients systems that induce a uniform spectral gap for all

hyperbolic manifolds (such coefficients systems are called strongly acyclic; V (n1, n2) is
so exactly when n1 6= n2: see Proposition 3.1 or [4, Lemma 4.1]);

v) In addition, to deal with the continuous spectrum we need to assume that the deriva-
tives of the intertwining operators are well-behaved near the origin, namely that their
trace be an o(volMn) uniformly in a neighbourhood of 0.

• A normalisation condition for the height functions (we emphasise that this is really not of
the same nature as the other conditions and should be seen as specifying the range of height
functions for which we can expect approximation results):
vi) We suppose that

∑
j |log(inj(Tj))| = o(volMn).

• We need also to choose lifts to SL2(C) of the holonomies π1(Mn) → PSL2(C); while our
results are valid without assumptions on these (see 1.7.1), in this paper we will work under
the following hypothesis
vii) The lifts of all peripheral elements (i.e. elements in the image of maps π1(Tj)→ π1(M))

are unipotent (equivalently the image of π1(M) in SL2(C) does not contain an element
with trace −2).

Our first main result is Theorem 5.1, which can be stated as follows.

Theorem A. Let V be a strongly acyclic representation of G = SL2(C) and Γn as sequence of
torsion-free lattices in G. We suppose that the manifolds Mn = Γn\H3 are endowed with height
functions and satisfy i), ii), iii), v) and vi) and that Γn satisfies vii). Then we have

(1.5) lim
n→∞

log TR(Mn;V )

volMn
= t(2)(V ).

Note that it is easily shown that for any given finite-volume hyperbolic three–orbifold there are
sequences of finite covers which satisfy the assumptions i) and iii) above (see Proposition 2.3), but
we will not check that v) holds for them in the present paper (it will be proven to hold for sequences
of congruence covers of arithmetic orbifolds in [34]). Conditions v), vi) (unlike the others) depend
on the choice of height functions on the Mn; however whether v) holds or not does not depend on
this choice in the range of height functions such that vi) holds (see the remark after Theorem 5.1).
Finally, if we consider a sequence of finite covers Mn of a fixed orbifold M then the natural height
functions to use on the Mn are the pull-back of those on M , and it is very easily seen that they
satisfy vi) (see Lemma 4.7).

Let us say a few more informal words about the necessity of these conditions: i) is necessary
(there are sequences of covers where one can see that the torsion has an exponential growth with
a different rate); iii) may or may not be (there are sequences of congruence covers which do not
satisfy it, but we do not know whether approximation for the analytic torsion holds in these); ii)
is very likely necessary (one can make the torsion vary arbitrarily by doing Dehn surgeries on a
given manifold). Condition v) was shown by J. Pfaff and W. Müller to always hold for sequences
of covers (cf. [29], whose prepublication was posterior to the first submission of the present paper),
but in general not much more is known; iv) is likely not necessary for covers, but it is in general
(see [9]). Of course vi) is necessary since for a given manifold the regularised analytic torsion can
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take arbitrarily large values if one does not put limitations on the height functions one wants to
consider.

1.4. An asymptotic Cheeger–Müller equality. The next step in adapting Bergeron and Venkatesh’s
argument to the case of non-compact manifolds is to relate the regularised analytic torsion to a
combinatorial, or Reidemeister torsion (the latter is named after K. Reidemeister who was one of
the first to study this kind of invariants, for somewhat different purposes). In this paper we do not
define such a torsion in an intrisic way for a non-compact hyperbolic manifold M of finite volume
(this is carried out in [12], see also [34]); we will instead use the truncated manifold MY , which
are obtained by ‘cutting off the cusps’ of M using a parameter Y (see (2.3) for the definition).
Thus MY is a compact manifold with boundary, for which analytic and Reidemeister torsion are
well-defined and the Cheeger–Müller equality is known—see 6.1. Our second main result is then
the following (Theorem 6.2).

Theorem B. Suppose that Mn and V are as in the statement of the previous theorem and that the
sequence (Mn) satisfies the additional condition that

hn �
volMn

log(volMn)20

(where hn is the number of cusps of Mn), then there exists a sequence Y n ∈ [1,+∞[hn such that
we have

(1.6) lim
n→∞

log TR(Mn;V )− log τabs(M
Y n
n , V )

volMn
= 0.

An explicit formula for Y n is given in the statement of Theorem 6.1. Note that the sequences
constructed in Proposition 2.3 satisfy also the stronger assumption in this theorem.

1.5. Betti numbers. The behaviour of the characteristic 0 homology in BS-convergent sequences
of non-compact hyperbolic manifolds is not dealt with in [1]. For three–manifolds we prove the
following result.

Proposition C. Let Mn be a sequence of finite-volume hyperbolic three-manifolds and suppose that
Mn BS-converges to H3. Then we have for p = 1, 2

bp(Mn)

vol(Mn)
−−−→
n→∞

0

This limit is well-known for exhaustive sequences of covers as follows for example from M. Farber’s
generalisation [15] of Lück’s theorem [20] (applied to the manifolds truncated at 1).

We will give two proofs of this: one which uses the techniques in this paper, and which con-
sequently needs the assumption that the sequence Mn satisfies the condition (4.19), and then a
proof in all generality using Thurston’s hyperbolic Dehn surgery and the results of [1, Section 9].
The second proof does not generalise to higher dimensions but the first one does (after modifying
(4.19) adequately). We will perhaps return to this in the broader setting of Q-rank one lattices of
semisimple real Lie groups in the future.

1.6. Outline of the proofs.

1.6.1. Convergence of finite-volume manifolds, regularised traces and Betti numbers. In [1, Def-
inition 1.1] the notion of Benjamini–Schramm convergence of locally symmetric spaces to their
universal cover is introduced, and a good part of the paper studies the implications of this notion
for compact manifolds. In this work we extend some of these results to nonuniform lattices in
SL2(C) (see Section 2.6). Let us remind the reader that Benjamini–Schramm convergence (to the
universal cover H3) is an interpolation between the weaker pointed Gromov–Hausdorff convergence
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and the stronger condition that the global injectivity radius goes to infinity. It is conveniently
summarised by saying that “the injectivity radius goes to infinity at almost all points”; formally,
for a sequence Mn of finite–volume hyperbolic three–manifolds to be convergent to H3 we require
that for all R > 0 the sequence vol{x ∈Mn : injxMn ≤ R} be an o(volMn).

The regularised trace TrR(K) of an automorphic kernel K on a finite-volume manifold M is
defined by taking either side of a very unrefined form of the trace formula for K, of which we give
a mostly self-contained proof—minus the theory of Eisenstein series, which we review in 3.2—in
Section 4. The study of the geometric side in Benjamini-Schramm convergent sequences is not
very hard and results in Theorem 4.5; note however that we need an additional condition on the
geometry of the cusps to prove the convergence of the unipotent part. We prove, using comparisons
of traces with the truncated manifolds, that the Betti numbers in a BS-convergent sequence are
sublinear in the volume in Proposition 9.1 (we cannot deduce it directly from Theorem 4.5 since we
did not manage to control the non-discrete part of the spectral side of the trace formula in general).
On the other hand, to study Betti numbers in dimension three one can bypass all this by using [1,
Theorem 1.8] and hyperbolic Dehn surgery.

1.6.2. Analytic torsions. Our definition of analytic torsion for cusped manifolds is the same as in
[30] or [28] (we could have just quoted the results of the latter but we use a slightly different
method to prove the asymptotic expansion of the heat kernel which is better suited to the rest of
this paper). Let M be a finite-volume manifold and Kp

t its heat kernel on p-forms (we will suppose
here that the coefficients are in a strongly acyclic bundle, but with more work one can see that the
definition carries over to the general case, see [30],[28]). One defines the analytic torsion as in the
compact case, by putting:

TR(M) =
3∑
p=0

p(−1)p
d

ds

(
1

Γ(s)

∫ t0

0
TrR(Kp

t )ts
dt

t

)
s=0

+

∫ +∞

t0

TrR(Kp
t )
dt

t

which does not depend on t0 > 0. The justification of this definition uses meromorphic continuation
and is highly nontrivial, see 5 below or [28] for the details needed to ensure the convergence of the
integrals and their analytic continuation. In a sequence of manifolds we study the first summand
using the geometric side of the trace formula and the second one using the spectral side, as in [4,
Section 4]. The spectral side is dealt with using the uniform spectral gap property established there;
however the part coming from the continuous spectrum causes some additional difficulty which
explains the conditionality of our approximation on the hypothesis v) on intertwining operators
which we were not able to check for general sequences. The study of the geometric side is actually
quite simple once the asymptotic expansion for Kp

t at t→ 0 has been established (see Proposition
5.4) using our unrefined trace formula. We remark that in [35] we dealt with these problems in
the more general context of finite-volume hyperbolic good orbifolds—the elliptic terms in the trace
formula do not cause any real additional difficulty.

We also show that under hypotheses (very) slightly more restrictive as for the approximation of
analytic torsion there is an asymptotic equality between absolute analytic torsion for the truncated
manifold MY and regularised analytic torsion for the complete manifold, cf. Theorem 6.1 below.
As in the proof of the approximation result we separate into small and large times. We deal with
the small-time part in Section 7, where we use estimates on the integral of automorphic kernels over
the truncated manifolds and a result of W. Lück and T. Schick [21]; for this part we also need to
extend the well-known Gaussian bound for the heat kernel (proven for example in [36, Section 5])
to the case of the universal covers of truncated manifolds; we explain how to adapt the arguments
from loc. cit. in Appendix A. The large times are taken care of in Section 8; the main point in
the proof is to control the spectral gap for the truncated manifolds (Proposition 8.2) and this is
achieved using techniques inspired from F. Calegari and A. Venkatesh [12, Chapter 6].
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1.6.3. Asymptotic Cheeger-Müller theorem and homology growth. In contrast with the compact
case, for our coefficient systems there is usually a nontrivial homology in characteristic 0. Thus,
to state and hopefully prove a Cheeger-Müller-type equality one needs to define a suitable Reide-
meister torsion. This is done by F. Calegari and A. Venkatesh in [12], in a manner similar to the
regularisation for traces of integral operators. Thus a natural way to prove such an equality would
be to apply the Cheeger-Müller equality for manifolds with boundary [11],[22] to the truncated
manifolds and to compare both sides with their regularised analogue.

Here we deal only with the first part of this program, we refer to [34] for the applications of the
results in the present paper to congruence subgroups and their homology growth. From the asymp-
totic equality of analytic torsions (Theorem 6.1) it is not hard to deduce an asymptotic equality
with the absolute Reidemeister torsion of the truncated manifold using a recent generalisation by
J. Brüning and X. Ma of the Cheeger-Müller theorem, see Theorem 6.2.

1.7. Remarks.

1.7.1. Non-unipotent holonomies. In the case where condition (vii) on the holonomies of peripheral
subgroups is not satisfied both Theorem A and B still hold. To prove this one must consider
two cases depending on whether n2 − n1 is even or odd. In the first case the representation
SL2(C)→ SL(V (n1, n2)) factors through PSL2(C) and it makes no difference whether or not (vii)
holds. When n1−n2 is odd the heat kernels become integrable in the ‘bad’ cusps whose fundamental
group has an holonomy containing elements of trace −2 (note that if all cusps are such, the heat
kernel is in fact trace-class). The parabolic summand for the trace formula in Theorem 4.4 changes
a bit (see [35, 3.5]), but the estimates used all along the proofs in 5.4.3 and 7 can still be used. The
proof of Proposition 8.2 still holds since in the bad cusps the eigenfunctions decay exponentially.

1.7.2. Related recent results. In addition to the papers [4] and [1] from which this work originates
there have been other papers dealing with similar problems. There has been a number of papers
studying the asymptotic behaviour of analytic torsion of a compact manifold as the coefficient
systems varies. This was done independently and concurrently, with different methods, on the one
hand by W. Müller and J. Pfaff (starting with [27]) and on the other, in a more general setting, by
J.M. Bismut, X. Ma and W. Zhang [6]. This has been extended to the noncompact setting (based
on the work of Müller–Pfaff) by P. Menal-Ferrer and J. Porti [25] and by W. Müller and J. Pfaff
[28].

Cheeger–Müller type equalities for manifolds with cusps (and more general singularities) have
attracted a lot of interest recently. Let use cite some papers which are close to our topic here: [31],
[33], [2].

1.7.3. Analytic torsion here and in [28]. Though we use the same definition of analytic torsion as
W. Müller and J. Pfaff do in [28], there is a slight difference in setting between their paper and ours,
which we will explain here. In the present work, one starts from an hyperbolic manifold M and
assign it an arbitrary parametrisation of the cuspidal components of its thin part; if M has finite
hyperbolic volume we use these functions to derive a trace formula which is then used to define the
regularised analytic torsion. In [28], one starts from a lattice Γ in SL2(C), chooses representatives
for the conjugacy classes of parabolics and then defines height functions on the quotient by choosing
a point in H3 (the fixed point of SU(2)) and assigning to it height 1 for all the parabolics. Then
[28] use existing forms of the trace formula to define the regularised analytic torsion, which is the
same as the one we define here using these particular height functions.

1.7.4. About [35]. As noted above, in the Ph.D. thesis of the author some of the problems here
were tackled in greater generality, rendering assumption (vii) unnecessary and also dealing with
orbifolds. However, there are some very embarassing (to the author) and serious gaps in this
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manuscript (especially in a previous version of Proposition 8.2), which nevertheless do not affect
the validity of the results we quote (and which are filled in the present work).

Acknowledgments. A first version of this paper was written while I benefited from a doctoral
grant from the Université Pierre et Marie Curie (Paris 6). The present version was written while I
was a post-doc at the Max-Planck Institut für Mathematik in Bonn.

The reading of a preliminary version of [12] has been extremely profitable for the writing of this
paper and I want to thank the authors for allowing me to read it. During the redaction I became
more and more permeated by the point of view of Benjamini–Schramm convergence introduced
in the joint work (with Miklós Abért, Nicolas Bergeron, Ian Biringer, Tsachik Gelander, Nikolay
Nikolov and Iddo Samet) [1]. I also benefited greatly from a week spent in Bonn with Werner
Müller and Jonathan Pfaff, whose comments on previous versions of this paper were especially
useful and thorough, and who pointed out a serious gap in a previous approach to Proposition
8.1. A pair of anonymous referees provided helpful suggestions for improving the presentation and
spotted numerous mistakes. Last but not least I want to thank my Ph.D. advisor, Nicolas Bergeron,
under whose supervision this work was conceived.

2. Hyperbolic manifolds and Benjamini–Schramm convergence

Let G = SL2(C), so that K = SU(2) is a maximal compact subgroup and the Riemannian
symmetric space G/K is isometric to hyperbolic three–space H3, which we will identify here with

the Poincaré half-space C×]0,+∞[ endowed with the Riemannian metric given by dzdz̄+dy2

y2 in

coordinates (z, y).

2.1. Height functions on H3. Define the following subgroups of G:

P∞ =

{(
a b
0 a−1

)
, a ∈ C×, b ∈ C

}
, N∞ =

{(
1 b
0 1

)
, b ∈ C

}
,

A∞ =

{(
a 0
0 a−1

)
, a ∈ R×+

}
, M∞ =

{(
eiθ 0
0 e−iθ

)
, θ ∈ [0, 2π]

}
.

The proper parabolic subgroups ofG are the conjugates of P∞. Let P = gP∞g
−1 be such a subgroup

and N,A,M the conjugates of N∞, A∞,M∞ by g. We call any function that is conjugated by g

to the function

(
a 0
0 a−1

)
7→ a2 on A∞ a norm on A. We have the Langlands decomposition

P = NAM = MAN and the Iwasawa decomposition G = NAK. A height function on H3 at P is
then defined to be any function of the form gK 7→ |a| where g = nak ∈ NAK and |.| is any norm
on A. (as an illuminating example take P = P∞, then the height functions at P are of the form
(z, y) 7→ ty for t ∈ R×+).

The level sets of a height function at P are called horospheres through P ; they are isometric
to the Euclidean plane C and are acted upon simply transitively by the subgroup N . Let yP be
a height function at P ; we may identify N with {yP = 1} ∼= C and we denote by |n| the induced
length function on N . If we normalise the Haar measure dn on N so that it is the pullback of
the Lebesgue measure on C, then the volume form of H3 is equal to dndyP /y

3
P . For x ∈ H3 the

quotient |n|/yP (x) does not depend on the choice of yP and we have the following estimate for the
translation length of unipotent elements.

Lemma 2.1. There exists a function ` : [0,+∞)→ [0,+∞) such that

(2.1) d(x, nx) = `

(
|n|

yP (x)

)
for all parabolics P = MAN , n ∈ N and x ∈ H3. Moreover `(r)� log(1 + r).
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Proof. We give a very awkward but very explicit proof. Obviously it suffices to prove the lemma

for P = P∞; for n =

(
1 z
0 1

)
∈ N∞ we may take |n| = |z|. Let x ∈ H3, y = y∞(x). The formula

[3, Corollaire A.5.8] yields

(2.2) d(x, nx) = 2

(
log

(
1 +

√
|n|2

|n|2 + 4y2

)
− log

(
1−

√
|n|2

|n|2 + 4y2

))
so that d(x, nx) = `(|n|/y) where we put

`(r) = 2
(

log
(

1 + (1 + (r/2)−2)−
1
2

)
− log

(
1− (1 + (r/2)−2)−

1
2

))
It remains to check that `(r) � log(1 + r): the first summand is in [0, log(2)], and besides for

t ∈ [0,+∞) one has (1 + t2)−1/2 ≥ (1 + t)−1 so that

− log(1− (1 + t−2)−1/2) ≥ − log(1− (1 + t−1)−1) = log(1 + t).

from which the conclusion follows at once. �

2.2. Height functions on hyperbolic three–manifolds. Let Γ be a lattice in G (i.e. Γ is
discrete and Γ\G carries a finite right-G-invariant Borel measure). Given a parabolic subgroup P
we put ΓP = Γ ∩ P and we say that P is Γ-rational if ΓP contains a subgroup isomorphic to Z2

(equivalently Γ∩N is cocompact in N). Then Γ is cocompact if and only if there are no Γ-rational
parabolics (equivalently if Γ contains no unipotent elements). In any case there are finitely many
Γ-conjugacy classes of Γ-rational parabolics. We may thus choose representatives P1, . . . , Ph for
these classes and height functions yP1 , . . . , yPh at each one of then, and define a function yj on H3

by

yj(x) = max
γ∈Γ/ΓPj

yPj (γ
−1x)

which we call a Γ-invariant height function (and which is, indeed, Γ-invariant). If Γ is torsion-free
let M be the manifold Γ\H3 and for Y ∈ (0,+∞)h put :

(2.3) MY = {x ∈M : ∀j = 1, . . . , h we have yj(x) ≤ Yj}.

Then for Y large enough (depending on the choice of the original height functions yPj ) M
Y is a

compact manifold with boundary a union of flat tori Tj , j = 1, . . . , h. The ends {x ∈M, yj(x) ≥ Yj}
are isometric to the warped products Tj × (Yj ,+∞) with the metrics

dx2+dy2
j

y2
j

where dx2 is the

euclidean metric on Tj . In this paper we will work under the following convention: we always
suppose that the height functions are normalised so that the maps ΓPj\{yPj ≥ 1} → M are
embeddings (in particular, the horospheres of height one are disjoint).

Finally, if Γ′ ⊂ Γ is a finite-index subgroup the Γ-invariant height functions are Γ′-invariant; when
dealing with a sequence of finite covers of a given manifold (or orbifold) we will always suppose
that the height functions on the covers come from those of the covered manifold.

2.3. Euclidean lattices. Let Λ be a lattice in C ; we denote by vol(Λ) its covolume (i.e. the
volume of a fundamental parallelogram) and define

α1(Λ) = min{|v| : v ∈ Λ, v 6= 0}

and for any v1 ∈ Λ such that |v1| = α1(Λ)

α2(Λ) = min{|v| : v ∈ Λ, v 6∈ Zv1}.
8



Then the ratio α2(Λ)/α1(Λ) depends only on Λ up to similarity. We denote by NΛ(r) the number
of points in Λ of absolute value less than r and

N ∗Λ(r) = NΛ(r)− 1 = |{v ∈ Λ \ {0} : |v| ≤ r}|.

We will use N ∗ rather than N further on; moreover we get a cleaner bound in the lemma below.
The following estimate for the counting function was proven by Gauss; we include a proof only for
the reader’s convenience and because we need a precise statement with regard to the constants.

Lemma 2.2. Define :

EΛ(r) := N ∗Λ(r)− πr2

vol(Λ)
.

For any lattice Λ ⊂ C we have the estimate

(2.4) |EΛ(r)| � r

α1(Λ)
+
α2(Λ)

α1(Λ)

where the constant does not depend on Λ.

Proof. First we consider r < α1(Λ) so that EΛ(r) = πr2/ vol(Λ). By Minkowski’s First Theorem,
if πr2 ≥ 4 vol(Λ) then Λ contains a nonzero vector of length ≤ r, which implies that the quotient
vol(Λ)/α1(Λ)2 ≥ π/4. Thus EΛ(r)� (r/α1(Λ))2 ≤ r/α1(Λ).

Now suppose that r ≥ α1(Λ). We can choose a fundamental parallelogram Π for Λ whose
diameter d is � α2(Λ) and by Minkowski’s second theorem we have vol(Λ) � α2(Λ)α1(Λ). For
r ≥ d let z1, . . . , zn be all the points in Λ such that |zk| ≤ r, then we have that B(0, r − d) ⊂⋃
k zk + Π ⊂ B(0, r + d) so that π(r − d)2 ≤ vol(Π)n ≤ π(r + d)2. It follows that:∣∣∣∣NΛ(r)− πr2

vol(Λ)

∣∣∣∣ ≤ d2

vol(Λ)
+

2rd

vol(Λ)
� α2(Λ)2

vol(Λ)
+

r

α1(Λ)

� α2(Λ)

α1(Λ)
+

r

α1(Λ)

which finishes the proof of (2.4). �

We say that a set S of euclidean lattices is uniform if there exists a C > 0 such that

(2.5) ∀Λ ∈ S, vol(Λ) ≤ Cα1(Λ)2

By Mahler’s criterion this is equivalent to asking that when we normalise the lattices in S so that
they are unimodular they form a relatively compact set in SL2(R)/SL2(Z). If Λ belongs to a uniform
set S then the proof above yields that

(2.6) |EΛ(r)| � r

α1(Λ)

with a constant depending only on S.

2.4. Cusp-uniform sequences. If P is a parabolic subgroup and yP is a height function at P
then we may identify the unipotent radical N of P with the horosphere yP = 1 and the conformal
structure on N thus obtained does not depend on the chosen yP . Since the uniformity of a set only
depends on the conformal structures of its elements we may define a cusp-uniform sequence as a
sequence of lattices Γn ⊂ G such that the set

{(Γn)P , n ≥ 1, P is a Γn-rational parabolic}

is a uniform set of euclidean lattices. The following result gives a source of examples satisfying
some the geometrical conditions of our main results.
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Proposition 2.3. Let Γ ⊂ G be a lattice, then there exists a cusp-uniform sequence Γn ⊂ Γ which
exhausts Γ and satisfies in addition that hn � (volMn)1−δ for some δ > 0.

Proof. It is well-known that up to conjugation we may assume Γ ⊂ SL2(F ) for some number field
F . Let OF be the ring of integers of F ; as Γ is finitely generated there exists an a ∈ OF such that
Γ ⊂ SL2(OF [a−1]). For an ideal I ⊂ OF coprime to a we may define Γ(I) as the set of matrices
in Γ congruent to the identity modulo I. Then the sequence of Γ(n) for n ∈ N coprime to a is
clearly exhaustive and we claim that it is cusp-uniform. Indeed, if P is a Γ-rational parabolic we
have ΓP = 1 + ZX1 + ZX2 for some X1, X2 in the Lie algebra sl2(OF [a−1]). Let I be the ideal in
OF [a−1] generated by the entries of X1 and X2 and m the unique positive rational integer such
that I ∩ Z = mZ. Put Λn = nΓP ; then the Λn are a uniform family of lattices in N and we have
Λn ⊂ Γ(n)P ⊂ m−1Λn, so that {Γ(n)P , n} is uniform as well. Since the subgroups Γ(n) are normal
in Γ we need only consider a finite number of P and the claim of cusp-uniformity follows.

For all Γ-rational parabolic P we have

[ΓP : Γ(n)P ] ≥ C[Λ1 : Λn] ≥ Cn2.

On the other hand, if P1, . . . , Phn are representants for the conjugacy classes of Γ(n)-rational
parabolics we have

[Γ : Γ(n)] =

hn∑
j=1

[ΓPj : Γ(n)Pj ] ≥ Chnn2

We have finally [Γ : Γ(n)] ≤ |SL2(OF /n)| ≤ n3[F :Q] and it follows that n2 ≥ [Γ : Γ(n)]δ for some
δ > 0 (depending on F ) so that we get hn � [Γ : Γ(n)]1−δ. �

2.5. Some counting lemmas in hyperbolic space. For this subsection we always denote by
ε the Margulis constant for H3. If Γ is a finitely generated, discrete subgroup of G we let sys(Γ)
denote the systole of Γ\H3, i.e. the smallest translation length of a loxodromic element in Γ.

2.5.1. Orbits. The following lemma is well-known in the case of groups containing no unipotent
isometries, but needs a slight modification to incorporate the general situation.

Lemma 2.4. There is an absolute constant c > 0 such that the following holds: let Γ be a torsion-
free discrete subgroup in G. Let x ∈ H3 and let Λ be the subgroup of Γ generated by the elements
in Γ which commute with a unipotent η ∈ Γ such that d(x, ηx) ≤ ε (thus Λ is a free abelian group
of rank ≤ 2). Then there is a C > 0 depending only on sys(Γ) such that for all r > 0 we have:

(2.7) |{γ ∈ Γ− Λ : d(x, γx) ≤ r}| ≤ Cecr

This implies in particular the following: for a discrete subgroup Γ in G we let Γlox be the set of
loxodromic elements in Γ and for any x ∈ H3 and r > 0 put

(2.8) NΓ(x, r) = |{γ ∈ Γlox, d(x, γx) ≤ r}|.
Then there is a constant C depending only on the systole of M such that:

(2.9) NΓ(x, r) ≤ Cecr.

Proof of Lemma 2.4. We define:

δ = δ(x, r) =
1

2
min

(
d(γx, γ′x) : γ, γ′ ∈ Γ− Λ, d(x, γx), d(x, γ′x) ≤ r

)
.

The balls B(γx, δ) for γ ∈ Γ − Λ, d(x, γx) ≤ r are pairwise disjoint. Moreover their union is
contained in the ball B(x, r + δ). It follows that the right-hand side in (2.7) is smaller than
V (r+δ)V (δ)−1 where V (R) denote the volume of a ball of radius R in H3. We have rd ≤ V (r) ≤ ec0r
for an absolute c0 and thus the lemma follows from the claim that for any x ∈ H3 we have δ ≥ Ce−r
for some C > 0 depending only on sys(Γ).
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To prove this we may suppose that Γx lies in a noncompact component of the ε-thin part M≤ε of
M = Γ\H3 (otherwise δ ≥ min(ε, sys(Γ))). We let H be the horosphere preserved by Λ (defined as
in the statement) lifting the component of ∂M≤ε closest to Γx, and we claim that δ(x, r) = +∞ for

all r ≤ d(x,H) and δ(x, r) ≥ e−d(x,H) for r ≥ d(x,H), from which the original claim immediately
follows. To prove the newest claim we first observe that any γ ∈ Γ−Λ must move x outside of the
horoball bounded by H, hence the first part of the claim. Now the Euclidean displacement of an
element of Λ on the horosphere through x is at least e−d(x,H)ε (since its displacement on H is at

least ε), hence injx(M) ≥ C ′εe−d(x,H) for an absolute C ′ by Lemma 2.1. We have δ(x, r) ≥ injx(M)
for any r and the second part of the claim follows. �

2.5.2. Horospheres. We let B be a collection of disjoint (closed) horoballs in H3 and H be the
collections of horospheres {∂B : b ∈ B}. For a point w ∈ H3 and a radius R > 0 we denote by
NH(w,R) the number of horoballs in B which are at a distance smaller than R from w.

Lemma 2.5. There are absolute constants C, c such that for any H as above and any w ∈ H3 we
have:

(2.10) NH(w,R) := |{H ∈ H : d(w,H) ≤ R}| ≤ CecR

Proof. Let V (R) denote the volume of a ball of radius R in H3. We claim that:

(2.11) NH(w,R) · V (1) ≤ V (R+ 2).

Since V (R) ≤ ecR for some c the lemma follows.
The proof of (2.11) is staightforward: let N = NH(w,R) and B1, . . . , BN ∈ H be the horoballs

meeting the ball of radius R around w. For i = 1, . . . , N take a xi ∈ ∂Bi such that d(xi, w) ≤ R
and let x′i be the point at distance 1 from xi along the inwards normal to ∂Bi at xi; finally, et Ui be
the ball of radius 1 around x′i. Then the balls Ui are disjoint (since Ui ⊂ Bi and the Bi themselves
are disjoint) and contained in the ball of radius R+ 2 around w; it follows that we have

V (R+ 2) ≥
∑
i

vol(Ui) = N · V (1)

which finishes the proof of (2.11) �

2.6. Benjamini–Schramm convergence for manifolds with cusps. Let M = Γ\H3 be an
hyperbolic three–manifold and let x ∈M . Pick an arbitrary lift x̃ of x to H3 and define

`x = min{d(x̃, γx̃), γ ∈ Γ, γ 6= 1G} = 2 injx(M).

For R > 0 we define the following subset of M :

M≤R = {x ∈Mn : `x ≤ R/2}
Recall from [1] that a sequence Mn is said to converge to H3 in the Benjamini–Schramm topology
(hereafter abreviated as Mn BS-converges to H3) if for any R > 0 we have

(2.12)
vol ((Mn)≤R)

vol(Mn)
−−−→
n→∞

0.

A source of examples is given by sequences where the injectivity radius goes to infinity; for example
Mn = Γn\H3 where Γn is an exhaustive sequence of torsion-free finite-index subgroups of a lattice
Γ (a sequence Γn ⊂ Γ is said to exhaust Γ if any γ ∈ Γ belongs to at most a finite number of the
Γn). Another is given by sequences of congruence lattices (see [1],[34]). It follows from Proposition
2.3 that every hyperbolic three–manifold has a sequence of finite covers that is BS-convergent to
H3 and cusp-uniform.

In the sequel we will always consider a sequence Mn = Γn\H3 of finite-volume hyperbolic three–
manifolds. We will denote by Λn,j , j = 1, . . . , hn the Euclidean lattices corresponding to the cusps
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of Mn, which are well-defined up to similarity. Recall that we have defined the counting function
NΓ in (2.8).

Lemma 2.6. The sequence Mn is BS-convergent to H3 if and only if

(2.13) ∀r > 0,

∫
Mn

NΓn(x, r)dx = o(volMn)

and

(2.14)

hn∑
j=1

α2(Λn,j)

α1(Λn,j)
= o(volMn).

Proof. We won’t use the ‘if’ statement in the remainder of this paper, and its proof is straighforward.
Suppose now that the sequence Mn is BS-convergent to H3. If we suppose in addition that the
systole of the Mn is bounded away from 0 then (2.13) follows immediately from (2.9): for any r > 0
we have ∫

Mn

NΓn(x, r)dx =

∫
(Mn)≤r

NΓn(x, r)dx ≤ Cecr vol(Mn)≤r

where C does not depend on n, and the right hand-side is an o(volMn) by the definition of BS-
convergence. In general, we obtain from this resoning the conclusion that for any δ > 0 the part
of the integral in (2.13) on the δ-thick part of Mn is an o(volMn). The proof that (2.13) holds in
general then depends on a fine analysis of the orbits of points in H3 mapping to the δ-thin part of
M (for δ smaller than the Margulis constant) which is carried out in [1, Section 7].

We finally establish (2.14) when Mn is BS-convergent to H3: let ε > 0 be the Margulis constant
for H3, and let C1, . . . , Ch be the noncompact components of (Mn)≤ε. The boundaries of the Cj
are Euclidean tori T1, . . . , Tj and we have ε ≤ cα1(Tj) for some absolute c > 0 ; it follows that

vol(Tj)� α1(Tj)α2(Tj)� ε2α2(Λj)

α1(Λj)

where Λj is the lattice in C corresponding to Tj (whose conformal class is well-defined). It follows
that

vol(Mn)≤ε �
h∑
j=1

vol(Tj)� ε2
h∑
j=1

α2(Λj)

α1(Λj)

hence the right-hand side must be an o(volMn) which is precisely the content of (2.14). �

We record as a separate fact the following weaker consequence of (2.14).

Lemma 2.7. Let Mn be a sequence of finite-volume hyperbolic three–manifolds, hn the number of
cusps of Mn. If Mn BS-converges to H3 then hn = o(volMn).

When we assume cusp-uniformity we only need to look at the behaviour of closed geodesics;
we have the following criterion for a sequence of cusp-uniform hyperbolic three–manifolds to BS-
converge. The direct implication is contained in Lemma 2.6 above and the converse is proved in
[35, Proposition 4.7].

Lemma 2.8. Let Mn be a cusp-uniform sequence of finite covers of a hyperbolic three–manifold
M . Then Mn BS-converges to H3 if and only if condition (2.13) holds.

3. Spectral analysis on manifolds with cusps

3.1. Local systems on hyperbolic manifolds.
12



3.1.1. Definitions. Let Γ ⊂ G be a lattice and put M = Γ\H3. The flat real vector bundles
(a.k.a. “real local systems”) on M are obtained as follows: if σ is a representation of Γ on a finite-
dimensional real vector space V we get a vector bundle Fσ on M whose total space is the quotient
Γ\(H3×V ). For γ ∈ Γ and a p-form f on H3 with coefficients in V we denote γ∗f = σ(γ)−1◦f◦∧pTγ.
Then the p-forms on M with coefficients in Fσ correspond to Γ-equivariant sections of ∧pTH3 → V
i.e. to those f ∈ Ωp(H3;V ) such that γ∗f = f for all γ ∈ Γ.

Particularly interesting among all flat bundles are those whose holonomy comes from restricting
a representation ρ of G on a real vector space V . The representation σ = ρ|Γ is never orthogonal
but the bundle Fσ has an alternative description which yields a natural euclidean product and
which we will now describe. Up to scaling there is a unique inner product on V which is preserved
by K and such that p (the orthogonal for the Killing form of the Lie subalgebra k ⊂ g of the group
K) acts by self-adjoint maps (see [24]). We have a vector bundle Eρ on M whose total space is
(Γ\G × V )/K so that it has a natural metric |.| coming from the K-invariant metric on V . The
square-integrable sections of Eρ correspond to the subspace:

{f : Γ\G→ V, |f | ∈ L2(Γ\G), ∀g ∈ G, k ∈ K, f(gk) = ρ(k−1)f(g)}.v
More generally, identifying the tangent space of H3 at the fixed point of K (which is an irreducible
real K-representation) with p, the square-integrable p-forms correspond to:

L2Ωp(M ;Eρ) =
(
L2(Γ\G)⊗ V ⊗ ∧pp∗

)K
(where we use the habitual notation HK for the fixed subspace of K in a vector space H). We have
an isomorphism Eρ → Fσ induced by the map G× V → G× V, (g, v) 7→ (g, ρ(g) · v). In the sequel
we will denote by L2Ωp(M ;V ) the space of square-integrable p-forms on M with coefficients in Eρ.

The Hodge Laplacians ∆p[M ] are essentially self-adjoint operators on the Hilbert spaces L2Ωp(M ;V ),
see [8] or [4, Section 3].

3.1.2. Strong acyclicity. The group G = SL2(C) acts naturally on C2. As a real Lie group it also
has a representation on C2 given by g 7→ g (where · denotes the complex conjugate matrix). We

will use the notation C2 to indicate that we consider this conjugate action. For every pair of
nonnegative integers we then have a representation of G on the vector space V (n1, n2) defined by:

V (n1, n2) = Symn1(C2)⊗ Symn2 C2.

Standard representation theory tells us that these are all the irreducible finite-dimensional repre-
sentations of G.

The most important (for us) feature of the representations V (n1, n2) is the following spectral gap
property, which is proven in [4, Lemma 4.1] and also follows from [8, Proposition 6.12 in Chapter
II]; Bergeron and Venkatesh term this “strong acyclicity” of the representation.

Proposition 3.1. Let n1 6= n2 and V = V (n1, n2). There exists λ0 > 0 such that for any lattice Γ
in G, M = Γ\H3, p = 0, 1, 2, 3 and φ ∈ L2Ωp(M ;V ) we have

〈∆p[M ]φ, φ〉L2Ωp(M ;V ) ≥ λ0‖φ‖L2Ωp(M ;V ).

3.1.3. Unitary representations. Let σm, y be defined by:

(3.1) σm

(
eiθ 0
0 e−iθ

)
= emiθ, y

(
t 0
0 t−1

)
= t2.

For s ∈ C and m ∈ Z we denote by π(s,m) the representation of G induced by the character

σm ⊗ y1+ s
2 of P∞ = M∞A∞N∞. This is the representation Pm,s defined in [19, (2.11)]; it is

unitary if and only if s ∈ iR.
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3.1.4. Laplace eigenvalues and differentials. Let e1, e−1 be the canonical basis of C2. For l =

−n,−n + 2, . . . , n put el = e
n+l

2
1 e

n−l
2
−1 ∈ V (n, 0) and for l = −n1, . . . , n1, k = −n2, . . . , n2 put

el,k = el ⊗ e−k ∈ V (n1, n2). Thus we have

ρ(ma) · el,k = σl+k(m)y(a)
l−k

2 el,k, m ∈M∞, a ∈ A∞.

Define Vl,k = Cel,k, Vm =
∑

l+k=m Vl,k. Let P = g0P∞g
−1
0 be a parabolic subgroup, yP a height

function at P , s ∈ C, v ∈ V and define a section of G× VC by the formula:

φs,v(g) = yP (g)1+ s
2 ρ(k−1) · v, g = nak.

If v ∈ g0Vm then φs,v belongs to the space of π(s,m). Its K-type is contained in VC, and thus it
yields a section of Eρ over H3.

By computation of the Casimir eigenvalues in the induced representation (see [4, 5.7] who cite
[19, Proposition 8.22 and Lemma 12.28]) the functions φs,v, v ∈ g0Vm, give rise to sections of Eρ
which are eigenvectors of ∆0[H3] with eigenvalue

|s|2 −m2 + (n1 + n2 + 2)2 + (n1 − n2)2.

Note that this bounded away from zero for all n1, n2,m and s ∈ iR (since m ∈ [−n1−n2, n1 +n2]).

Now let W = V ⊗V (2, 0). The G-equivariant bundle associated to WC is isomorphic to the bundle
of 1-forms with coefficients in VC. Using the same construction as above we get an eigenform with
coefficients in Eρ and eigenvalue

(3.2) − s2 − (m+ ε)2 + (n1 + n2 + 2)2 + (n1 − n2)2

where ε = 0,±2 according to whether v ∈ g0Vm ⊗ Vε; the eigenvalue is larger than (n1 − n2)2 for
s ∈ iR, in particular bounded away from 0 when n1 6= n2.

Now let us compute the differentials for sections and 1-forms. In both cases this has to be done
in the G-equivariant model for Eρ. Let v ∈ Vl,k, then the G-equivariant section corresponding to

φs,v is g 7→ yP (g)1+ s+l−k
2 ρ(n) · v, g = nak and thus:

dφs,v(g) =
1

2
(s+ l − k + 2)yP (g)

s+l−k
2 (ρ(n) · v)⊗ dyP + . . .

where . . . indicates terms which are orthogonal to dyP . If v ∈ Vl,k ⊗ V−2,0 then the corresponding

G-equivariant 1-form on H3 is given by yP (g)
s+l−k

2 (ρ(n) · w)⊗ dz and we have:

(3.3) dφs,v⊗e2 =
1

2
(s+ l − k)yP (g)s+l−k−1(ρ(n) · v)⊗ dyP ∧ dz + . . .

where the . . . indicate terms in dz∧dz, and a similar computation holds for forms in dz. The forms
in dyP are closed.

3.2. Spectral decomposition. From now on we fix a G-representation ρ on a vector space V . It
is a well-known fact that one has the orthogonal sum

(3.4) L2Ωp(M ;V ) = L2
discΩ

p(M ;V )⊕ L2
contΩ

p(M ;V )

where ∆p[M ] has only discrete spectrum in L2
discΩ

p(M ;V ) and completely continuous spectrum in
L2

contΩ
p(M ;V ). Here we briefly describe the proof of this result through the theory of Eisenstein

series developed by Selberg, Langlands and others which actually yields a complete description of
the continuous part.
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3.2.1. Constant terms and cusp forms. Let P be any Γ-rational parabolic and f ∈ L2Ωp(H3;V ) a
Γ-equivariant p-form. Its constant term at P is defined to be the p-form given by

(3.5) fP (v) =

∫
ΓP \N

n∗f(v)
dn

vol(ΓP \N)
.

This descends a p-form on ΓP \H3 (which depends only on the Γ-conjugacy class of P ) which is
actually N -equivariant. If h : Γ\G → V ⊗ ∧pp∗ is the K-equivariant function corresponding to f
(see 3.1.1) then the one corresponding to fP is given by g 7→ 1/2

∫
ΓP \N h(ng)dn. A p-form f is

said to be cuspidal when fP = 0 for all Γ-rational parabolics, and we denote by L2
cuspΩp(M ;V ) the

space of all such forms. Theorem 4.4 below implies that we have L2
cusp ⊂ L2

disc.

3.2.2. Eisenstein series. If P is a Γ-rational parabolic there is a map EpP from the subspace of
N -equivariant forms in L2Ωp(H3;V ) to L2Ωp(M ;V ) given by

(3.6) EpP (f) =
∑

γ∈Γ/ΓP

γ∗f.

If P, P ′ are two equivalent Γ-rational parabolics then the obvious map θ : L2(N\H3;V )→ L2(N ′\H3;V )
intertwines EpP and EpP ′ , i.e. EpP = EpP ′ ◦ θ. We choose representatives P1, . . . , Ph of the conjugacy

classes of Γ-rational parabolics and put Ep =
⊕h

j=1E
p
Pj

. Then we have the following facts:

• im(Ep) = L2
cuspΩp(M ;V )⊥;

• there is a finite-dimensional subspace L2
res inside im(E) such that we have the orthogonal

sum im(E) = L2
cont ⊕ L2

res.

When V is strongly acyclic the subspace L2
res is actually zero for all p; when V is trivial it is of

dimension one for p = 0 or p = 3 and zero for p = 1, 2. We will now describe how the map allows
to describe the continous part L2

contΩ
p(M ;V ): we begin by a general exposition and then specialise

to sections and 1-forms with coefficients in a bundle Eρ.

3.2.3. About references. Our main reference for this subsection is G. Warner’s disquisition [38];
the theory we expose here is developed there in greater generality (for all real-rank-one locally
symmetric spaces) with more details (though the author frequently refers to [17] for complete
proofs). The exposition in this reference is not particularly user-friendly; for a more accessible one
(only in the case of Fuchsian groups and functions, but all the main ideas are already present) we
refer to H. Iwaniec’s textbook [18]. The case of arithmetic 3-manifolds is also treated in detail in [35,
Chapitre 5]; the book [14] contains a complete treatment of functions on more general hyperbolic
manifolds.

3.2.4. Eisenstein series with coefficients in a K-equivariant bundle. Let τ be a finite-dimensional
representation of K on a complex vector space W , with highest weight q ∈ N. The space W
decomposes as the orthogonal sum

W =

{⊕q
k=−qW2k q = n1+n2

2 , n1 − n2 even;⊕q
k=−qW2k+1 q = n1+n2−1

2 , n1 − n2 odd

where Wl is the subspace on which M acts by the character σl defined in (3.1). Let Eτ be the
bundle on ΓP \H3 whose total space is given by (W × ΓP \G)/K; then the smooth sections of Eτ
are identified with the space (W ⊗ C∞(ΓP \G))K . For s ∈ C we identify the subset of such sections

which are N -invariant on the right, proportional to y1+s
P and in the image of (Wl ⊗ C∞(ΓP \G))K

with Wl: we denote this identification by w 7→ ws. Then for w ∈ Wl the Eisenstein series EP (ws)
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corresponds to the Eisenstein series denoted by E(P : w : s/2 : ·) in [38]1, and hence we have the
following properties for it from loc. cit.:

• The series is convergent for Re(s) > 0, and admits a meromorphic extension to C with no
poles on the imaginary axis ([38, page 9]).
• The constant terms of EPj (ws) are given by

(3.7) δi,jy
1+ s

2
Pi

w + y
1− s

2
Pi

Φi,j;l(s)w

where Φi,j;l is a meromorphic function with values in HomC(Wl,W−l) ([38, pages 7,13] where
Φi,j;l ⊕ Φi,j;−l corresponds to cPi|Pj (w, s)).

• Put Φl(s) =
⊕

i,j Φi,j;l(s) ∈ Hom
(
(Wl)

h, (W−l)
h
)
. Then we have the functional equations

Φl(−s)Φl(s) = id, and Φl(iu)∗ = Φl(iu)−1 for u ∈ R ([38, page 8]).

• The continuous part of L2(M ;Eτ ) is spanned by the functions
∫ +∞
−∞ ψ(u)E(wiu)du for ψ ∈

L2(R) and w ∈W h (where E(ws) =
∑h

j=1E((wj)s)): [38, page 32]

For Y = (Y1, . . . , Yh) ∈ [1,+∞[ one defines the truncation operator at height Y by:

T Y f(g) = f(g)−
h∑
j=1

1[Yj ,+∞)(yj(g))fPj (g), f ∈ C∞(M ;Eτ ).

For w ∈ (Wl)
h we have the ‘Maass–Selberg relations’:

‖T YE(ws)‖2L2(M ;Eτ ) = 2
h∑
j=1

log(Yj)|wj |2W + 〈Φl(s)
−1Φl(s)

′(w), w〉Wh

+
h∑
j=1

1

s

(
Y s
j 〈(Φl(−s)w)j , wj〉W − Y −sj 〈(Φl(s)w)j , wj〉W

)(3.8)

see [38, page 83].

3.2.5. Sections. Let v ∈ V h; we denote by E(s, v) the section of the bundle Eρ over Γ\H3 cor-
responding to E(vs) in the notation above. For l = −q, . . . , q we let Ψl(s) =

⊕
i Φj,i:l(s) ∈

Hom(V h
l , Vl) so that the constant terms of E(s, v) are given by

E(s, v)Pj = y1+s
j vj + y1−s

j (Ψl(s)v)j

for v ∈ Vl. For v ∈ (Vl)
h the sections E(s, v) are eigenfunctions of the laplacian ∆p[M ] with

eigenvalue −s2− l2 +λV where λV is the Casimir eigenvalue of V , λV = (n1 +n2 + 2)2 + (n1−n2)2

if V = V (n1, n2) by (3.2).
For v ∈ Vl the Maass–Selberg relations (3.8) are written:

‖T YE(s, v)‖2L2(M ;V ) = 2
h∑
j=1

log(Yj)|vj |2V + 〈Ψl(s)
−1Ψl(s)

′(v), v〉V h

+

h∑
j=1

1

s

(
Y s
j 〈(Ψl(−s)v)j , vj〉V − Y −sj 〈(Ψl(s)v)j , vj〉V

)(3.9)

1Note that our parameter s differs from that used in this reference by a factor of 2, but this does not affect any
of the results we quote from there.
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3.2.6. 1-forms. We denote by Ω+
j (V ) (resp. Ω−j (V )) the space of 1-forms on ΓPj\Nj with coefficients

in the restriction of Eτ which are of the form dzj ⊗ v (resp. dz ⊗ v) for v ∈ V , and by Ω+
j (Vl) the

supspace of those for which v ∈ gjVl where gj conjugates Pj to the parabolic at infinity P∞ (and
define Ω−j (Vl) similarly). We put Ω±(Vl) =

⊕
j Ω±j (Vl), Ω±(V ) =

⊕
j Ω±j (V ).

On the other hand, the 1-forms in coefficients in Eρ on ΓP \H3 correspond to the sections of the
bundle Eτ where τ = ρ|K⊗Ad|K (where Ad is the adjoint representation of G, which is isomosphic
to V (2, 0)). The representation τ has two summands: one isomorphic to ρ|K which corresponds (in
the correspondance set in 3.2.4) to the differential of sections, and its orthogonal which corresponds
to co-closed 1-forms, whose constant terms are of the form ω + ω for ω ∈ Ω+(V ), ω ∈ Ω−(V ): we
denote the latter by W , and by Wl the subspace Ω+(Vl−2)⊕Ω−(Vl+2). Then for ω ∈Wl the 1-form
E(s, ω) corresponding to E(ωs) is an eigenform of the laplacian with eigenvalue −s2− (l∓2)2 +λV
(again by (3.2)). The constant terms of E(s, ω) are given more precisely by

E(s, ω)Pj = y1+sωj + y1−s (Φl(s)ω)j .

The Maass-Selberg relations are given by:

(3.10) ‖T YE(s, ω)‖2L2Ω1(M ;V ) = 2
h∑
j=1

log(Yj)|ωj |2Ω±(V ) + 〈Φ±(s)−1Φ±(s)′(ω), ω〉Ω±(V ).

3.2.7. 2- and 3-forms. The Hodge ∗ yields isometries L2Ωp(M ;V ) → L2Ω3−p(M ;V ), so that the
spectral decomposition for L2Ω2, L2Ω3 spaces follows from that of L2Ω1 and L2 respectively.

4. Selberg’s trace formula and regularised traces

4.1. Automorphic kernels. As noted in 3.1.1 the Laplacians ∆p[H3] on H3 with coefficients in a
flat bundle are essentially self-adjoint operators and the spectral theorem thus allows, for a function
φ ∈ C∞([0,+∞)), to define an operator φ(∆p[H3]) on L2Ωp(H3;V ). Moreover, if φ is sufficiently
decreasing at infinity this operator is given by convolution with a kernel

kφ,p ∈ C∞(H3 ×H3; (∧pTH3 ⊗ V )⊗ (∧pTH3 ⊗ V )∗),

i.e. kφ,p(x, y) ∈ Hom(∧pT ∗xH3 ⊗ V,∧pT ∗yH3 ⊗ V ) and for a p-form f ∈ L2Ωp(H3;V ) one has

φ(∆p[H3])f(y) =

∫
H3

kφ,p(x, y)f(x)dx.

The kernels kφ,p are invariant under the diagonal action of G on H3 × H3, meaning that for g ∈
G, x, y ∈ H3 we have

(4.1) kφ,p(x, y) = (∧pTyg−1 ⊗ IdV ) ◦ kφ,p(gx, gy) ◦ (∧pTxg ⊗ IdV ).

The Plancherel formula for G allows to compute the kφ,p and with a lot more work one can obtain
the following lemma (essentially due to F. Sauvageot), an explanation of which can be found in [1,
Proposition 6.4] (by density of a subset S we mean that any Radon measure is determined by its
restriction to S).

Lemma 4.1. The space A(R) of smooth functions φ on R such that for any φ ∈ A(R) we have

kφ,p(x, y)� e−Ad(x,y) for all A > 0 is dense in the space S(R) of Schwartz functions.

From now on we will always suppose that φ ∈ A(R). For g ∈ G we put:

g∗kφ,p(x, y) = (∧pTyg−1 ⊗ ρ(g)−1) ◦ kφ,p(x, y) ∈ Hom(∧pT ∗xH3 ⊗ V,∧pT ∗g−1yH
3 ⊗ V ).

By the above Lemma we have |g∗kφ,p(x, y)| � e−Ad(x,y) so that it follows from the well-known
estimate

|{γ ∈ Γ, d(x, γy) ≤ r}| ≤ Cecr
17



(where c is absolute and C depends on Γ, x—see also Lemma 2.4) that the following series converges
uniformly on compact sets of H3 ×H3:

KΓ
φ,p(x, y) =

∑
γ∈Γ

γ∗kφ,p(x, γy).

The kernel KΓ
φ,p is Γ-equivariant in each variable and hence can be seen as a section of (∧pTM ⊗

V ) ⊗ (∧pTM ⊗ V )∗. On the other hand, since the operator ∆p[M ] (the Laplacian on p-forms
on M with coefficients in Eρ) is essentially self-adjoint we can define the operator φ(∆p[M ]) on
L2Ωp(M ;V ). Then KΓ

φ,p is a kernel for φ(∆p[M ]), in other words for f ∈ L2Ωp(M ;V ) we have:

(4.2) φ(∆p[M ])f(y) =

∫
Γ\H3

KΓ
φ,p(x, y)f(x)dx.

4.1.1. Truncation. In the sequel we will write Kf for the convolution of a section f with a kernel
K. Let P be a parabolic subgroup of G, we define the constant term at P of kφ,p to be the kernel
given by

(kφ,p)P (x, y) =

∫
N
n∗kφ,p(x, ny)dn.

For a Γ-rational parabolic subgroup P we define the constant term (KΓ
φ,p)P of KΓ

φ,p at P by

(KΓ
φ,p)P (x, y) =

1

vol(ΓP \N)

∑
γ∈Γ/ΓP

γ∗(kφ,p)γPγ−1(x, γy) =
1

vol(ΓP \N)

∑
γ∈Γ/ΓP

∫
N

(γn)∗kφ,p(x, γny)dn.

For f ∈ L2Ωp(M ;V ) a routine calculation yields

(4.3) (KΓ
φ,p)P (f) = (KΓ

φ,p)(fP )

Recall that the truncated manifold MY was defined in (2.3). One naturally defines the truncated
kernel on M by:

T YKΓ
φ,p =

{
KΓ
φ,p(x, y)− (KΓ

φ,p)Pj (x, y) yj(y) ≥ Yj ;
KΓ
φ,p(x, y) y ∈MY

and it follows from (4.3) that

(4.4) T YKΓ
φ,p(f) = KΓ

φ,p(T
Y f).

4.2. Geometric side. Let hφ,p be the function on [0,+∞[ defined by

(4.5) hφ,p(`) = tr (n∗kφ,p(x, nx))

for any unipotent isometry n ∈ G such that ` = d(x, nx). This definition is legitimate, i.e. the
right-hand side depends only on `: indeed, if n, n′ are two unipotent elements of G and x, x′ two
points in H3 such that d(x, nx) = d(x′, n′x′) there exists a g ∈ G such that gx = x′ and gng−1 = n′

(this follows immediately from Lemma 2.1 and the fact that the stabiliser of an horosphere in H3

acts transitively on euclidean spheres—note that this is no longer true in symmetric spaces other
than the real hyperbolic spaces) and hence

tr(n∗kφ,p(x, nx)) = tr((gng−1)∗kφ,p(gx, gnx)) = tr((n′)∗kφ,p(x
′, n′x′)).

Let Γ be a torsion-free lattice in G and let h be the number of cusps of the manifold M = Γ\H3,
which we suppose endowed with an arbitrary height function y = maxj yj . Let Λ1, . . . ,Λh be the
Euclidean lattices associated to the cusps of M and y; we associate to them the following quantity:

κj = 2

∫ +∞

α1(Λj)
EΛj (ρ)

dρ

ρ3
+
π(1− 2 logα1(Λj))

vol(Λj)
;
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note that only the second summand depends on the choice of y. We also define

TrΓ(kφ,p) = vol(M) · tr (kφ,p(x0, x0))

where x0 is any point of H3. For the statement and proof of the following proposition we will
suppose that Γ ∩ P ⊂ N for all parabolic subgroups P of G with unipotent radical N (we remark
that a modified version of the proposition is true in all generality, see [35, 3.5]).

Proposition 4.2. Let φ ∈ A(R), p = 0, . . . , 3 and let KΓ
φ,p be the associated automorphic kernel

on M . Then for any Y ∈ [1,+∞[h the integral∫
M
T YKΓ

φ,p(x, x)dx

is absolutely convergent, and as minj(Yj) tends to infinity we have the following asymptotic expan-
sion:

Tr
(
T YKΓ

φ,p

)
=

(
2πh

∫ +∞

0
rhφ,p(`(r))dr

) h∑
j=1

log Yj

+ TrΓ kφ,p +

∫
M

∑
γ∈Γlox

tr(γ∗kφ,p(x, γx))dx

+ 2πh

∫ +∞

0
r log(r)hφ,p(`(r))dr +

h∑
j=1

κj vol(Λj)

∫ +∞

0
rhφ,p(`(r))dr + o(1).

Proof. To make things more readable we will deal only with the case where M has only one cusp
(only notational alterations are necessary to deal with the general case). We fix a Γ-rational
parabolic P with unipotent radical N and denote by Λ the Euclidean lattice associated to ΓP =
Γ ∩N . We let D denote a fundamental domain for Γ in H3 and DY ⊂ D the preimage of MY : we
suppose that the only ideal vertex of D is the fixed point of P , so that for Y large enough D−DY

is contained in the horoball of height Y at P . By the definition of the function hφ,p and Lemma
2.1 we have∫

M−MY

| trT YKΓ
φ,p(x, x)|dx =

∫
D−DY

| tr(KΓ
φ,p − (KΓ

φ,p)P )(x, x)|dx

≤
∫
D−DY

∣∣∣∣∣∣
∑

η∈Λ−{0}

hφ,p

(
`

(
|η|

yP (x)

))
− 1

vol(Λ)

∫
N
hφ,p

(
`

(
|n|

yP (x)

))
dn

∣∣∣∣∣∣ dx
+

∫
D−DY

∑
γ∈Γ/ΓP
γ 6=ΓP

1

vol(Λ)

∫
N
|kφ,p(x, γnx)|dndx

+

∫
D−DY

∑
γ∈Γ−ΓP

|kφ,p(x, γx)|dx

+ vol(D −DY )| tr kφ,p(x0, x0)|
=: I1 + I2 + I3 + I4.

Now we prove that the Ik for k = 1, . . . , 4 are finite and go to 0 as Y → +∞. The term I4 is trivial
to deal with. Let us deal with I3: for any a > 0, since φ ∈ A(R) we have |kφ,p(x, y)| ≤ e−ad(x,y),
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and it follows that:

I3 ≤
∫
D−DY

∑
γ∈Γ−ΓP

e−ad(x,γx)dx

=

∫
D−DY

∫ +∞

0
e−ardNx(r)dx

where Nx(r) = |{γ ∈ Γ− ΓP : d(x, γx) ≤ r}|; integrating by parts we get:

I3 ≤
∫
D−DY

∫ +∞

0
ae−arNx(r)drdx�M,a vol(D −DY )

∫ +∞

0
e(c−a)rdr

where the last estimate follows from Lemma 2.4. Taking a > c it follows that I3 goes to 0 as
Y → +∞.

Now we deal with I2; the main point is that for any (large enough) a we have an estimate

(4.6)

∫
H
|kφ,p(x, y)|dy ≤ Cae−ad(x,H)

for any horosphere H such that x doe not lie in the horoball that it bounds. Let us prove this: let
y0 be the projection of x on H; we have

d(x, y) ≥ 1

2
(d(x,H) + d(y0, y))

for all y ∈ H (indeed, since d(y, x) ≥ d(y0, x) = d(x,H) it holds trivially if either d(y, y0) ≥
d(x,H) = d(x, y0) or d(y, y0) ≤ d(x,H)) and since we supposed that φ ∈ A(R) (see Lemma 4.1 and
the remark afterwards) for A = 2a we get that

|kφ,p(x, y)| �a e
−ad(x,H)e−ad(y,y0)

for all a > 0 and y ∈ H; since the integral
∫
H e
−ad(y,y0)dy converges for a large enough we obtain

(4.6). It follows that

(4.7) I2 ≤ Ca
∫
D−DY

∑
γ∈Γ/ΓP
γ 6=ΓP

e−ad(x,γH)dx

and by Lemma 2.5 the inner sum is finite and uniformly bounded for x ∈ D−D1, hence I2 is finite
and goes to 0 as Y → +∞.

Finally we deal with the first term, which is more subtle. The integrand is N -invariant and hence
it equals

I1 =

∫ +∞

Y

∣∣∣∣∣∣
∑

η∈Λ−{0}

hφ,p

(
`

(
|η|
y

))
− 1

vol(Λ)

∫
N
hφ,p

(
`

(
|n|
y

))
dn

∣∣∣∣∣∣ dyy3
.
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Figure 1. BY
Λ is in blue, with R in a darker shade.

Recall that NΛ is the counting function for the Euclidean lattice Λ, N ∗Λ = NΛ − 1 and EΛ(r) =

N ∗Λ −
πr2

vol(Λ) �
r

α1(Λ) . Now we compute:

∫ +∞

Y

∣∣∣∣∣∣
∑

η∈Λ−{0}

hφ,p

(
`

(
|η|
y

))
− 1

vol(Λ)

∫
N
hφ,p

(
`

(
|n|
y

))
dn

∣∣∣∣∣∣ dyy3

=

∫ +∞

Y

∣∣∣∣∫ +∞

0
hφ,p

(
`

(
r

y

))(
dN ∗Λ(r)− 2πr

vol(Λ)
dr

)∣∣∣∣ dyy3

=

∫ +∞

Y

∣∣∣∣∫ +∞

0

dhφ,p(`(r/y))

dr

(
N ∗Λ(r)− πr2

vol(Λ)

)
dr

∣∣∣∣ dyy3

≤
∫ +∞

Y

∫ +∞

0

∣∣∣∣dhφ,p(`(r))dr

∣∣∣∣EΛ(ry)dr
dy

y3
.

We have EΛ(ry) � (r + 1)y as y → ∞, uniformly in r (see Lemma 2.2) and it follows that the
right-hand side (hence I1) is finite and goes to 0 as Y → +∞.

It remains to prove the stated asympotic expansion: what we did above shows that it suffices
to prove that the integral

∫
MY trKΓ

φ,p(x, x)dx has such an expansion. Let O be a fundamental
parallelogram for Λ in N and BΛ the union of all geodesics from the fixed point of N passing through
O (for example if N = N∞ is the upper triangular unipotent group which fixes ∞, identifying N
with C we have BΛ = {(z, t) : z ∈ O, t ∈]0,+∞[}). Define :

(4.8) BY
Λ = {x ∈ BΛ : yP (x) ≤ Y }.
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Let R be the union of the pieces of horoballs γ(BΛ −BY
Λ ) ∩BΛ for γ 6∈ ΓP (see figure 1). Let M̃Y

be the universal cover of MY , which is naturally identified with a subset of H3. The strip OA is a

fundamental domain in H3 for Λ, and it follows that BY
Λ −R = BΛ ∩ M̃Y is a fundamental domain

in M̃Y for Λ. On the other hand,
⋃
γ∈Γ/ΓP

γDY is also a fundamental domains in M̃Y for Λ and it

follows that we have the following expression for the sum over the unipotent elements:

∫
MY

∑
γ∈Γ/ΓP

∑
η∈Λ−{0}

hφ,p(d(x, γηγ−1x))dx =
∑

γ∈Γ/ΓP

∫
γMY

∑
η∈Λ−{0}

hφ,p(d(x, ηx))dx

=

∫
BYΛ

∑
η∈Λ−{0}

hφ,p(d(x, ηx))dx−
∫
R

∑
η∈Λ−{0}

hφ,p(d(x, ηx))dx.

(4.9)

We can bound
∫
R

∑
η∈Λ−{0} hφ,p(d(x, ηx))dx by using arguments similar to those used for I2

above (see (4.7)) and this shows that it is o(1) as Y → +∞. The integral
∫
MY trKΓ

φ,p(x, x)dx can

be decomposed as a sum over the elements of Γ and using the conclusion of (4.9) to modify the
sum over unipotent elements we obtain:∫

MY

trKΓ
φ,p(x, x)dx = vol(M) tr (kφ,p(x0, x0)) +

∫
M

∑
γ∈Γlox

tr (γ∗kφ,p(x, γx)) dx

+

∫
BYΛ

∑
η∈Λ−{0}

hφ,p(d(x, ηx))dx+ o(1).

(4.10)

Hence we need to get an asymptotic expansion when Y →∞ of:

(4.11)

∫
BYΛ

∑
η∈Λ−{0}

hφ,p(d(x, ηx))dx =

∫
BYΛ

∑
η∈Λ−{0}

hφ,p

(
`

(
|η|

yP (x)

))
dx.

The integrand is N -invariant so that the integral in (4.11) equals

vol(Λ)

∫ Y

0

∑
η∈Λ−{0}

hφ,p

(
`

(
|η|
y

))
dy

y3

and by substituting r = |η|/y in the right-hand side we obtain the following expression :

(4.12) vol(Λ)
∑

η∈Λ−{0}

∫ +∞

|η|/Y
hφ,p(`(r))

rdr

|η|2
= vol(Λ)

∫ +∞

0
rhφ,p(`(r))

∑
η∈Λ−{0}
0<|η|≤rY

1

|η|2
dr.

On the other hand, for any R > 0 we get from integrating by parts (or Abel summation) that:

∑
v∈Λ

0<|v|≤R

1

|v|2
=

∫ R

α1(Λ)

dN ∗Λ(ρ)

ρ2
=
N ∗Λ(R)

R2
+

∫ R

α1(Λ)
2
N ∗Λ(ρ)

ρ3
dρ

and since we have

N ∗(ρ) =
πρ2

vol(Λ)
+ EΛ(ρ)
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we get that:

∑
v∈Λ

0<|v|≤R

1

|v|2
=

π

vol(Λ)
+
EΛ(R)

R2
+

2π(log(R)− logα1(Λ))

vol(Λ)
+

∫ R

α1(Λ)
EΛ(ρ)

dρ

ρ3

=
π

vol(Λ)
+
EΛ(R)

R2
+

2π(log(R)− logα1(Λ))

vol(Λ)
+

∫ +∞

α1(Λ)
EΛ(ρ)

dρ

ρ3
−
∫ +∞

max(R,α1(Λ))
EΛ(ρ)

dρ

ρ3

(4.13)

where the second line follows from the fact that the integral
∫ +∞

1 EΛ(ρ)dρ/ρ3 is absolutely conver-
gent by Lemma 2.2. Putting

κΛ =

∫ +∞

α1(Λ)
EΛ(ρ)

dρ

ρ3
+
π(1− 2 logα1(Λ))

vol(Λ)

we can rewrite (4.13) as :

(4.14)
∑
v∈Λ

0<|v|≤R

1

|v|2
=

2π log(R)

vol(Λ)
+ κΛ −

∫ +∞

max(R,α1(Λ))
EΛ(ρ)

dρ

ρ3
+
EΛ(R)

R2
.

Plugging this into (4.12) we obtain:

∫
BYΛ

∑
η∈Λ−{0}

hφ,p(d(x, ηx))dx =

∫ +∞

0
2π log(rY )rhφ,p(`(r))dr + κΛ vol(Λ)

∫ +∞

0
hφ,p(`(r))dr

− vol(Λ)

∫ +∞

0
rhφ,p(`(r))

∫ +∞

max(α1(Λ),rY )
EΛ(ρ)

dρ

ρ3
dr

+ vol(Λ)

∫ +∞

0
rhφ,p(`(r))

EΛ(rY )

(rY )2
dr.

(4.15)

The terms on the second and third lines are O(Y −1), and plugging this expansion in (4.10) finishes
the proof. �

4.3. Spectral side. The decomposition L2 = L2
disc ⊕ L2

Eis from (3.4) induces a splitting of the

operators T YKΓ
φ,p into T Y (KΓ

φ,p)disc ⊕ T Y (KΓ
φ,p)Eis. It is well-known that the operators (KΓ

φ,p)disc

are trace-class (see e.g. [38, Theorem 4.3]). All these operators have integrable kernels and we have

Tr(KΓ
φ,p)disc =

∫
M

(KΓ
φ,p)disc(x, x)dx.

We will denote by Tr(T YKΓ
φ,p) the integral of the kernel T YKΓ

φ,p on M . We have computed it
from the geometric expansion in Proposition 4.2, now we will use the Maass–Selberg relations to
compute it from the spectral decomposition. We note that our computation is essentially the same
as that of the “third parabolic term” in [38, Section 4]—see especially p. 85 in loc. cit.
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Proposition 4.3. For any Y ∈ [1,+∞[h we have the following asymptotic expansions as minj(Yj)→
+∞ (we put dl = dim(Wl)):

Tr(T YKΓ
φ,0) =

h∑
j=1

log Yj
π

∫ +∞

−∞

2q∑
l=−2q

dlφ
(
l2 + u2 + λV

)
du

− 1

2π

∫ +∞

−∞

2q∑
l=−2q

φ
(
l2 + u2 + λV

)
tr

(
Ψl(iu)−1dΨl(iu)

du

)
du

+ Tr(KΓ
φ,0)disc +

1

4

2q∑
l=−2q

φ
(
l2 + λV

)
tr Ψl(0) + o(1)

(4.16)

Tr(T YKΓ
φ,1) = Tr(T Y (KΓ

φ,0)Eis) +
h∑
j=1

2 log Yj
π

∫ +∞

−∞

2q+2∑
l=−2q−2

dlφ
(
(l ∓ 2)2 − 4 + u2 + λV

)
du

+ Tr(KΓ
φ,1)disc −

1

2π

∫ +∞

−∞

2q+2∑
l=−2q−2

φ
(
(l ∓ 2)2 + u2 + λV

)
tr(Φl(iu)−1dΦl(iu)

du
)du+ o(1)

(4.17)

(here Tr(T Y (KΓ
φ,0)Eis) is the trace of the restriction of T Y (KΓ

φ,0 to the subspace L2
Eis spanned by

Eisenstein series and it is given by (4.16) minus the term Tr(KΓ
φ,0)disc).

Proof. We can compute the operation of automorphic kernels on the continuous part of L2(M ;V )
in the following way. Let ψ ∈ L2(R) and v ∈Wl, we have:

KΓ
φ,pE(ψ, ω) =

∫ +∞

−∞
φ
(
(l ∓ 2)2 + u2 + λV

)
ψ(u)E(iu, ω)du

Put d = dimV , choose an orthonormal basis vk, k = 1, . . . , dh for V where all vk ∈ (Wlk)h. From
the preceding identity and (4.4) it follows that

Tr(T Y (KΓ
φ,0)Eis) =

∫ +∞

−∞

dh∑
k=1

φ
(
l2k + u2 + λV

)
‖T YE(iu, vk)‖2du.

Now expanding ‖T YE(iu, vk)‖2 using the Maass-Selberg reletions (3.9) yields:

Tr(T YKΓ
φ,0) = Tr(KΓ

φ,0)disc

+
h∑
j=1

log Yj
π

∫ +∞

−∞

2q∑
l=−2q

dlφ
(
l2 + u2 + λV

)
du

− 1

2π

∫ +∞

−∞

2q∑
l=−2q

φ
(
l2 + u2 + λV

)
tr

(
Ψl(iu)−1dΨl(iu)

du

)
du

+
1

2π

h∑
j=1

2q∑
l=−2q

φ
(
l2 + u2 + λV

) ∫ +∞

−∞

Y iu
j tr Ψl(−iu)− Y −iuj tr Ψl(iu)

iu
du+ o(1)
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To deduce (4.16) we must deal with the last line: but a classical computation (cf. [14, Proposition
5.3 in Chapter 6]) shows that for any function ξ ∈ S(R) one has

lim
Y→∞

(∫ +∞

−∞
ξ(u)

Y 2iu tr Ψl(−iu)− Y −2iu tr Ψl(iu)

2iu
du

)
=

1

4
ξ(0) tr Ψl(0)

and hence we are finished. The proof of (4.17) is exactly similar, using (3.10) in addition. �

4.4. Trace formula. The output of the work done in the previous two subsections is the follow-
ing result, an avatar of the Selberg Trace Formula. We do not push further the analysis of the
loxodromic summands on the geometric side since we will not need it.

Theorem 4.4. For any φ ∈ A(R) the operators (KΓ
φ,p)disc are trace-class and we have the equality

for p = 0:

Tr(Kφ,0)disc

− 1

2π

∫ +∞

−∞

2q∑
l=−2q

φ
(
l2 + u2 + λV

)
tr(Ψl(iu)−1dΨl(iu)

du
)du

+
1

4

2q∑
l=−2q

φ
(
l2 + λV

)
tr Ψl(0)

= TrΓ kφ,0 +

∫
M

∑
γ∈Γlox

tr(γ∗kφ,0(x, γx))dx

+ 2πh

∫ +∞

0
r log(r)hφ,0(`(r))dr +

h∑
j=1

κj vol(Λj)

∫ +∞

0
rhφ,0(`(r))dr.

A similar equality holds for p = 1, replacing the right-hand side above by the appropriate spectral
terms according to (4.17).

Proof. Let B′, B denote respectively the right-hand side and the left-hand side of the equality in
the statement; the equality between B and B′ follows from the fact that we have written the
expansion as minj(Yj) → +∞ of Tr(T YKΓ

φ,p) as either A log Y + B + o(1) (Proposition 4.2) and

A′ log Y +B′ + o(1) (Proposition 4.3). �

4.5. Asymptotics of regularised traces. Let M = Γ\H3 be a finite-volume hyperbolic three–
manifold. For a function φ ∈ A(R) we define TrR (φ(∆p[M ])), which we will also denote by TrRK

Γ
φ,p,

to be either side of the equality in Theorem 4.4. The convenient form in which we wrote the trace
formula allows the following result to be proven very easily.

Theorem 4.5. Let Γn be a sequence of torsion-free lattices in G which contain no element with
trace −2 and such that Mn = Γn\H3 is BS-convergent to H3. Suppose that the height functions on
the Mn are chosen such that

(4.18)

hn∑
j=1

|logα1(Λj,n)| = o(volMn)

(where the notation is as in Lemma 2.6). Suppose also that the following condition holds:

(4.19)

hn∑
j=1

α2(Λn,j)
2

α1(Λn,j)2
= o(volMn).
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Then we have the limit

(4.20) lim
n→∞

TrR(KΓn
φ,p)

vol(Mn)
= Tr(2)(kφ,p).

4.5.1. Remarks.

i) For cusp-uniform sequences, the condition (4.19) reduces to hn = o(volMn), which always
holds for BS-convergent sequences by Lemma 2.7.

ii) The hypothesis (4.18) on the height functions is satisfied if we take a sequence of covers
of some given orbifold M and the pull-back of the height functions on M (see Lemma 4.7
below).

iii) If yn, y
′
n are two height functions on Mn which both satisfy (4.18) then we have log(yn/y

′
n) =

o(volMn) (indeed, high enough in the jth cusp the function yn/y
′
n is constant and equals

α1(Λn,j)/α
′
1(Λn,j)).

4.5.2. Proof of Theorem 4.5. Let hn be the number of cusps of Mn; we choose representatives
P1, . . . , Phn of the Γn-classes of Γ-rational parabolic subgroups and s before denote by Λn,j the
Euclidean lattice (Γn)Pj inside Nj where Nj is the unipotent radical of Pj , identified with the
horosphere {yPj = 1}.

For p = 0, 1, 2, 3 we have 3d ≥ dimV ⊗ ∧pp so that

(4.21) tr(γ∗kφ,p(x, γx)) ≤ 3d|ρ(γ−1)|V |kφ,p(x, γx)|.

For x = gK, y = g′K ∈ H3 we put H(d(x, y)) = 3d|ρ(g−1g′)|·|kφ,p(x, y)|, then we have H(r)� e−ar

for all a > 0 as r →∞. We first want to estimate:

Hn =

∫
Mn

∑
γ∈Γlox

H(d(x, γx))dx.

which is done in the following lemma.

Lemma 4.6. If Mn BS-converges to H3 then Hn = o(volMn).

Proof. For a large enough (so that all the integrals below are absolutely convergent) we have

Hn �
∫
Mn

∫ +∞

0
e−ardNΓn(x, r)dx

= a

∫
Mn

∫ +∞

0
e−arNΓn(x, r)drdx = a

∫ +∞

0
e−ar

∫
Mn

NΓn(x, r)dxdr.

If we add the hypothesis that sys(Γn) ≥ δ > 0 for all n then the lemma is a consequence of (2.9)
(which imply that the sequence of functions r 7→ e−ar

∫
Mn
NΓn(x, r)/ vol(Mn)dx is dominated),

Lemma 2.6 and Lebesgue’s theorem. In general one needs to study in addition the integral on
the Margulis tubes near small closed geodesics; this is carried out in the proof of Theorem 7.14 in
[1]. �

We have:

(4.22) Cn := 2πhn

∫ +∞

0
r log(r)h(`(r))dr = o(volMn)

by Lemma 2.7. To conclude we need also the following asymptotic estimate:

(4.23) Un :=

hn∑
j=1

κn,j vol(Λn,j)

∫ +∞

0
rh(`(r))dr = o(volMn)
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where we denote

κn,j := κΛn,j =

∫ +∞

α1(Λn,j)
EΛn,j (ρ)

dρ

ρ3
+
π(1− 2 logα1(Λn,j)

vol(Λn,j)
.

We get from Lemma 2.2 the following estimate:∫ +∞

α1(Λn,j)
EΛn,j (ρ)

dρ

ρ3
� 1

α1(Λn,j)

∫ +∞

α1(Λn,j)
(ρ+ α2(Λn,j))

dρ

ρ3

=
1

α1(Λn,j)2
+
α2(Λn,j)

α1(λn,j)3

� 1

vol(Λn,j)

(
α2(Λn,j)

α1(Λn,j)
+
α2(Λn,j)

2

α1(Λn,j)2

)
with a constant that does not depend on n or j, and it follows that

κn,j vol(Λn,j)�
α2(Λn,j)

2

α1(Λn,j)2
+ logα1(Λjn).

so that by the hypothesis of the theorem,

Un �
hn∑
j=1

logα1(Λjn) + o(volMn)

and the right-hand side is an o(volMn) according to the assumption on the height functions.

Now the summands in TrRK
Γn
φ,p given by the right-hand side of the trace formula in Theorem

4.4 are, with the exception of TrΓ(kφ,p) vol(Mn), majorised by Un + Cn + Hn according to (4.21).
So it follows from (4.22), (4.23) and Lemma 4.6 that

|TrR(KΓn
φ,p)− TrΓ(kφ,p) vol(Mn)| = o(volMn)

which proves the theorem.

4.5.3. Height functions in coverings.

Lemma 4.7. Suppose that Mn is a sequence of finite covers of a finite–volume orbifold M and that

the height functions are pulled back from those (chosen arbitrarily) on M . Then
∑hn

j=1 α1(Λn,j) =

o(volMn).

Proof. We show that for all C > 0 we have

(4.24) lim sup
n

∑hn
j=1 α1(Λn,j)

volMn
≤ C−1.

We order the Pj so that α1(Λn,j) is increasing with j and denote by hCn the largest index such that
α1(Λn,j) < C for all j ≤ hCn . Then:

hn∑
j=1

α1(Λn,j)� ChCn +

hn∑
j=hCn+1

(α1(Λn,j))
−1[Λj : Λn,j ]� Chn + (α1(Λn,hCn+1)−1

hn∑
j=hCn+1

[Λj : Λn,j ]

≤ Chn + C−1h1[Γ : Γn]

where h1 is the number of cusps of M . The conclusion (4.24) then follows at once from Lemma
2.7. �
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5. Analytic torsion and approximation

From now on we fix a strongly acyclic representation ρ, V of G and all forms are taken with
coefficients in Eρ. We will define the regularised torsions TR(M ;V ) and the L2-torsion t(2)(V ) in
Section 5.3 below, and prove the following result.

Theorem 5.1. Let Mn := Γn\H3 be a sequence of finite–volume hyperbolic three–manifolds (to-
gether with height functions) satisfying the assumptions of Theorem 4.5. Suppose in addition
that the systole of the Mn is bounded away from 0, and that there exists ε > 0 and a sequence
an = o(volMn) such that for all n ≥ 1, l = −2q, . . . , 2q and u ∈ [−ε, ε] we have

tr

(
Ψl(iu)−1dΨl(iu)

du

)
≤ an, tr

(
Φl(iu)−1dΦl(iu)

du

)
≤ an.

Then we have

(5.1) lim
n→∞

TR(Mn;V )

vol(Mn)
= t(2)(V ).

Note that the condition on the intertwining operators holds (or not) independantly of the choice
of the height functions satisfying condition (4.18) (see Remark 3 after the Theorem 4.5).

5.1. Heat kernels. For φ(u) = e−tu the kernel kφ,p (resp. KΓ
φ,p) is called the heat kernel of H3

(resp. of M). We will use the bounds for the heat kernel given by the following result (see for
example [4, Lemma 3.8]).

Proposition 5.2. Let ρ be a finite-dimensional representation of SL2(C) and Eρ the associated
SL2(C)-equivariant Hermitian bundle on H3 (see 3.1.1). Let t0 > 0; there exists a constant C
depending only on t0 such that for all x, y ∈ X and t ∈]0, t0[ we have

|e−t∆p[H3](x, y)| ≤ Ct−d/2e−
d(x,y)2

5t .

We will also make use of the following fact about the heat kernel (see [5, Theorem 2.30].

Proposition 5.3. There exists αpk ∈ C
∞(G,End(∧pp ⊗ V )) such that for all x ∈ H3 we have the

asymptotic expansion at t→ 0

g∗e−t∆
p[H3](x, gx) = t−

3
2

m+1∑
k=0

αpk(g)e−
d(x,gx)2

4t tk +O(tm+ 1
2 ).

Moreover the term αp0(g) equals g∗τgx(x) where τy(x) denotes parallel transport from x to y along
the unique geodesic arc between them.

5.2. Asymptotic expansion of the heat kernel at t→ 0. We will need the following result to
define the regularised analytic torsion. Note that [28, Proposition 6.9] prove a more precise result
where all coefficients bpk are shown to vanish for odd k.

Proposition 5.4. For all p = 0, 1, 2, 3 and m ≥ 1 there are coefficients ap0, . . . , a
p
m, b

p
0, . . . , b

p
m and

a function Hp such that

(5.2) TrR(e−t∆
p[M ]) = t−

3
2

m+2∑
k=0

apkt
k
2 + bp0t

− 1
2 log(t) + t−

1
2

m∑
k=2

bpkt
k
2 log(t) +Hp(t)

and Hp(t)� t
m+1

2 as t→ 0.
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Proof. We fix p and put hpt (`) = tr(n∗e−t∆
p[M ](x, nx)) for a unipotent element n ∈ G and a x ∈ H3

such that d(x, nx) = ` (cf. (4.5)). We choose a fundamental domain D for Γ and define

S1(t) = 2πh

∫ +∞

0
r log(r)hpt (`(r))dr,

S2(t) =
h∑
j=1

κj vol(Λj)

∫ +∞

0
rhpt (`(r)) dr

S3(t) =

∫
D

∑
γ∈Γlox

tr(γ∗e−t∆
p[M ](x, γx))

so that by Proposition 4.2 we have:

(5.3) TrR e
−t∆p[M ] = TrΓ e

−t∆p[H3] + S1(t) + S2(t) + S3(t).

Putting g = 1G in Proposition 5.3 and integrating over D we get an expansion

(5.4) TrΓ e
−t∆p[H3] = vol(D)

m∑
k=−3

fpk t
k
2 +O(t

m+1
2 )

where the fpk are absolute coefficients, which takes care of the first summand.
Now we deal with S3; if we put `0 = sys(Γ) we get:∑

γ∈Γlox

tr(γ∗e−t∆
p[M ](x, γx)) ≤

∑
γ∈Γlox

Ct−
3
2 e−

d(x,γx)2

5t = C

∫ +∞

`0

t−
3
2 e−

`2

5t dNΓ(x, `)

= C

∫ +∞

`0

t−
5
2 `e−

`2

5tNΓ(x, `)d`

� t−
5
2 e−

`20
5t

(5.5)

so that S3(t) is actually an o(tm+ 1
2 ) for any m > 0.

To deal with S1 and S2 we will use the following expansion at t→ 0 (which follows immediately
from Proposition 5.3)

(5.6) hpt (`) = t−
3
2

m∑
k=0

bpk(`)e
− `

2

4t tk +O(tm+ 1
2 )

together with an elementary lemma in real analysis.

Lemma 5.5. Let ω be smooth in a neighbourhood of [0, 1]. For every integer m > 1 there are
constants cl, c

′
l for l = 1, . . . ,m+ 1 (depending on ω) such that

(5.7)

∫ 1

0
r log(r)ω(r)e−`(r)

2/4tdr −
m∑
l=2

tl/2(cl + c′l log t) ≤ cm+1t
(m+1)/2

Proof. Since r 7→ `(r) is a smooth diffeomorphism of [0,+∞[ and the function ` 7→ r log(r)/`(r) log(`(r))
is a smooth function near 0, by the change of variable from r to `(r) we are reduced to showing
that for a smooth function ω0 on [0, 1] there an expansion of the right form as t→ 0 of:∫ 1

0
` log(`)ω0(`)e−

`2

t d` =
t log t

2

∫ t−1/2

0
`ω0(t

1
2 `)e−`

2
d`+ t

∫ t−1/2

0
` log(`)ω0(t

1
2 `)e−`

2
d`
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This is an immediate consequence of Taylor’s formula applied to ω0 at 0 and of the following easy
estimate: ∫ t−

1
2

0
`ke−`

2
d` =

∫ +∞

0
`ke−`

2
d`+O(t−

k
2 e−

1
t ).

�

We get an expansion similar to (5.7) (but without the log t factor) for
∫ 1

0 rω(r)e−
`(r)2

4t dr using
the same argument. We finally get that for all m ≥ 1 there are coefficients cpk, d

p
k, e

p
k such that we

have at t→ 0 ∫ +∞

0
r log(r)hpt (`(r))dr =

m∑
k=−3

cpkt
k
2 +

m∑
k=−1

dpkt
k
2 log t+O(t

m+1
2 ),

∫ +∞

0
rhpt (`(r))dr =

m∑
k=−3

epkt
k
2 +O(t

m+1
2 )

(5.8)

and from this, (5.3), (5.4) and (5.5), we get the following expansion for the regularised trace :

(5.9) TrR(e−t∆
p[M ]) = t−

3
2

m+2∑
k=0

apkt
k
2 + t−

1
2

m∑
k=0

bpkt
k
2 log(t) +Hp(t).

It remains to prove that the coefficient bp1 in (5.9) is zero. Looking at the proof of (5.7) we see that
it comes from the degree-1 monomial in the Taylor expansion when `→ 0 of the (variable) coefficient
bp0(
√
t`) from (5.6). According to Proposition 5.3 we have that bp0(s) is equal to tr(n∗sτnsx(x)). The

map s 7→ n∗s is the inverse of the parallel transport along the horocycle in H3 associated to the
unipotent one-parameter group s 7→ ns. To show the vanishing of bp1 we thus have to prove that
parallel transport is the same up to O(s2) when done along a geodesic or horospheric arc with the
same endpoints.

Here is an explanation for why this is true. As s→ 0 the tangent vectors between the horosphere
and the geodesic are O(s)-close (in any smooth metric near x). Taking a smooth trivialisation of
Ωp(M ;V ) near x the parallel transports are thus solutions of differential equations of the form
◦
x(u) = A(u)x(u) (for the horosphere) and

◦
y(u) = (A(u) + εs(u))y(u) (for the geodesic) where

|εs(u)| ≤ s for 0 ≤ u ≤ s. We get using Taylor’s formula that for x(0) = y(0) we have :

x(t)− y(t) = (
◦
x(0)− ◦y(0))u+O(u2) = uεs(0) · x(0) +O(u2)�u≤s s

2

which finishes the proof. �

5.3. Definition of analytic torsions.

5.3.1. Regularised torsion. We fix a nonuniform torsion-free lattice Γ in G. As usual we also
denote by Γ Euler’s Gamma function defined for Re(s) > 0 by the formula Γ(s) =

∫ +∞
0 e−tts dtt and

meromorphically continued to C. It has a simple pole at each s = −n for n ∈ N and no zeroes, so
that 1/Γ is holomorphic on C. We want to check that

(5.10) ζp(s) :=
1

Γ(s)

∫ +∞

0
TrR(e−t∆

p[M ])ts
dt

t

defines a holomorphic function on the half-plane Re(s) > 3/2 which can be continued to a mero-
morphic function on C which is holomorphic at 0. The large-time convergence of the integral is
ensured by the spectral gap for the Laplacian (when there’s no spectral gap the integral converges
only in a half-plane Re(s) < c < 0 and has also to be analytically continued, see [30] or [28]) as we
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now explain: the spectral expansion (4.17) applied to the heat kernel yields, for example for p = 1,
the following estimate as t→∞:

TrR e
−t∆1[M ] = Tr(e−t∆

1[M ])disc + e−t(n1−n2)2
T

where T is bounded as t → +∞, whence it follows that TrR e
−t∆[M ] � e−λ0t where λ0 > 0 is a

lower bound for the whole spectrum of all ∆p[M ] (see Proposition 3.1) as t→∞. Thus we get that

for any t0 > 0 the integral
∫ +∞
t0

TrR(e−t∆
p[M ])ts dtt converges for all s ∈ C. An easy computation

moreover yields that

(5.11)
d

ds

(
1

Γ(s)

∫ +∞

t0

TrR(e−t∆
p[M ])ts

dt

t

)
s=0

=

∫ +∞

t0

TrR(e−t∆
p[M ])

dt

t
.

To deal with the small-time part we use the following classical lemma.

Lemma 5.6. Let φ ∈ C0(0,+∞) such that there are integers m,m′ ≥ 0, coefficients ak, k =
−m′, . . . ,m and a continuous function H so that

φ(t) =
t→0

m∑
k=−m′

(
akt

k/2 + bkt
k/2 log(t)

)
+H(t)

with b0 = 0 and H(t) � t
m+1

2 near 0. Then for all t0 > 0 the integral 1
Γ(s)

∫ t0
0 φ(t)ts dtt converges

on the half-plane Re(s) > m′/2 and the holomorphic function it defines may be meromorphically
continued to a function on Re(s) > 1/2 which is regular at 0.

Proof. For α ∈ C the integral
∫ t0

0 tα+s−1dt converges absolutely on Re(s) > α and defines a mero-
morphic function on C with a single simple pole at s = −α, and since 1/Γ has a zero at 0 and

the integral
∫ t0

0 H(t)tsdt/t converges for Re(s) > −m/2 we get the first part. The formula for the
derivative at 0 follows from a staightforward computation.

The proof for the terms
∫ t0

0 tα+s−1 log(t)dt is the same except that we get a double pole at s = α,
thus we need to assume b0 = 0 for the continuation to be holomorphic at 0 (see also [5, Lemma
9.35]). �

It follows from Proposition 5.4 and Lemma 5.6 that we may define the regularised determinant
of the Laplacian by

(5.12) detR ∆p[M ] := exp(ζ ′p(0))

and the analytic torsion by

(5.13) TR(M) =

 3∏
p=0

detR(∆p[M ])(−1)pp

 1
2

= (detR(∆0[M ])−3 detR(∆1[M ]))
1
2

5.3.2. L2-torsion. The natural candidate to be the limit of finite torsions is the L2-torsion, cf. [23,
Question 13.73]. The following definition does not depend on t0 > 0:

log T (2)(M ;V ) =
1

2

3∑
p=1

p(−1)p
(
d

ds

(
1

Γ(s)

∫ t0

0
TrΓ(e−t∆

p[H3])ts−1dt

)
s=0

+

∫ +∞

t0

TrΓ(e−t∆
p[H3])

dt

t

)
.

(5.14)

The convergence of the fist integral follows from the asymptotic expansion (5.4); the large-time con-
vergence is obvious here because the Laplacian on H3 with coefficients in V has a spectral gap. We
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see that log T (2) is a multiple of vol(D) and we denote by t(2)(V ) the constant log(T (2)(M,V ))/ vol(M).
This has been computed in all generality in [4] to yield (1.4).

5.4. Proof of Theorem 5.1.

5.4.1. Plan of proof. We naturally study small and large times separately. We want first to prove
that for any t0 > 0 the following limit holds:

(5.15)
1

vol(Mn)

d

ds

(∫ t0

0
TrR

(
e−t∆

p[Mn])− TrΓn(e−t∆
p[H3])

)
ts
dt

t

)
s=0

−−−→
n→∞

0

The proof of this is more involved than that of the pointwise convergence of the traces since we
have to control the asymptotics as t→ 0 of the heat kernels of Mn as n→∞. We carry it out in
5.4.3 by going to go over the steps of the proof of Theorem 4.5 with extra care for the dependency
in t of the majorations.

We also have to deal with the convergence of the large-time integral as n varies. What we need
are the following limits, which we will prove right away in 5.4.2 below.

lim
t0→+∞

(
lim sup
n→∞

∫ +∞

t0

TrR(e−t∆
p[Mn])

vol(Mn)

dt

t

)
= 0,(5.16)

lim
t0→∞

(∫ +∞

t0

TrΓ(e−t∆
p[H3])

dt

t

)
= 0.(5.17)

Assuming all these limits we can now conclude the proof of Theorem 5.1: the limit (5.15) above
yields for all t0 > 0

lim sup
n→∞

log TR(Mn)− log T (2)(Mn)

vol(Mn)
≤ lim sup

n→∞

(∫ +∞

t0

TrR(e−t∆
p[Mn])

vol(Mn)

dt

t

)
+

∫ +∞

t0

TrΓ(e−t∆
p[H3])

dt

t

and by (5.16),(5.17) we get that the right-hand side goes to 0 as t0 → +∞, so that the limit superior
on the left must be 0.

5.4.2. Spectral gap and large times. Obviously (5.17) follows from the convergence of the integral.
Now we prove (5.16) using the uniform spectral gap. Let us first deal with the continuous part.
For u ∈ [ε,+∞) the Maass-Selberg relations (3.9) for Y = 1 yield

−〈Ψl(iu)−1dΨl(iu)

du
· v, v〉V hC = |T 1E(iu, v)|2L2(Mn;VC) +

1

iu
(〈Ψl(iu) · v, v〉V hC − 〈Ψl(−iu) · v, v〉V hC ).

As Ψl(iu) is unitary the right-hand side is bounded below by −2ε−1 and it follows that 2ε−11V hC
−

Ψl(iu)−1 dΨl(iu)
du is positive when |u| ≥ ε; in particular,

ξ(u) := tr

(
2ε−11

V hnC
−Ψl(iu)−1dΨl(iu)

du

)
≥ 0
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and since for t ≥ 1 we have e−tu
2 ≤ e−u2

we get:

−
∫
|u|≥ε

e−u
2t tr

(
Ψl(iu)−1dΨl(iu)

du

)
du

= −2ε−1hn dim(V )

∫
|u|≥ε

e−u
2tdu+

∫
|u|≥ε

ξ(u)e−u
2tdu

≤ −2ε−1hn dim(V )

∫
|u|≥ε

e−u
2tdu+

∫
|u|≥ε

ξ(u)e−u
2
du

=

(
2ε−1 dim(V )

∫
|u|≥ε

e−u
2
du

)
hn −

∫
|u≥ε

e−u
2

tr

(
Ψl(iu)−1dΨl(iu)

du

)
du.

(5.18)

We put

C =

(
2ε−1 dim(V )

∫
|u|≥ε

e−u
2
du

)
,

recall from (3.2) that l2 + λV ≥ (n1 − n2)2 for all l under consideration here, so that e−(l2+λV )t ≤
e−(n1−n2)2(t−1)e−(l2+λV ); from the last line of (5.18) we get:

(5.19) −
∫
|u|≥ε

e−(u2+l2+λV )t tr

(
Ψl(iu)−1dΨl(iu)

du

)
du

≤ Chne−(n1−n2)2t − e−(n1−n2)2(t−1)

∫
|u≥ε

e−(u2+l2+λV ) tr

(
Ψl(iu)−1dΨl(iu)

du

)
du.

Since an ≥ tr Ψl(iu)−1 dΨl(iu)
du we also have

tr

(
an

hn dimV
1
V hnC
−Ψl(iu)−1dΨl(iu)

du

)
≥ 0

and we obtain in the same way

(5.20) −
∫
|u|≤ε

e−u
2t tr

(
Ψl(iu)−1dΨl(iu)

du

)
du ≤ Can −

∫
|u≤ε

e−u
2

tr

(
Ψl(iu)−1dΨl(iu)

du

)
du

Since tr Ψl(0) ≤ dlhn for all l, we also have

(5.21)
∑
l

e−t(l
2+λV ) tr Ψl(0) ≤ dim(V )hn + e−(t−1)(n1−n2)2

∑
l

e−(l2+λV ) tr Ψl(0).

Now let λ0 be the lower bound on the spectra of all (∆p[Mn])disc given by Proposition 3.1; we

may suppose λ0 ≤ (n1 − n2)2. We have Tr(e−t∆
p[Mn])disc ≤ e−λ0(t−1) Tr(e−∆p[Mn])disc and since

TrR e
−t∆p[Mn] is the sum of this with the terms on the right-hand side of (5.19),(5.20) and (5.21)

we finally obtain:

TrR e
−t∆p[Mn] ≤ e−λ0(t−1) TrR e

−∆[Mn] +O(e−t(n1−n2)2
(an + hn))

from which follows:

sup
n

(
1

vol(Mn)

∫ +∞

t0

TrR(e−t∆
p[Mn])

dt

t

)
≤
∫ +∞

t0

e−λ0(t−1)dt

t
· sup

n

TrR e
−∆p[Mn]

vol(Mn)
+
O(an + hn)

vol(Mn)
.

By Theorem 4.5, Lemma 2.7 and the hypothesis on an we have the right-hand side above is bounded
in n and goes uniformly to 0 as t0 →∞.
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5.4.3. Small times. To deal with the small-time part we analyse each of the terms in (5.3). Recall
that for j = 1, . . . , hn we have put Λn,j = (Γn)Pj and

κn,j =

∫ +∞

αnj

EΛn,j (ρ)
dρ

ρ3
− π(1 + 2 logα(Λn,j))

vol(Λn,j)
.

Then we get that

TrR e
−t∆p[Mn] − TrΓn e

−t∆p[H3] =

∫
Dn

∑
γ∈(Γn)lox

tr γ∗e−t∆
p[H3](x, γx)dx

+ 2πhn

∫ +∞

0
r log(r)hpt (`(r))dr +

hn∑
j=1

κn,j vol(Λn,j)

∫ +∞

0
rhpt (`(r))dr

=: T1 + T2.

By the estimates from Theorem 5.2 we have

d

ds

(∫ t0

0
T1t

sdt

t

)
s=0

�
∫ t0

0

∫
Dn

∑
γ∈(Γn)lox

e
− d(x,γx)2

C2t dxt−
5
2
dt

t

=

∫
Mn

∑
γ∈(Γn)lox

(∫ t0

0
e
− d(x,γx)2

C2t t−
5
2
dt

t

)
dx

and the right-hand side is an o(volMn) by Lemma 4.6.
Now we deal with T2; put:

Ξ(s) =

∫ t0

0

∫ +∞

0
r log(r)hpt (`(r))drt

sdt

t
,

Θ(s) =

∫ t0

0

∫ +∞

0
rhpt (`(r))drt

sdt

t
.

(5.22)

It follows from (5.8) and Lemma 5.6 that Ξ,Θ extend to meromorphic functions on C which are
holomorphic at 0 and we get

d

ds

(∫ t0

0
T2t

sdt

t

)
s=0

= 2πhn
dΞ

ds
(0) +

 hn∑
j=1

κn,j vol(Λn,j)

 dΘ

ds
(0).

On the other hand we have seen that
∑hn

j=1 κn,j vol(Λn,j) = o(volMn) in the proof of Theorem 4.5,

and hn = o(volMn) by Lemma 2.7, so that the right-hand side itself is o(volMn), which concludes
the proof.

6. The asymptotic Cheeger–Müller equality: statement

In this section we recall the definition of absolute analytic torsion for manifolds with boundary
and we give the scheme of proof for the following theorem. The actual work is done in Sections 7
and 8 below.

Theorem 6.1. Let V be a strongly acyclic representation of G and Mn = Γn\H3 a sequence
of finite-volume hyperbolic three–manifolds satisfying the conditions of Theorem 5.1, with (4.19)
replaced by the stronger condition that we have

(6.1)

hn∑
j=1

(
α1(Λj,n)

α2(Λj,n)

)2

� vol(Mn)

(log(volMn))20
.
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Then for

Y n
j =

 vol(Mn)∑hn
j=1

α2(Λn,j)2

α1(Λn,j)2

 1
10

· α1(Λn,j).

the following limit holds.

(6.2)
log TR(Mn;V )− log Tabs(M

Y n
n ;V )

vol(Mn)
−−−→
n→∞

0.

Once we accept this result we can deduce an asymptotic equality between regularised torsion and
a combinatorial absolute torsion that we will define in (6.5) below. The other important ingredient
for this is the generalisation by Brüning and Ma [11] of the Cheeger–Müller equality to the case of
flat bundles on manifolds with boundary.

Theorem 6.2. Notations as above, we have the limit

(6.3)
log TR(Mn;V )− log τabs(M

Y n
n ;V )

vol(Mn)
−−−→
n→∞

0.

6.1. Absolute torsions.

6.1.1. Analytic torsion. Let X be a compact Riemannian manifold with boundary and V a real
flat vector bundle on X with a Euclidean metric. Then the space Ωp(X;V ) of smooth p-forms on
X with coefficients in V is operated upon by the Hodge Laplacian ∆p[X]. The restriction of ∆p[X]
to the forms satisfying absolute conditions on the boundary (i.e. the boundary restrictions of ∗f
and ∗df are zero, where ∗ is the Hodge star) admits an essentially autoadjoint extension ∆p

abs to
the space L2Ωp(X;V ) of square-integrable p-forms. We thus may form the associated heat kernel

e−t∆
p
abs[X] which is the convolution by a smooth kernel e−t∆

p
abs[X](., .), is trace-class and has an

asymptotic expansion Tr(e−t∆
p
abs[X]) = a3t

− 3
2 + ...+ a0 +O(t

1
2 ) as t→ 0 (cf. [16, Theorem 1.11.4]).

On the other hand the spectrum of ∆p
abs[X] is discrete and thus we have an estimate

Tr(e−t∆
p
abs[X])− dim ker(∆p

abs[X])� e−λ1t

where λ1 is its smallest positive eigenvalue. Thus the zeta function

ζp,abs(s) :=
1

Γ(s)

∫ +∞

0
(Tr(e−t∆

p
abs[X])− dim ker(∆p

abs[X]))ts
dt

t

is well-defined for Re(s) > 3/2 and may be extended to a meromorphic function on C which is
holomorphic at 0. One then defines det(∆p

abs[X]) = exp(ζ ′p,abs(0)) and

Tabs(X;V ) =

dimX∏
p=1

det(∆p
abs[X])(−1)pp

 1
2

.

6.1.2. Reidemeister torsion. We will use a definition of Reidemeister torsion derived from that
given in [11]. In this reference the authors define two norms on the determinant line

D = ⊗dimX
p=0 ∧bp Hp(X;V )

(where bp = dimHp(X;V )): one, that we will denote by ‖ · ‖L2 , which is induced by the L2-norms
obtained by identifying Hp(X;V ) = ker ∆p

abs[X] and another, ‖ · ‖comb, obtained from a smooth
triangulation of X. The Reidemeister torsion is then the positive real number defined by

τabs(X;V ) =
‖ · ‖comb

‖ · ‖L2
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which does not depend on the triangulation. In [11, (0.11)] the authors compute the difference
log τabs − log Tabs in terms of the geometry of the boundary; we will only use the special case of
their result (cf. (0.14 in loc. cit.) which states that

(6.4) log τabs(X;V )− log Tabs(X;V ) =
log(2)

2
dim(V )χ(∂X)

when the metric is a product near the boundary.
Now suppose that π1(X) preserves a lattice VZ in V ; we can then define the integral homology

H∗(X;VZ) and we have a decomposition Hp(X;VZ) = Hp(X;VZ)free⊕Hp(X;VZ)tors. The free part
Hp(X;VZ)free is a lattice in ker(∆p

abs[X]) so we can define its covolume vol (Hp(X;VZ)free). We then
have, more or less tautologically (see [13, Section 1]):

(6.5) τabs(X;V ) =

dimX∏
p=0

(
|Hp(X;VZ)tors|

vol (Hp(X;VZ)free)

)(−1)p

by evaluating the norms on a basis of D coming from bases of the free Z-module Hp(X;VZ)free.

6.2. Comparing analytic torsions. We give here the proof of Theorem 6.1 assuming the content
of Sections 7 and 8 (note that the condition (6.1) is not used until Section 8). We have

log TR(Mn;V )− log Tabs(M
Y n

n ;V )

=
3∑
p=1

p(−1)p
d

ds

(
1

Γ(s)

∫ t0

0
(TrR e

−t∆p[Mn] − Tr e−t∆
p
abs[M

Y n
n ])ts

dt

t

)
s=0

+

∫ +∞

t0

TrR e
−t∆p[Mn]dt

t
−
∫ +∞

t0

Tr e−t∆
p
abs[M

Y n
n ]dt

t

+
d

ds

(
1

Γ(s)

∫ t0

0
bp(Mn;V )ts

dt

t

)
s=0

.

The first line is an o(volMn) for any t0 > 0 according to Proposition 7.1, the limit superior of the
second one goes to 0 as t0 → +∞ according to Proposition 8.1 and (5.16). The third lines equals
hn times a constant and thus it is also negligible before vol(Mn). Thus the right-hand side is an
o(volMn).

6.3. Applying Brüning and Ma’s result. We now give the proof of Theorem 6.2. For a finite-
volume hyperbolic manifold M let g0 be the hyperbolic metric on MY and g1 a Riemannian metric
on MY which equals g0 on MY/3 and is a product on a neighbourhood of the boundary, for example
we can take (in coordinates (z, y) in a cusp):

g1(z, y) =
(
ψ(log(Y/y))Y −2 + (1− ψ(log(Y/y)))y−2

)
(dz2 + dy2)

where ψ is a smooth function which is zero on [1,+∞) and constant equal to 1 near zero. we put
gu = ug1 + (1−u)g0 which is a smooth family of Riemannian metrics on MY . The following result
is well-known (see also [10, Section 4] which gives an exact formula for the error term).

Lemma 6.3. There exists smooth functions cp(u) depending only on ψ such that we have, for all

M and Y ∈ [1,+∞)h:

d

du

(
log Tabs(M

Y , gu)− log τabs(M
Y , gu)

)
= vol(∂MY )

3∑
p=0

p(−1)pcp(u).

36



Proof. This follows at once from [26, Theorem 2.22] (see also [13, Theorem 3.27]) since the isometry
class of the germ of gu on the boundary ∂MY

n does not depend on n or Y . �

On the other hand, by [11, Theorem 0.1] (see (6.4)) we get that Tabs(M
Y , g1) = τabs(M

Y , g1) so
that

(6.6)
log Tabs(M

Y )− log τabs(M
Y )

vol(M)
=

vol(∂MY )

vol(M)

∫ 1

0

3∑
p=1

(−1)ppcp(u)du.

Now we apply this to the heights Y n; we have:

vol(∂MY n

n ) ≤
hn∑
j=1

(Y n
j )−2α1(Λn,j)α2(Λn,j)

=

hn∑
j=1

α1(Λn,j)

(Y n
j )2

· α2(Λn,j)

α1(Λn,j)
≤ max

j=1,...,hn

(
α1(Λn,j)

(Y n
j )2

)
·
hn∑
j=1

α2(Λn,j)

α1(Λn,j)

and the right-hand side is an o(volMn) since on the one hand we have
∑hn

j=1
α2(Λn,j)
α1(Λn,j)

= o(volMn)

by the hypothesis that (4.19) holds and on the other for the sequence Y n from Proposition 7.3 we
have maxj=1,...,hn(α1(Λn,j)/(Y

n
j )2)→ 0 as n→ +∞. Thus it follows from (6.6) that

log Tabs(M
Y n
n ;V )− log τabs(M

Y n
n ;V )

vol(Mn)
−−−→
n→∞

0

which finishes the proof of Theorem 6.2

7. The asymptotic Cheeger–Müller equality: the small-time part

The aim of this section is to prove the following result, which is an immediate consequence of
Propositions 7.4 and 7.5 below.

Proposition 7.1. For the sequence Y n defined in Theorem 6.1 we have for any t0 > 0 the limit

lim
n→∞

d
ds

(
1

Γ(s)

∫ t0
0 (TrR e

−t∆p[Mn] − Tr e−t∆
p
abs[M

Y n
n ])ts dtt

)
s=0

vol(Mn)
= 0.

7.1. Heat kernels on truncated hyperbolic manifolds. Let M = Γ\H3 be a complete hyper-
bolic manifold with cusps y1, . . . , yh a set of Γ-invariant height functions. Then for Y ∈ [1,+∞[h

the set
M̃Y = {x ∈ H3, ∀j = 1, . . . , h : yj(x) ≤ Yj}

is the universal cover of MY . The following generalisation of Proposition 5.2 to this context will
be proved in Appendix A (as in Section 2 we use ε to denote the Margulis constant of H3).

Proposition 7.2. Let M be a hyperbolic manifold with h cusps and Y ∈ [1,+∞[h such that for all
peripheral subgroups Λ of π1(M) there is a vector in Λ which has a displacement less than ε/10 on
the relevant horosphere at height Y . Then for all t0 > 0 there is a C > 0 such that for all t ∈]0, t0]
we have that ∣∣∣e−t∆p

abs[M̃
Y ](x, y)

∣∣∣ ≤ Ct− 3
2 e−

d(x,y)2

5t .

This implies that the series in the following expansion for the heat kernel converges uniformly

on compact sets of M̃Y :

(7.1) e−t∆
p
abs[M

Y ](x, y) =
∑
γ∈Γ

γ∗e−t∆
p
abs[M̃

Y ](x, γy).
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7.2. A useful estimate. The following proposition is the starting point for the proof of Theorem
6.1; note that the fact that minj=1,...,hn(Y n

j /α1(Λn,j)) −−−→
n→∞

+∞ implies that for n large enough

the heights Y n satisfy the assumption of Proposition 7.2.

Proposition 7.3. Let Mn be as in the statement of Theorem 6.1 and put:

S(n, t, Y ) =

∫
MY
n

∑
γ∈Γn, γ 6=1

e−
d(x,γx)2

5t dx.

Then for all t0 > 0 the function Ω defined by Ω(s) =
∫ t0

0 S(n, t, Y )ts−
3
2
dt
t is holomorphic on C and

there is a sequence Y n ∈ [1,+∞[hn such that

min
j=1,...,hn

(Y n
j /α1(Λn,j)) −−−→

n→∞
+∞

and we have:

d

ds

(
1

Γ(s)
Ω(s)

)
s=0

=

∫ t0

0
t−

3
2
S(n, t, Y n)

vol(Mn)

dt

t
−−−→
n→∞

0.

More precisely, we can take:

Y n
j =

 vol(Mn)∑hn
j=1

α2(Λn,j)2

α1(Λn,j)2

 1
10

· α1(Λn,j).

Proof. Let Y ∈ [1,+∞[hn . Recall that Bn,j = BΛn,j et B
Yj
n,j = B

Yj
Λn,j

were defined in (4.8). Let Rn,j

be the union of pieces of horoballs γ(Bn,j − B
Yj
n,j) ∩ Bn,j for γ 6∈ ΓPj . Separating unipotent and

loxodromic elements we obtain as in (4.9) the equality :

S(n, t, Y ) =
n∑
j=1

∫
B
Yj
n,j

∑
η∈Λn,j−{0}

e−
d(x,ηx)2

5t dx

−
hn∑
j=1

∫
Rn,j

∑
η∈Λn,j−{0}

e−
d(x,ηx)2

5t dx+

∫
M−MY

∑
γ∈(Γn)lox

e−
d(x,γx)2

5t dx

and we put :

T1 =

∫
M−MY

∑
γ∈(Γn)lox

e−
d(x,γx)2

5t dx, T2 =

hn∑
j=1

∫
Rn,j

∑
η∈Λn,j−{0}

e−
d(x,γx)2

5t dx,

T3 =
n∑
j=1

∫
B
Yj
n,j

∑
η∈Λn,j−{0}

e−
d(x,ηx)2

5t dx.

The term T1 is dealt with exactly as the similar term T1 in 5.4.3. The term T2 is dealt with
similarly to I2 in (4.7) in the proof of Proposition 4.2 (taking into account the integral over t).

We deal with the more delicate term T3 cusp by cusp: put

Sj =

∫
B
Yj
n,j

∑
η∈Λn,j−{0}

e−
d(x,ηx)2

5t dx,
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then we have:

Sj = vol(Λn,j)

∫ Yj

0

∫ +∞

α1(Λn,j)
e−

`(r/y)2

5t dN ∗n,j(r)
dy

y3

=
vol(Λn,j)

5t

∫ Yj

0

∫ +∞

α1(Λn,j)/y

d`

dr
e−

`(r)2

5t N ∗n,j(ry)dr
dy

y3
.

By Lemma 2.2 we have N ∗n,j(ry) � (ry)2

vol(Λn,j)
+

α2(Λn,j)
α1(Λn,j)

where the constant does not depend on

n, j. It follows that

Sj �
∫ Yj

0

∫ +∞

α1(Λn,j)/y
r2e−

`(r)2

5t dr
dy

y
t−

5
2

+ vol(Λn,j)

∫ Yj

0

∫ +∞

α1(Λn,j)/y

α2(Λn,j)

α1(Λn,j)
e−

`(r)2

5t dr
dy

y3
t−

5
2

(7.2)

We deal with the first line now. We split the integration between r ≥ 2 and α1(Λn,j)/y ≤ r ≤ 2.
When r ≥ 2 it follows from Lemma 2.1 that `(r)� log r and we obtain:∫ t0

0

∫ Yj

0

∫ +∞

2
r2e−

`(r)2

5t dr
dy

y
t−

5
2
dt

t
�
∫ t0

0
e−

(log 2)2

5t log Yj t
− 5

2
dt

t

� log Yj .

(7.3)

On the other hand, when r ∈ [0, 2] we have `(r) > cr for some c > 0 and thus:∫ t0

0

∫ Yj

0

∫ 2

α1(Λn,j)/y
r2e−

`(r)2

5t dr
dy

y
t−

5
2
dt

t
�
∫ Yj

0

∫ t0

0
e−

(α1(Λn,j)/y)2

Ct t−
5
2
dt

t

dy

y

�
∫ Yj

0

∫ +∞

0
e−

1
Ct t−

5
2
dt

t

(
y

α1(Λn,j)

)5 dy

y

�
(

Yj
α1(Λn,j)

)5

.

(7.4)

For the second line of (7.2) we have the majoration

vol(Λn,j)

∫ Yj

0

∫ +∞

α1(Λn,j)/y

α2(Λn,j)

α1(Λn,j)
e−

`(r)2

5t dr
dy

y3
� α2(Λn,j)

2

∫ Yj

0

∫ +∞

α1(Λn,j)/y
e−

`(r)2

5t dr
dy

y3

� α2(Λn,j)
2

Y 2
j

e−
(α1(Λn,j)/Yj)2

Ct .

and it follows as in (7.4) above that

(7.5)

∫ t0

0
vol(Λn,j)

∫ Yj

0

∫ +∞

α1(Λn,j)/y

α2(Λn,j)

α1(Λn,j)
e−

`(r)2

5t dr
dy

y3
t−

5
2
dt

t
� α2(Λn,j)

2

α1(Λn,j)2
×
(

Yj
α1(Λn,j)

)3

.

Putting (7.2),(7.3),(7.4) and (7.5) together and summing over the cusps we obtain:

(7.6)

∫ t0

0

hn∑
j=1

Sj
dt

t
�

hn∑
j=1

(
log Yj +

(
Yj

α1(Λn,j)

)5

+
α2(Λn,j)

2

α1(Λn,j)2
×
(

Yj
α1(Λn,j)

)3
)

We now define

an =

 vol(Mn)∑hn
j=1

α2(Λn,j)2

α1(Λn,j)2

 1
10
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so that an tends to infinity, and put

(7.7) Y n
j = α1(Λn,j)× an

so that minj(α1(Λn,j)/Y
n
j ) = a−1

n −−−→
n→∞

0. We let Snj be Sj for Y = Y n
j . From (7.6) above we

finally get that:∫ t0

0

∑
j S

n
j

vol(Mn)

dt

t
� 1

vol(Mn)

hn∑
j=1

(
log an + log(α1(Λn,j)) + a5

n + a3
n ·

α2(Λn,j)
2

α1(Λn,j)2

)

≤ log(volMn)

vol(Mn)
+

∑hn
j=1 logα1(Λn,j)

vol(Mn)
+

(
hn

vol(Mn)

) 1
2

+

∑hn
j=1

α2(Λn,j)
2

α1(Λn,j)2

vol(Mn)


7
10

The second summand is o(volMn) because of the condition (4.18) on the height functions, the third
by Lemma 2.7 and the last one by condition (4.19). �

7.3. Comparisons. In this subsection we will abbreviate:

TrY K =

∫
MY

trK(x, x)dx

for a continuous kernel K on a complete hyperbolic manifold M .

Proposition 7.4. Let t0 > 0, p = 1, 2, 3 and Y n the sequence from Proposition 7.3. We have

(7.8)
1

vol(Mn)

d

ds

(
1

Γ(s)

∫ t0

0
(TrY n(e−t∆

p[Mn])− Tr(e−t∆
p
abs[M

Y n
n ]))ts

dt

t

)
s=0

−−−→
n→∞

0.

Proof. From (7.1) it follows that

TrY n(e−t∆
p[Mn])− Tr(e−t∆

p
abs[M

Y n
n ]) =

∫
DYnn

tr(e−t∆[H3](x, x)− e−t∆
p
abs[M̃

Y n
n ](x, x))dx

+

∫
MY n
n

∑
γ∈Γn−{1}

tr(e−t∆
p[H3](x, γx))dx

+

∫
MY n
n

∑
γ∈Γn−{1}

tr(e−t∆
p
abs[M̃

Y n
n ](x, γx))dx

=: E1 + E2 + E3.

In the case all Mn are covers of a given orbifold M and all Y n
j , j = 1, . . . , hn are equal the

manifolds M̃Y n
n are equal to M̃Y n , so that the first summand d

ds(Γ(s)−1
∫ t0

0 E1t
s−1dt)s=0 is equal

to vol(Mn) · (log T (2)(M ;V )− log T
(2)
abs(M̃

Y n ;V )).
We will now use the method of Lück and Schick in [21] to study this. Note that in loc. cit.

these authors deal only with trivial coefficients. On the other hand, once the estimates in their
Theorem 2.26 are established the proof works in all cases. The proof given in loc. cit for this result
likely adapts to unimodular coefficients ; but since we need the results only for manifolds of the

form M̃Y , in this case their result can be deduced from (A.3) in the Appendix. It is proven in [21,
Section 2] that

(7.9) log T (2)(M ;V )− log T
(2)
abs(M̃

Y ;V ) −−−−−−→
all Yj→∞

0.
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In this case we finally get

(7.10)
d

ds

(
1

Γ(s)

∫ t0

0
E1t

sdt

t

)
s=0

−−−→
n→∞

0.

We can also adapt the argument of Lück and Schick to our general situation, as we now explain.
Their key result is Proposition 2.37, and to prove it they separate the left-hand side of (7.10) into
seven summands s1, . . . , s7. Let Yn = minj Y

n
j ; for i 6= 4 they get by straightforward arguments

the bounds (caveat: their parametrisation of the cusps is by arclength in the y direction, so their
statements are different in form):

|s1| � vol(Mn)e−(log Yn)2
, |s2| � vol

(
Mn −M

√
Y n

n

)
, |s3| � vol

(
Mn −MY n/2

n

)
s5 = 0, |s6| � vol

(
Mn −MY n

n

)
, |s7| � vol

(
∂MY n

n

)
and as Yn → +∞ and minj(Y

n
j /α1(Λn,j)) → +∞ all the terms of the right-hand sides above are

o(volMn). The argument for s4 is more involved: they subdivide it into s41, s42, s43 and they prove
that

|s41|, |s42| � vol
(
Mn −MY n/2

n

)
, |s43| � e−2 log Yn vol

(
∂M1

n

)
and the terms on the right in both majorations are o(volMn), which finishes the proof of (7.10).

To finish the proof we observe that Propositions 5.2 and 7.2 yield the bounds

tr(e−t∆
p[H3](x, γx)), tr(e−t∆

p
abs[M̃

Y ](x, γx))� t−3/2e−d(x,γx)2/5t

where the constant does not depend on (large enough, see the remark before Proposition 7.3) Y ,
so that we have in the notation of Proposition 7.3 the inequality E2, E3 � S(n, t, Y n) and we get

d

ds

(
1

Γ(s)

∫ t0

0
Eit

s−1dt

)
s=0

−−−→
n→∞

0.

for i = 2, 3, which finishes the proof of the proposition. �

Proposition 7.5. Let Y n be the sequence from Proposition 7.3, then we have

1

vol(Mn)

d

ds

(
1

Γ(s)

∫ t0

0
(TrR e

−t∆p[Mn] − TrY n e
−t∆p[Mn])ts

dt

t

)
s=0

−−−→
n→∞

0.

Proof. From the explicit expression of the o(1) terms in (4.15) and (4.9) we get for any φ ∈ A(R)
and Y ∈ [1,+∞)hn :

TrY φ(∆p[Mn])− TrR φ(∆p[Mn]) =

hn∑
j=1

2π log Yj

∫ +∞

0
rhpφ(`(r))dr

+

hn∑
j=1

vol(Λn,j)

∫ +∞

0
rhφ,p(`(r))

∫ +∞

max(α1(Λn,j),rYj)
EΛn,j (ρ)

dρ

ρ3
dr

+

hn∑
j=1

vol(Λn,j)

∫ +∞

0

EΛn,j (rYj)

(rYj)2
hφ,p(`(r))dr

+

hn∑
j=1

∫
BΛj
−B

Yj
Λj

∑
γ∈Γ−Λj

tr(γ∗e−t∆
p[H3](x, γx))dx

(7.11)
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We want to study the right-hand side with Y = Y n. The last line can be dealt with as the term
T1 in 5.4.3, using Lemma 2.4 instead of (2.9)—we will not repeat the proof here. We put

T1 =

hn∑
j=1

2π log Y n
j

∫ +∞

0
rhpt (`(r))dr

T2 =

hn∑
j=1

vol(Λn,j)

∫ +∞

0

EΛn,j (rY
n
j )

(rY n
j )2

hpt (`(r))dr.

T3 =

hn∑
j=1

vol(Λn,j)

∫ +∞

0
rhpt (`(r))

∫ +∞

max(α1(Λn,j),rY nj )
EΛn,j (ρ)

dρ

ρ3
dr

We deal first with T1; recall that Θ was defined in (5.22) so that

d

ds

(
1

Γ(s)

∫ t0

0
T1t

sdt

t

)
s=0

=

hn∑
j=1

2π log Y n
j

dΘ

ds
(0)

and by the definition (7.7) of the sequence Y n the right-hand side is anO(log(volMn)+
∑hn

j=1 logα1(Λn,j))

which is itself an o(volMn) by the assumption (4.18).

Next we deal with T2. We have

d

ds

(∫ t0

0
T2t

sdt

t

)
s=0

=
d

ds

∫ t0

0

hn∑
j=1

π

∫ α1(Λn,j)/Y
n
j

0
hpt (`(r))dr t

sdt

t


s=0

+

∫ t0

0

hn∑
j=1

∫ +∞

α1(Λn,j)/Y nj

vol(Λn,j)
EΛn,j (rY

n
j )

(rY n
j )2

hpt (`(r))dr
dt

t
.

(7.12)

As in the proof of Proposition 7.3 we get that the second line is bounded by

(7.13)

hn∑
j=1

(
1 +

α2(Λn,j)
2

α1(Λn,j)2

)
×
(

Y n
j

α1(Λn,j)

)3

which we sam there to be an o(volMn). The first line needs analytic continuation; recall the
asymptotic expansion (5.6) :

hpt (`) =

3∑
k=0

bpk(`)e
− `

2

5t t
−k
2 +O(t

1
2 ).

The term associated to the O(t
1
2 ) is easily seen to be bounded by hn : indeed, s 7→

∫ t0
0 ts−1/2dt is

regular at s = 0 and we get that

(7.14)
d

ds

∫ t0

0

hn∑
j=1

∫ α1(Λn,j)/Y
n
j

0
t

1
2 ts

dt

t


s=0

=

hn∑
j=1

α1(Λn,j)

Y n
j

d

ds

(∫ t0

0
ts−

1
2dt

)
= o(hn)

since α1(Λn,j)/Y
n
j = o(1).
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For k = 0, . . . , 3 we have:∫ α1(Λn,j)/Y
n
j

0
bpk(`(r))e

− `(r)
2

5t dr =

∫ α1(Λn,j)/Y
n
j

0
bpk(`(r))e

− `(r)
2

5t dr

=

∫ 1

0
bpk(`(r))e

− `(r)
2

5t dr −
∫ 1

α1(Λn,j)/Y nj

bpk(`(r))e
− `(r)

2

5t dr.

(7.15)

We have:

(7.16)

∫ 1

α1(Λn,j)/Y nj

bpk(`(r))e
− `(r)

2

5t dr � e−
(α1(Λn,j)/Y nj )2

Ct ,

and moreover (5.8) yields the expansion

(7.17)

∫ 1

0
bpk(`(r))e

− `(r)
2

5t dr =
m∑
l=2

clt
l/2

with coefficients cl not depending on n, j. It follows from (7.15), (7.16) and (7.17) that:

(7.18)

∫ α1(Λn,j)/Y
n
j

0

3∑
l=0

bpl (`(r))e
− `(r)

2

5t dr = π
m∑
l=2

clt
l−3
2 +O(e−

(α1(Λn,j)/Y nj )2

Ct )

Gathering (7.12),(7.13), (7.14) and (7.18) we get:

(7.19)
d

ds

(
1

Γ(s)

∫ t0

0
T2t

sdt

t

)
s=0

� hn + o(volMn) +
3∑

k=0

hn∑
j=1

∫ t0

0
e−

(α1(Λn,j)/Y nj )2

Ct t
−k
2
dt

t
.

The third summand on the right is dealt with as in the proof of Proposition 7.3: for k = 1, 2, 3 we
have ∫ t0

0
e−

(α1(Λn,j)/Y nj )2

Ct t−
k
2
dt

t
≤
(

Y n
j

α1(Λn,j)

)k ∫ +∞

0
e−1/Ctt−

k
2
dt

t

and for k = 0 ∫ t0

0
e−

(α1(Λn,j)/Y nj )2

Ct
dt

t
=

∫ Y nj
α1(Λn,j)

t0

0
e−1/Ctdt

t
� log(Y n

j /α1(Λn,j))

so that we finally obtain

(7.20)
d

ds

(
1

Γ(s)

∫ t0

0
T2t

sdt

t

)
s=0

�
hn∑
j=1

(
Y n
j

α1(Λn,j)

)3

which is an o(volMn) as n→∞ for Y = Y n. We can finally conclude from (7.19) and (7.20) that

d

ds

(
1

Γ(s)

∫ t0

0
T2t

sdt

t

)
s=0

= o(volMn).

The summand T3 is dealt with in a similar manner. For any n ≥ 1 and j = 1, . . . , hn we put

κ′j = vol(Λn,j)

∫ +∞

max(α1(Λn,j),rY nj )
EΛn,j (ρ)

dρ

ρ3
,
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We have seen in the proof of Theorem 4.5 that κ′j �
(
α2(Λn,j)
α1(Λn,j)

)2
(uniformly in r) and we get

vol(Λn,j)

∫ +∞

0
rhpt (`(r))

∫ +∞

max(α1(Λn,j),rY nj )
EΛn,j (ρ)

dρ

ρ3
dr

= κ′j

∫ α1(Λn,j)/Y
n
j

0
rhpt (`(r))dr + κ′j

∫ +∞

α1(Λn,j)/Y nj

rhpt (`(r))dr

= κ′j

∫ 1

0
rhpt (`(r))dr +O

(
t−

3
2 e−

(α1(Λn,j)/Y nj )2

Ct

(
α2(Λn,j)

α1(Λn,j)

)2
)

where to obtain the last line from the second we used the same arguments as to deal with the term
(7.15) for the first summand, and we applied arguments from the proof of Proposition 7.3 to the
second.

Thus, we have

d

ds

(
1

Γ(s)

∫ t0

0
T3t

sdt

t

)
s=0

�
hn∑
j=1

(
α2(Λn,j)

α1(Λn,j)

)2

+

hn∑
j=1

(
α2(Λn,j)

α1(Λn,j)

)2 ∫ t0

0
e−

(α1(Λn,j)/Y nj )2

Ct t−
3
2
dt

t

and we have already proved that the right-hand side is an o(volMn), which concludes the proof. �

8. The asymptotic Cheeger–Müller equality: the large-time part

We will give here a proof of the following result.

Proposition 8.1. For the sequence Y n from proposition 7.4 we have that

sup
n

(
1

vol(Mn)

∫ +∞

t0

(
Tr(e−t∆

p
abs[M

Y n
n ])− dim ker ∆p

abs[M
Y n

n ]
) dt
t

)
is finite and goes to 0 as t0 →∞.

The main point in the proof of Proposition 8.1 is that for the sequence Y n of Proposition 7.3
there is a uniform spectral gap for the manifolds MY n

n : the proof of the following statement will
take up most of this section.

Proposition 8.2. There is a λ1 > 0 depending only on V such that for n large enough and any
p-form f ∈ Ωp

abs(M
Y n
n ;V ) which is orthogonal to harmonic forms we have

〈∆pf, f〉L2(MY n
n )

‖f‖L2(MY n
n )

≥ λ1.

Proof of Proposition 8.1. We proceed as in 5.4.2 above, but have to check that both properties of
the heat kernel used there still hold for MY n

n . Namely we need to check that

i) There is a λ1 > 0 such that for any n and any eigenvalue λ > 0 of ∆p
abs[M

Y n
n ] we have

λ ≥ λ1.

ii) The sequence Tr(e−∆p
abs[M

Y n
n ]) is bounded.

The point i) is a direct consequence of Proposition 8.2 below, and we deduce ii) from the following
more precise result: for any given t > 0 we have in fact the limit

(8.1) lim
n→∞

Tr(e−t∆
p
abs[M

Y n
n ])

vol(Mn)
= TrΓ(e−t∆

p[H3])
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Indeed, we see that

|Tr(e−t∆
p
abs[M

Y n
n ])− TrΓ(e−t∆

p[H3])|
vol(Mn)

� |TrΓn e
−t∆p

abs[M̃
Y n ] − TrΓn e

−t∆p[H3]|
vol(Mn)

+
S(n, t, Y n)

vol(Mn)
.

The proof of Proposition 7.3 yields that S(n, t, Y n) = o(volMn) and that of Proposition 7.4 that
the first summand also goes to 0 as n→∞. �

8.1. Preliminaries to the proof of Proposition 8.2.

8.1.1. Comparisons of eigenfunctions with the constant term. We will make intensive use of the
following inequality: there are constants C, c such that for any finite-volume manifold M with h
cusps and height functions at each of them and for all Y ∈ [1,+∞[h, if f ∈ Ωp

abs(M
Y ;V ) is an

eigenform of eigenvalue λ and Yj/α1(Λj) ≥ C
√
λ for all j then

(8.2) |f(x)− fPj (x)| ≤ |f |L2Ωp(MY ;V )e
−c

yj(x)

α1(Λn,j) for all x ∈M −MY .

This is a refined version of [12, (6.2.1.3)], and it follows from the proof of the latter: the only
difference in our statement is in the explicit constant c/α1(Λj) in the exponential which replaces
the b0 in loc. cit.. This constant b0 comes from the estimate of Fourier expansions and equals the
systole of the dual lattice of Λj , which is easily seen to be equal to α1(Λj)

−1.

8.1.2. Spectral gap of submanifolds. Let us set up notation for the next result: we will denote by
X, g a complete Riemannian manifold, by N an open subset of X with smooth boundary and by E
a flat bundle on X. We suppose that the 1-neighbourhood W of ∂N in X is a collar neighbourhood
which we parametrise as W = [−1, 1]× ∂N ; this is satisfied for X = M a finite–volume hyperbolic
manifold and N = MY , Y ≥ 3.

Lemma 8.3. Suppose that the spectrum of ∆p[X] is bounded below by some λ0 > 0, and let
f ∈ Ωp

abs(N ;E) be a co-closed form such that

‖f‖2L2(W−)

‖f‖2
L2(N)

≤ 1

10
min(1, λ0), W− = ∂N × [−1, 0]

Then the Rayleigh quotient

〈∆p
abs[N ]f, f〉L2(N)

‖f‖2
L2(N)

=
‖df‖2L2(N)

‖f‖2
L2(N)

is bounded below by λ0/4.

Proof. Let h be a smooth function with value 0 on (−∞, 0] and 1 on [1,+∞), and 0 ≤ h′ ≤ 2.

Define a smooth p-form f̃ on X by

f̃(x) =


f(x) x ∈ N −W−;

h(d(x, ∂N))f(x) x ∈W−;

0 x ∈ X −N.

Then, putting y(x) = d(x, ∂N), we get that df̃ = h′(y)dy ∧ f + h(y)df , whence it follows that

‖df̃‖2L2(X) ≤ 2‖df‖2L2(N) + 4‖f‖2L2(W−).

On the other hand, we have that

‖f̃‖2L2(X) ≥ ‖f‖
2
L2(N−W−) = ‖f‖2L2(N) − ‖f‖

2
L2(W−) ≥

9

10
‖f‖L2(N)
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and it follows that

‖df‖2L2(N)

‖f‖2
L2(N)

≥
‖df̃‖2L2(X)

2‖f‖2
L2(N)

− 2
‖f‖2L2(W−)

‖f‖2
L2(N)

≥ 9

20

‖df̃‖2L2(X)

‖f̃‖2
L2(X)

− 2λ0

10
≥ 5

20
λ0 = λ0/4.

�

8.1.3. Eigenvalues don’t jump. We will need the following weak continuity result for the spectrum
which follows from [5, Lemma 9.9 and Proposition 9.10(2)] but can also easily be proven using the
min-max principle or more powerful continuity properties of spectra for families of operators.

Lemma 8.4. Suppose that N is a compact smooth manifold and gu, u ∈ [0, 1] a smooth family of
Riemannian metrics on N . Let ∆p[gu] be the Hodge Laplace operator on forms with values in a flat
Hermitian bundle over N (and absolute boundary conditions) and suppose that there are 0 < a < b
such that:

• for all u ∈ [0, 1] there is no eigenvalue of ∆p[gu] in [a, b];
• for some u0 ∈ [0, 1] there is no eigenvalue of ∆p[gu0 ] in ]0, b].

Then there is no eigenvalue of ∆p[gu] in ]0, b] for any u ∈ [0, 1].

8.2. Proof of Proposition 8.2.

8.2.1. Outline. Recall that λ0 > 0 denotes a lower bound for the spectrum of ∆p[Mn]; in the sequel
we will suppose that n1 > n2 (the symmetric case can be dealt with with similar arguments). We
will prove that there is a 0 < λ1 ≤ λ0/4 such that the two following claims hold:

i) There are λ1 > ε > 0 such that for n large enough there is no eigenvalue of ∆p[MΥ
n ] in

]ε, λ1[ for all Υ ∈ [1,+∞[hn such that ∀j, Υj ≥ Y n
j ;

ii) For any n and Υ large enough there is no eigenvalue of ∆p
abs[M

Υ
n ] in ]0, λ1[.

The proposition then follows by application of lemma 8.4.
Here is a quick outline of the proof of both points before embarking on the formal demonstration:

the idea in both cases is that if we have an absolute eigenform which violates the claim, then either
(for i)) it will also violate Lemma 8.3 or (for ii)) we can modify it by an harmonic form to construct
a function which violates the same lemma. In both cases we compute norms of constant terms in
the cusps and use (8.2) to compare them to the norm of our eigenfunctions. Let us remark once
more that this proof is very much inspired from [12, Section 6.9].

8.2.2. Proof of i). We will work in what follows with an hyperbolic manifold M with h cusps and
Y ∈ [1,+∞[h, and apply our computations to Mn and Y n only at the end.

Suppose that f is a p-eigenform with coefficients in V and eigenvalue in ]0, λ0/4[. For notational
ease we will suppose that there are s ∈ R, integers l, k and ω, ω′ ∈ Ω+(Wl,k), ω, ω

′ ∈ Ω−(W−l,−k)
such that

(8.3) fPj = y
1+ s

2
j ωj + y

1− s
2

j ω′j + y
1− s

2
j ωj + y

1+ s
2

j ω′j

(here is an outline as to how to adapt the arguments below to the case where the constant terms
of f are not purely of the form (8.3): then they are a linear combination of such, and since the
components are pointwise orthogonal the computations of L2-norms below carry over to this case;
the reader will see that this is sufficient for the whole proof to work with a very few cosmetic
alterations). Moreover we may (by symmetry) take s > 0, and since the Laplace eigenvalues are
bounded away from 0 on the imaginary line we may actually suppose that s is bounded away from 0
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(by a constant depending only on V ). Now the idea is that because of absolute boundary conditions,

the dominant term in (8.3) far in the cusp will be y
1−s/2
j ω′j + y

1−s/2
j ωj unless the eigenvalue is very

small, and this is concentrated away from the boundary of MY , contradicting Lemma 8.3.

Absolute boundary conditions have to be satisfied by all fPj as well as by f ; we can make them
explicit by taking the differential of (8.3) using (3.3) and we get that

(s+ l − k)Y
s/2
j ωj − (s− l + k)Y

−s/2
j ω′j = 0 = −(s+ l − k)Y

−s/2
j ωj + (s− l + k)Y

s/2
j ω′j

since both the (1, 0)-part (on the left above) and the (0, 1)-part (on the right) of the contraction of
dfP with the normal vector ∂/∂yj have to be zero. We can rewrite this as

(8.4) ω′j =
s+ l − k
s− l + k

Y s
j ωj , ωj =

s− l + k

s+ l − k
Y s
j ω
′
j .

Now let a > 0 and Y ′ ≤ Y/2 be such that α1(Λj)/Y
′
j ≤ a for all j; we have

(8.5) ‖f‖2L2(MY ) ≥ ‖f‖
2
L2(MY −MY ′ )

≥ 1

2
‖fP ‖2L2(MY −MY ′ )

− ‖f − fP ‖2L2(MY −MY ′ )
;

by (8.2) we have:

‖f − fP ‖L2(MY −MY/3) ≤
∫
MY −MY ′

e−cmaxj(yj(x))/α1(Λj)dx · ‖f‖L2(MY )

≤ e−cmaxj(Y
′
j /α1(Λj)) vol(MY −MY ′) · ‖f‖L2(MY )

and it follows from (8.5) that:

(8.6) ‖f‖2L2(MY ) ≥ (1/2− e−cminj(Y
′
j /α1(Λj)) vol(M))−1 · ‖fP ‖2L2(MY −MY ′ )

We now give a lower bound for the norm of the constant term on MY −MY ′ . This is computed
as follows, using (8.4) to rewrite (8.3):

‖fP ‖2L2(MY −MY ′ )

=
h∑
j=1

∫
MY −MY ′

(
y

1+ s
2

j − s+ l − k
s− l + k

Y s
j y

1− s
2

j

)2

|ωj |2 +

∫
MY −MY ′

(
s− l + k

s+ l − k
y

1+ s
2

j + Y s
j y

1− s
2

j

)2

|ω′j |2

=
h∑
j=1

∫ Yj

Y ′j

(
y1+ s

2 − s+ l − k
s− l + k

Y s
j y

1− s
2

)2 dy

y3
|ωj |2 vol(Λj)

+

∫ Yj

Y ′j

(
s− l + k

s+ l − k
y1+ s

2 + Y s
j y

1− s
2

)2 dy

y3
|ω′j |2 vol(Λj)

=
1

s

h∑
j=1

(
Y s
j − (Y ′j )s −

(
s+ l − k
s− l + k

)2

Y 2s
j

(
Y −sj − (Y ′j )−s

)
+ 2s

s+ l − k
s− l + k

Y s
j log

Yj
Y ′j

)
|ωj |2 vol(Λj)

+

(
−
(
s− l + k

s+ l − k

)2

Y 2s
j

(
Y −sj − (Y ′j )−s

)
+ Y s

j − (Y ′j )s + 2s
s− l + k

s+ l − k
Y s
j log

Yj
Y ′j

)
|ω′j |2 vol(Λj)

(8.7)

and we finally deduce that when (YJ/Y
′
j )� 1 we have:

(8.8) ‖fP ‖2L2(MY −MY ′ )
�

h∑
j=1

Y s
j

(
Yj
Y ′j

)s (
|ωj |2 + |ω′j |2

)
vol(Λj)
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where the constant depends only on V and s− l+ k, s+ l− k (it is bounded away from 0 when the
latter two are).

It remains to give an upper bound for the norm near the boundary; we have:

‖f‖2
L2(MY −MY/3)

≤ 2‖fP ‖2L2(MY −MY/3)
+ 2‖f − fP ‖2L2(MY −MY/3)

≤ 2‖fP ‖L2(MY −MY/3) + 2e−cminj(Y
′
j /α1(Λj)) vol(M) · ‖f‖L2(MY )

As in (8.7) we can compute the norm of the constant term:

‖fP ‖2L2(MY −MY ′ )
=

1

s

h∑
j=1

(
aY s

j + bY s
j + 2

s+ l − k
s− l + k

Y s
j log(3)

)
|ωj |2 vol(Λj)

+

(
a′Y s

j + bY s
j + 2

s− l + k

s+ l − k
Y s
j log(3)

)
|ω′j |2 vol(Λj)

(8.9)

where a = 1− (2/3)s, b =
(
s+l−k
s−l+k

)2
((3/2)s − 1), a′ =

(
s−l+k
s+l−k

)2
((3/2)s − 1). In the end we get the

estimate:

(8.10) ‖f‖L2(MY −MY/3) �
h∑
j=1

Y s
j

(
|ωj |2 + |ω′j |2

)
vol(Λj) + e−cminj(Y

′
j /α1(Λj)) vol(M) · ‖f‖L2(MY ).

where the constant stays bounded when s− l + k, s+ l − k are both bounded away from 0.
Now we separate two cases: we will suppose first that (l, k) in the constant term (8.3) is not

equal to (−n1, n2). In this case, for s = k − l the eigenvalue computed in (3.2) is bounded away
from 0; thus there exists a 0 < λ1 ≤ λ0/2 depending only on V such that if f is an eigenform of the
Laplacian with absolute boundary conditions on MY and the eigenvalue of f is less than λ1 then
|s+ l − k| ≥ δ0 where δ0 > 0 depends only on V . On the other hand we have k − l = n1 + n2 > 0
and thus s− l+ k always stays bounded away from 0. Let W− be the 1-neighbourhood of ∂MY in
MY . We have W− ⊂ MY −MY/3 and for a form f as above (8.8) together with (8.6) and (8.10)
yield that:
(8.11)
‖f‖2L2(W−)

‖f‖2
L2(MY )

�
(

1

2
− e−cminj(Y

′
j /α1(Λj)) vol(M)

)−1

min
j=1,...,h

(Y ′j /Yj)
s + e−cminj(Y

′
j /α1(Λj)) vol(M)

with a constant depending only on V .
Now we go back to our sequence Mn, Y

n. First we observe that from the condition in the
statement of Theorem 6.1 that

hn∑
j=1

(
α1(Λj,n)

α2(Λj,n)

)2

� vol(Mn)

(log(volMn))20

and the defintion of Y N in Proposition 7.3 imply the lower bound Y n
j � (log(volMn))2α1(Λn,j).

Thus we can choose the Y ′j so that for all j we have Y n
j /Y

′
j = (log(volMn))1/2 and Y ′j /α1(Λn,j)�

log(vol(Mn))3/2, hence

lim sup
n→+∞

(e−cminj(Y
′
j /α1(Λj,n)) vol(Mn)) = 0, lim sup(min

j
(Y ′j /Y

n
j )s) = 0.

It follows that for n large enough we can use (8.11) and we obtain that for any ε > 0, for n large
enough and for any eigenform f ∈ L2

absΩ
1(MY n

n ;V ) as above we have

‖f‖2L2(W−)

‖f‖L2(MY )

≤ ε
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which contradicts Lemma 8.3 for ε small enough (depending on λ0).
For (l, k) = (−n1, n2) we get in the same way that there are no eigenvalues of ∆p

abs[M
Y n
n ] in the

interval [ε, λ1] where ε > 0 can be chose arbitrarily small for n large enough, and this is sufficient
to finish the proof of claim i).

8.2.3. Proof of ii). If f is a 1-eigenform, its constant term given by (8.3), the only case where the
eigenvalue can be close to zero is when (l, k) = (−n1, n2). To prove claim ii) it thus suffices to show
that when an eigenfunction on MΥ has its constant term equal to (8.3) with (l, k) = (−n1, n2) the
eigenvalue cannot be too small and nonzero when Υ is large enough. Let s1 = n1−n2 (the value of
s for which a constant term (8.3) is harmonic), Υ ≥ Y, δ > 0 and suppose that there is an eigenform
f0 ∈ Ω1

abs(M
Υ;V ) with eigenvalue having parameter s = s1 − 2δ (by (3.2) the eigenvalue is � δ)

and constant term (8.3) with ω ∈ Ω+(V−n1,n2). We want to prove that for δ small enough and Υ
large enough such a form cannot exist; the scheme of proof above is not adaptable to this setting
since the holomorphic part of term which dominates the norm has a coefficient that goes to 0 as
the eigenvalue does; however we can modify f by an harmonic form to make its holomorphic part
small near the boundary.

The proof will nevertheless be very similar to the one above, and there is one notable simplifi-
cation: since we can take Υ as large as we want for any n, there is no need to consider the terms
coming from the comparison of forms with their constant terms (we shall thus ignore them in all
computations below).

Lemma 8.5. For Υ large enough and any ω ∈ Ω+(V−n1,n2) there is an ω ∈ Ω−(Vn1,−n2) and a

1-form in ker
(
∆1

abs[M
Υ]
)

whose constant term in the jth cusp equals y
1+

s1
2

j ωj + y
1− s1

2
j ωj.

Proof. First, the (1, 0)-part of the constant term of a nonzero form f1 in ker
(
∆1

abs[M
Υ]
)

must be

equal to y
1+

s1
2

j ωj for some ω ∈ Ω+(V−n1,n2), as satisfying boundary conditions excludes that it

contains a nonzero term in y
1− s1

2
j ω′j . Second, it cannot be zero because of Lemma 8.3: indeed, if it

were then we would have by computations similar to those above

‖f‖2
L2(MΥ−MΥ/3)

‖f‖2
L2(MΥ−MΥ′ )

�
(

Υ′

Υ

)s1
which can be made as small as we want by taking Υ/Υ′ large enough. So we get an injective map
from ker

(
∆1

abs[M
Υ]
)

to Ω+(V−n1,n2) by f 7→ (ωj). Now these two spaces have the same dimension,
for well-known topological reasons (see e.g. [25, Section 4.2]) and we can conclude that this map
must be surjective. �

Write (f0)Pj as in (8.3). By the lemma above we can pick a f1 ∈ ker ∆1
abs[M

Υ] such that

(f1)Pj = y
1+

s1
2

j Υ−δj ωj + y
1− s1

2
j ωj,1

for all j. We put f = f0 − f1. We will check that for Υ large enough and δ small enough f
satifies the conditions of Lemma 8.3, which yields a contradiction as the spectrum of ∆1[M ] on
square–integrable forms is bounded below by λ0. Since f0, f1 are orthogonal we have

‖f‖2L2(MΥ) = ‖f0‖2L2(MΥ) + ‖f1‖2L2(MΥ)

�
h∑
j=1

Υs1−2δ
j |ωj |2 vol(Λj) +

h∑
j=1

Y −s1+2δ
j (|ωj |2 + Y −2δ

j |ωj,1|2) vol(Λj)
(8.12)
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where the lower bound follows from the same computation as in (8.8). On the other hand:

‖f‖2
L2(MΥ−MΥ/3)

=

h∑
j=1

∫ Υj

Υj/3

(
y

1+
s1
2

j (y−δj −Υ−δj )− δ

2s1 − δ
Υs
jy

1− s
2

j

)2 dy

y
|ωj |2 vol(Λj)

+

∫ Υj

Υj/3

∣∣∣∣y1− s
2

j ωj − y
1− s1

2
j ωj,1 −

δ

2s1 − δ
Υ−sj y

1+ s
2

j ωj

∣∣∣∣2 dyy vol(Λj)

�
h∑
j=1

δ2Υs1−2δ
j |ωj |2 vol(Λj) +

h∑
j=1

Υ−s1+2δ
j (|ωj |2 + Υ−2δ

j |ωj,1|2) vol(Λj)

According to (8.12) the right-hand side above is � δ2‖f‖2
L2(MY )

as soon as maxj(Yj/Υj)
s1 ≤ δ, so

for δ small enough (depending on λ0) and Υ large enough the 1-form f satisfies the assumptions
of Lemma 8.3.

9. Betti numbers

Here we prove Proposition C. Note that we could not deduce it immediately from the convergence
of the regularised trace because of the spectral terms coming from the Eisenstein series.

Proposition 9.1. Let Mn be sequence of finite-volume hyperbolic three-manifolds and suppose that
Mn BS-converges to H3. Then we have for p = 1, 2

(9.1)
bp(Mn)

vol(Mn)
−−−→
n→∞

0

9.1. First proof. For trhis proof we need to assume that (4.19) holds. Let Y n ∈ [1,+∞[hn be the
sequence from Proposition 7.3; for all n and t > 0 we have

dim ker(∆p
abs[M

Y n

n ]) ≤ Tr e−t∆
p
abs[M

Y n
n ].

On the other hand bp(Mn) = dim ker(∆p
abs[M

Y n
n ]) and it follows that for any t > 0 we have:

lim sup
n→∞

bp(Mn)

vol(Mn)
≤ lim

n→∞

Tr e−t∆
p
abs[M

Y n
n ]

vol(Mn)
= TrΓ e

−t∆p[H3].

The right-hand side goes to 0 as t → ∞ since b
(2)
p (H3) = 0 (cf. [23, Theorem 1.63]), and (9.1)

follows.

9.2. Second proof. Here we give a complete proof proof of (9.1). The idea is that we can approx-
imate the noncompact manifolds Mn by Dehn surgeries so that the sequence of compact manifolds
obtained be BS-convergent as well, and then the results of [1] do the work for us.

Lemma 9.2. Suppose that Mn is a sequence of finite-volume hyperbolic three–manifolds which
BS-converges to H3. Then there is a sequence M ′n of compact hyperbolic manifolds such that

i) For all n, M ′n is obtained by Dehn surgery on Mn;
ii) vol(M ′n)/ vol(Mn) −−−−−→

n→+∞
1;

iii) The sequence M ′n is BS-convergent to H3.

We can conclude the proof using this lemma. According to iii) we can apply [1, Theorem 1.8]
to the sequence M ′n and we get that b1(M ′n) = o(volMn). On the other hand it is easy to see that
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because of i) we have b1(Mn) ≤ b1(M ′n) + hn (where hn is the number of cusps of Mn). Thus we
obtain:

b1(Mn)

vol(Mn)
≤ vol(M ′n)

vol(Mn)
· b1(M ′n)

vol(M ′n)
+

hn
vol(Mn)

.

By Lemma 2.7 and ii) we finally get that the right-hand side is an o(1).

Proof of Lemma 9.2. For (p, q) ∈ Nhn × Nhn such that pj , qj are coprime for all j let M
p/q
n be the

compact manifold obtained by (p, q)-Dehn surgery on Mn. Then M
p/q
n converges geometrically to

Mn as minj(pj + qj) goes to infinity, and it follows that for a given R > 0 there exists a mn such
that when minj(|pj |+ |qj |) > mn we have

vol(Mp/q
n )≤R ≤ vol(Mn)≤2R.

We can choose a sequence (pn, qn) ∈ (N×N)hn such that ii) holds, and moreover minj(|pnj |+ |qnj |) >
mn; it then follows from the inequality above that M ′n is BS-convergent to H3. �

Appendix A. The heat kernel on truncated manifolds

A.1. Introduction. Let B be a collection of open horoballs in H3 whose closures are pairwise
disjoint, and let X be the smooth manifold with boundary H3 −

⋃
B∈B B. We will denote

δX = inf
B 6=B′∈B

d(B,B′)

and we will always suppose that δX > 0 (this is obviously always the case when B comes from a
truncated manifold). The aim of this appendix is to show that the proof of [36, Proposition 5.3]
can be adapted to this setting to yield the following result:

Proposition A.1. For any δ > 0, t0 > 0 there is a C > 0 such that for all X as above which
satisfy δX ≥ δ and every x, y ∈ X and t ∈]0, t0] we have

|e−t∆p[X](x, y)| ≤ Ct−3/2e−
d(x,y)2

5t .

Let us see how this statement implies Proposition 7.2: let M = Γ\H3, Y be as in its statement,

X = M̃Y . We need to prove that δX is bounded below by a constant not depending on M . Let
H,H ′ be horospheres in ∂X such that d(H,H ′) = δX . By the hypothesis on Y there are elements
η, η′ ∈ Γ which stabilise H,H ′ respectively and such that their displacement is smaller than ε/10
where ε is the Margulis constant of H3; for δ small enough (independent of X), if δX < δ then
ηη′ displaces of less than ε on H; but since it does not commute with η this is impossible by the
Margulis Lemma. Thus δX is uniformly bounded away from 0 for such an X.

A.2. The “single layer potentials” construction of the heat kernel. We recall here the
construction of the heat kernel on a manifold with boundary W given in [36, Section 5], which
starts from an isometric embedding W ⊂ W ′ into a complete manifold such that the heat kernel
on W satisfies Gaussian bounds. This reference deals only with compact manifolds and thus we
cannot apply its results directly to our situation; but on the other hand we will see in the next
section that the integrals on ∂X which we need to converge are indeed absolutely convergent. The
results are also stated only for bundles with orthogonal monodromy but the arguments work for
all flat bundles with a euclidean metric.
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The construction goes as follows: let Q(0)(x, y, t) = e−t∆
p[W ′](x, y) and for m ≥ 1 define by

induction:

Q(m)(x, y, t) =

∫ t

0

∫
∂W

(
Q(0)(x, z, s) ∧ ∗dQ(m−1)(z, y, t− s)

+ δQ(0)(x, z, s) ∧ ∗Q(m−1)(z, y, t)
)
dz ds.

(A.1)

For W = X we will check that this integral is convergent for all m in Section A.3 below. The main
result of Ray and Singer with regard to the Q(m) is then stated as follows ([36, Lemma 5.12]; the
function D on X is the distance to the boundary ∂X).

Proposition A.2. Under the hypotheses of Proposition A.1, for all m ≥ 1 the kernel Q(m), as well
as its differential and co-differential in the variables x, y, satisfy the Gaussian bounds:

(A.2) |Q(m)(x, y, t)| ≤ Cm

Γ(m/2)
e−

D(x)2+D(y)2

5t t−
3
2 e−

d(x,y)2

5t ;

for some constant C > 0.

This is proven by induction on m, and to carry the induction step one needs (as is obvious from
the formula (A.1)) also the bounds on the derivatives.

It follows from Proposition A.2 that the kernel Kp
t given by

Kp
t (x, y) =

+∞∑
m=0

(−2)mQ(m)(x, y, t)

is the heat kernel on p-forms on X with coefficients in V (see [36, Corollary 5.14]), and thus that
the latter satisfies the Gaussian bounds stated in Proposition A.1. Moreover, we also have the
bounds:

(A.3) |Kp
t (x, y)− e−t∆p[W ′]| � e−

D(x)2+D(y)2

5t t−
3
2 e−

d(x,y)2

5t

(note that we can apply this to M̃Y ⊂ H3, but also to M̃Y ⊂ M̃Z for Z ≥ Y , according to
Proposition A.1).

A.3. Convergence of the integrals on the boundary. If one manages to show that the integrals
on the boundary in the definition (A.1) of Q(m) are uniformly convergent for all X then the
original argument of Ray and Singer carries over to yield Proposition A.1. Indeed, it rests only on
local computations (which remain valid for unimodular instead of orthogonal coefficients), and the
hypothesis that δX ≥ δ gives uniform bounds on the local geometry (meaning that each point in
X has a neighbourhood whose isometry class does not depend on X) which Ray and Singer use
implicitely in their proof (in the cases they consider it follows immediately from the compactness
of the manifolds).

This uniform convergence can be proven by induction on m (recall that the induction hypothesis

carries bounds on both Q(m) and its differentials), which reduces it to show that for k, l > 0 the
integral :

(A.4) I =

∫
∂X

d(x, z)k · d(y, z)l · e
−
(
d(x,z)2

5s
+
d(y,z)2

5(s−t)

)
dz

converge uniformly for all x, y ∈ X. The polynomial terms may appear when taking derivatives,
there are also fectors depending on s but these do not affect the convergence of the integral and
thus are dealt with in Ray–Singer’s argument. The proof that (A.4) is convergent will be similar
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to the study of the term I2 in the proof of Proposition 4.2. For w ∈ X and B ∈ B we denote by zwB
the projection of w onto B. We observe first that the supremum

F (x, y, t) = sup

{∫
z∈∂B

d(zxB, z)
k · d(zyB, z)

l · e
−
(
d(zxB,z)

2

5s
+
d(z

y
B
,z)2

5(s−t)

)
dz : B ∈ H

}
is finite and actually uniformly bounded in x, y. Indeed, for any horosphere H of H3 and any
z0 ∈ H, we have for t ≤ t0:∫

H
d(z0, z)

Ke
− d(z0,z)

2

5t0 dz ≤
∫
C
|z|Ke−a(log(1+|z|))2

dzdz

where a depends only on t0, and the integral at the rightmost above is convergent for any a > 0,

since the function r 7→ e−(log r)2
is o(r−L) for any L > 0. Since zxB, z

y
B ∈ ∂B the same arguments

apply to the integrals
∫
z∈∂B e

−
(
d(zxB,z)

2

5s
+
d(z

y
B
,z)2

5(s−t)

)
dz to give a bound independent of x, y or B.

Now we remark that for a given B ∈ B and all z ∈ ∂B we have

(A.5) d(x, z) ≥
d(x, zxB) + d(zxB, z)

2

and similarly for y: indeed, for any z ∈ ∂B we have d(x, z) ≥ d(zxB, z) and d(x, z) ≥ d(x, zxB)
(because the geodesic triangle xzzxH has an obtuse angle at zxB). Now we consider separately those
z for which d(z, zxB) ≤ d(x, zxB) and those for which the reverse inequality holds, for both of which

(A.5) holds trivially. In addition we have d(x, z)k ≤ (d(x, zxB) + d(zxB, z))
k and for large distances

the right-hand side is bounded by d(x, zxB)k · d(zxB, z)
k. It follows that

I ≤
∑
B∈B

d(x,B)k · d(y,B)l · e
−
(
d(x,B)2

20s
+
d(y,B)2

20(t−s)

) ∫
∂B
d(zxB, z)

k · d(zyB, z)
l · e
−
(
d(zxB,z)

2

20s
+
d(z

y
B
,z)2

20(s−t)

)
dz

≤
∑
B∈B

d(x,B)k · d(y,B)l · e
−
(
d(x,B)2

20s
+
d(y,B)2

20(t−s)

)
F (x, y, t).

It follows from Lemma 2.10 that the series on the last line is absolutely convergent, finishing the
proof that the integral (A.4) is absolutely convergent.
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