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The ability to perform first-principles calculations of electronic and vibrational properties of two-
dimensional heterostructures in a field-effect setup is crucial for the understanding and design of
next-generation devices. We present here an implementation of density functional perturbation
theories tailored for the case of two-dimensional heterostructures in field-effect configuration. Key
ingredients are the inclusion of a truncated Coulomb interaction in the direction perpendicular to the
slab and the possibility of simulating charging of the slab via field-effects. With this implementation
we can access total energies, force and stress tensors, the vibrational properties and the electron-
phonon interaction. We demonstrate the relevance of the method by studying flexural acoustic
phonons and their coupling to electrons in graphene doped by field-effect. In particular, we show
that while the electron-phonon coupling to those phonons can be significant in neutral graphene,
it is strongly screened and negligible in doped graphene, in disagreement with other recent first-
principles reports. Consequently, the gate-induced coupling with flexural acoustic modes would not
be detectable in transport measurements on doped graphene.

I. INTRODUCTION

Density Functional Theory1–6 (DFT) based on plane-
wave basis sets, Kohn-Sham equations and pseudopo-
tentials, has proven to be a valuable tool to under-
stand and predict electronic and structural properties
of materials. DFT provides support in the process of
understanding and controlling experimentally observed
phenomena7. Inversely, it can be used8 to identify inter-
esting new two-dimensional (2D) compounds, thus en-
couraging their experimental study. The wide range of
potential applications and fascinating phenomena offered
by 2D materials would benefit from accurate DFT simu-
lation in the 2D framework.

In general, the response of a material to a long wave-
length periodic perturbation is highly dependent on di-
mensionality. We have recently shown the importance
of working in the appropriate 2D framework for the
computation of dielectric responses9, optical phonons
dispersions10, and electron-phonon coupling in polar
materials11. Furthermore, a particularly relevant aspect
of 2D materials is their sensitivity to external pertur-
bations like external electric fields, as illustrated by the
large gate-induced doping achievable for a 2D material
in a field-effect transistor (FET) setup12–14. While the
field effect is not part of the 2D material per se, its om-
nipresence in experimental setups and devices motivates
the need to simulate it.

However, current implementations of DFT with three-
dimensional periodic boundary conditions (3D PBC) are
not adequate to the simulation of 2D materials doped
in the FET setup. This is mainly due to two reasons.
The first one pertains to 2D systems in general. In the

response to long wavelength perturbations there is a spu-
rious interaction between the system and the out-of-plane
periodic images due to the 1/q2 behavior of the Fourier
transform of the 3D Coulomb interaction. This effect
becomes relevant for perturbations of in-plane momenta
comparable or smaller than ≈ 2π/c, where c is the dis-
tance separating the periodic images. This range of mo-
menta is relevant for electric transport. Additional long
range interactions can arise if the slab presents a finite
dipole along the z-axis.

The second reason relates to the treatment of charged
systems. Charging of 2D materials is usually simulated
via the use of a compensating jellium background. This
approach is inappropriate as it represents a uniform dop-
ing of a 2D flake and it reproduces neither the strong
voltage drop in proximity of its surface15,16 nor the asym-
metric nature of the FET configuration. This asymme-
try is precisely the feature that is challenging to simulate
because it breaks 3D PBC. Currently these aspects have
not yet been taken into account in the calculation of vi-
brational properties via density functional perturbation
theory.

Some methods have been proposed to deal with the
FET setup at the DFT level for the calculation of total
energies and forces. A dipole correction15,17–19 can be
used to recover 3D PBC in systems with an out-of-plane
dipole moment. This method has been used to simulate
chloronitrides15 and transition-metal dichalcogenides16

in a FET setup. Another approach to solve these issues is
the effective screening medium (ESM) technique20. The
Poisson equation is solved without 3D PBC, resulting
in the correct potentials. The potentials are then modi-
fied where the electron density is negligibly small to al-
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low their use in the KS equations with 3D PBC. This
method has recently been used to simulate a graphene-
based vertical field-effect tunneling transistor21 at the
DFT level. However, linear response theory has not
been developed for any of these methods. Here we solve
this problem and develop a density functional perturba-
tion theory approach tailored for 2D materials and het-
erostructures that includes the possibility of simulating
vibrational properties in FET configuration.

We use our developments to study flexural phonons in
field-effect doped graphene. In isolated graphene, those
phonons do not couple to electrons due the mirror sym-
metry with respect to the graphene plane22. In a FET
setup, however, this symmetry is broken and flexural
phonons have recently been suggested23 as a significant
scattering mechanism in transport measurements. We re-
cover the expected result that a symmetry-breaking elec-
tric field can activate a significant bare electron-phonon
interaction with flexural phonons. However, we show
that this interaction is strongly screened by the electrons
and becomes negligible with respect to the coupling with
in-plane phonons in doped graphene.

This paper is structured as follows. We first describe
a model for 2D materials doped in the FET setup in Sec.
II. We restrict ourselves to a description in terms of po-
tentials. In Sec. III, we highlight the issues raised by
the presence of periodic images to simulate 2D materi-
als in the FET setup, and show how the 2D Coulomb
cutoff technique can solve those issues. In Sec. IV, we
detail the implementation of the 2D Coulomb cutoff for
the potentials, total energy, forces, phonons and electron-
phonon interactions in the Quantum ESPRESSO (QE)
distribution24. Finally, we exploit our implementation of
the 2D Coulomb cutoff to study some properties of 2D
materials specific to the FET setup. Namely, we focus on
out-of-plane acoustic (ZA) phonons in a graphene FET.
We show the emergence of a finite phonon frequency at
Γ as well as a finite coupling to electrons for the ZA
phonons, two quantities that are zero by symmetry for
isolated graphene without electric field.

II. DESCRIPTION OF A 2D MATERIAL
DOPED IN THE FET SETUP

In this section we present our model for a 2D mate-
rial doped in the FET setup, focusing on the potential
of such a system. The central object is the 2D mate-
rial itself. We consider a system with periodicity in the
{x, y} plane, defined as the infinite periodic repetition in
the plane of a unit cell. The positions of the cells are
Rp = m1b1 +m2b2, where m1 and m2 are two integers.
The primitive lattice vectors b1,b2 have coordinates in
the {x, y} plane. The z-component of Rp is a constant.
The position of atom a within the unit cell is labeled da.
The atomic internal coordinates da can have different z-
components such that all atoms are not necessarily on
the same plane, e.g. in the case of multilayered 2D ma-

terials. In reciprocal space, the crystal is described by
reciprocal vectors Gp, generated by two in-plane primi-
tive reciprocal lattice vectors b∗1 and b∗2.

Within the DFT framework, the ground state prop-
erties of the system are determined by the ground-state
electronic density n(rp, z), where we separate in-plane (
rp) and out-of-plane (z) space variables, as they clearly
have different roles in a 2D system:

n(rp, z) = 2
∑
k,s

f(εk,s)|ψk,s(rp, z)|2 (1)

ψk,s(rp, z) = wk,s(rp, z)e
ik·rp . (2)

The in-plane wave vector k and the band index s define
an electronic state. The Bloch wave functions ψk,s are
the solutions of the Kohn-Sham2 (KS) equations. The
KS potential of the 2D system is the sum of the external
potential V 2D

ext (which, for now, consists of the potential
generated by the ions V 2D

ion ), the Hartree potential V 2D
H ,

and the exchange-correlation potential V 2D
XC (rp, z):

V 2D
KS (rp, z) = V 2D

ext (rp, z) + V 2D
H (rp, z) + V 2D

XC (rp, z). (3)

The above quantities possess the 2D-periodicity of the
crystal. That is, for any f 2D lattice-periodic function
such as n, V 2D

KS , V
2D
ext , V

2D
H or V 2D

XC , we can write

f(rp + Rp, z) = f(rp, z) . (4)

The 2D Fourier transform of a 2D lattice periodic func-
tion reads

f(Gp, z) =
1

S

∫
S

f(rp, z)e
−iGp·rpdrp, (5)

where the integral is over the area of the unit cell S. In-
plane averages are defined as f(Gp = 0, z) = 〈f〉p(z). In
plane averages also extend in the out-of-plane direction.
A relevant length scale for the out-of-plane extension of
the 2D material would be the electronic density’s thick-
ness t, defined such that:∫ t/2

−t/2
〈n〉p(z) dz ≈ n0 , (6)

where n0 × S is the number of valence electrons per
unit cell in the system, equal to the sum of the ionic
charges

∑
a Za in the neutral case. The total energy,

forces, phonons and electron-phonon interactions of a
neutral 2D material can be computed using the usual
DFT formalism1–6 based on space integrals of products
between the electronic density and various potentials. It
is then sufficient to carry the out-of-plane integrals over
a slab of thickness greater than t.

We now consider what we must do to simulate this 2D
material doped in conditions emulating the FET setup.
We consider a single-gate configuration, as shown in Fig.
1. A planar gate is placed parallel to 2D material and a
voltage difference is applied between the two. An insulat-
ing material (gate dielectric) separates the 2D material
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FIG. 1. The sketch shows a minimal model of the FET setup
containing the 2D material and a gate separated by an in-
sulating dielectric. The plot shows the out-of-plane behavior
of the corresponding Kohn-Sham (KS) potential for a hole-
doped single-layer 2D material (graphene) in the FET setup.
A charged plane simulates the gate. On the left of the mate-
rial, we represent in black the KS potential when only vacuum
separates the gate and the material. In blue, we add a poten-
tial barrier to simulate the dielectric material.

and the gate, such that no current can flow between them
and opposite surface charges accumulate on both sides.
The key feature of the FET setup is its asymmetry in
terms of electric field. Between the gate and the 2D ma-
terial, the electric field is finite. On the other side of the
2D material, the electric field is zero. In the out-of-plane
direction, it is essential that we simulate the correct 2D
potentials in a region at least as large as the thickness
t. We will not model every ions and electrons outside
this region, in the gate-dielectric, substrate or gate. We
rather propose ways to simulate the effects of those com-
ponents on the 2D material.

The main purpose of the FET setup is to charge the
2D material. We consider an electron density such that:∫

〈n〉p(z) dz = n0 =
∑
a

Za
S

+ ndop , (7)

where Za is the number of pseudo charges of atom a, S is
the surface of the 2D unit cell and ndop×S is the number
of electrons added per unit cell. The total charge density
of the 2D material is obtained by integrating the sum
of the charge distributions associated with the ions and
electrons: ∫

〈%ion + %elec〉p(z)dz = −endop. (8)

where the charge densities % are related to the corre-
sponding electrons or ions density as %ion = enion and
%elec = −en. In the FET setup of Fig. 1, the doping
comes from the presence of accumulated counter-charges
in the gate. We thus add a charged plane of opposite
surface charge density +endop at zg < −t/2, playing the
role of the gate:

%gate(z) = +endopδ(z − zg) (9)

V 2D
gate(z) = +2πe2ndop|z − zg|. (10)

We now have a globally neutral system:∫
〈%ion + %elec〉p(z) + %gate(z) dz = 0. (11)

The potential of the gate is included in the external po-
tential:

V 2D
ext (rp, z) = V 2D

gate(z) + V 2D
ion (rp, z), (12)

The resulting planar-averaged KS potential V 2D
KS is the

black line in Fig. 1, in the case of a hole-doping mono-
layer material. At this point, it has the features expected
from a FET setup with vacuum as the insulating dielec-
tric. The general characteristics of this potential are eas-
ily deduced from a simple parallel plate capacitor model:
(i) outside the system, the electric field is zero and the
potential is constant; (ii) between the 2D material and
the gate, the electric field is constant and the potential
is linear with a slope of 4πe2ndop; (iii) this electrostatic
configuration translates into an out-of-plane dipolar mo-
ment which induces a shift in the KS potential:

〈V 2D
KS 〉p(+∞)− 〈V 2D

KS 〉p(−∞) = 4πe2ndop|zg|, (13)

as represented in Fig. 1.
The other element to consider to have a minimal work-

ing model for the FET setup is the dielectric separating
the gate and the material. Its necessity is obvious in the
case of electron-doping. In that situation, the polarity of
the system pictured in Fig. 1 is reversed. This means
that the gate lies at a lower potential than the 2D mate-
rial. In our simulations, there would then be some leaking
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of electrons towards the gate. This is not physical25. In
a FET setup, this is prevented by the presence of an in-
sulator between the gate and the material. From a more
mechanical point of view, the necessity of the dielectric is
in fact more general. Indeed, both for hole- and electron-
doping, there is an attractive force between the gate and
the material, which is simply the electrostatic attraction
between two oppositely charged plates:

|Fgate−material| = S × 2πe2n2
dop. (14)

In this context, the dielectric provides a counteracting
repulsive force. To emulate both the insulating and re-
pulsive roles of the dielectric, we add a potential barrier
in between the material and the gate:

V 2D
barrier(z) =

{
Vb if z < zb

0 otherwise
(15)

where zg < zb < 0. This potential can be included in
the external potential V 2D

ext . Adding such a barrier re-
sults in the potential represented by a blue line in Fig. 1.
This barrier potential essentially forbids (or makes highly
unlikely) the presence of electrons for z < zb, thus pre-
venting electrons from leaking towards the gate. Since
the electrons cannot go past the barrier, and since the
ions are strongly attracted by the electrons, the barrier
repulses the 2D material as a whole. As will be detailed
later, the equilibrium position of the material with re-
spect to the barrier can be determined by relaxation of
the forces in the system.

In the following section, we explain how we deal with
the periodic images to obtain the KS potential we just
described in a plane-wave DFT code wit 3D PBC. Then,
we will detail the modifications implemented to compute
the total energy, forces, phonons and electron-phonon in-
teractions for a 2D material doped in the FET setup.

III. TREATMENT OF THE PERIODIC IMAGES

Ab initio calculations based on plane-wave basis sets
require periodic boundary conditions along the three di-
mensions (3D PBC). In this framework, periodic images
of the 2D system are present in the out-of-plane direction.
Our goal is for each periodic image to be strictly equiva-
lent to the 2D system presented in the previous section,
at least within a certain “physical region” around the
2D material (for example, within the boundaries of Fig.
1). In this section, we detail the issues that arise from
the use of 3D PBC for the simulation of doped systems,
systems with out-of-plane dipolar moment, and systems
perturbed at long wavelengths. We then show how the
Coulomb cutoff technique can solve those issues.

A. Inadequacy of 3D PBC

The 3D-periodic system obtained by adding translated
copies of the 2D system generates potentials that are dif-

ferent from the ones described in the previous section.
This comes from interactions between periodic images,
due to the combination of their potentials while satisfy-
ing PBC. The sum of the KS potential from each periodic
image can be written:

VKS(rp, z) =
∑
i

V 2D
KS (rp, z − ic), (16)

where i is an integer, and c is the distance between the
periodic images. V 2D

KS is the potential of the 2D system,
while VKS is the one simulated in DFT with 3D PBC.
In addition to the 2D PBC of Eq. (4) that V 2D

KS already
fulfills, VKS has to fulfill the PBC in the third direction:

VKS(rp, z + ic) = VKS(rp, z) , ∀ i. (17)

We first consider a doped 2D material. Away from the
direct vicinity of the material, this system behaves like
a monopole, with lim|z|→∞〈V 2D

KS 〉p(z) = ∞, and VKS is
obviously ill-defined. As mentioned before the standard
method in current plane-wave DFT packages amounts to
the use of a jellium background. Each slab is then glob-
ally neutral, containing the doped material and a uniform
distribution of compensating charges. In between the pe-
riodic images, the resulting potential is quadratic in z,
with extrema at mid-distance between layers, as shown
in Fig. 2. This potential does fulfill the PBC and doesn’t
diverge. However, it is quite different from the potential
one would expect for a charged, isolated 2D material. In-
deed, away from the direct vicinity of the materials, one
would expect to recover a linear potential, similar to that
generated by an isolated monopole.

Now we consider a 2D system with a global dipolar
moment in the out-of-plane direction and a V 2D

KS poten-
tial like in Fig. 1. Here, each periodic image is globally
neutral. However, the potential 〈VKS〉p(z) would expe-
rience a shift with each periodic images, eventually di-
verging. Imposing PBC forbids this kind of situation.
Instead, it leads to a combination of additional electric
field and re-organization of the charge so that the total
average electric field in one slab is zero17–19. Here again,
we loose the equivalence with V 2D

KS .
Finally, 3D PBC are very problematic when the sys-

tem is perturbed at small wave vector. If a 2D charge
density is modulated according to an in-plane wave vec-
tor q, it generates a potential decreasing as e−|q||z| in
the out-of-plane direction. At small wave vector, the ex-
tent of the potential induced by the electron density is
thus very large. When it is of the order of the distance
between periodic images, there is some spurious interac-
tions. This issue is critical when simulating the screen-
ing properties9 of the material as well as its response to
phonon perturbations10,11.

B. Isolate the layers with 2D Coulomb cutoff

To reduce interactions between periodic images, a
naive solution is to increase the distance between them.
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FIG. 2. Planar-averaged KS potential in the out-of-plane di-
rection as simulated in DFT with 3D PBC for neutral (dashed
line) and doped (plain line) graphene. In the case of doped
graphene, the quadratic behavior of the KS potential indicates
the presence of a jellium background and a linear electric field.
The dot-dashed line represent the behavior one would expect
from an isolated monopole with the same surface charge den-
sity as the 2D material Vmono(z) = −2πe2ndop|z| .

However, in a plane-waves framework, the cost of the
calculations increasing linearly with the distance, this
method can be very expensive, especially in the partic-
ular cases presented before. Furthermore, this method
inevitably fails for DFPT in the long wavelength limit,
as spurious interactions are bound to affect the response
of the material at small enough wave vectors.

One solution for the FET setup and for systems with
an out-of-plane dipolar moment in general is to add a
dipole correction to catch up the potential shift15,17–19.
However, the dipole correction has to be recalculated self-
consistently at each iteration, and this method has not
been extended to the DFPT framework.

Here, we tackle 3D PBC issues by using the
Coulomb cutoff technique26–28, successfully used by other
codes29,30 in different contexts. The general idea is to
cut all the potentials off between the periodic images. In
effect, all physical links between periodic images are sev-
ered because the potential generated by one periodic im-
age does not reach the others. Each slab is effectively iso-
lated. There is no physical 3D-periodic system anymore.
There is a 2D-periodic system, copied and repeated in the
third dimension in order to build potentials that mathe-
matically fulfill 3D PBC.

Each long-range potential (V ≡ Vion, VH, Vgate) in the
original 3D code is generated by a certain distribution of

charges via the Coulomb interaction vc(r) = e2

|r| . To build

the corresponding cutoff potentials in the code (V̄ ≡
V̄ion, V̄H, V̄gate), we use the following cutoff Coulomb in-
teraction:

v̄c(r) =
e2θ(lz − |z|)

|r|
, (18)

where r ≡ (rp, z) is a generic 3-dimensional space vari-
able . An arbitrary charge density % then generates the
following potential:

V̄ (r) =

∫
e%(r′)

|r− r′|
θ(lz − |z|)dr′. (19)

Roughly speaking, considering a single charged plane, we
generate its potential only within a certain slab of thick-
ness 2lz centered on the charge distribution. Within this
slab, we have that V̄ (r) = V 2D(r). Outside of this slab,
the potential is zero. Each periodic image of each charge
distribution (%ion, %elec, %gate) generates its own potential
within its own slab. To fulfill 3D PBC, the simpler way
is to cut off midway between the periodic images:

lz =
c

2
. (20)

Since the potentials V 2D
ion , V 2D

H , and V 2D
gate are symmet-

ric with respect to the plane of the associated subsystem
(ions, electrons, gate), they have the same value on both
sides of the corresponding slab. V̄ion, V̄H, and V̄gate are
each continuous and periodic, and so is their sum V̄KS.
However, since the slabs of each subsystem do not coin-
cide, the KS potential is only physical within the overlap
of the subsystems’ slabs. This overlap region defines a
“physical region”, as illustrated in Fig. 3 , where all the
potentials make sense. Outside of this region, there are
some spurious unphysical variations of the KS potential.
Those spurious variations are a necessary consequence of
fulfilling 3D PBC. Let us consider the example Fig. 3
in more details. The simplest subsystem is the gate be-
cause %gate is infinitely thin in the out-of-plane direction.
Within the slab z ∈ [zg − c

2 ; zg + c
2 ], we see the potential

generated by the gate at zg.

V̄gate(rp, z) =
∑
i

V 2D
gate(rp, z − ic)θ(

c

2
− |z − ic|) (21)

= V 2D
gate(rp, z) if z ∈ [zg −

c

2
; zg +

c

2
]. (22)

For z outside of this interval, we see the potential gen-
erated by the neighboring periodic images of the gate,
which has no physical sense with respect to the 2D sys-
tem represented in Fig. 3. For the electrons, the charge
distribution %elec is spread in the out-of-plane direction.
Each infinitesimal slice of electronic density with surface
charge density %elec(z)dz generates its contribution to the
Hartree potential only within a certain slab. The Hartree
potential is physical only within the overlap of all those
slabs. If the electrons are centered around a position ze,
that would be z ∈ [ze− c

2 + t
2 ; ze + c

2 −
t
2 ]. The ions are in



6

-30 -20 -10 0 10 20
z (a.u.)

-4

-3

-2

-1

0

1

2

V
(G

p
=

0
, 

z)
 [

R
y

]

V
gate

V
ion

+V
H

Physical region

V
ion

+V
H

 physical

V
gate

 physical

-30 -20 -10 0 10 20
z (a.u.)

-4

-3

-2

-1

0

1

2

V
K

S
(G

p
=

0
, 

z)
 [

R
y

]

Physical region

z
g

FIG. 3. Determination of the physical region. In the up-
per panel, we show the gate potential and the material’s po-
tential 〈V̄ion + V̄H〉p(z), and indicate where they make sense
physically. The physical region is the overlap between those
regions. In the lower panel, we show that the KS poten-
tial 〈V̄KS〉p(z) (the sum of the potentials above) makes sense
within the physical region. In both plots, c ≈ 37 a.u. and
zg ≈ −8.5 a.u.

a similar situation, but the charge distribution is much
less spread. The difference in the spreading of %elec and
%ion leads to the bumps we can observe for V̄ion + V̄H ,
at z ≈ ±18.5 a.u. in Fig. 3. Thus, the unphysical varia-
tions of the KS potential outside the physical region are
due to the addition of potentials generated by incomplete
subsystems or different periodic images.

Nevertheless, everything happens as in the previous

section within the physical region associated to the KS
potential. To simulate the system, we just need to make
sure that the 2D material lies in this physical region.
We will need 3D Fourier transforms V̄ (Gp, Gz), easily
related to the 2D Fourier transform of V 2D(Gp, z), Eq.
5, as follows:

V̄ (Gp, Gz) =
1

c

∫ c/2

−c/2
dz V 2D(Gp, z)e

−iGzz. (23)

IV. IMPLEMENTATION

In this section we detail the implementation of the
Coulomb cutoff for the potentials, and show how it affects
the energies, forces, phonons and EPC in the code. Most
of the potentials, or at least their long-range parts, are
calculated in reciprocal space. We thus need the Fourier
transform of Eq. 18, as defined in Ref. 27:

v̄c(Gp, Gz 6= 0) =
4πe2

|Gp|2 +G2
z

×
[
1− e−|Gp|lz cos(Gzlz)

]
,

v̄c(G = 0) = 0.

(24)

The choice of the G = 0 value is just a convention since
every potential is defined up to a constant. Here, we
choose the same convention as in the original 3D code,
such that the average of a potential over the unit cell is
zero. A more detailed justification about this choice, es-
pecially its implications in terms of energy, can be found
in App. D. For clarity, we will often need to describe
the implementation of the original 3D code first in or-
der to identify what needs to be modified. We use dif-
ferent notations to distinguish the potentials that stay
as implemented in the original 3D code (noted V ) and
those that are modified with the implementation of the
2D Coulomb cutoff (noted V̄ ). For other quantities (en-
ergy, forces, phonons and EPC), such distinction in the
notation is not necessary. Indeed, their definition essen-
tially does not change, it is the potential that is used to
compute them that changes.

A. KS Potential

The KS potential is the sum of the external poten-
tial, the Hartree potential, and the exchange-correlation
potential:

V̄KS(rp, z) = V̄ext(rp, z) + V̄H(rp, z) + VXC(rp, z). (25)

The exchange-correlation potential is short-range and
does not need to be cut off. Thus, it will be ignored in
the following. We note, however, that a great majority of
commonly used functionals are derived in the framework
of the 3D electron gas. While their relevance in the con-
text of 2D materials is obviously questionable, the devel-
opment of new functionals for 2D materials is out of scope
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for the present work. The implementation presented here
is valid for all the usual types of pseudopotentials (norm-
conserving, ultra-soft, projector-augmented wave func-
tions). Indeed, we only modify the long-range parts of
the potentials, which are independent of the pseudopo-
tential type.

The external potential is the sum of the ionic, gate and
barrier potentials:

V̄ext(r) = V̄ion(r) + V̄gate(z) + V̄barrier(z). (26)

1. Ionic Potential

The ionic potential is separated in local and non-local
parts V̄ion = V̄ loc

ion +V non−loc
ion . The non-local part is short-

range. It does not need to be cut off and is ignored
here. We need to compute the Fourier transform of the
cutoff local potential V̄ loc

ion (G). It is computed from the
the pseudopotentials, which are separated in short-range
and long-range parts. We first describe this separation
as it is done in the original code, identify what must be
modified, then present the implementation of the cutoff.

In the original 3D code, the local part of the pseu-
dopotential is a radial function in real space va(|r|) asso-
ciated to each type of atom. It is separated in short-range
(SR) and long-range (LR) parts:

va(|r|) = vSR
a (|r|) + vLR

a (|r|) (27)

vSR
a (|r|) = va(|r|) +

Zae
2erf(

√
η|r|)

|r|
(28)

vLR
a (|r|) = −

Zae
2erf(

√
η|r|)

|r|
, (29)

where erf(
√
η|r|) is the error function with η as a tun-

ing parameter (see App. C for more details on that pa-
rameter). The pseudopotential vSR

a (r) is indeed short-

range because it always behaves as −Zae
2erf(

√
η|r|)

|r| for |r|
large enough. In particular, we have that vSR

a (r) = 0 for
|r| ≥ rSR. The Fourier transform of the SR part is cal-
culated via numerical integration, while the LR part is
analytic. The SR part, specific to each atom, is Fourier
transformed on a finite sphere:

vSR
a (G) =

1

Ω

∫ |r|=rSR

0

vSR
a (r)e−iG·r dr, (30)

where Ω = S×c is the volume of the unit cell. The poten-
tial vSR

a does not need to be cut off as long as rSR < lz,
which is easily satisfied. The Fourier transform of the LR
part vLR

a (G) is easily found analytically, since vLR
a (|r|)

is the potential generated by a Gaussian distribution of
charges:

vLR
a (G) = −Za

Ω
vc(G)e−|G|

2/4η. (31)

This SR/LR separation is implemented in the original
3D code to enable the restriction of numerical Fourier

transforms to a finite region of space. The original code
also relies heavily on the rotational invariance of the ra-
dial pseudopotentials to define the arrays containing their
Fourier transforms.

In our 2D implementation, we replace the analytic LR
part of the pseudopotential by its cutoff version:

v̄LR
a (G) = −Za

Ω
v̄c(G)e−|G|

2/4η. (32)

The SR/LR separation turns out to be very convenient
to implement the Coulomb cutoff. However, since the
Coulomb cutoff breaks the rotational invariance, it can-
not be implemented as a simple modification of the ex-
isting array. A separate array for the cutoff LR part is
calculated in a separate routine. It is then added to the
SR part when constructing the local part of the ionic
potential:

V̄ loc
ion (G) =

∑
a

e−iG·da
(
vSR
a (G) + v̄LR

a (G)
)
. (33)

2. Hartree Potential

The Hartree potential is relatively easy to cut off. It is
computed in reciprocal space from the electronic density:

V̄H(G) = v̄c(G)n(G). (34)

3. Gate Potential

The gate potential must be added for a doped system.
In practice, the potential of the gate is added in real space
to the external potential. We define directly in real-space
the saw-tooth potential generated by %gate, Eq. (9) via
the cutoff Coulomb interaction Eq. (24). Within the
interval z ∈ [zg − c

2 , zg + c
2 ], it is defined as:

V̄gate(z) = 2πe2ndop

(
|z − zg| −

lz
2

)
, (35)

where the constant term is due to the definition of
v̄c(G = 0). It sets the out-of-plane average of the po-
tential to zero. A second gate can be added to provide
more flexibility and to simulate the combination of bot-
tom and top gate. We simply define two separate gate
potentials (index ”bot” for bottom gate and ”top” for
top gate):

V̄ bot
gate(z) = 2πe2nbot

(
|z − zbot

g | −
lz
2

)
(36)

V̄ top
gate(z) = 2πe2ntop

(
|z − ztop

g | −
lz
2

)
, (37)

and add them together to form the total gate potential:
V̄gate(z) = V̄ bot

gate(z)+V̄ top
gate(z) where the charges should be

such that the whole system is neutral: ntop+nbot = ndop.
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4. Barrier Potential

The barrier potential is necessary to relax the forces
in the system and to prevent electrons from leaking to-
wards the gate. It is also used to prevent electrons from
going outside the physical region. Indeed, the variations
of the potential outside the physical region can lead to
the presence of potential wells. Placing a barrier poten-
tial outside the physical region ensures that no unphys-
ical leaking occurs. The barrier is added in real space
along with the gate. In practice, this barrier consists
in the addition of a constant to the external potential
within a certain region in the out-of-plane direction. For
z ∈ [− c

2 ,+
c
2 ], it is defined as:

V̄barrier(z) =

{
Vb if z < zb1 or zb2 < z

0 otherwise
(38)

The borders of the barrier at zb1 and zb2 are smoothed
via a linear transition from Vb to 0 on a small distance.
The implementation of the gate and the barrier was
adapted from a previous modification of the code, dis-
cussed in Ref. 15.

5. Verifications

To check the consistency of our modifications on the
potentials, we can first simulate the potentials of a neu-
tral and non-polar 2D system, without gate or barrier.
The corresponding ionic, Hartree and KS potentials are
plotted with and without the 2D Coulomb cutoff in Fig.
4. With 3D PBC, setting the G = 0 value of the ionic or
Hartree potential to zero is equivalent to the inclusion of
a compensating jellium background. The potentials we
observe then correspond to either ions or electrons bathed
in the associated jellium. This leads to a quadratic be-
havior in z between the periodic images. When the 2D
Coulomb cutoff is applied, we recover the linear behavior
in z. Setting the G = 0 value of the ionic or Hartree po-
tential to zero leads to a simple shift. For such a neutral
and non-polar system, the KS potentials with and with-
out cutoff coincide up to a constant within the physical
region. This constant comes from the fact that both KS
potential average to zero but the cutoff KS potential has
bumps outside the physical region while the other does
not.

Let us now simulate the KS potential of a hole-doped
2D material as shown in Fig. 5. Using the original code
with 3D PBC, we obtain the potential of the material
bathed in a jellium compensating for the added charge
(or missing electrons). In that case, the KS potential is
quadratic, with a varying slope and thus a varying elec-
tric field. The electric field is symmetric with respect to
the plane of the 2D material. It vanishes midway between
the periodic images, on the left and right borders of Fig.
5. If we use the 2D Coulomb cutoff without adding a
gate, we obtain the potential that would be generated by
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-40
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FIG. 4. In the upper panel, we show the planar-averaged
ionic, Hartree and KS potential obtained with and without
the 2D Coulomb cutoff. In the lower panel, we zoom in on
the KS potential. Within the physical region, the KS poten-
tials with and without cutoff coincide up to a constant, as
is demonstrated by the difference 〈V̄KS − VKS〉p(z) (dash-dot
indigo line).

the doped 2D material in vacuum, as in Eq. (8), within
the physical region. If we add a compensating charged
plane to simulate the gate, we obtain the configuration
of the FET setup, with a finite electric field on the left
of the 2D material, and zero electric field on the right.

Finally, we simulate the KS potential of an electron-
doped system to show the necessity of the barrier poten-
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FIG. 5. The planar-averaged KS potential of hole-doped
graphene is simulated in various situations to show the differ-
ent configurations in terms of electric field. The label ”with-
out cutoff” means that the standard 3D code was used. The
label ”with cutoff” means that the 2D Coulomb cutoff was
implemented. In that case, we plotted the result with and
without a gate. The lower panel is a zoom in the region de-
limited by the blue box in the upper panel.

tial in Fig. 6. Without the barriers, some potential wells
appear on both sides of the 2D material. On the left, this
is due to the presence of the positively charged gate. On
the right, this is due to the unphysical variations of the
KS potential outside the physical region. Electrons leak
towards those potential wells, which can be inferred here
from the slopes of the KS potential in the vicinity of the
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z (a.u.)
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FIG. 6. Planar-averaged KS potential in the case of electron
doping. The gate is always included. We plot the potential
without barrier to show how there is some unphysical leak-
age. With the barrier, we effectively prevent electrons from
reaching any of the unphysical potential wells.

2D material. Compared to what we should obtain in the
FET setup, the slope of the KS potential on the left of
the 2D material is too small while the slope on the right
is not zero. This is due to the Hartree potential contribu-
tion from the electrons that leaked in the potential wells.
This is not what we want to simulate. The addition of a
potential barrier prevents the electrons from leaking to-
wards the barrier or outside the physical region, and we
find the right slopes (or electric field) in the vicinity of
the material.

B. Total Energy

The total energy per unit cell associated with the sys-
tem is:

Etot = Ekin + Eext + EH + EXC + Ei−i + Eg−i + Eg−g.
(39)

It is the sum of the kinetic energy of the electrons, the en-
ergy of the electrons in the external potential, the Hartree
energy, the exchange-correlation energy, the ion-ion inter-
action energy, the energy of the ions in the potential of
the gate(s), and finally, the self-interaction energy of the
gate(s). The terms Ekin and EXC are short-range. They
are computed as in the standard 3D code. The computa-
tion of the remaining terms is detailed in the following.
A general definition of Eext, EH and Ei−i can be found in
App. A. Those definitions stay valid provided one uses
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the cutoff potentials V̄ext, V̄H and Φ̄. Unlike the poten-
tials, the total energy is not defined up to a constant.
The choice of the v̄c(G = 0) can affect the value of the
energy contributions, but it should not affect the total
energy. In the following, choosing v̄c(G = 0) = 0 means
that the G = 0 terms of the long range contributions to
the energy will be put to zero in the 2D framework. This
is justified in App. D.

1. External Energy

The external energy Eext is calculated via the sum of
the eigenvalues of the KS system. Once the external po-
tential is defined as in Eq. 26, it is used to solve the KS
system and the sum of its eigenvalues includes the correct
cutoff energy contribution. The external energy decom-
poses into the energies of the electrons in the potentials
of: i) the ions Eion

ext , ii) the gate Egate
ext and iii) the bar-

rier Ebarrier
ext . We use sufficiently sharp and high barrier

potentials to write that Ebarrier
ext ≈ 0 because there are

(almost) no electrons where there is a potential barrier.

The other contributions Eion
ext and Egate

ext are non-zero, but
we have no further modifications to make.

2. Hartree Energy

The Hartree energy is easily written in reciprocal space
as:

EH =
Ω

2

∑
G

n∗(G)V̄H(G), (40)

and is computed in practice by replacing V̄H(G) by its
expression (Eq. (34)):

EH =
Ω

2

∑
G

|n(G)|2v̄c(G). (41)

3. Ion-ion Interaction Energy

The ion-ion interaction energy Ei−i is computed us-
ing the ion-ion interaction potential Φ̄. The compu-
tation is based on the Ewald summation technique31,
which involves a separation into SR and LR parts Ei−i =
ESR

i−i +ELR
i−i . Much like for the ionic potential, we do not

need to modify the SR part. Here again, we start by pre-
senting what is done in the original code, identify what
we must modify, then present the implementation of the
cutoff.

In the original 3D code, following the Ewald summa-
tion technique,the ion-ion interaction potential Φ is sep-

arated in SR and LR part as follows:

Φ(r) =ΦSR(r) + ΦLR(r)− Φself (42)

=
∑
R′

∑
a′

′ e2Za′

|r−R′ − da′ |
erfc(
√
ηew|r−R′ − da′ |)

+
∑
R′

∑
a′

e2Za′

|r−R′ − da′ |
erf(
√
ηew|r−R′ − da′ |)

− Φself ,

(43)

where the prime in the first sum excludes the case
{R′ = R, a′ = a} if r = R + da and Φself subtracts that
term from the second sum. The constant ηew tunes the
SR/LR separation (see App. C for more details). The
SR part of the ion-ion interaction potential ΦSR is dealt
with in real space and does not need to be modified as
long as erf(

√
ηewlz) ≈ 1 (easily satisfied). Φself is simply

the value of ΦLR(r) for r −R′ − da′ = 0. As such Φself

is also short-range. We include the corresponding energy
contributions in ESR

i−i. Those contributions do not need

to be cut off. The contribution of the LR potential ΦLR

to the energy is computed in reciprocal space and needs
to be be modified.

In our implementation, we replace the Fourier trans-
form of the LR part of the ion-ion interaction potential
by its cutoff version:

Φ̄LR(G) =
1

Ω

∑
a

Zae
iG·da v̄c(G)e−|G|

2/4ηew . (44)

The LR contribution to the ion-ion interaction energy is
then computed in reciprocal space as follows:

ELR
i−i =

Ω

2

∑
G

n∗ion(G)Φ̄LR(G) (45)

=
1

2Ω

∑
G

∣∣∣∣∣∑
a

Zae
iG·da

∣∣∣∣∣
2

v̄c(G)e−|G|
2/4ηew , (46)

where nion(G) = 1
Ω

∑
a Zae

iG·da is the Fourier transform
of the distribution of ions (%ion = enion).

4. Other Energies

The other energies to account for are the energy of
the ions in the potential of the gates Eg−i, and the self
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interaction of the gates Eg−g.

Eg−i =

∫
Ω

dr nion(r)(−V̄gate(z)) (47)

=
∑
a

Za2πe2nbot

(
−|da,z − zbot

g |+
lz
2

)
(48)

+
∑
a

Za2πe2ntop

(
−|da,z − ztop

g |+
lz
2

)
(49)

Eg−g =
1

2

∫
Ω

dr
(
nbotδ(z − zbot

g ) + ntopδ(z − ztop
g )

)
× (−V̄gate(z)) (50)

=S (nbot + ntop)
2
πe2 lz

2
(51)

+ Snbotntop2πe2

(
−|ztop

g − zbot
g |+

lz
2

)
, (52)

where da,z is the z-component of da. We consider the
most general case of a double-gate setup. Note that those
contributions to the energy have a manifest dependency
on the cutoff distance lz. The total energy, of course,
should not depend on lz. As detailed in App. D, the lz-
dependent terms in the expression above will cancel with
corresponding terms in Eext and EH.

5. Verifications

In the absence of doping, gate and barrier, the total
energy is:

Eneutral
tot = Ekin + Eion

ext + EH + EXC + Ei−i. (53)

We can thus check the consistency of the implementation
of Eion

ext , EH and Ei−i in a neutral system. We first com-
pute the total energy of the neutral, non-polar system of
Fig. 4 with and without cutoff. We should obtain the
same result as there is no issue with the periodic images
in that case. We checked that the difference is below nu-
merical precision. We can then use a neutral system with
an out-of-plane dipolar moment such that interactions
between periodic images do play a role without the 2D
Coulomb cutoff. We use graphene with hydrogen atoms
on top of half of the carbon atoms, see Fig. 7. The effect
of the Coulomb cutoff is clear on both the KS potential
and total energy. The KS potential of the system without
cutoff illustrates the comments of Sec. III. Namely, im-
posing 3D PBC leads to the compensation of the out-of-
plane dipolar moment by an external electric field, visible
here via the finite slope of the KS potential away from
the material. When we use the 2D Coulomb cutoff, we
observe the right behavior, with a potential shift and no
external electric field. The energy of the system simu-
lated without cutoff tends to the one with cutoff at large
distances between periodic images. With the cutoff, the
energy is independent of the distance. There is a lower
limit to the distance between periodic images, which is

when the boundaries of the physical region are too close
to the material. Still, the minimal distance we can use in
our implementation of the code is negligible with respect
to what we would have to use without cutoff. In the case
of Fig. 7, we see that the distance between the periodic
images would have to be roughly five times larger without
the cutoff to obtain the same total energy as with the cut-
off within 10−4 Ry. The computational cost would also
be 5 times larger. A way to get the right total energy in
this kind of polar material is to simulate the mirror im-
age of the system within the unit cell. We checked that
this leads to the same energy as what we find with the
2D Coulomb cutoff. Still, adding a mirror image of the
system rather than the cutoff leads to a drastic increase
of the computational cost.

C. Forces

The forces on the ions are found by computing the
derivative of the total energy with respect to a displace-
ment ua,i of atom a in direction i. Only the terms related
to an interaction in which the ions are involved remain.
The force acting on ion a in direction i is written:

Fa,i =− ∂Etot

∂ua,i
= −

∫
Ω

n(r)
∂V̄ion

∂ua,i
dr− ∂Ei−i

∂ua,i
(54)

+ Fg−i
a,i + Fb−i

a,i , (55)

where the first term is the force on the ion from the elec-
trons, the second is from the other ions, the third is from
the gate and the last from the barrier. The notation
∂

∂ua,i
implies taking the derivative at zero displacement

ua,i = 0. All the quantities involved are known once the
self-consistent calculation is completed. We will only de-
tail the terms for which we need to apply the 2D Coulomb
cutoff. The first term is calculated by computing the
derivative of the ionic potential, separated in local and
non-local parts. The derivative of the local part is found
by using the Fourier transform of the pseudopotentials:

∂V̄ loc
ion (r)

∂ua,i
= −i

∑
G

(
vSR
a (G) + v̄LR

a (G)
)
Gie
−iG·daeiG·r.

(56)

The effect of the derivative in reciprocal space is to bring
down a factor −iGi from the exponential. The corre-
sponding force is then calculated in reciprocal space:

−
∫

Ω

n(r)
∂V̄ loc

ion (r)

∂ua,i
dr =iΩ

∑
G

n∗(G)×(
vSR
a (G) + v̄LR

a (G)
)
Gie
−iG·da .

(57)

The gate and the barrier have indirect contributions to
this term. Indeed, they have an effect on n(r), via their
presence in the self-consistent KS potential.
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FIG. 7. DFT simulation of graphene with hydrogen atoms on
top (z > 0) of half the carbon atoms. The upper panel shows
the planar-averaged KS potential, with and without using the
2D Coulomb cutoff. The lower panel shows the total energy
per unit cell as a function of the distance between periodic
images, with and without using the 2D Coulomb cutoff. The
zero for the energies corresponds to the total energy per unit
cell obtained with cutoff.

The second term in Eq. (54) is the force from the other
ions. It is found by derivation of the ion-ion interaction
energy. We only treat the LR contribution, because it is

the only one that needs to be cut off:

−
∂ELR

i−i

∂ua,i
=− ∂

∂ua,i

(
Ω

2

∑
G

n∗ion(G)Φ̄LR(G)

)
(58)

=− 1

Ω

∑
G

v̄c(G)e−|G|
2/4ηewZaGi (59)

×
∑
a′

Za′ sin(da′ − da). (60)

The third term is the direct contribution of the electro-
static force applied by the gates to the ions. Depending
on doping, it can be repulsive or attractive:

Fg−i
a,z = −∂Eg−i

∂ua,z
= + Za2πe2nbot sign(da,z − zbot

g ) (61)

+ Za2πe2ntop sign(da,z − ztop
g ).

(62)

where we consider the most general case of the double-
gate setup.
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FIG. 8. Total energy (variation from relaxed position) and
forces as a function of the distance between the barrier and
the 2D material. The gate is moved with the barrier zg =
zb1 − 0.02c where c is the distance between periodic images
c ≈ 37 a.u. The position of the second barrier is such that it
covers the unphysical region zb2 = zg +0.5c. The 2D material
is graphene doped at a Fermi level of +0.5 eV. The relaxed
material-barrier distance is found to be around 6.26 a.u.

The barrier applies no direct force on the ions Fb−i
a,i =

0. The ions effectively never see the barrier potential
(they could if the barrier was smoother). However, bar-
riers can act on the ground-state electronic density n(r)
which in turn acts on the ions. For example, if the system
is too close from a barrier, the repulsive effect of the bar-
rier will show in the self-consistent cycles, shifting the
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electrons away from the barrier. The first term in Eq.
(54) will thus include a force that tends to push the ions
away from the barrier, with the electrons. The barrier is
then essential to relax the forces, arriving at an equilib-
rium between the attraction from the gate and repulsion
from the barrier. This is illustrated by the energy and
forces of the gate-barrier-material system represented in
Fig. 8. For large material-barrier distances, the force
tends to the attraction from the gate, and the total en-
ergy is linear. In that case, we have checked that the
total force on the ions is the force between two charged
plates, Eq. (14).

∑
a

Fa,z = S × 2πe2n2
dop sign(zg). (63)

For small material-barrier distances, as the system gets
too close to the barrier, there is a sharper increase of the
force and the total energy.

D. Stresses for neutral 2D materials

Stresses were not implemented in the FET setup. We
focus here on planar stress for neutral materials with-
out external electric field, as it used in the relaxation of
cell parameters for isolated 2D materials. The following
thus applies for Cartesian coordinates i, j ∈ [x, y]. The
stress is the first derivative of the energy with respect to
strain32,33

σi,j = − 1

Ω

∂Etot
∂εi,j

(64)

For the full expressions of stresses, we refer the reader
to Refs. 32 and 33, noting that the authors’ definition
of stress differs from QE’s and ours by a minus sign.
We only need to cutoff the terms involving long-range
potentials. The expressions of those terms in the 3D
framework are given in App. A, along with a minimal
outline of their derivation. They are modified as follows.

The key difference with the standard 3D code comes
from the cutoff Coulomb interaction Eq. 24, and its dif-
ferentiation with respect to strain:

∂v̄c(G)

∂εij
= v̄c(G)

2GiGj
G2

(1− β(Gp, Gz)) (65)

β(Gp 6= 0, Gz) =
|G|2lz
2|Gp|

e−|Gp|lz cos(Gzlz)

1− e−|Gp|lz cos(Gzlz)

β(Gp = 0, Gz) = 0

(66)

The Hartree contribution to the stress tensor reads

σH
i,j =− 1

2

∑
G

|n(G)|2v̄c(G)×(
2GiGj

G2
[1− β(Gp, Gz)]− δij

). (67)

The contribution from the long-range part of the local
part of the ion-electron interaction is

σloc,LR
i,j =−

∑
G

n(G)
∑
a

e−iG·da v̄LR
a (G)×(

2GiGj
G2

[
1 +
|G|2

4η
− β(Gp, Gz)

]
− δij

).
(68)

Finally, the long-range contribution from the ion-ion in-
teraction gives:

σi−i,LR
i,j =− 1

2Ω

∑
G

∣∣∣∣∣∑
a

Zae
iG·da

∣∣∣∣∣
2

v̄c(G)e|G|
2/4ηew×(

2GiGj
G2

[
1 +
|G|2

4ηew
− β(Gp, Gz)

]
− δij

)
(69)

E. Phonons and EPC

To calculate the phonon dispersion and electron-
phonon interactions, as reminded in App. B, we need
to compute the response of the electronic density to a
phonon perturbation. In essence, the linear response of
the system involves derivatives of the previous potentials
and energies. Once the previous framework is set up, we
just have to apply the Coulomb cutoff to the derivatives
consistently. The following applies to insulators, semi-
conductors and metals. In the latter case, Fermi-surface
effects, and notably the shift of the Fermi level that may
arise with phonons at zero momentum, are treated as in
the standard code, see Ref. 34.

1. Dynamical matrix

In practice, the dynamical matrix is given by the fol-
lowing integrals on the unit cell:

Da,i,a′,j×
√
MaMa′ =

∫
Ω

dr
∂2V̄ion(r)

∂ua,i(q)∂ua′,j(q)
n(r)

+

∫
Ω

dr

(
∂V̄ion(r)

∂ua,i(q)

)∗(
∂n(r)

∂ua′,j(q)
e−iq·r

)
+Di−i

a,i,a′,j

(70)

where the ”V” notation indicates that we are using the
lattice periodic part of the potential, see App. B. The
first term can readily be computed from the quantities
obtained in the ground-state calculation. It is computed
in reciprocal space as:
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∫
Ω

dr
∂2V̄ loc

ion (r)

∂ua,i(q)∂ua′,j(q)
n(r) = −δa,a′Ω

∑
G

(
vSR
a (q + G) + v̄LR

a (q + G)
)
GiGj<

(
n∗(G)e−iG·da

)
. (71)

where <(x) gives the real part of x. The last term comes from the second derivative of the ion-ion interaction Ei−i

with respect to a phonon displacement. The contribution from ESR
i−i does not change. The LR part ELR

i−i yields the
following contribution to the dynamical matrix:

Di−i,LR
a,i,a′,j =

1

Ω

∑
G,q+G6=0

v̄c(q + G)e−|q+G|2/4ηewZaZa′(q + G)i(q + G)je
i(q+G)·(da−da′ )

− 1

Ω

∑
G6=0

v̄c(G)e−|G|
2/4ηewZaGiGj

(∑
a′′

Za′′ cos(G · (da − da′′))

)
δa,a′ .

(72)

The second term in Eq. (70) is computed via numerical
integration over the unit cell in real space. The quantities
inside the integral are computed during the calculation
of the electronic density response to the perturbed KS
potential, presented in the following.

2. Perturbed KS potential

The linear electronic density response is found by solv-
ing a self-consistent system involving the effective per-
turbation, that is the derivative of the KS potential with

respect to a phonon displacement
∂V̄KS(rp,z)
∂ua,i(q) , Eq. (B8)

(the notation ”V̄” indicates lattice periodic functions, see
App. B). The first term is the perturbation of the exter-
nal potential. The phonons only bring a direct perturba-
tion to the potentials in which the ions are involved. This
means the perturbed external potential contains only the
contribution from the ionic potential. The Fourier trans-
form of the derivative of the local part of the ionic po-
tential has non-zero components at wave vectors q + G:

∂V̄ loc
ion(q + G)

∂ua,i(q)
=− i

(
vSR
a (q + G) + v̄LR

a (q + G)
)

(73)

× (q + G)ie
−i(q+G)·da , (74)

where the Fourier components of the long-range part of
the local pseudopotential are similar to Eq. (32):

v̄LR
a (q + G) = −Zs

Ω
v̄c(q + G)e−|q+G|2/4η. (75)

The perturbed ionic potential of Eq. (73) (along with
the non-local part that is computed as in the original 3D
code), is Fourier transformed and inserted in the second
term of the dynamical matrix Eq. (70).

The remaining long-range potential to cut off is the
Hartree potential generated by the density response,
computed in reciprocal space:

∂V̄H(q + G)

∂ua,i(q)
= v̄c(q + G)

∂n(q + G)

∂ua,i(q)
. (76)

The density response, solution of the self-consistent
system corresponding to the effective perturbation
∂VKS(rp,z)
∂ua,i(q) is inserted in the second term of the dynamical

matrix Eq. (70).

3. Born Effective charges and LO-TO splitting

In polar materials, the long-wavelength behavior of
longitudinal optical (LO) modes depends strongly on di-
mensionality. Indeed, the displacement patterns of LO
phonons are asociated with dipoles that interact with
each others via long-range Coulomb interactions. These
dipole-dipole interactions lead to an extra term in the en-
ergy of the LO mode with respect to the tranverse optical
(TO) mode, thus leading to the so-called LO-TO split-
ting. In 2D, as shown in Ref. 10, the splitting vanishes
in the zero momentum limit, but the dispersion of the
LO mode displays a finite slope at the Γ point. The im-
plementation of the 2D cutoff in DFPT as detailed above
guarantees the correct treatment of the LO-TO splitting.
A key quantity for this phenomenon is the tensor of Born
effective charges. Notably, it gives the values of the finite
slope of the LO dispersion at zero momentum. It can
by computed either via the forces induced by an elec-
tric field perturbation, or via the polarization induced
by atomic displacements. In both cases, the quantities
involved (forces, perturbed KS potential) are already cor-
rected as detailed above.

4. Fourier interpolation of phonon dispersions

Dynamical matrices can be Fourier interpolated34,35

to obtain phonons on dense grids at minimal computa-
tional cost. The Fourier interpolation in itself is carried
out as in the standard 3D code. In polar materials, how-
ever, the LO-TO splitting corresponds to a discontinuity
either in the zeroth (in 3D) or first (in 2D) order deriva-
tive of the phonon dispersion. Some non-analytic terms
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arise at long wavelengths due to the long- range nature of
the dipole-dipole interactions. Those non-analytic terms
must be modeled and excluded from the interpolation
process. Since they depend on dimensionality, the inter-
polation requires a different treatment in 3D and 2D. The
2D treatment is implemented as detailed in Ref 10.

5. EPC

We have all the quantities necessary to compute the
EPC:

gk+q,s,k,s′,ν =
∑
a,i

ea,iq,ν

√
~

2Maωq,ν
〈k + q, s|∂V̄KS(r)

∂ua,i(q)
|k, s′〉.

(77)

The EPC matrix elements are screened via the in-
duced part of the effective KS perturbation (Hartree and
exchange-correlation). The Hartree part of the screening
is then that of a 2D material. The gate and the bar-
rier have no direct effect in the KS perturbation. Note
that they are absent from this section. However, they
broke the symmetry of the ground-state. In particular,
the electronic distribution is not centered on the ions’
plane anymore. We will study the consequences of their
presence in the following section.

V. APPLICATION TO GRAPHENE FET SETUP

In this section we exploit our implementation of DFPT
for gated 2D systems to simulate some predicted pecu-
liarities of the FET setup. For isolated graphene without
any external electric field, it can be shown that the flex-
ural ZA phonons disperse quadratically and their energy
is zero in the long-wavelength limit36. Based on the mir-
ror symmetry with respect to the graphene plane, one
can further show that ZA phonons do not couple lin-
early to electrons22. Those characteristics do not hold
for graphene in the FET setup. First, the phonon dis-
persion changes due to the presence of a substrate and
a gate-dielectric. Second, the presence of an electric
field breaks the mirror symmetry with respect to the
graphene plane, making linear coupling to electrons pos-
sible. Those FET-specific effects have not been studied in
the context of DFPT. The electron-phonon coupling with
flexural phonons in gated graphene was recently studied
by first-principles and suggested to be a significant scat-
tering mechanism23. However, in this work, the calcula-
tions performed do not completely include the effect of
metallic screening on the electron-phonon coupling. In-
deed, at the two lowest doping considered, the phonon
momentum allowed for by 11 × 11 supercell is too large
with respect to the size of the Fermi surface. Further-
more, the method used in Ref. 23 assumes the Fourier
transform of the derivative of the self-consistent poten-

tial to be phonon-momentum independent. We will show
that this is not the case in doped graphene.

We perform DFPT calculations on graphene doped in
the FET setup. We simulate the main consequences
of the presence of the substrate and gate dielectric by
placing two barriers at zb1 and zb2 = −zb1, such that
zb2 − zb1 ≈ 5.3 Å. Compared to graphite, it corresponds
to a graphene-barrier distance that is smaller than the
distance between two adjacent graphene atomic planes,
but larger than the distance separating the tails of the
electronic densities associated with those planes. In prac-
tice, the distances between graphene and the substrate
or the dielectric depend on the details of the interactions
between those materials. Here, we simply make a choice.
As we will see, the results of the phonon calculations
point to a rather conservative choice for the graphene-
barrier distance. We plot the KS potential of the system
in the upper panel of Fig. 9. We will consider three
setups:

• “constant field”: we use two oppositely charged
gates. There is a finite and constant electric field
between the gates, but graphene stays neutral, i.e.
εF = 0 eV with respect to the Dirac point. In
this setup, the mirror symmetry associated to the
graphene plane is broken and electronic screening
from graphene is minimized. Barriers are present.

• “one gate”: we use a single bottom gate (zbot < 0),
with a charge equal and opposite to that of the
graphene sheet. The electric field is finite on the
side of the bottom gate, but zero on the side of
the top gate. In this setup the mirror symmetry
associated to the graphene plane is also broken but
the graphene is electron-doped such that εF ≈ 0.7
eV. This implies a stronger metallic screening from
π∗ electrons. Barriers are present.

• “isolated”: this setup is simply for comparison. We
simulate isolated, neutral graphene, without gates
and without barriers.

Linear response calculations are performed within the
Quantum ESPRESSO distribution24, using the 2D cutoff
and FET setup implementation described in this work.
We use a norm conserving pseudopotential within the
local density approximation37 (LDA). A dense k-point
grid (96× 96× 1) is chosen to sample the Fermi surface
of graphene and account for screening effects. We use
a 0.01 Ry Methfessel-Paxton smearing function for the
electronic integration and a 65 Ry kinetic energy cut-
off. We use the relaxed equilibrium structure of isolated
graphene in all setups. We neglect the change in lattice
parameter due to doping, which was calculated to be un-
der 0.1%. In the out-of-plane direction, the graphene
sheet is fixed midway between the barriers, where the
repulsive forces from the barriers cancel out. We ne-
glect the comparatively small attractive forces from the
charged gates.
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A. Acoustic out-of-plane (ZA) phonons
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FIG. 9. On the top is the KS potential of the simulated sys-
tem. The inset zooms on the dashed rectangle to highlight the
difference between the setups setups. In the “constant field”
setup, the slope of the KS potential, and thus the electric field,
is the same on both sides of the graphene layer. Graphene is
neutral. In the “one gate” setup, the electric field vanishes on
one side and graphene is electron-doped. Below is the disper-
sion of the acoustic phonons for the different setups. We are
mainly interested in the dispersion of ZA phonons, but the
in-plane acoustic modes are shown in thin dash-dot lines for
comparison.

We first show the emergence of a finite ZA phonon
frequency at Γ when graphene is enclosed between two
barriers. We calculate the acoustic phonons in this sys-
tem and get the dispersion in the lower panel of Fig. 9.
The dispersions obtained for isolated graphene (no gate,
no barrier) are also shown. The dispersion of the in-plane
modes is essentially unaffected by the presence of gates
and barriers. In contrast, a shift in the dispersion of the
ZA phonons is observed for the “one gate” and “constant
field” setups. The shift being similar for both setups, it
can be attributed to the presence of barriers rather than
the electric field configuration. We observe in this case a
rather flat dispersion, with ωZA(Γ) ≈ 35 cm−1. When a
2D material is enclosed between two potential barriers,
the ZA phonon dispersion loses its quadratic behavior in

the long wavelength limit. Instead, it goes to a finite
value at Γ. The closer the barriers, the more confined is
the 2D material and the larger is ωZA(Γ). For graphene, a
relevant reference for that value might be the ZO’ mode of
graphite, in which neighboring layers are in out-of-phase
ZA modes. It is often found38–40 to have a Γ frequency
close to 100 cm−1. The relatively small value of ωZA(Γ)
found here would thus indicate that the chosen graphene-
barrier distance is rather conservative in the sense that
the effect is most likely underestimated. Such a situation
is preferred here, in order to find an upper bound for the
strength of scattering by ZA phonons.

B. Gate-induced coupling to ZA phonons

We now demonstrate the emergence of a finite coupling
to linear order between the electrons and out-of-plane
acoustic ZA phonons, due to the electric field break-
ing the mirror symmetry with respect to the graphene
plane. More importantly, we unravel the critical im-
pact of screening on this coupling. We consider scat-
tering of electrons on an iso-energetic line at ε = 0.7
eV in the π∗ band. In the “one gate” setup, this cor-
responds to the Fermi surface of graphene. Thus, the
results will be representative of the scattering involved
in electronic transport. We use the same iso-energetic
line in the “constant field” setup, although the line does
not represent the Fermi surface since the graphene layer
is neutral. In this situation, the results are not relevant
for electronic transport. They correspond to the relax-
ation of a single electron excited at an energy of ε = 0.7
eV. The motivation behind comparing scattering on the
same iso-energetic lines is to observe the effect of elec-
tronic screening. We fix the initial state |k〉 and define
a set of scattered states |k + q〉 on the iso-energetic line
that we assume circular, as represented in Fig. 10. This
implies that we neglect trigonal warping and assume elas-
tic scattering, that is εk+q = εk ± ~ωq,ν ≈ εk. We cover
only half the line, the other half being equivalent by sym-
metry. We plot the corresponding EPC as a function of
the norm of momenta. Keep in mind that increasing
norm then corresponds to increasing values of the angle
between initial and scattered states θk+q,k.

We plot the corresponding values of gν(q) =
gk,π∗,k+q,π∗,ν for ν =ZA, TA, LA in the upper panel of
Fig. 10. The in-plane acoustic modes are plotted for com-
parison. We clearly observe the emergence of a non-zero
value for gZA, as expected. In both neutral and doped
cases, the value of the coupling vanishes for the large
phonon momenta corresponding to backscattering. In
the neutral case, gZA is comparable to the coupling with
in-plane acoustic phonons. However, while the coupling
to in-plane phonons is essentially doping-independent,
gZA is much smaller in doped graphene. Indeed, the cou-
pling to in-plane phonon is dominated by gauge fields41,
which do not affect the local charge density and thus
are not screened. In contrast, the gate-induced coupling
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FIG. 10. Emergence of a finite coupling to ZA phonons for
graphene under an electric field. The upper panel shows EPC
matrix elements while the lower panel shows the transport-
relevant quantity defined in Eq. 78. The set of pairs of elec-
tronic states involved in the scattering processes are chosen
such that the scattered states span half the Fermi surface, as
represented in green. In-plane phonons are represented in thin
dash-dot lines for comparison. The “constant field” setup, in
which graphene is neutral, leads to ZA couplings that are
comparable to the in-plane phonons. The “one gate” setup,
in which graphene is doped, leads to negligible ZA couplings.

to ZA phonon acts as a deformation potential, that is
a periodic modulation of charge density in the underly-
ing lattice potential in which the free electrons move. In
terms of Hamiltonian, the perturbation is diagonal and
proportional to identity in the Dirac spinor basis. As
such, this perturbation is screened by graphene’s elec-
trons. In the doped case, the gate-induced coupling gZA

is strongly screened by metallic graphene and it becomes
negligible. In Eq. (2) of Ref. 23, the authors considered
a deformation potential (called ”field-induced coupling
constant”) that depends on gate-voltage but is indepen-
dent of momentum q. The screening from the conduction
electrons of graphene does in fact bring a strong momen-
tum dependency9 to this quantity.

In Ref. 23, it is argued that despite relatively weak
coupling, the high occupation of ZA phonons lead to a
considerable scattering probability. In the lower panel of

Fig. 10, we study the transport-relevant quantity

Γ2
k,k+q,ν = g2

ν(q)(1 + 2Nq,ν)(1− cos(θk+q,k)) (78)

where Nq,ν is the phonon occupation at room temper-
ature (Böse-Einstein distribution with T = 300 K) and
the angular term conveys the fact that backscattering is
more detrimental to electronic transport. In the frame-
work of the relaxation time approximation and elastic
processes, the integral of this term over the Fermi surface
corresponds to the scattering rate. In the neutral case,
we see in the lower panel of Fig. 10 that despite vanish-
ing backscattering and the relatively small coupling over-
all, Γk,k+q,ZA is comparable to the other acoustic mode,
thanks to a relatively large occupation of ZA phonons
(note that as mentioned before, the phonon frequency is
probably a lower bound so the occupation and the scat-
tering rate are upper bounds). This makes field-induced
scattering by ZA phonons potentially important for car-
rier relaxation in neutral graphene under a constant elec-
tric field. In the more relevant case of single-gated and
doped graphene, the scattering from the ZA phonon is
screened and negligible. The doping level considered
here is rather large. However, for lower, more experi-
mentally realistic doping levels, the coupling would be
similar or smaller. Indeed, the electric field and thus the
field-induced bare coupling would be smaller. Since the
screening scales with the dimension of the Fermi surface9,
similar screening would be obtained for scattering around
the Fermi surface at any doping. This general trend is
verified in Fig. 11, where we use two different doping
and compare the electron-phonon coupling as a function
of the momentum rescaled by the size of the Fermi surface
|q|/2kF . Finally, in addition to screening effects, the flat-
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FIG. 11. The field-induced coupling with flexural phonons
decreases when doping decreases. The electronic pairs in-
volved in the scattered processes are chosen as in Fig. 10,
with an iso-energetic line taken at the corresponding Fermi
levels εF = 0.7 eV and εF = 0.3 eV, respectively.

ness of the ZA dispersion also plays a role in decreasing
the coupling with respect to the quadratic dispersion of
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isolated graphene (see definition Eq. 77). In experimen-
tal setups, the ZA dispersion will depend on the details of
the interactions with the subtrate and the gate dielectric.
In our simulations, the barriers act as an approximation
to these interactions. However, as mentionned above, we
expect experimental values of ωZA(Γ) to be comparable
or larger than the simulated value. Thus, we expect the
values of the coupling found in the highly doped case to
be an upper bound for scattering around the Fermi sur-
face of graphene at any finite doping level. This coupling
would thus be undetectable in transport measurements.
Those results are in stark contrast with the recent first-
principles study of this effect23. The main reasons for
this discrepency are the dispersion of flexural phonons
and electronic screening. Due to the flat dispersion of
the flexural phonons, we find overall smaller couplings
to flexural phonons than in Ref. 23. For the relaxation
of photoexcited carriers in neutral graphene (”constant
field” setup), we find that the coupling is still comparable
to the coupling with in-plane phonons. For carrier trans-
port in doped graphene, however, the coupling to flexural
phonons is screened and becomes negligible. Electronic
screening plays a key role in electron scattering. It is a
highly dimensionality-dependent quantity that requires
the correct 2D framework. It can be quite difficult to
model and predict its effect on complex mechanisms like
electron-phonon coupling, even more so in complex sys-
tems like gated 2D heterostructures. As illustrated here,
adequate DFPT methods are then an invaluable tool.

VI. CONCLUSION

Manipulating the electronic properties of heterostruc-
tures via the field effect is key to many future usage of 2D
materials. We first set the framework for the simulation
of charged heterostructures within the field-effect setup.
We then show that various issues arise within the stan-
dard three-dimensional periodic boundary conditions for
those systems, and that the truncation of the Coulomb
interaction in the out-of-plane direction is a simple and
efficient solution. We detail the implementation of the
two-dimensional Coulomb cutoff and the field effect setup
within the Quantum ESPRESSO distribution, for ground
state and linear response calculations. The most basic
changes concern the construction of potentials equivalent
to the those generated by an isolated two-dimensional
system. Changes are then made accordingly throughout
the code to compute physical quantities properly defined
in the two-dimensional framework. This includes total
energies, forces, stresses, phonons and electron-phonon
interactions. We demonstrate the relevance of the imple-
mentation by studying flexural (or out-of-plane acoustic)
phonons for graphene in the field effect setup. Our re-
sults show the emergence of a finite phonon frequency in
the long wavelength limit, as well as a finite coupling to
electrons. However, electronic screening makes the cou-
pling to flexural phonons negligible with respect to the

coupling to in-plane phonons. This implies that the phe-
nomenon is undetectable in transport measurements for
graphene at finite doping.
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Appendix A: DFT

In this section we introduce the quantities that can be
calculated in DFT. We give the most straightforward ex-
pressions for a generic system in 3D space. The formulas
might be applied to 3D-periodic or 2D-periodic materi-
als. The following description is obviously very far from
exhaustive. The aim is simply to set the notations and
provide definitions for the quantities mentioned in the
main text. For more details, we refer the reader to the
literature, for example Refs. 4–6. The lattice vectors are
noted R, the internal coordinate of atom a is da. The
reciprocal lattice vectors G are such that eiG·R = 1.

1. Potentials

The central potential in the self-consistent process is
the Kohn-Sham2 potential. It contains:

• Vext: the principal contribution to the external po-
tential Vext is the potential generated by the ions
Vion calculated via the pseudopotentials. For the
purpose of this paper, we consider only the local
part of Vion, written as:

V loc
ion (r) =

∑
R,a

va(r−R− da) (A1)

where va is the pseudopotential associated to atom
a. We can put other contributions into Vext, but in
this appendix Vext = Vion.

• VH: the Hartree potential is given by:

VH(r) = e2

∫
dr′

n(r′)

|r− r′|
, (A2)

Here, and whenever there is no specified interval,
the integrals are carried out over the entire space
spanned by the corresponding variable.

• VXC: the exchange-correlation potential is based on
the local density approximation37 (LDA).
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We also have to mention the potential Φ(r) which is
the potential generated by the ions used to compute ion-
ion interactions. Although it is generated by the same
source as Vion, it is not calculated via the pseudopoten-
tials. To generate this potential, the ions are modeled by
a collection of point charges. This potential is defined as:

Φ(r) =
∑
R′,a′

′ e2Za′

|r−R′ − d′a|
(A3)

where the prime on the sum excludes the {R = R′, a =
a′} case if r = R + da.

2. Total Energy

What we call the total energy of the system is the
clamped-ions energy or the Born-Oppenheimer energy
surface42:

Etot = Ekin + EXC + EH + Eext + Ei−i (A4)

where

Ekin = − ~2

2me

∑
k,s

f(εk,s)〈ψk,s|∇2|ψk,s〉 (A5)

EH =
1

2

∫
n(r)VH(r)dr (A6)

Eext =

∫
n(r)Vext(r)dr (A7)

Ei−i =
1

2

∑
R,a

ZaΦ(R + da) (A8)

and EXC is the exchange-correlation energy. For any of
the above quantity E , one can define the corresponding
energy per unit cell E = E/N where N is the number of
unit cells. This is often more useful in practice, since the
system is infinite, as are the energies E .

3. Forces

To calculate the force on atom a in direction i, we
compute the derivative of the total energy per unit cell
with respect to a displacement ua,i of this atom in this
direction, and take the value at ua,i = 0. Using the
Hellmann-Feynman theorem43,44, the force acting on ion
a, in direction i is given by:

Fa,i = −∂Etot

∂ua,i
(A9)

= −
∫

Ω

n(r)
∂Vext(r)

∂ua,i
dr− ∂Ei−i

∂ua,i
, (A10)

where the integral is carried over the volume of the unit
cell Ω. Here and in the following, the notation ∂

∂ua,i
rep-

resents the value of the derivative at zero displacement.

The first term is the contribution from the electrons, the
second from the ions. The forces can be computed as
soon as we have solved the ground state, since there are
only known quantities and their derivatives.

4. Stresses

The stress is the first derivative of the energy with
respect to the strain tensor ←→ε 32,33:

σi,j = − 1

Ω

∂Etot

∂εi,j
(A11)

In practice, it is derived from the total energy by applying
the scaling procedure r′ = (1 +←→ε )r. We will focus here
on the contributions from long-range potentials, the only
ones involved in the 2D Coulomb cutoff process. We
give an outline of the general derivation, below is the
treatment of the Hartree contribution:

σH
i,j = − 1

Ω

∂EH

∂εij
(A12)

with EH =
Ω

2

∑
G6=0

n∗(G)VH(G) (A13)

Since Ωn(G) is the number of electrons per unit cell,
it is invariant under strain. We are thus left with the
derivative of the Hartree potential:

∂VH(G)

∂εij
=
∂vc(G)

∂εij
n(G) +

∂n(G)

∂εij
vc(G) (A14)

Starting from the fact that Ωn(G) is invariant and know-
ing that the volume transforms as Ω′ ≈ (1 +

∑
i εii)Ω,

one finds that ∂n(G)
∂εij

= −δijn(G). We are left with the

derivative of the Coulomb interaction. Since the scaling
procedure gives G′ = (1−←→ε )G in reciprocal space, we

have that ∂Gl

∂εij
= −δliGj . The derivative of the Coulomb

interaction is then computed using the chain rule:

∂vc(G)

∂εij
=
∑
l

∂vc(G)

∂Gl

∂Gl
∂εij

(A15)

= −∂vc(G)

∂Gi
Gj (A16)

= vc(G)
2GiGj

G2
(A17)

with the 3D Coulomb interaction as vc(G) = 4πe2

G2 . The
Hartree contribution is thus:

σH
i,j =− 1

2

∑
G

|n(G)|2vc(G)×
(

2GiGj
G2

− δij
)
. (A18)

Similar derivations yield the contribution from the long-
range part of the local ionic potential. By differentiation
of (see also Eq. 27):

Eloc,LR
ext = Ω

∑
G

n∗(G)
∑
a

eiG·davLR
a (G) (A19)
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one gets:

σloc,LR
i,j =−

∑
G

n(G)
∑
a

e−iG·davLR
a (G)×(

2GiGj
G2

[
1 +
|G|2

4η

]
− δij

) . (A20)

Finally, the long-range part of the ion-ion interaction is
written:

ELR
i−i =

1

2Ω

∑
G

∣∣∣∣∣∑
a

Zae
iG·da

∣∣∣∣∣
2

vc(G)e−|G|
2/4ηew , (A21)

and gives the following stress:

σi−i,LR
i,j =− 1

2Ω

∑
G

∣∣∣∣∣∑
a

Zae
iG·da

∣∣∣∣∣
2

vc(G)e|G|
2/4ηew×(

2GiGj
G2

[
1 +
|G|2

4ηew

]
− δij

)
(A22)

Appendix B: DFPT

DFPT enables the computation of the linear response
of the ground state to given perturbation. We focus here
on phonon perturbations, as implemented in the phonon
code of the Quantum ESPRESSO distribution. Again,
we only give minimal description to settle the notation
and define the quantities referred to in the main text.
The reader might refer to the literature for more details,
for example Refs. 34 and 35.

1. Phonons

A phonon perturbation of momentum q is represented
by a collection of displacements ua,i(R) of atom a in
Cartesian direction i:

ua,i(R) = ua,i(q)eiq·R (B1)

where ua,i(q) is the Fourier transform of ua,i(R). The
phonon frequencies are obtained from the second deriva-
tive of the total energy of the crystal Etot (not the energy
of a unit cell) via the matrix of the interatomic force
constants defined as34,35,45:

Cai,a′j(R−R′) =
∂2Etot

∂ua,i(R)∂ua′,j(R′)
(B2)

= Cion
ai,a′j(R−R′) + Celec

ai,a′j(R−R′)

In this particular context, it does not make sense to talk
about energy per unit cell. Indeed, the energy is not lat-
tice periodic because of the phonon perturbation. There

are two contributions, one from the electrons, one from
the ions:

Celec
ai,a′j(R−R′) =

∫
∂2Vext(r)

∂ua,i(R)∂ua′,j(R′)
n(r)dr (B3)

+

∫
∂Vext(r)

∂ua,i(R)

∂n(r)

∂ua′,j(R′)
dr (B4)

Cions
ai,a′j(R−R′) =

∂2Ei−i
∂ua,i(R)∂ua′,j(R′)

(B5)

The first term of Eq. (B3) and Eq. (B5) are simply
the second derivatives of quantities already computed
in DFT. The second term of Eq. (B3), however, con-
tains the linear response of the electronic density to a
phonon perturbation. This quantity can be calculated
within DFPT. A phonon perturbation translates into a
periodic perturbation of the potential generated by the
ions, that is a periodic perturbation of Vext:

∂Vext(r)

∂ua,i(q)
=
∂Vion(r)

∂ua,i(q)
(B6)

where we now work with the (single-component) Fourier
transform of the phonon perturbation ua,i(q). The
phonon perturbation triggers the linear response of the
electronic density:

∂n(r)

∂ua,i(q)
, (B7)

which is found by solving a new set of equations, involv-
ing the linear perturbation to the KS potential:

∂VKS(r)

∂ua,i(q)
=
∂Vext(r)

∂ua,i(q)
+

∂VH(r)

∂ua,i(q)
+
∂VXC(r)

∂ua,i(q)
(B8)

where the V notation indicates that we take the lattice-
periodic part of the perturbations:

∂V (r)

∂ua,i(q)
=

∂V(r)

∂ua,i(q)
eiq·r. (B9)

The last two terms of Eq. (B8) are generated by the
density response Eq. (B7). We thus have a new self-
consistent system to solve. Once self-consistency is
reached, we can calculate the dynamical matrix D which
is the Fourier transform of the matrix of the force con-
stants:

Da,i,a′,j(q) =
1√

MaMa′

∑
R

Cai,a′j(R)eiq·R (B10)

where Ma is the mass of atom a, and we have used trans-
lational invariance to express the matrix of the force con-
stant as a function of the generic lattice vector R. The
eigenvalue problem:

ω2(q)ua,i(q) =
∑
a′,j

Da,i,a′,j(q)ua,i(q) (B11)

gives the frequencies ωq,ν (ω2
q,ν being the eigenvalues)

and eigenvectors eq,ν of mode ν at momentum q.
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2. EPC

The electron-phonon interaction matrix elements are
obtained from the derivative of the KS potential as fol-
lows:

gk+q,s,k,s′,ν =
∑
a,i

ea,iq,ν

√
~

2Maωq,ν
〈k + q, s|∂VKS(r)

∂ua,i(q)
|k, s′〉

(B12)

Appendix C: Long-range / short range separations

There are two short-range / long-range (SR/LR) sep-
arations performed in the code. One for the pseudopo-
tentials (Eq. 27) and one for the computation of the
ion-ion interaction, Eq. 42. They are done for different
reasons. The first is done to enable the computation of
the Fourier transform of the pseudopotentials, the second
is done to optimize the convergence of the real/reciprocal
space computation of the Ewald sums. To each is asso-
ciated a tuning parameter, η or ηew. Since in both case,
the long-range/short-range contributions are always put
back together before computing any physical quantity,
the tuning parameters can be chosen separately. As in
the original code, we set η = 1 for the pseudopotentials
while the Ewald splitting parameter ηew used in the com-
putation of the ion-ion interaction is chosen depending on
the plane-wave cutoff.

Appendix D: Treatment of the G = 0 singularities in
the 2D code

1. G = 0 value of the Coulomb interaction

The treatment of the G = 0 terms with a 2D Coulomb
cutoff is developed in Ref. 27, where the authors show
that one should use the following value for the G → 0
limit of the truncated Coulomb interaction:

v̄c(G→ 0) = −2πe2l2z (D1)

In the following, we quickly justify this recommendation.
Note that we use the notation G → 0 to distinguish
this value from the value v̄c(G = 0) = 0 used in our
implementation. The potential V (rp, z) generated by a
generic 2D distribution m(rp, z) via the cutoff Coulomb
interaction is written:

V (rp, z) = e2

∫
plane

∫ +lz

−lz

m(r′p, z
′)√

|r′p − rp|2 + (z′ − z)2
dr′pdz

′

(D2)

By changing variables and exploiting the in-plane period-
icity of m(rp, z), it can be shown that the planar average

of the potential V (Gp = 0, z) reads:

V (Gp = 0, z) = e2

∫
plane

∫ +lz

−lz

〈m〉p(z′)√
|rp|2 + (z′ − z)2

drpdz
′

(D3)

This can be written as :

V (Gp = 0, z) =

∫ +lz

−lz
〈m〉p(z′) v̄c(Gp = 0, |z − z′|) dz′

(D4)

with

v̄c(Gp = 0, |z|) = e2

∫
plane

1√
|rp|2 + z2

drp (D5)

= e2

∫
plane

[
1

|rp|
+

1√
|rp|2 + z2

− 1

|rp|

]
drp

(D6)

= e2

∫
plane

drp
|rp|
− 2πe2|z| (D7)

The first term of the above equation is the one that gives
the diverging behavior in the potential of a charged plane.
However, this term vanishes as soon as the 2D system
is globally neutral within the cutoff because it does not
depend on z. If we replace m by a globally neutral dis-
tribution ntot that would be the sum of the distributions
of the electrons, ions and gate, we get:∫ +lz

−lz
〈m〉p(z′)

(
e2

∫
plane

drp
|rp|

)
dz′ = (D8)(

e2

∫
plane

drp
|rp|

)∫ +lz

−lz
〈ntot〉p(z′)dz′ = 0 (D9)

We can thus drop this term. The definition of the
v̄c(G → 0) is then found by Fourier transform of the
remaining term along the third direction (as in Eq. (23)):

v̄c(G→ 0) =
1

c

∫ +lz

−lz

(
−2πe2|z|

)
dz = −2πe2l2z (D10)

2. Implementation

We now show why we can further simplify the pro-
cess and use v̄c(G = 0) = 0 in our implementation. The
exchange-correlation and barrier contributions to the po-
tentials and energies are ignored here because they bring
no divergence. Since we are considering cutoff quantities,
the following concerns the long-range part of the poten-
tials and the corresponding contributions to energy when
the long-range/short-range separation is done. In order
to simplify the argument, we do not make the distinction
in the notation. In the following, the ”tilde” quantities
are those defined using the value v̄c(G → 0) = −2e2πl2z
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recommended in Ref.27. Here is how we define the po-
tentials in our implementation:

V̄H(r) = ṼH(r)− v̄c(G→ 0)n(G = 0)

V̄ion(r) = Ṽion(r) + v̄c(G→ 0)nion(G = 0)

V̄gate(r) = Ṽgate(r) + v̄c(G→ 0)
ndop

c

Φ̄(r) = Φ̃(r)− v̄c(G→ 0)nion(G = 0)

(D11)

Defined this way, the G = 0 value of our potentials is
zero (at least for the long-range part in the case of V̄ion

and Φ̄). Note that if we sum V̄H, V̄ion and V̄gate, we find

that V̄KS = ṼKS, which is essential. The potentials give
the following energies:

EH = ẼH −
Ω

2
(nion(0) +

ndop

c
)2v̄c(G→ 0)

Eion
ext = Ẽion

ext + Ω(nion(0) +
ndop

c
)nion(G = 0)v̄c(G→ 0)

Egate
ext = Ẽgate

ext + Ω(nion(G = 0) +
ndop

c
)
ndop

c
v̄c(G→ 0)

Ei−i = Ẽi−i −
Ω

2
n2

ion(G = 0)v̄c(G→ 0)

Eg−i = Ẽg−i − Ω
ndop

c
nion(G = 0)v̄c(G→ 0)

Eg−g = Ẽg−g −
Ω

2

(ndop

c

)2

v̄c(G→ 0)

(D12)

where, once again, we have that all the G = 0 contri-
butions to the energy are zero, and that Etot = Ẽtot,
if we sum all the contributions. The process described
above is equivalent to setting v̄c(G = 0) = 0, and it
gives the same KS potential and total energy as using
v̄c(G → 0) = −2πe2l2z . It is also very close to the pro-
cess used in the original 3D code, which allows us to
minimize the changes.

The G = 0 values of the cutoff potentials can thus be
set to zero. This is pretty straightforward to apply when
the whole potential is cutoff, without prior SR/LR sep-
aration, that is in the case of V̄H and V̄gate. When the
SR/LR separation is done, for V̄ion and Φ̄, it becomes
more subtle, because the short-range parts are not cut-
off and the corresponding G = 0 term are finite. Let’s
examine what must be done, always trying to minimize
the changes with respect to the 3D code. The ionic po-
tential’s G = 0 term in the 3D code is

Vion(G = 0) = Ṽion(G = 0) + vc(G = 0)nion(G = 0).
(D13)

This term is non-divergent, non-zero and short-range. It
is computed by numerical integration in a finite sphere.
It can be referred to as the ”α” term, leading to the so-
called ”αZ” energy contribution. It is a combination of
two divergent terms. Following the overall strategy of
the 2D cutoff implementation, the first term should be
separated in SR/LR part and then the LR part replaced
by its cut off counterpart. The second term would be
directly replaced by its cut off counterpart. Let us follow
this process and determine how the ”α” term should be
corrected in 2D. We first separate the 3D ionic potential
in SR and LR parts. The SR part depends on the pseu-
dopotential and it is left unchanged. The LR part of the

3D potential Ṽ 3D,LR
ion (G = 0) can be separated in two

terms: (i) a divergent part and (ii) a finite, nonsingular
part46

Ṽ 3D,LR,NS
ion (0) = −e

2

Ω

∑
a

Za

∫
erf(
√
η|r|)− 1

|r|
dr (D14)

=
πe2

ηΩ

∑
a

Za (D15)

The divergent part (i) cancels out with vc(G →
0)nion(G = 0) in 3D. It’s cut off counterpart similarly
cancels with v̄c(G → 0)nion(G = 0) in 2D. The changes
to be made to the ”α” term would thus be subtracting
and adding zero, i.e, doing nothing. The term (ii) in

its 3D form, Ṽ 3D,LR,NS
ion (0) should be subtracted and re-

placed by the G = 0 value of its cut off counterpart.
The latter being zero, the only correction to make to the

3D ”α” term is to subtract πe2

ηΩ

∑
a Za. In the 3D Ewald

summation, the G = 0 term is:

Φ(G = 0) = Φ̃(G = 0)− vc(G→ 0)nion(G = 0) (D16)

Similarly to the ”α” term, the only thing to do is to

subtract − πe2

ηewΩ

∑
a Za. Note that it looks like we are

adding some η-dependent terms to Eion
ext and Ei−i. This

is actually not the case. The η-dependent terms we add
in the G = 0 terms cancel out with equal and opposite
contributions in the G 6= 0 terms. We are defining the
G = 0 term that corresponds to the cutoff potential used
for the G 6= 0 terms. Eion

ext and Ei−i are independent of
η or ηew, and those parameters can be still be chosen
independently for the two SR/LR separation processes
as said in App. C.
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Computer Physics Communications 180, 1392 (2009),
arXiv:0810.3118.

30 X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams,
B. Amadon, T. Applencourt, C. Audouze, J. M. Beuken,
J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval,
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