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We study the effect of nutritional diet characteristics on the lactating Holstein-Friesian dairy cows in Brittany, France from 36 individuals. An analysis of the relations between fat/protein content and milk yield was implemented for our dataset. The fat and protein production increase at a slower rate as milk yield increases. The importance of chemical composition on milk production is studied using the linear model. The data analysis confirms the importance of Starch, crude fiber, and protein which have a positive effect on milk production. This analysis also confirms the previous study on the effect of parity on the production. After that, the milk production forecasting is investigated using both linear models and machine learning approaches (support vector machine, random forest, neural network). We study the performance of multiple linear regression and machine learning-based models in both non-autoregressive and autoregressive cases at the individual level. The autoregressive models, which take into account the previously observed milk yield, have proven to significantly outperform the non-autoregressive approaches. Moreover, the computational cost of each approach is presented in the paper. While the random forest algorithm gives the best performance in both non-autoregressive and autoregressive approaches. The support vector machine algorithm gives a very close performance with a substantial less computing time. The support vector machine is shown to be the best com-

Introduction

Milk production forecasting of the dairy cow is an essential factor that is useful for the dairy farmers in management as well as health monitoring.

In literature, many parametric models have been developed to model the lactation curve at the herd and individual level [START_REF] Wood | Algebraic model of the lactation curve in cattle[END_REF][START_REF] Ali | Accounting for covariances among test day milk yields in dairy cows[END_REF][START_REF] Wilmink | Adjustment of lactation yield for age at calving in relation to level of production[END_REF][START_REF] Schaeffer | Application of random regression models in animal breeding[END_REF][START_REF] Silvestre | Lactation curves for milk, fat and protein in dairy cows: A full approach[END_REF][START_REF] Adediran | Comparative evaluation of a new lactation curve model for pasture-based holsteinfriesian dairy cows[END_REF]. Or the studies on extended lactation in dairy production [START_REF] Mellado | Extended lactation in high-yielding holstein cows: Characterization of milk yield and risk factors for lactations > 450 days[END_REF][START_REF] Lehmann | Extended lactations in dairy production: Economic, productivity and climatic impact at herd, farm and sector level[END_REF]. Recently, there are a number of modeling techniques on milk production forecasting that showed to obtain a highly accurate prediction with adaptability at the herd level [START_REF] Murphy | Comparison of modelling techniques for milk-production forecasting[END_REF][START_REF] Zhang | An automatic model configuration and optimization system for milk production forecasting[END_REF][START_REF] Lehmann | Extended lactations in dairy production: Economic, productivity and climatic impact at herd, farm and sector level[END_REF]. The nonlinear autoregressive model with exogenous input using artificial neural networks introduced by Murphy et al. [START_REF] Murphy | Comparison of modelling techniques for milk-production forecasting[END_REF] shown to be most effective milk-production model.

On the other hand, understanding the effect of the nutritional diet on milk production and the quality of milk is not only helpful in financial planning but also in the production of other dairy products, such as yogurt, cheese, butter [START_REF] Nickerson | Milk production: Factors affecting milk composition[END_REF]. The importance of feed intake, diet on dairy cows was investigated in recent years. For example, the feed intake increases slowly at the beginning of lactation [START_REF] Harder | Lactation curves and model evaluation for feed intake and energy balance in dairy cows[END_REF]; or the effects of dietary starch concentration on yield of milk and milk components were investigated by Boerman et al. [START_REF] Boerman | Milk production responses to a change in dietary starch concentration vary by production level in dairy cattle[END_REF].

In spite of that, not many studies are on individual cow level, and on the milk forecasting based on the nutrition for the small scale farms. Milk yield forecasting of each individual cow can be beneficial to many applications such as monitoring health conditions and disease detection, i.e. mastitis [START_REF] Andersen | Mastitis and the shape of the lactation curve in norwegian dairy cows[END_REF][START_REF] Jensen | Dynamic forecasting of individual cow milk yield in automatic milking systems[END_REF].

Recently, Zhang et al. [START_REF] Zhang | Effect of parity weighting on milk production forecast models[END_REF] conducted a study on the effect of parity weighting with the dataset in the south of Ireland; or Van Bebber et al. [START_REF] Van Bebber | Monitoring daily milk yields with a recursive test day repeatability model (kalman filter)[END_REF] applied Kalman Filter on monitoring dairy milk yields.

The subject of this study is to improve livestock farming, particularly milk production, by monitoring the performance in nutrition supplies. The first objective is to analyze the importance of the chemical composition of nutrition on the production and milk production monitoring of dairy cattle in Brittany, France. Secondly, we compare the performance of different types of multiple linear regression and machine learning-based models for prediction of production of the individual cow. The practicability and ability for industrial applications are also discussed.

The paper is organized as follows. Section 2 is devoted to describe in detail the content of our dataset and to present the composition analysis. Section 3 briefly recalls and analyzes the linear regression models and machine learning algorithms. Section 4 focuses on the performance of the regression algorithms on forecasting. The concluding remarks are given in Section 5.

Data description and composition analysis

Data description

The empirical data were collected from 36 lactating Holstein-Friesian dairy cows in a research farm in Brittany, France, equipped with a robotic milking system. For a ten months period (from December 2015 to September 2016), there are 7691 valid milking records collected. Each milking record contains Daily Milk Yield (DMY), Day In Milk (DIM), parity information (first, second, third onward lactation, see Tab. 1), number of milking per day and the collective (corn silage, grass silage, wheat straw, soybean meal) or individual (pelleted feed distributed through an automatic feeder) consumption of diet components. Each cow is milked one to four times per day by the robotic milking system, the cow can possibly be milked each time it comes to the freestall for food. In this experiment, the amount of given diets are changed every week. In this study, we are interested in the effect of the diet on milk production forecasting. Particularly, the chemical composition studied in this paper are starch, crude fiber, Net Energy (NE) Unité Fourragère Lait (UFL 1 ) and protein (PDIE 2 ). Therefore, the consumption of different diets was converted to these four chemical compositions. Table 2 presents the composition of each diet. It should be noted that, in Table 2, the consumption of the first eight diets (Corn silage, Grass silage, ..., Nitrogen supplement) is the same for 36 dairy cows at a specific week. On the other hand, since the last four components (Production feed, ..., Liquid 1 which are respectively the units used in dairy production to estimate available energy and protein supply to dairy cows, estimated based on 1 UFL = 1.7 Mcal, see [START_REF] Vermorel | Energy: the feed unit systems[END_REF].

2 Protéines Digestibles dans l'Intestin limitantes par l'apport d' Énergie: true protein absorbable in the small intestine when rumen fermentable energy (organic matter) is limiting microbial protein synthesis in the rumen [START_REF] Kadi | Caractérisation de la conduite alimentaire des vaches laitières dans la région de tizi-ouzou, algérie[END_REF]. decrease as the milk yield increase, but not significant. As shown in Figures 1a and1c, the fat and protein content visually decrease as milk yield increase to 20 (kg/day). This phenomenon can be explained as at the beginning of the lactation, the milk production increases more rapidly than the ability of consumption of the cow. Moreover, when dairy cows produce more milk, they consume more, especially water [START_REF] Meyer | Investigations on the water intake of lactating dairy cows[END_REF], but nutrition absorption cannot change so intensively.

feed) in

Some studies discovered that as milk yield increases, fat and protein synthesis generally increases at a slower rate [START_REF] Pulina | Milk composition and feeding in the italian dairy sheep[END_REF][START_REF] Pulina | Effects of nutrition on the contents of fat, protein, somatic cells, aromatic compounds, and undesirable substances in sheep milk[END_REF]. This phenomenon can be described by the allometric model:

y = ax b
where y is fat or protein yield (g/day), x the milk yield (kg/day), and a and b are equation coefficients. Parameter b represents a scaling factor describing the effect of milk yield variation on its two main constituents. With b = 1, milk yield shows a linear relationship with fat or protein yield whose content in milk is equal to a; if b > 1, fat or protein yield tends to increase more proportionally than milk yield; and finally, if b < 1, fat or protein yield increases at a slower rate than the milk yield.

In Figures 1b and1d, the application of this model to data showed that fat and protein synthesis varied proportionally to the output of milk with an exponent 0.964 and 0.910 for milk fat and milk protein, respectively. Thus, the higher the milk yield, the more cheese produced, even each additional unit of milk results a lower increase in fat and protein. Moreover, from this dataset, since the relationship between milk fat and milk yield has higher variability than that between milk protein and milk yield (see Figure 1), modification of milk composition by nutritional means should be easier to achieve for fat than for protein. 

Modelization

In this section, we present the linear models for analyzing the effect of the features on milk production. Particularly, the fitting performance of three linear regression methods (ridge, LASSO, elastic) is compared. In addition, machine learning algorithms are introduced to predict milk production. The multiple linear model is also used for forecasting. We compare the multiple linear model with the machine learning approaches on milk prediction in the next section.

Multiple Linear Model

A mixed linear model for milk yield observations is used. The model can be written as

y it = MPD + PAR + ST + CF + NE + PDIE + f (t) + e it , (1) 
where y it = average of weekly milk yield of cow i at week t; MPD = the fixed effect of Milking Per Day; PAR = fixed effect of parity; ST, CF, NE, PDIE are the fixed effects of the consumption of Starch (kg), Crude Fiber (kg), Net Energy (UFL), PDIE (kg), respectively; e it = random residual error; they are assumed to be independent to each other. The term f (t) is the fixed function of week t based on the Ali and Schaeffer model [START_REF] Ali | Accounting for covariances among test day milk yields in dairy cows[END_REF], which is used to fit the average shape of the lactation curve. The Ali and Schaeffer model has been shown to be one of the most effective milk yield predictors [START_REF] Olori | Fit of standard models of the lactation curve to weekly records of milk production of cows in a single herd[END_REF][START_REF] Zhang | Effect of parity weighting on milk production forecast models[END_REF].

The model is written as:

f (i) = a 0 + a 1 γ t + a 2 γ 2 t + a 3 ω t + a 4 ω 2 t ,
where γ = 7t/305, ω = ln(305/7t), and a 0 , a 1 , a 2 , a 3 , a 4 are regression coefficients. The coefficient a 0 is associated with the high of the general yield, a 1 and a 2 are associated with the increasing slope of the curve, a 3 and a 4 represent the decreasing slope of the curve. In matrix notation, the model can be given as

y = Xb + e,
where y is a N × 1 vector of observed milk yield, b is a p × 1 vector of the regression coefficients, X is an N ×p incidence matrix, and e is a N ×1 vector of residual effects. Many regression methods have been developed to estimate the coefficients and improve the accuracy in prediction. In many problems, when the number of variables is too large, a selection model is needed to remove the less informative variables and reduce the computational cost. In some other cases, when the variables are highly correlated, another condition is required to prevent some variables from being poorly determined. In this study, we consider three common regression methods.

Ridge regression

Ridge regression is ideal if the features (the columns of X) are highly related [START_REF] Hoerl | Ridge regression: Biased estimation for nonorthogonal problems[END_REF][START_REF] Ogutu | Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions[END_REF]. In particular, it performs well with many features each having small effect and prevents coefficients with many correlated variables from being poorly determined and exhibiting high variance. Ridge regression shrinks the coefficients of correlated features equally by penalizing. The ridge regression estimator solves the regression problem using L 2 norm penalized least squares:

b = arg min b y -Xb 2 2 + λ b 2 2 ,
where y -

Xb 2 2 = n i=1 (y i -x i b) 2 is the L 2 norm loss function, x i is the i-th row of matrix X, b 2 2 = p i=1 b 2
i is the L 2 norm penalty on b, and λ > 0 is the tuning parameter which is associated with the degree of linear shrinkage. We have the ordinary least squares when λ = 0. The larger value of λ leads to the greater amount of shrinkage. However, the ridge b's cannot be zeros no matter how large the value of λ is set. The value of λ is dependent on the data, it can be optimally determined using cross-validation.

LASSO regression

LASSO (least absolute shrinkage and selection operator) regression method is widely used in variable selection and in the domain with massive dataset [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Ogutu | Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions[END_REF]. The LASSO performs less sufficient when the features are highly correlated. The method tends to choose a subset of the features, it shrinks some coefficients and sets coefficients of other features to zero. The optimization problem for the LASSO regression estimation with L 1 norm penalty is written as follow:

b = arg min b y -Xb 2 2 + λ b 1 , where b 1 = p i=1 |b i | is the L 1 norm, λ is the tuning parameter. L 1 norm
makes LASSO regularize the least squares fit and shrinks some components to zeros. The suitable value for λ, which is dependent on data, is optimally selected by cross-validation.

Elastic net regression

The elastic net regression method is an extension of LASSO that is robust to extreme correlations among the features [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF][START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]. The elastic net simultaneously does automatic variable selection and continuous shrinkage, the groups of correlated variables can also be selected. The elastic net uses both L 1 (LASSO) and L 2 (ridge) penalty, the optimization problem is formulated as follow:

b = arg min b y -Xb 2 2 + λ 1 b 1 + λ 2 b 2 2 . Let α = λ 2 /(λ 1 + λ 2 ), then the problem is equivalent to solving b = arg min b y -Xb 2 2 , subject to (1 -α) b 1 + α b 2 2 ≤ t for some t.
The elastic net penalty (1

-α) b 1 + α b 2 2 ≤ t is a convex combination
of the lasso and ridge penalty. The elastic net is a simple ridge regression when α = 1 and a LASSO regression when α = 0. The tuning parameter t is determined with cross-validation for a given α. The L 1 part does automatic variable selection, while the L 2 part encourages grouped selection [START_REF] Ogutu | Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions[END_REF].

Model validation and performance

With our dataset, we compare the performance of each linear regression method on fitting the milk production with the model [START_REF] Wood | Algebraic model of the lactation curve in cattle[END_REF]. In this experiment, we fit the linear model using a publicly available R package glmnet [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]. The values of the tuning parameter are optimized by 10-fold cross-validation and α = 0.5 in the case of the elastic net regression method. The coefficients of the interesting features fitted by these methods are illustrated in Figure 2.

The coefficient linked to variable starch (kg) is large in all three methods.

The results are reasonable according to the previous studies [START_REF] Cabrita | Effects of dietary protein and starch on intake, milk production, and milk fatty acid profiles of dairy cows fed corn silage-based diets[END_REF][START_REF] Boerman | Milk production responses to a change in dietary starch concentration vary by production level in dairy cattle[END_REF], the production responded positively to an increment in starch concentration. As expected, the ridge method keeps all the features, while LASSO and elastic net shrunk the coefficients of consumption of PDIE (kg) and crude fiber (kg) to zeros. This is due to the correlations between PDIE, crude fiber, Net energy, Starch are high (greater than 0.89). 

Machine learning algorithms

On forecasting milk production, in this study, we investigate three machine learning algorithms: support vector machine regression (SVR), artificial neural network (ANN), and random forest (RF). These algorithms were applied in previous studies in the domain of agriculture [START_REF] Kamphuis | Decision-tree induction to detect clinical mastitis with automatic milking[END_REF][START_REF] Saruta | Predictive models for yield and protein content of brown rice using support vector machine[END_REF][START_REF] Barrett | Assessment of multitemporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in ireland using machine learning approaches[END_REF][START_REF] Shine | Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture based dairy farms[END_REF]. The multiple linear model is also used in the prediction of milk production and compared with these three machine learning algorithms.

Support vector regression

The Support Vector Machine is a supervised learning algorithm applied frequently in classification and regression analysis. The Support Vector Machine for function estimation is usually called Support Vector Regression [START_REF] Smola | A tutorial on support vector regression[END_REF]. Suppose we have a training data {(x 1 , y 1 ), . . . , (x n , y n )} ∈ X × R, where X denotes the space of the input features (e.g. X = R d ). In ε-SV regression, the objective is to find a function f (x) that has at most ε deviation from the actual observed data point y i for all that training data, and is as flat as possible at the same time. In case of a non-linear SVR, the input data are mapped to higher dimensional Hilbert space H where the regression line can be linearly constructed. For the sake of presentation, a linear regression line is found by solving the following optimization problem: minimize w, ξ

1 2 ||w|| 2 + C n i=1 (ξ i + ξ * i ) subject to      y i -w, x i -b ≤ ε + ξ i , with b ∈ R w, x i + b -y i ≤ ε + ξ * i ξ i , ξ * i ≥ 0,
where w is the slope of the hyperplane, ., . denotes the dot product in X.

The slack variables ξ i , ξ * i are introduced for the "soft margin" loss function. The constant C > 0 determines the trade-off between the flatness of function f and the amount of data points whose deviations are larger than ε are tolerated. Figure 3 graphically interpret a linear SVR. In the non-linear problem, a kernel function k is responsible for computing the dot product in the high dimensional space. In this study, we used the Gaussian or radical basis function (RBF) kernel:

k (x i , x j ) = exp -γ||x i -x j || 2 , with x i , x j ∈ X.
The parameters are tuned with the 10-fold cross-validation using the R package 'e1071' [START_REF] Meyer | Package 'e1071[END_REF]. In this dataset, the optimal parameters, in term of smallest mean squared error, are C = 100, γ = 0.01.

Random forest

Random Forest [START_REF] Breiman | Random forests[END_REF] is an algorithm that learns from multiple decision trees driven on slightly different subsets of data. The random forest algorithm can be applied for both classification and regression. The procedure of the algorithm consists of three stages [START_REF] Liaw | Classification and regression by randomforest[END_REF]. The first stage is to create n tree bootstrap samples from the data. Particularly, each sample (bag) contains N observations which are uniformly selected (with replacement) out of N original observations using bootstrap. Then for each sample, we grow a decision CART (Classification and Regression Tree) [START_REF] Breiman | Classification and regression trees[END_REF]. Instead of using all predictors, at each node of each tree, m try of the predictors are randomly selected, and the best split is chosen from those variables. Finally, for the new data, the prediction is obtained by aggregating the predictions of the n tree trees, i.e., the average of all prediction of each tree in case of regression.

The advantage of the Random Forest is that it can be easily implemented for the nonlinear cases. The R package 'randomForest' ported by Liaw et al. [START_REF] Liaw | Classification and regression by randomforest[END_REF] is used in this paper. For our dataset, by doing three repetitions of 10-fold cross-validation, the parameters n tree = 2000 and m try = 4 are selected.

Artificial neural network

As the name suggested, this is a connectionist system that is inspired by biological neural networks. It is also commonly known as the multilayer perceptron (MLP). A standard neural network consists of many connected nodes called neural, constructing the input, hidden and output layers. Each neuron produces a sequence of real-value activation. The input values are multiplied by the synaptic weights, which present the strength of the connection. The sum of these products is fed to each neuron within the hidden layer via a typically non-linear real-valued activation function such as tanh or logistic [START_REF] Bickel | Springer Series in Statistics[END_REF][START_REF] Schmidhuber | Deep learning in neural networks: An overview[END_REF]. In the case of a single hidden layer, the values are then fed into the output layer neural via the activation function, and predict the output value for each instance. Figure 4 depicts the fully connected artificial neural network. During the training process, MLPs employ backpropagation techniques to minimize the sum of squared errors [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF].

In this paper, we investigate the fully connected feed-forward neural network with one hidden layer; the inputs are parity, DIM, ..., NE; and the output is the milk yield. The R package 'neuralnet' [START_REF] Günther | neuralnet: Training of neural networks[END_REF] is used to implement the data in our study. To avoid overfitting the training data, we have tested few configurations3 , and have selected the best by cross-validation.

The optimum network consisted of 4 neurons in the hidden layer is used [START_REF] Murphy | Comparison of modelling techniques for milk-production forecasting[END_REF].

The resilient back-propagation with weight backtracking is applied to train the data. The logistic function in ( 2) is carried out as the activation function:

f (x) = σ(x) = 1 1 + e -x . (2) 
. . .
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Figure 4: Artificial neural network with one hidden layer.

Prediction performance comparison and discussion

In order to evaluate the prediction performance of the multiple linear regression (MLR) with elastic regression and the machine learning algorithms on this dataset; for each cow, the training set is the dataset excluding the data of one individual. The trained model is then used to predict the production of the excluded dairy cow. Moreover, the autoregressive versions of these methods are also investigated in this paper. The evaluation criteria chosen in this study include: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Coefficient of Determination (R 2 ). In addition, we also compare the computational cost of each model to each other.

The computer used in this study was a MacBook Pro with Intel core i7 2.5

GHz and 16 G 1600 MHz DDR3. Table 5 and Figure 5 present the RMSE, the MAE and the R 2 values of the elastic regression, SVR, random forest, neural network forecasts, respectively, against dataset of 36 individual cows in case of no autoregression. There are some R 2 values that are negative. This is due to the over estimation of the prediction. For instance, as demonstrated in Figure 6, the over predictions of milk yield for the cow #16 make greater error than the mean value does. However, the predictions illustrate well the shape of the observations, the correlation is 0.82. In addition, in our data collection procedure, there are two cows that were having medical issues. In Figure 7, we present the lactation curves of these two individuals: cow #8 was diagnosed lame at week 24-th of lactation, and cow #9 was diagnosed mastitis at Juin 2016 and August 2016. We can also observe that the production changed at these points, and the predictions become less accurate around these points. Due to the health condition, the amount of food consumption may vary, which leads to the variation in the prediction. This observation is interesting in future studies in detecting the potential health issue of each individual.

PLEASE PUT THE FIGURES 6, 7 HERE

As shown in Table 8, the MLR has the least training time (in seconds) due to its simplicity, while the neural network model has the most expensive computing. The SVR has a substantial better computational time than the random forest. It also gives better result than the MLR. Therefore, in term of both accuracy and computational cost, the SVR gives the most sufficient result.

PLEASE PUT THE TABLE 8 HERE

A nonlinear autoregressive exogenous (NARX) model has been applied to milk production forecasting at herd level in the study by Murphy et al. [START_REF] Murphy | Comparison of modelling techniques for milk-production forecasting[END_REF]. In that study, the training data consists of daily herd milk yield, days in milk and number of cows milked, and the NARX was shown to be the most effective milk-production model. In our study, the autoregressive version of the aforementioned models is also considered. The autoregressive models applied in our experiment have an order of one. In particular, the record in the previous week is added into the prediction variables:

y t = F (y t-1 , u 1 , u 2 , ..., u p ) + ε t ,
where y t is the average milk production record on week t, {u 1 , u 2 , ..., u p } are the other prediction variables, and ε t is the error term. Table 9 and Fig-

ure 8 present the errors of the autoregressive version of all four forecasting models against dataset of 36 individual cows. In all cases, the autoregressive approach significantly improves the accuracy of all prediction models.

For example, considering individual cow ID #7, the RMSEs of four models without autoregression are 2.44, 2.22, 2.81 and 2.67, respectively; with autoregression, the errors decreased to 1.88, 1.89, 2.35 and 1.80, respectively. However, considering the cow number 35, we get more error with the autoregressive models, this can be caused by the status of that individual (e.g. health problem). Therefore, milk yield forecasting could be applied in monitoring health conditions [START_REF] Andersen | Mastitis and the shape of the lactation curve in norwegian dairy cows[END_REF]. In average, Table 10 show a substantial improvement in accuracy compared to the model without autoregression, the R 2 values of the regression are mostly high. Moreover, as shown in Table 11, the internal estimates of variable importance computed by random forest show that the information in the past is essentially important (62.78%), starch is still an important variable (14.81%) compared to the rest.

PLEASE PUT THE TABLE 9 HERE PLEASE PUT THE FIGURE 8 HERE

PLEASE PUT THE TABLES 10, 11 HERE Table 12 presents the average training time for the autoregressive model, the random forest and neural network still consume more computing power than the MLR and SVR. The SVR is yet the best compromise between accuracy and computational cost. In practice, with a portable application, the dairy farmers can improve and update the database in realtime, and train the model with the local dataset. Therefore, it is potentially suitable for industrial applications.

PLEASE PUT THE TABLE 12 HERE

Concluding remarks

This is a study on a small scale (36 milking cows) in Brittany, France. The correlation between fat and protein content and milk yield with the collected data has indicated the decrease of the fat and protein content as milk yield increases to 20 (kg/day). On this dataset, the analysis of the chemical composition of nutrition has shown the significant weight of nutrition supply through the diet on the milk production level of dairy cattle, which is more important than milk per day and parity. Moreover, we compare the performance of the linear regression models and machine learning models on forecasting milk production at the individual level. For each model, we investigate both versions: autoregressive and non-autoregressive approaches. With this dataset, the autoregressive models, which consider the previous observation, are shown to be significantly better than the non-autoregressive approaches. When the past is considered, the information from the previous observation considerably improves the prediction accuracy.

Among the different methods, the random forest gives the best performance on 15 individuals, the support vector machine gives prediction with the smallest errors on 13 dairy cows. The linear and neural network models show the best results on 5 and 3 individuals, respectively. However, the computational times of SVR are significantly less than random forest. Therefore, the support vector regression is the most efficient method for predicting milk production among the other models in terms of both prediction accuracy and computational cost. The result indicates the possibility of practical application on a small scale farm with a small number of dairy cows. However, the autoregressive models require the previous observation, then the nonautoregressive approaches are more practical when past observations are not available, or a far prediction is considered. Further research on other kinds of dairy cows with larger cow population sizes over longer time periods is required to investigate the potential of using these models in health monitoring on an individual cow level with high accuracy. 
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 1 Figure 1: Relationships between milk yield and (a) milk fat yield, (b) milk fat concentration, (c) milk protein yield and (d) milk protein concentration.

Figure 2 :

 2 Figure 2: The coefficient of each features estimated by ridge, LASSO, elastic net (α = 0.5) regression.

Figure 3 :

 3 Figure 3: The soft margin loss setting for a linear SVR.

Figure 8 :

 8 Figure 8: Root Mean Squared Error (above), Mean Absolute Error (middle) and R 2 values (below) of four autoregressive models of order 1 forecasts for 36 individual cows.

Table 1 :

 1 Table 2 are distributed by robot, which means the consumption of Number of individuals on each parity lactation.

	61						
	62	these four components varies according to the milk production level of each
	63	individual cow. Therefore, the consumption of each individual may differ at
	64	a specific week. In order to have a regular effect of each nutrient on milk
	65	production, we used the weekly data instead of the daily data. That means
	66	each data point is the average of seven days' observations. The statistical
		characteristics of the interesting variables are presented in Table 3.	
		Parity			number of cows	
		First lactation		20		
		Second lactation		13		
		Third onward lactation	3		
			DM * content,	Protein,	Starch,	Crude fiber,	NE,	PDIE,
			%	g/kg of DM g/kg of DM g/kg of DM UFL/kg of DM g/kg of DM
	Corn silage	34.1	75	360	174	0.95
	Grass silage	23.4	141	0	231	0.92
	Fescue	88	93	0	222	0.76
	Alfalfa hay	91.8	160	0	169	0.72
	Fresh grass	18.3	167	0	217	0.94
	Wheat straw	88	35	0	420	0.42
	Ears corn	64	51	580	72	1.06
	Nitrogen supplement	88	455	0	170	1.09	278
	Production feed	88	273	114	14	1.17	205
	Soluble nitrogen supplement	88	489	0	13	1.08	256
	Ruminoprotected nitrogen supplement	88	443	0	13	1.08	273
	Liquid feed	100	0	0	0	2.20	0

Table 3 :

 3 The statistical characteristics of the interested variables.

Table 4

 4 

	Statistics Ridge LASSO Elastic net
	RMSE	3.23	3.15	3.12
	SSE	10753 10240	10054
	R 2	0.86	0.87	0.87

shows the statistical results of fitting the lactation production with linear regression methods. The elastic net gives slightly better result, in general, the performance of these methods are quite similar. In the next part, we will analyze the performance of the linear model in forecasting the milk production. The comparison with other machine learning methods will be executed as well.

Table 4 :

 4 Statistical values of linear fitting model using Ridge, LASSO and Elastic net. Root Mean Square Error (RMSE), Sum of Squared Errors (SSE), R 2 .

  The negative R 2 values were set to R 2 = 0 in the subsequent analysis. The maximum and minimum RMSE values are 5.16 and 1.56 for the MLR, 4.61 and 1.44 for the SVR, 5.77 and 1.46 for the random forest, 4.75 and 1.46 for the neural network. Table6shows the average errors of each model for all 36 individual cows. In general,

	Similar to the results of MLR model, starch is the most importance variable
	according to the random forest algorithm.
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all the machine algorithms mostly outperform the MLR. The random forest and SVR give the most favorable results, and random forest model is more accurate in term of RMSE and MAE. Moreover, in Table

7

, the random forest can compute the internal estimates of variable importance (in percentage).

Table 5 :

 5 The forecast error of four models for 36 individual cows.

			MLR			SVR		Random forest		Neural network
	Cow ID RMSE MAE R 2 RMSE MAE R 2 RMSE MAE R 2 RMSE MAE	R 2
	1	3.24	2.75 0.74	2.17	1.90 0.88	2.13	1.78 0.89	2.98	2.62	0.78
	2	3.11	2.51 0.55	2.86	2.07 0.62	2.68	1.84 0.67	2.6	1.89	0.69
	3	4.09	3.08 0.65	3.63	2.48 0.72	3.52	2.39 0.74	4.02	2.91	0.66
	4	3.34	2.51 0.54	3.65	2.96 0.45	2.70	2.05 0.70	3.85	3.15	0.39
	5	2.42	1.71 0.86	2.41	1.81 0.86	1.46	1.18 0.95	2.19	1.66	0.89
	6	2.74	2.30 0.68	2.86	2.16 0.65	2.32	1.57 0.77	2.64	2.15	0.70
	7	2.44	1.99 0.81	2.22	1.70 0.84	2.81	2.17 0.74	2.67	1.96	0.77
	8	3.96	3.22 0.77	4.44	3.67 0.71	3.70	3.14 0.80	4.75	3.58	0.67
	9	4.28	3.84 0.67	3.58	2.40 0.77	3.79	2.72 0.74	3.43	2.36	0.79
		4.72	3.88 0.58	3.46	2.93 0.78	5.77	4.81 0.37	3.75	3.18	0.74
		1.87	1.51 0.90	2.41	1.96 0.83	2.22	1.78 0.86	2.33	1.82	0.84
		4.72	3.83	0	3.44	2.67 0.38	3.58	2.85 0.33	3.48	2.82	0.37
		3.52	2.85 0.15	3.04	2.23 0.37	3.42	2.18 0.19	2.3	1.75	0.64
		2.81	2.26 0.83	3.14	2.28 0.79	1.84	1.54 0.93	3.02	2.18	0.8
		5.16	4.41 0.04	3.25	2.44 0.62	3.5	2.69 0.56	3.28	2.57	0.61
		3.34	3.06	0	3.02	2.51	0	2.41	1.88	0	2.99	2.59	0
		2.91	2.48 0.87	3.52	2.74 0.81	3.47	2.43 0.82	3.18	2.63	0.85
		4.38	3.79 0.17	3.96	3.2	0.32	3.28	2.55 0.53	3.55	2.76	0.45
		4.06	2.70	0	4.61	2.86	0	4.49	2.97	0	3.74	2.62 0.001
		2.94	1.98 0.11	2.47	1.58 0.38	2.40	1.60 0.41	2.40	1.47	0.41
		2.84	2.25 0.67	1.71	1.30 0.88	2.01	1.20 0.83	1.70	1.27	0.88
		3.42	2.95 0.64	2.42	2.13 0.82	2.26	1.84 0.84	3.49	3.02	0.62
		2.75	2.28 0.70	2.45	1.99 0.76	2.10	1.48 0.82	2.40	1.86	0.77
		2.56	2.23 0.72	2.02	1.53 0.83	1.85	1.39 0.85	2.29	1.67	0.78
		2.00	1.53 0.73	1.44	1.16 0.86	2.17	1.52 0.68	1.57	1.34	0.83
		1.76	1.47 0.95	2.66	2.15 0.88	2.03	1.69 0.93	2.28	1.96	0.91
		3.36	2.73 0.57	2.29	1.77 0.80	2.59	1.90 0.74	2.67	2.15	0.73
		1.56	1.26 0.92	1.97	1.54 0.87	1.96	1.63 0.87	1.73	1.50	0.90
		3.86	2.75 0.40	4.23	2.92 0.28	4.33	2.48 0.24	4.20	2.81	0.29
		1.65	1.41 0.81	1.70	1.34 0.80	2.64	2.10 0.52	1.46	1.02	0.85
		3.15	2.45 0.80	3.44	2.61 0.76	3.66	2.30 0.73	3.54	2.78	0.75
		2.29	1.71 0.82	2.28	1.77 0.83	1.93	1.45 0.87	2.50	2.00	0.79
		2.69	2.17 0.43	3.44	2.69 0.07	4.68	3.53	0	4.46	3.63	0
		2.16	1.72 0.90	1.81	1.39 0.93	2.13	1.66 0.90	2.54	2.05	0.86
		3.24	2.89 0.77	2.83	2.36 0.82	2.23	1.90 0.89	3.29	2.57	0.76
		2.36	1.40 0.89	2.45	1.54 0.89	2.20	1.67 0.91	2.79	1.77	0.85

Figure 5: Root Mean Squared Error (above), Mean Absolute Error (middle) and R 2 values (below) of four model forecasts for 36 individual cows.

Table 6 :

 6 Average error of each model for all 36 individual cows.

		35						
							Observed data	
							Predicted data	
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						Week		
	Figure 6: The observations and predictions of milk production of cow number 16 using
	MLR, R 2 value is -1.46.						
	Parity DIM MPD Starch Crude fiber PDIE NE
	11.21 8.96 11.35 34.87		15.44		6.58 15.16

Table 7 :

 7 Average of variable importance estimated by random forest (in %).

		Elastic regression SVR Random forest Neural Network
	mean	0.077	0.157	6.771	7.357
	SD	0.005	0.007	0.175	4.754

Table 8 :

 8 Average training time (in seconds) and its standard deviation for 36 experiments. RMSE MAE R 2 RMSE MAE R 2 RMSE MAE R 2

			MLR			SVR	Random forest	Neural network
	Cow ID RMSE MAE R 2 1 1.93 1.72 0.91	1.36	1.09 0.95	1.37	1.07 0.95	1.34	1.14 0.95
	2	1.81	1.55 0.85	1.72	1.27 0.86	2.14	1.57 0.79	1.81	1.49 0.85
	3	3.79	2.61 0.70	4.20	2.80 0.63	4.26	2.95 0.62	3.51	2.28 0.74
	4	2.69	2.23 0.70	2.75	2.38 0.69	2.17	1.45 0.81	2.86	2.41 0.66
	5	1.72	1.30 0.93	1.81	1.37 0.92	1.47	1.19 0.95	1.84	1.38 0.92
	6	2.15	1.59 0.80	2.20	1.30 0.79	1.51	1.13 0.90	2.61	1.53 0.71
	7	1.88	1.56 0.89	1.89	1.57 0.88	2.35	1.85 0.82	1.80	1.49 0.89
	8	2.48	1.74 0.91	3.61	3.05 0.81	3.06	2.48 0.86	2.55	1.83 0.91
	9	3.12	2.26 0.82	2.71	1.74 0.87	3.15	2.24 0.82	2.93	2.08 0.84
		3.17	2.4	0.81	2.91	2.47 0.84	3.62	2.76 0.75	4.12	3.76 0.68
		1.60	1.28 0.93	1.78	1.27 0.91	1.32	1.02 0.95	1.90	1.44 0.89
		2.76	2.07 0.60	2.26	1.51 0.73	2.46	1.90 0.68	2.47	1.70 0.68
		2.62	2.08 0.53	2.44	2.01 0.59	2.74	2.19 0.49	2.61	2.16 0.53
		1.91	1.62 0.92	2.63	2.12 0.85	2.10	1.71 0.90	2.36	2.00 0.88
		3.29	2.77 0.61	2.68	2.00 0.74	2.71	2.06 0.74	2.77	2.31 0.72
		2.08	1.78 0.04	1.67	1.29 0.38	1.85	1.39 0.24	1.63	1.35 0.42
		1.77	1.44 0.95	2.07	1.61 0.94	2.03	1.54 0.94	1.97	1.65 0.94
		2.50	1.95 0.73	2.08	1.43 0.81	2.36	1.64 0.76	2.54	1.89 0.72
		2.60	1.82 0.52	3.18	2.23 0.28	2.82	2.06 0.43	3.10	2.08 0.32
		1.66	1.30 0.72	1.29	1.06 0.83	1.46	1.16 0.78	1.67	1.32 0.71
		2.31	1.53 0.78	1.89	1.13 0.85	1.58	1.02 0.90	1.75	1.21 0.88
		2.10	1.71 0.86	1.55	1.28 0.92	1.58	1.33 0.92	1.77	1.48 0.90
		1.98	1.44 0.84	1.85	1.23 0.86	1.84	1.24 0.87	1.94	1.43 0.85
		1.58	1.32 0.89	1.56	1.16 0.90	1.27	1.05 0.93	1.69	1.29 0.88
		1.79	1.45 0.78	1.63	1.28 0.82	1.81	1.28 0.78	1.66	1.37 0.81
		2.57	1.89 0.89	2.74	2.15 0.87	2.24	1.88 0.92	2.97	2.25 0.85
		2.03	1.68 0.84	1.24	0.95 0.94	1.10	0.79 0.95	1.43	1.19 0.92
		1.97	1.46 0.87	2.08	1.43 0.86	2.13	1.37 0.85	1.85	1.30 0.89
		2.43	1.79 0.76	2.66	1.62 0.72	2.82	1.50 0.68	3.42	1.91 0.53
		1.46	1.23 0.85	1.42	1.10 0.86	1.61	1.11 0.82	1.46	1.22 0.85
		2.98	2.33 0.82	2.77	2.14 0.84	2.21	1.72 0.90	2.90	2.20 0.83
		1.77	1.39 0.90	1.81	1.36 0.89	1.30	1.04 0.94	1.88	1.53 0.88
		1.59	1.28 0.80	1.85	1.56 0.73	1.90	1.42 0.71	1.67	1.49 0.78
		1.55	1.14 0.95	1.45	1.00 0.95	1.77	1.29 0.93	1.77	1.28 0.93
		4.48	2.42 0.55	4.38	2.41 0.57	4.17	2.35 0.61	4.61	2.39 0.53
		2.40	1.69 0.89	2.22	1.72 0.91	2.03	1.52 0.92	2.61	1.88 0.87

Figure 7: Two individual cows that had medical issues during the experiment, one had lameness (left), while the other had mastitis (right).

Table 9 :

 9 The forecast error of four autoregressive models for 36 individual cows.

configurations that have been tested:

4, 5, 6, 7 neurons with Logistic, ReLu activation functions
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