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Abstract

We study the effect of nutritional diet characteristics on the lactating Holstein-
Friesian dairy cows in Brittany, France from 36 individuals. An analysis of
the relation between fat/protein content and milk yield was conducted. The
fat and protein production increase at a slower rate as milk yield increases.
The importance of chemical composition and previous observation on milk
production forecasting is investigated using both linear models and machine
learning approaches (SVM, random forest, neural network). This study eval-
uates the prediction accuracy of linear model and machine learning based
models in both non-autoregressive and autoregressive cases at the individual
level. The autoregressive models have proven to have a better performance
than the non-autoregressive approaches. Moreover, the computational cost
of each approach is presented in the paper. The support vector machine is
shown to be the best compromise between accuracy and computational cost.

Keywords: Milk production forecasting, Dairy modeling, Autoregression,
Smart farming

1. Introduction1

Milk production forecasting of daily cow is an essential factor which is2

useful for the daily farmers in management as well as health monitoring.3
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In literature, many parametric models have been developed to model the4

lactation curve at herd and individual level [1, 2, 3, 4, 5, 6]. Or the studies5

on extended lactation in dairy production [7, 8]. Recently, there are a number6

of modeling techniques on milk production forecasting that showed to obtain7

a high accurate prediction with adaptability at the herd level [9, 10, 8]. The8

nonlinear auto regressive model with exogenous input using artificial neural9

networks introduced by Murphy et al. [9] shows to be most effective milk-10

production model.11

Moreover, understanding the effect of the nutritional diet characteristics12

on the milk production and the quality of milk is not only helpful in financial13

planning but also in the production of other daily products, such as yogurt,14

cheese, butter [11]. The importance of feed intake, diet on dairy cows was15

investigated in recent years. For example, the feed intake increases slowly at16

the beginning of lactation [12]; or the effects of dietary starch concentration17

on yield of milk and milk components was investigate by Boerman et al.18

[13]. In spite of that, not many researches are on individual cow level, and19

the forecasting based on the nutrition for the small scale farm. Milk yield20

forecasting of each individual cow can be beneficial to many applications such21

as monitoring health conditions and disease detection, i.e. mastitis [14, 15].22

For instance, a study on effect of parity weighting was conducted by Zhang23

et al. [16] with the dataset in the south of Ireland; or Van Bebber et al. [17]24

applied Kalman Filter in monitoring daily milk yields.25

The subject of this study is to improve the livestock farming, particu-26

larly the milk production, by monitoring the performance in nutrition sup-27

plies. The first objective considers the importance of chemical composition28

of nutrition on the production and production monitoring of dairy cattle in29

Brittany, France. Secondly, we compare different types of multiple linear30

regression and machine learning based models for prediction of production31

of individual cow. The practicability and ability for commercial application32

are also discussed.33

The paper is organized as follows. Section 2 is devoted to describe in34

detail the content of our dataset and to present the composition analysis.35

Section 3 briefly recalls and analyzes the linear regression models and the36

machine learning algorithms. Section 4 focuses on the performance of the37

regression algorithms on forecasting. The concluding remarks are given in38

Section 5.39
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2. Data description and composition analysis40

2.1. Data description41

The empirical data were collected from 36 lactating Holstein-Friesian42

dairy cows in a research farm in Brittany, France, equipped with a robotic43

milking system. For a ten months period (from December 2015 to September44

2016), there are 7691 valid milking records collected. Each milking record45

contains: daily milk yield (DMY), day in milk (DIM), parity information46

(first, second, third onward lactation, see Tab. 1), number of milking per47

day and the collective (corn silage, grass silage, wheat straw, soybean meal)48

or individual (pelleted feed distributed through an automatic feeder) con-49

sumption of diet components. Each cow is milked one to four times per50

day by robotic milking system, the cow can possibly be milked each time it51

comes to the freestall for food. In this experiment, the amount of given diet52

are changed every week. In this study, we are interested in the effect of the53

diet on the milk production forecasting. Particularly, the chemical compo-54

sition studied in this paper are: starch, crude fiber, net energy (NE) Unité55

Fourragère Lait (UFL1) and protein (PDIE2). Therefore, the consumption56

of different diets was converted to these four chemical composition. Table57

2 presents the composition of each diet. It should be noted that, in Table58

2, the consumption of the first eight diets (Corn silage, Grass silage, ..., Ni-59

trogen supplement) is the same for 36 dairy cows at a specific week. On60

the other hand, since the last four components (Production feed, ..., Liquid61

feed) in Table 2 are distributed by robot, which means the consumption of62

these four components varies according to the milk production level of each63

individual cow. Therefore, the consumption of each individual may differ at64

a specific week. In order to have a regular effect of each nutrient on the milk65

production, we used the weekly data instead of the daily data. That means66

each data point is the average of seven days observations. The statistical67

characteristics of the interested variables are presented in Table 3.68

1which are respectively the units used in dairy production to estimate available energy
and protein supply to dairy cows, estimated based on 1 UFL = 1.7 Mcal, see [18].

2Protéines Digestibles dans l’Intestin limitantes par l’apport d’Énergie: true protein
absorbable in the small intestine when rumen fermentable energy (organic matter) is lim-
iting microbial protein synthesis in the rumen [19].
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Parity number of cows
First lactation 20
Second lactation 13
Third onward lactation 3

Table 1: Number of individuals on each parity lactation.

DM*content, Protein, Starch, Crude fiber, NE, PDIE,
% g/kg of DM g/kg of DM g/kg of DM UFL/kg of DM g/kg of DM

Corn silage 34.1 75 360 174 0.95 69
Grass silage 23.4 141 0 231 0.92 63
Fescue 88 93 0 222 0.76 82
Alfalfa hay 91.8 160 0 169 0.72 93
Fresh grass 18.3 167 0 217 0.94 90
Wheat straw 88 35 0 420 0.42 44
Ears corn 64 51 580 72 1.06 95
Nitrogen supplement 88 455 0 170 1.09 278
Production feed 88 273 114 14 1.17 205
Soluble nitrogen supplement 88 489 0 13 1.08 256
Ruminoprotected nitrogen supplement 88 443 0 13 1.08 273
Liquid feed 100 0 0 0 2.20 0
* Dry Matter

Table 2: Chemical composition of different diet.

2.2. Milk fat and protein composition analysis69

In this section, we analyze the correlation between fat and protein content70

and milk yield with the collected data. The yield of cheese and butter mainly71

depend on milk fat and protein yield. A factor that impacts milk fat and72

protein concentration is milk yield [20]. It is well-known that, in dairy rumi-73

nants, correlations among fat and protein content (g over 1 kilogram of milk74

yield) and milk yield are negative [21]. In our experiment, the reported cor-75

Mean SD+ Min Max
Starch (kg) 0.185 0.124 0.000 0.451
Crude fiber (kg) 0.426 0.190 0.080 0.966
PDIE (kg) 0.730 0.304 0.159 1.683
Net energy (UFL) 3.692 1.630 0.672 8.046
Parity 1.631 0.972 1 5
Milking per day 2.731 0.541 1 5
+ Standard deviation

Table 3: The statistical characteristics of the interested variables.
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relation coefficients between milk yield and fat and protein content are −0.0476

and −0.21, respectively. In our observed data, the fat and protein content77

decrease as the milk yield increase, but not significant. As shown in Figures78

1a, 1c, the fat and protein content visually decrease as milk yield increase79

to 20 (kg/day). This phenomenon can be explained as at the beginning of80

the lactation, the milk production increases more rapidly than the ability of81

consumption of the cow. Moreover, when the dairy cows produce more milk,82

they consume more, specially water [22], but the nutrition absorption cannot83

change so intensively.84

Some studies discovered that as milk yield increases, fat and protein syn-
thesis generally increases at a slower rate [23, 20]. This phenomenon can be
described by the allometric model:

y = axb

where y is fat or protein yield (g/day), x the milk yield (kg/day), and a and85

b are equation coefficients. Parameter b represents a scaling factor describing86

the effect of milk yield variation on its two main constituents. With b = 1,87

milk yield shows a linear relationship with fat or protein yield whose content88

in milk is equal to a; if b > 1, fat or protein yield tends to increase more89

proportionally than milk yield; and finally, if b < 1, fat or protein yield90

increases at a slow rate than the milk yield.91

In Figures 1b and 1d, application of this model to data showed that fat92

and protein synthesis varied proportional to output of milk with an exponent93

0.964 and 0.910 for milk fat and milk protein, respectively. Thus, the higher94

the milk yield, the more cheese produced, even each additional unit of milk95

results a lower increase in fat and protein. Moreover, from this dataset, since96

the relationship between milk fat and milk yield has a higher variability than97

that between milk protein and milk yield (see Figure 1), modification of milk98

composition by nutritional means should be easier to achieve for fat than for99

protein.100

3. Modelization101

3.1. Linear Model102

A mixed linear model for milk yield observations is used. The model can103

be written as104

yit = MPD + PAR + ST + CF + NE + PDIE + f(t) + eit,
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Figure 1: Relationships between milk yield and (a) milk fat yield, (b) milk fat concentra-
tion, (c) milk protein yield and (d) milk protein concentration.

where yit = average of weekly milk yield of cow i at week t; MPD = the fixed
effect of Milking Per Day; PAR = fixed effect of parity; ST, CF, NE, PDIE
are the fixed effects of the consumption of Starch (kg), Crude Fiber (kg), Net
Energy (UFL), PDIE (kg), respectively; eit = random residual error; they
are assumed to be independent to each other. The term f(t) is the fixed
function of week t based on the Ali and Schaeffer model [2], which is used
to fit the average shape of the lactation curve. The Ali and Schaeffer model
has been shown to be one of the most effective milk yield predictor [24, 16].
The model is written as:

f(i) = a0 + a1γt + a2γ
2
t + a3ωt + a4ω

2
t ,

where γ = 7t/305, ω = ln(305/7t), and a0, a1, a2, a3, a4 are regression coef-
ficients. The coefficient a0 is associated with the high of the general yield,
a1 and a2 are associated with the increasing slope of the curve, a3 and a4
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represent the decreasing slope of the curve. In matrix notation, the model
can be given as

y = Xb + e,

where y is a N × 1 vector of observed milk yield, b is a p × 1 vector of the105

regression coefficients, X is an N×p incidence matrix, and e is a N×1 vector106

of residual effects. Many regression methods have been developed to estimate107

the coefficients and improve the accuracy in prediction. In many problems,108

when the number of variables is too large, a selection model is needed to109

remove the less informative variables and reduce the computational cost. In110

some other cases, when the variables are highly correlated, another condition111

is required to prevent some variables from being poorly determined. In this112

study, we consider three common regression methods.113

Ridge regression114

Ridge regression is ideal if the features (the columns of X) are highly
related [25, 26]. In particular, it performs well with many features each
having small effect and prevents coefficients with many correlated variables
from being poorly determined and exhibiting high variance. Ridge regression
shrinks the coefficients of correlated features equally by penalizing. The ridge
regression estimator solves the regression problem using L2 norm penalized
least squares:

b̂ = arg min
b

{
‖y −Xb‖22 + λ ‖b‖22

}
,

where ‖y −Xb‖22 =
∑n

i=1(yi − xi
>b)2 is the L2 norm loss function, xi

> is115

the i-th row of matrix X, ‖b‖22 =
∑p

i=1 b
2
i is the L2 norm penalty on b, and116

λ > 0 is the tuning parameter which is associated with the degree of linear117

shrinkage. We have the ordinary least squares when λ = 0. The larger value118

of λ leads to the greater amount of shrinkage. However, the ridge b̂’s cannot119

be zeros no matter how large the value of λ is set. The value of λ is dependent120

on the data, it can be determined using cross-validation.121

LASSO regression122

LASSO (least absolute shrinkage and selection operator) regression method
is widely used in variable selection and in the domain with massive dataset
[27, 26]. The LASSO performs less sufficient when the features are highly
correlated. The method tends to choose a subset of the features, it shrinks
some coefficients and sets coefficients of other features to zero. The optimiza-
tion problem for the LASSO regression estimation with L1 norm penalty is
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written as follow:

b̂ = arg min
b

{
‖y −Xb‖22 + λ ‖b‖1

}
,

where ‖b‖1 =
∑p

i=1 |bi| is the L1 norm, λ is the tuning parameter. L1 norm123

makes LASSO regularize the least squares fit and shrinks some components124

to zeros. The suitable value for λ, which is dependent on data, is optimally125

selected by cross-validation.126

Elastic net regression127

The elastic net regression method is an extension of LASSO that is robust
to extreme correlations among the features [28, 29]. The elastic net simul-
taneously does automatic variable selection and continuous shrinkage, the
groups of correlated variables can also be selected. The elastic net uses both
L1 (LASSO) and L2 (ridge) penalty, the optimization problem is formulated
as follow:

b̂ = arg min
b

{
‖y −Xb‖22 + λ1 ‖b‖1 + λ2 ‖b‖22

}
.

Let α = λ2/(λ1 + λ2), then the problem is equivalent to solving

b̂ = arg min
b
‖y −Xb‖22 , subject to (1− α) ‖b‖1 + α ‖b‖22 ≤ t for some t.

The elastic net penalty (1 − α) ‖b‖1 + α ‖b‖22 ≤ t is a convex combination128

of the lasso and ridge penalty. The elastic net is a simple ridge regression129

when α = 1 and a LASSO regression when α = 0. The tuning parameter t is130

determined with cross-validation for a given α. The L1 part does automatic131

variable selection, while the L2 part encourages grouped selection [26].132

Model validation and performance133

With our dataset, we compare the performance of each linear regression134

method on fitting the milk production with the model (3.1). In this experi-135

ment, we fit the linear model using a publicly available R package glmnet [29].136

The values of tuning parameter are optimized by 10-fold cross-validation, and137

α = 0.5 in case of elastic net regression method. The coefficients of the in-138

terested features fitted by these methods are illustrated in Figure 2. The139

coefficient linked to variable starch (kg) is large in all three methods. The140

results are reasonable according to the previous studies [30, 13], the pro-141

duction responded positively to an increment in starch concentration. As142
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expected, ridge keeps all the features, while LASSO and elastic net shrunk143

the coefficients of consumption of PDIE (kg) and crude fiber (kg) to zeros.144

Table 4 shows the statistical results of fitting the lactation production with145

linear regression methods. The elastic net gives slightly better result, in146

general, the performance of these methods are quite similar. In the next147

part, we will analyze the performance of the linear model in forecasting the148

milk production. The comparison with other machine learning methods is149

executed as well.150

Ridge LASSO Elastic net

0 10 20 0 10 20 0 10 20

Crude_fiber_kg

Milking_per_day

Net_Energy_UFL

Parity

PDIE_kg

Starch_kg

coefficient

fe
a
tu

re
s

Figure 2: The coefficient of each features estimated by ridge, LASSO, elastic net (α = 0.5)
regression.

Statistics Ridge LASSO Elastic net
RMSE 3.23 3.15 3.12
SSE 10753 10240 10054
R2 0.86 0.87 0.87

Table 4: Statistical values of linear fitting model using Ridge, LASSO and Elastic net.
Root Mean Square Error (RMSE), Sum of Squared Errors (SSE), R2.

3.2. Machine learning algorithms151

In this study, we investigate three ML algorithms: support vector machine152

regression (SVR), artificial neural network (ANN), and random forest (RF)153

in the application of forecasting milk production. These algorithms were154

applied in the previous studies in the domain of agriculture [31, 32, 33, 34].155
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Support vector regression156

The Support Vector machine is a supervised learning algorithm applied
frequently in classification and regression analysis. The Support Vector ma-
chine for function estimation is usually called Support Vector regression
(SVR) [35]. Suppose we have a training data {(x1, y1), . . . , (xn, yn)} ∈ X×R,
where X denotes the space of the input features (e.g. X = Rd). In ε-SV re-
gression, the objective is to find a function f(x) that has at most ε deviation
from the actual observed data point yi for all that training data, and is as
flat as possible at the same time. In case of a non-linear SVR, the input data
are mapped to higher dimensional Hilbert space H where the regression line
can be linearly constructed. For the sake of presentation, a linear regression
line is found by solving the following optimization problem:

minimize
w, ξ

1

2
||w||2 + C

n∑
i=1

(ξi + ξ∗i )

subject to


yi − 〈w, xi〉 − b ≤ ε+ ξi,with b ∈ R
〈w, xi〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0,

where w is the slope of the hyperplane, 〈., .〉 denotes the dot product in X.
The slack variables ξi, ξ

∗
i are introduced for the ”soft margin” loss function.

The constant C > 0 determines the trade-off between the flatness of function
f and the amount of data points whose deviations are larger than ε are
tolerated. Figure 3 graphically interpret a linear SVR. In the non-linear
problem, a kernel function k is responsible for computing the dot product in
the high dimensional space. In this study, we used the Gaussian or radical
basis function (RBF) kernel:

k (xi, xj) = exp
(
−γ||xi − xj||2

)
, with xi, xj ∈ X.

The parameters are tuned with the 10-fold cross-validation using the R157

package ’e1071’ [36]. In this dataset, the optimal parameters, in term of158

smallest mean squared error, are C = 100, γ = 0.01.159

Random forest160

Random Forest [37] is an algorithm that learns from multiple decision161

trees driven on slightly different subsets of data. The random forests algo-162

rithm can be applied for both classification and regression. The procedure163
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Figure 3: The soft margin loss setting for a linear SVR.

of the algorithm consists of three stages [38]. First stage is to create ntree164

bootstrap samples from the data. Particularly, each sample (bag) contains165

N observations which are uniformly selected (with replacement) out of N166

original observations using bootstrap. Then for each sample, we grow a de-167

cision CART (Classification and Regression Tree) [39]. Instead of using all168

predictors, at each node of each tree, mtry of the predictors are randomly169

selected, and the best split is chosen from those variables. Finally, for the170

new data, the prediction is obtain by aggregating the predictions of the ntree171

trees, i.e., the average of all prediction of each tree in case of regression. The172

advantage of the Random Forest is that it can be easily implemented for the173

nonlinear cases. The R package ’randomForest’ ported by Liaw et al. [38]174

is used in this paper. For our dataset, by doing three repetitions of 10-fold175

cross-validation, the parameters ntree = 2000 and mtry = 4 are selected.176

Artificial neural network177

As the name suggested, this is a connectionist system which is inspired by178

the biological neural networks. It is also commonly known as the multilayer179

perceptron (MLP). A standard neural network consists of many connected180

nodes called neural, constructing the input, hidden and output layers. Each181

neuron produces a sequence of real-value activation. The input values are182

multiplied by the synaptic weights, which present the strength of the con-183

nection. The sum of these products are fed to each neuron within the hidden184

layer via a typically non-linear real-valued activation function such as tanh185

or logistic [40, 41]. In case of a single hidden layer, the values are then fed186

into the output layer neural via the activation function, and predict the out-187
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put value for each instance. Figure 4 illustrates the fully connected artificial188

neural network. During the training process, MLPs employ backpropagation189

techniques to minimize the sum of squared errors [42].190

In this paper, we investigate the fully connected feed-forward neural net-191

work with one hidden layer; the inputs are parity, DIM, ..., NE; and the192

output is the milk yield. The R package ’neuralnet’ [43] is used to implement193

the data in our study. To avoid overfitting the training data, heuristically,194

the optimum network consisted of 4 neurons in the hidden layer is used [9].195

The resilient backpropagation with weight backtracking is applied to train196

the data. The logistic function in (1) is carried out as the activation function:197

f(x) = σ(x) =
1

1 + e−x
. (1)

...

I1

I2

I3

I7

H1

H2

H3

H4

Y

Input
layer

Hidden
layer

Ouput
layer

Figure 4: Artificial neural network with one hidden layer.

4. Prediction performance and discussion198

In order to evaluate the prediction performance of the multiple linear199

regression (MLR) with elastic regression and the machine learning algorithms200

on this dataset; for each cow, the training set is the dataset excluding the data201

of one individual. The trained model is then used to predict the production202

of the excluded dairy cow. Moreover, the autoregressive version of these203
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methods are also investigated in this paper. The evaluation criteria chosen204

in this study include: Root Mean Squared Error (RMSE), Mean Absolute205

Error (MAE) and the variance of residual error, σ2. In addition, we also206

compare the computational cost of each model to each other.207

The computer used in this study was a MacBook Pro with Intel core i7 2.5208

GHz and 16 G 1600 MHz DDR3. Table 5 and Figure 5 present the RMSE,209

the MAE and the variance σ2 of the elastic regression, SVR, random forest,210

neural network forecasts against dataset of 36 individual cows in case of no211

autoregression. The maximum and minimum RMSE values are 5.16 and212

1.56 for the MLR, 4.61 and 1.44 for the SVR, 5.77 and 1.46 for the random213

forest, 4.75 and 1.46 for the neural network. Table 6 shows the average214

errors of each model for all 36 individual cows. In general, all the machine215

algorithms mostly outperform the MLR. The random forest and SVR show216

the most favorable results, and random forest model is more accurate in term217

of RMSE and MAE. Moreover, in Table 7, the random forest can compute218

the internal estimates of variable importance (in percentage). Similar to the219

MLR, starch is the most importance variable according to the random forest220

algorithm.221

PLEASE PUT THE TABLE 5 HERE

PLEASE PUT THE FIGURE 5 HERE

PLEASE PUT THE TABLES 6, 7 HERE

As shown in Table 8, the MLR has the least training time (in seconds)222

due to its simplicity, while the neural network model has the most expensive223

computing. The SVR has a substantial better computational time than the224

random forest, and is not much different from the MLR in computational225

cost. Therefore, in term of both accuracy and computational cost, the SVR226

gives the most sufficient result.227

PLEASE PUT THE TABLE 8 HERE

A nonlinear autoregressive exogenous (NARX) model was applied to milk228

production forecasting at herd level in the study by Murphy et al. [9]. In that229

study, the training data consists of daily herd milk yield, days in milk and230

number of cows milked, and the NARX was shown to be the most effective231

milk-production model. In our study, the autoregressive version of the afore-232

mentioned models is also considered. The autoregressive models applied in233

13



our experiment have an order of one. In particular, the record in the previous234

week is added into the prediction variables:235

yt = F (yt−1, u1, u2, ..., up) + εt,

where yt is the milk production record, and {u1, u2, ..., up} are the other236

prediction variables. Table 9 and Figure 6 present the errors of the autore-237

gressive version of all four forecasting models against dataset of 36 individual238

cows. In all cases, the autoregressive approach significantly improves the ac-239

curacy of all prediction models. For example, considering individual cow ID240

7, the RMSEs of four models without autoregression are 2.44, 2.22, 2.81 and241

2.67, respectively; with autoregression, the errors decreased to 1.88, 1.89,242

2.35 and 1.80, respectively. However, considering the cow number 35, we get243

more error with the autoregressive models, this can be caused by the status244

of that individual (e.g. health problem). Therefore, milk yield forecasting245

could be applied in monitoring health conditions [14]. In average, Table 10246

show an improvement in accuracy compared to the model without autore-247

gression. Moreover, as shown in Table 11, the internal estimates of variable248

importance computed by random forest show that the information in the249

past is essentially important (62.78%), starch is still an important variable250

(14.81%) compared to the rest.251

PLEASE PUT THE TABLE 9 HERE

PLEASE PUT THE FIGURE 6 HERE

PLEASE PUT THE TABLES 10, 11 HERE

Table 12 presents the average training time for the autoregressive model,
the random forest and neural network still consume more computing power
than the MLR and SVR. The SVR is yet the best compromise between
accuracy and computational cost. In practice, with a portable application,
the dairy farmers can improve and update the database in realtime, and train
the model with the local dataset. Therefore, it may be suitable to commercial
applications.

PLEASE PUT THE TABLE 12 HERE
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5. Concluding remarks253

This is a study on the small scale (36 milking cows) in Brittany, France.254

The correlation between fat and protein content and milk yield with the255

collected data has indicated the decrease of the fat and protein content as256

milk yield increases to 20 (kg/day). On this dataset, the importance of the257

chemical composition of nutrition on the milk production of dairy cattle has258

shown the significant effect of the quantity of starch supply through the diet259

on milk production level.260

In this study, we compare the performance of the linear regression mod-261

els and machine learning models on forecasting milk production at individ-262

ual level. The hyper parameters are tuned with cross-validation criteria.263

The autoregressive models are shown to be significant better than the non-264

autoregressive approaches. When the past is considered, the information265

from the previous observation considerably improves the prediction accu-266

racy. The support vector machine is the most efficient method among the267

other models in term of both prediction accuracy and computational cost.268

The result indicates the possibility of practical application on the small scale269

farm with a small number of dairy cows. However, the autoregressive models270

require the previous observation, then the non-autoregressive approaches are271

more practical when past observations are not available, or a far prediction is272

considered. Further research on other kind of dairy cows with more intensive273

observation is required to investigate the potential of using these models in274

health monitoring on an individual cow level with high accuracy.275

Acknowledgments276

This research activity have been financed by Conseil regional Bretagne277

and FEDER Bretagne within the project NUTGEN of the Université de278
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MLR SVR Random forest Neural network
Cow ID RMSE MAE σ2 RMSE MAE σ2 RMSE MAE σ2 RMSE MAE σ2

1 3.24 2.75 3.35 2.17 1.90 2.68 2.13 1.78 2.62 2.98 2.62 3.10
2 3.11 2.51 8.45 2.86 2.07 5.80 2.68 1.84 6.27 2.60 1.89 5.36
3 4.09 3.08 12.33 3.63 2.48 13.03 3.52 2.39 12.01 4.02 2.91 10.29
4 3.34 2.51 5.89 3.65 2.96 5.29 2.70 2.05 3.44 3.85 3.15 5.23
5 2.42 1.71 5.72 2.41 1.81 6.01 1.46 1.18 2.03 2.19 1.66 4.96
6 2.74 2.30 6.25 2.86 2.16 6.86 2.32 1.57 5.46 2.64 2.15 3.44
7 2.44 1.99 4.51 2.22 1.70 4.87 2.81 2.17 6.76 2.67 1.96 6.96
8 3.96 3.22 13.80 4.44 3.67 7.10 3.70 3.14 8.05 4.75 3.58 23.20
9 4.28 3.84 14.79 3.58 2.40 10.85 3.79 2.72 14.28 3.43 2.36 12.01
10 4.72 3.88 9.52 3.46 2.93 5.67 5.77 4.81 10.5 3.75 3.18 5.60
11 1.87 1.51 3.04 2.41 1.96 5.08 2.22 1.78 5.01 2.33 1.82 4.56
12 4.72 3.83 8.25 3.44 2.67 5.47 3.58 2.85 5.48 3.48 2.82 4.79
13 3.52 2.85 5.38 3.04 2.23 8.68 3.42 2.18 11.18 2.3 1.75 5.59
14 2.81 2.26 6.17 3.14 2.28 10.43 1.84 1.54 3.04 3.02 2.18 9.59
15 5.16 4.41 8.36 3.25 2.44 8.26 3.50 2.69 8.75 3.28 2.57 8.09
16 3.34 3.06 2.79 3.02 2.51 6.33 2.41 1.88 3.26 2.99 2.59 4.29
17 2.91 2.48 7.86 3.52 2.74 9.47 3.47 2.43 9.72 3.18 2.63 8.91
18 4.38 3.79 4.99 3.96 3.20 7.23 3.28 2.55 4.70 3.55 2.76 6.10
19 4.06 2.70 13.63 4.61 2.86 21.07 4.49 2.97 19.42 3.74 2.62 13.76
20 2.94 1.98 5.54 2.47 1.58 4.93 2.40 1.6 4.64 2.40 1.47 4.73
21 2.84 2.25 7.70 1.71 1.30 2.77 2.01 1.2 3.92 1.70 1.27 2.93
22 3.42 2.95 5.39 2.42 2.13 3.52 2.26 1.84 3.6 3.49 3.02 5.35
23 2.75 2.28 3.55 2.45 1.99 3.27 2.10 1.48 3.87 2.40 1.86 3.67
24 2.56 2.23 5.13 2.02 1.53 3.27 1.85 1.39 3.13 2.29 1.67 3.23
25 2.00 1.53 3.55 1.44 1.16 1.83 2.17 1.52 4.33 1.57 1.34 2.53
26 1.76 1.47 2.98 2.66 2.15 6.94 2.03 1.69 4.08 2.28 1.96 2.89
27 3.36 2.73 10.48 2.29 1.77 5.02 2.59 1.9 6.15 2.67 2.15 7.22
28 1.56 1.26 2.27 1.97 1.54 4.02 1.96 1.63 3.58 1.73 1.50 2.71
29 3.86 2.75 15.35 4.23 2.92 18.45 4.33 2.48 18.33 4.20 2.81 18.13
30 1.65 1.41 2.77 1.70 1.34 2.93 2.64 2.10 7.06 1.46 1.02 2.03
31 3.15 2.45 6.47 3.44 2.61 8.86 3.66 2.30 12.32 3.54 2.78 8.14
32 2.29 1.71 4.63 2.28 1.77 5.12 1.93 1.45 3.58 2.50 2.00 4.62
33 2.69 2.17 4.24 3.44 2.69 6.53 4.68 3.53 14.78 4.46 3.63 8.19
34 2.16 1.72 4.76 1.81 1.39 3.29 2.13 1.66 4.68 2.54 2.05 5.69
35 3.24 2.89 8.21 2.83 2.36 6.74 2.23 1.90 4.91 3.29 2.57 6.65
36 2.36 1.40 5.82 2.45 1.54 4.68 2.20 1.67 3.98 2.79 1.77 5.82

Table 5: The forecast error of four models for 36 individual cows.
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Figure 5: Root Mean Squared Error (above), Mean Absolute Error (middle) and variance
of residual error (below) of four model forecasts for 36 individual cows.
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Elastic regression SVR Random forest Neural Network
RMSE 3.103 2.868 2.842 2.947
MAE 2.496 2.187 2.107 2.279
σ2 6.776 6.732 6.915 6.677

Table 6: Average error of each model for all 36 individual cows.

Parity DIM MPD Starch Crude fiber PDIE NE
11.21 8.96 11.35 34.87 15.44 6.58 15.16

Table 7: Average of variable importance estimated by random forest (in %).

Elastic regression SVR Random forest Neural Network
mean 0.077 0.157 6.771 7.357
SD 0.005 0.007 0.175 4.754

Table 8: Average training time (in seconds) and its standard deviation for 36 experiments.
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MLR SVR Random forest Neural network
Cow ID RMSE MAE σ2 RMSE MAE σ2 RMSE MAE σ2 RMSE MAE σ2

1 1.93 1.72 1.07 1.36 1.09 1.55 1.37 1.07 1.65 1.34 1.14 1.30
2 1.81 1.55 2.94 1.72 1.27 2.57 2.14 1.57 4.54 1.81 1.49 3.10
3 3.79 2.61 13.65 4.20 2.80 16.9 4.26 2.95 18.01 3.51 2.28 12.47
4 2.69 2.23 4.39 2.75 2.38 4.75 2.17 1.45 3.30 2.86 2.41 4.27
5 1.72 1.30 3.05 1.81 1.37 3.39 1.47 1.19 2.02 1.84 1.38 3.49
6 2.15 1.59 4.25 2.20 1.30 4.60 1.51 1.13 2.37 2.61 1.53 6.40
7 1.88 1.56 3.48 1.89 1.57 3.66 2.35 1.85 5.36 1.80 1.49 3.20
8 2.48 1.74 6.21 3.61 3.05 5.13 3.06 2.48 6.83 2.55 1.83 6.32
9 3.12 2.26 8.45 2.71 1.74 6.30 3.15 2.24 10.19 2.93 2.08 8.45
10 3.17 2.40 6.13 2.91 2.47 5.13 3.62 2.76 6.39 4.12 3.76 4.67
11 1.60 1.28 1.75 1.78 1.27 2.76 1.32 1.02 1.77 1.90 1.44 2.77
12 2.76 2.07 4.43 2.26 1.51 4.62 2.46 1.90 3.67 2.47 1.70 4.69
13 2.62 2.08 5.46 2.44 2.01 5.96 2.74 2.19 7.69 2.61 2.16 6.98
14 1.91 1.62 3.58 2.63 2.12 7.31 2.10 1.71 4.57 2.36 2.00 5.69
15 3.29 2.77 6.39 2.68 2.00 7.11 2.71 2.06 6.78 2.77 2.31 5.67
16 2.08 1.78 2.14 1.67 1.29 2.32 1.85 1.39 2.23 1.63 1.35 1.56
17 1.77 1.44 3.19 2.07 1.61 4.20 2.03 1.54 4.17 1.97 1.65 3.93
18 2.50 1.95 2.82 2.08 1.43 3.06 2.36 1.64 3.04 2.54 1.89 3.40
19 2.60 1.82 6.15 3.18 2.23 10.37 2.82 2.06 8.01 3.10 2.08 9.24
20 1.66 1.30 1.93 1.29 1.06 1.58 1.46 1.16 1.93 1.67 1.32 2.10
21 2.31 1.53 5.52 1.89 1.13 3.63 1.58 1.02 2.58 1.75 1.21 3.11
22 2.10 1.71 2.23 1.55 1.28 2.22 1.58 1.33 2.47 1.77 1.48 1.74
23 1.98 1.44 3.31 1.85 1.23 3.28 1.84 1.24 3.08 1.94 1.43 3.34
24 1.58 1.32 1.73 1.56 1.16 1.65 1.27 1.05 1.50 1.69 1.29 1.88
25 1.79 1.45 3.09 1.63 1.28 2.62 1.81 1.28 3.05 1.66 1.37 2.63
26 2.57 1.89 6.20 2.74 2.15 6.98 2.24 1.88 5.35 2.97 2.25 8.75
27 2.03 1.68 3.91 1.24 0.95 1.59 1.10 0.79 1.23 1.43 1.19 2.12
28 1.97 1.46 3.99 2.08 1.43 4.47 2.13 1.37 4.69 1.85 1.30 3.54
29 2.43 1.79 5.87 2.66 1.62 7.26 2.82 1.5 8.11 3.42 1.91 12.11
30 1.46 1.23 2.19 1.42 1.10 2.04 1.61 1.11 2.68 1.46 1.22 2.23
31 2.98 2.33 7.16 2.77 2.14 7.56 2.21 1.72 5.07 2.90 2.20 8.49
32 1.77 1.39 3.14 1.81 1.36 3.17 1.30 1.04 1.75 1.88 1.53 3.55
33 1.59 1.28 1.84 1.85 1.56 2.30 1.90 1.42 3.13 1.67 1.49 1.36
34 1.55 1.14 2.13 1.45 1.00 1.90 1.77 1.29 3.23 1.77 1.28 3.18
35 4.48 2.42 20.34 4.38 2.41 19.68 4.17 2.35 17.92 4.61 2.39 21.80
36 2.40 1.69 6.08 2.22 1.72 5.17 2.03 1.52 4.32 2.61 1.88 7.10

Table 9: The forecast error of four autoregressive models for 36 individual cows.
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Figure 6: Root Mean Squared Error (above), Mean Absolute Error (middle) and variance
of residual error (below) of four autoregressive models of order 1 forecasts for 36 individual
cows.
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Elastic regression SVR Random forest Neural Network
RMSE 2.292 2.231 2.175 2.327
MAE 1.745 1.641 1.590 1.742
σ2 4.727 4.966 4.852 5.185

Table 10: Average error of each autoregressive model for all 36 individual cows.

Parity DIM MPD Starch Crude fiber PDIE NE yt−1
2.32 4.28 5.40 14.81 5.11 2.62 6.29 62.78

Table 11: Average of variable importance estimated by random forest (in %).

Elastic regression SVR Random forest Neural Network
mean 0.083 0.182 7.240 6.862
SD 0.009 0.007 0.152 2.919

Table 12: Average training time (in seconds) and its standard deviation for 36 experiments.
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