N

N
N

HAL

open science

A calculus of branching processes

Thomas Ehrhard, Jean Krivine, Ying Jiang

» To cite this version:

Thomas Ehrhard, Jean Krivine, Ying Jiang. A calculus of branching processes. Theoretical Computer

Science, 2019, 10.1016/j.tcs.2019.06.028 . hal-02357975

HAL Id: hal-02357975
https://hal.science/hal-02357975
Submitted on 25 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02357975
https://hal.archives-ouvertes.fr

A Calculus of Branching Processes

Thomas Ehrhard?®, Jean Krivine?, Ying Jiang®

¢®CNRS, Paris Diderot Univ. IRIF, 8, place Aurélie Nemours 75013 Paris, France
bInstitute of Software, Chinese Academy of Sciences, 4 South Fourth Street, Zhong Guan Cun, Beijing
100190, P.R. China

Abstract

CCS-like calculi can be viewed as an extension of classical automata with communication
primitives. We are interested here to follow this principle, applied to tree-automata.
It naturally yields a calculus of branching processes (CBP), where the continuations
of communications are allowed to branch according to the arity of the communication
channel. After introducing the calculus with a reduction semantics we show that CBP
can be “implemented” by a fully compositional LTS semantics. We argue that CBP
offers an interesting tradeoff between calculi with a fixed communication topology a la
CCS and calculi with dynamic connectivity such as the w-calculus.

1. Introduction

The Calculus of Communicating Systems (CCS) [15] and Communicating Sequential
Processes (CSP) [14] are expressive formalisms that are widely used to model concurrent
systems, in which processes synchronize by handshake. One can view concurrent runs
in these calculi as computations of classical automata or Petri Nets in which transitions
have to synchronize on complementary symbols. The starting point of the formalism
we introduce in this paper is the following: what happens if instead of synchronizing
classical transition systems, we were to allow more expressive automata to synchronize?

We introduce a Calculus of Branching Processes (CBP), that is obtained by adding
synchronization to tree-automata [9]. We obtain a process calculus whose continuation
scheme is branching according to the arity of the communication symbols. A CBP process
of the form f(p,q) has communication symbol f and continuations p and g. Branching
communication structure can only be achieved if the computations of p and ¢ are not
allowed to interact anymore. This leads naturally to a definition of a communication
graph that connects processes and specifies which symbols are able to interact. In classical
process algebra, the communication graph is left implicit since any two complementary
symbols may synchronize. This explains, for instance, the difficulty to make concrete
implementations of the w-calculus [16]: in the absence of a network topology, one has to
conceive of astute mechanisms to implement communications [18]. This has led to the
definition of process calculi in which routing of communication is either trivially directed

Email addresses: ehrhard@irif.fr (Thomas Ehrhard), jkrivine@irif.fr (Jean Krivine),
jy@ios.ac.cn (Ying Jiang)
Preprint submitted to Elsevier June 21, 2019

[11, 12] or explicit [13, 17, 10]. An interesting aspect of CBP is that it comes with
a structural operational semantics that makes explicit how the communication graph
evolves over time.

Outline. In Section 2 we introduce the specification of CBP’s operational semantics by
means of (communication) graph rewriting rules. The syntax of processes involves two
main constructs: parallel composition, as in CCS, and prefixing. As already suggested,
this latter construct differs from CCS prefixing in that there can be more than one
continuation. The number of continuations is determined by the label of the prefix which
is a function symbol. For the sake of simplicity, we assume in the technical developments
that this arity is always 2 (more general arities can easily be encoded in this setting).

The operational semantics of this calculus is mainly defined as a rewriting system.
Our main design choice is summarized in Figure 1: when two processes p = f(p1,p2)
and ¢ = f(q1,q2) synchronize, the resulting configuration stipulates that p; can only
communicate with ¢; (for ¢ = 1,2) and with the environment of p (and symmetrically for
q). We can motivate this choice as follows:

e p; can synchronize only with ¢1, and not with ¢o (and similarly for ps), to have
CBP behave as a conservative extension of tree automata, as explained in Section
3.1.

e p; cannot synchronize with po in order to obtain branching continuations in the
style of process threads.

e Last, the fact that the continuations of a prefixed process p inherit the synchro-
nization capabilities of p is inspired by the operational semantics of CCS and has
the major effect of allowing the continuations of p to communicate by means of a
common, shared, context (the context X in Fig. 1).

These restrictions on possible synchronizations are implemented by a graphical structure:
a process graph I' is an undirected simple graph, the vertices of which are labeled by
processes. The edges of the process graph correspond to communication capabilities:
two processes can synchronize if they are located on opposite ends of an edge of this
graph. A process graph rewriting event corresponds to a synchronization that updates
the process graph according to the three principles listed above and summarized in Figure
1. The corresponding rewriting relation on process graphs is presented in Section 2.4.
Expressivity of CBP is discussed in Section 3. First we show, in Section 3.1, that
CBP is a conservative extension of tree automata, in the sense that the recognition of
a tree a by an automaton 7T can be expressed by the fact that a process representing
the “parallel composition” of T and (the dual of) a reduces to an idle process. We
then give an example, in Section 3.2, that illustrates the branching behavior of process
continuations that are still able to interact by means of a shared environment. This
is obtained by modeling a reader and a writer thread that have access to a common
register process. Finally we explore, in Section 3.3, the graph self-assembly capabilities
of CBP and we illustrate specifically that hexagones naturally arise from CBP rewriting,
allowing for instance to implement a ternary version of dining philosophers. We consider
this example as a local interaction based implementation of a distributed consensus,
since the main feature of this sequence of reductions, presented in Figure 3, is that no

2

interaction between the philosophers is possible before the final hexagonal configuration
is reached.

The compositional semantics of CBP is introduced in Section 4. As usual, rewriting
semantics is not compositional (the semantics of a process cannot be described in terms
of the semantics of its subprocesses). Following a standard approach initiated by Milner
with CCS, we present a labeled transition system for CBP. Unlike CCS where labels
are simple letters or 7-symbols (for internal synchronizations), our labels involve also
addresses in process trees, which are the syntactic objects our LTS deals with. These
trees can be understood as process graphs enriched with further informations on the
sequential construction steps of the underlying graph structure.

Thanks to the presence of addresses in our process tree LTS, we are able to prove
in Section 5 that the two operational semantics presented in Section 2 and 4 are indeed
equivalent through a translation from process trees to process graphs.

2. The calculus CBP and its reduction semantics

In this section we introduce the calculus CBP and its reduction semantics, which is a
conservative extension of CCS [15]. This semantics describes the evolution of processes
that are distributed on the vertices of a graph whose edges enable message exchange:
two processes that are connected may interact if they communicate on complementary
function symbols. Importantly, processes that are not connected by an edge cannot
interact!.

CBP has essentially one reduction rule, which is informally described in Figure 1. The
remainder of the present section is dedicated to the formal description of the reduction
semantics, which should be understood as the specification of a distributed computation.
Looking at Figure 1 the reader may wonder whether the new wiring of the right hand
side of the reduction may be obtained by means of local rules since there are, a priori,
many edges that may appear after a reduction (in particular for the full CBP calculus
whose reduction scheme is shown on the right of Fig. 1). A solution to this problem is
presented in Section 4, where a fully compositional semantics for CBP is introduced.

2.1. Syntax

For simplicity we restrict ourselves to binary CBP, where all function symbols have
arity 2. Full CBP is obtained by relaxing this condition.
A process is a term built over the following grammar:

s = fp) 0D |s+s (sums)
= sl (plp) [p\H (processes)

with f € F a function symbol, # C F and D(f) a (guarded) recursive definition with
parameters f. We assume a definition set of the form Def =gyer | J,{Di(fi) := si}, where
fi are function symbols occurring free in s; (see fn function defined in Section 2.3).

1Classical CCS terms may be denoted by processes distributed on the nodes of a clique, in this
context.

Yy Y1 Y2
& w
‘ {z. v} 'z‘

Figure 1: Binary CBP’s reduction rule (left): the nodes = and y are ready to synchronize on symbols f
and f (of arity 2), and are connected by an edge. X (resp. Y) denotes nodes in the context that are
connected to z but not y (resp. y but not x). Z denotes nodes of the context of the reduction that
are connected to both z and y. The reduction replaces nodes = and y by their continuations x1, 9 and
y1,Yy2. New edges connect nodes in X (resp. Y) and Z to the continuations of z (resp. y). On the right,
the reduction scheme for n-ary functions in the full CBP.

Welet P = {p,q,...} denote the set of process terms. We also consider the involution
T: F — F that will serve to denote dual function symbols?.

Let V =q4ef {2,9,2,...} be a set of vertices. A process graph T' = (V,E, 7 : V — P)
is a tuple where V' C V are the vertices of ', F C {{z,y} | z,y € V} are its edges,
and m : V — P is a labeling function that maps each vertex to a process. We use
G =d4ef {I', A, ...} to denote the set of process graphs.

2.2. Update

Computations in CBP progress in the style of classical process algebra: complemen-
tary communication symbols are consumed conjunctly and their continuation is spawned.
In the context of binary CBP, each function symbol comes with two continuation pro-
cesses. Unlike the CCS term a.(p || ¢) that has a unique continuation p || ¢, the CBP
term a(p, q) has two continuations that may not exchange messages in the future.®> This
is captured by a special form of substitution (described below) that substitutes a node
by two continuation nodes, while taking care of the new edges that should appear.

We introduce the update functions that will be used to bring process graphs into a
reducible form. These functions are defined respectively on V, E, m and eventually on T'.

2Unlike CCS, self-dual function symbols, f = f, are also allowed.
3However, the CCS process a.(p || ¢) can be mimicked by the CBP process a(p || ¢,0), where p and ¢
are in the same continuation and thus are able to interact.

For all V. E, 7, with x € V., x1,20 € V and p,q € P:
V]zy,22/2) =det (V\2z)W{x), 22}

(Etﬂ{{z,t}})[xl,xg/x} —def {{m,t},{xz,t}}@(E[ml,xg/x]) fx=z
é}f W {{77?})[4517352/%} =def (*Z{){Z,f}} W (Elry,v2/7]) if & {z,1}
T1,T2/T —def

mlxy :p, ot q/a] =def [y = T(W)]yev\{a} + [21 = piT2 =]

where 7’ = 7 + [y — p] is a labeling map with Dom(7n’) = Dom(7) W {y} and satisfying
7' () = w(z) for all z € Dom(r) and 7'(y) = p.

Definition 2.1 (Process graph update). Let T' =g (V, E,7) and TV =g (V', E', 7).
We define T'{(z1 : p,x2 : ¢)/x | (y1 : Pyy2 : ¢')/y} =T if:

Vv’ Vizy, xa/x][y1, y2/y]
E" = (E\ {{z,y}})ler, z2/2]y1, y2/y] U {{z1, 91}, {22, 2} }
7 = wlaypaeq/elly Y2 d /Y]

Let x be a vertex and p be a process, we use {z : p} for the process graph (V, E,)
where V = {z}, E = () and 7(z) = p. We say that a process graph (V, E,) is idle if
m(z) =0 forallz € V.

2.8. Normalization

Process graph reduction can be blocked by processes that are not in a reducible form.
This is due to three factors:

e Processes of the form p || ¢ need to be distributed as two processes connected by
an edge.

e Restriction operators need to act as a fresh function symbol generators at the level
of process graphs.

e Constants need to be replaced by their definitions.

Bringing process graphs to a reducible form is the job of the normalization procedure
that we introduce now. For all p € P, for all function symbols f, g € F such that g does
not occur in p, we write p{g/f} for the substitution of symbol f by g in p.

We define the function fn : P — V), which yields the free names of processes, as:

fn(f(p,q)) =der {f}Ufn(p) Ufn(q)
fn(p+61) =d¢ef fn(p) Ufn(q)
fn(pl¢) =aer fn(p) Ufn(q)
fn(D(f) =ar {f€f}

fn(0) =def 0

fn(p\ H) =ar f(p) \ H

and, for all process graph (V, £, 7), we define fn(7) =ger U,y fn(7(x)). Process normal-
ization =,C P x P is:

pll@\H) =p @la)\HifHNfn(p) =0

P\H)la =p (la)\HifHNn(g) =0

P\H\H =, p\(HUHN)

D(f) =p s{f/g} if (D(9),s) € Def
and is applied up-to a renaming of bound names. Normalization propagates at the level
of process graphs. For all x € V:

V,E,m+[x—=p)) = (VE,m+[z=q])ifp=,q

(V.E,m+[z—=p\{gteH]) =S¢ (V.E,m+ [z (p{f/g})\ H])
if f&fn(m)Ufn(p)UH
(V.E,m+ [z pld) =S¢ (Ve x2/a], Elzy, x2/z], nlzy : p,x2 : q/7])
where x;,y; € V.

Definition 2.2 (Normalized process graph). A process graph (V| E,) is normalized if
all its nodes are either idle or labeled by a function symbol, i.e. for all z € V', w(x) =0
or w(x) = f(p,q) for some f € F and p,q € P.

2.4. Process graph rewriting

We are now in position to formally describe the reduction given in Fig. 1. Summation
contexts are terms with exactly one hole of the form:

Sio] =aer s+ |0t 5 |
The process graph reduction semantics is the least relation satisfying derivations (1) and

(2), for all T =4¢r (V, E,).

{I7y} er {‘T()axhy()ayl}m‘/:@ 7('(:17) :S[f(p()apl)] 7r(y) :S/[JF(QO&l)]
[=y Mo : pos 1 :p1) /2 | (y1: 90,91 @1)/y}

(1)

Reduction of process graphs is performed up-to normalization steps:

I E g A —{z,y} A/ g I/
r _>{ac,y} IV

2)

We write also I' — I when I' =, 3 I’ for some z, y. We use —* for the reflexive-
transitive closure of this relation.

3. Expressivity

In this section we explore the expressivity of CBP. Although the formal treatment is
restricted to binary CBP, in writing examples we will feel free to use the full calculus
CBP. These examples can easily be encoded using the strict binary CBP, but this would
be to the cost of readability.

6

3.1. Encoding tree automata

One major motivation of this work was to extend tree automata (considered from a
top-down point of view) to an interactive setting, just as CCS can be understood as a
natural interactive extension of ordinary word automata in the following sense. Given an
automaton A, it is possible to define a process P4 such that, for any word w = a; ... a,
the automaton A recognizes w iff the CCS process w || P4 reduces to 0 (where we trivially
see w as the process aj.--- .a;.0), using the same method as in the definition of CCS
testing semantics in [7] (where one would probably have rather written @ || P4 where
W= djy.- - .ax.0, but this is a pure matter of conventional choice in the definition of P4).
The object of this section is to prove a completely similar statement for tree automata
and CBP.

A tree automaton is a tuple T = (Q,©,0) where @ is a finite set of states, o €
Q@ is a final state and O is a finite set of transitions. An element of © is a triple
(¢, f,(q1,92)) where f € F and ¢,q1,92 € Q. For the sake of simplicity, and without
loss of expressiveness, we assume that no element of © has the form (o, f, (¢1,¢2)) (no
transitions from the final state).

Let * be a special symbol representing the empty tree. Trees are defined as follows:

a:x=x| f(a,a)

where f € F. We use T to denote the set of trees.
Given an automaton T = (Q,0,0) and an element ¢ of @, we define a set of trees
L(T,q) = L, where (L,)q4eq is the smallest element of (2T)% such that

e xc [
o if q; € Ly, for i =1,2 and (g, f, (¢1,¢2)) € O, then f(a1,az2) € Ly.

The set L(T),q) is the tree language recognized by T at state q.

GixEr_l\a tree a, we can define a process @ in the following straightforward way: % = 0
and f(a1,az) = f(a1,a2).

Now we explain how to associate a process with a tree automaton, so assume T =
(Q,0©,0) to be a given tree automaton. Let f be a repetition-free list of all names which
occur in ©. With each ¢ € Q) we associate injectively a process constant D,. We define
a set Defr by

Defr ={Dy(f):== Y f(Du(f).Dex(f) la€Q\{o}} U{(Do(f) := 0}

(q,f,(q1,92))€O©

Theorem 3.1. Let ¢ € Q and let a be a tree. Then a € L(T,q) iff {x: (@ || Dy(f))} —*
Ty where Ty is an idle process graph.

Proof. By induction on the tree a. Observe that

{z: @I Dy(f))} =T =y 2} {{y. 23} [y = @z = Dy ().

Assume first that a = *. If a € L(T, q) then we have ¢ = o so that I' is an idle process

graph. Conversely, assume that I' —* Ty where Ty is idle. Since @ = 0, no f/f reduction

can occur in I' and hence T itself must be idle, meaning that ¢ = o and hence a € L(T, q).
7

Assume now that a = f(a1,a2). If a € L(T, q) then there must exist ¢1,¢2 € @ such
that (g, f, (q1,92)) € © with a; € L(T,q;) for i = 1,2. Setting

I’ = ({yi72’i}, {{yi,zi}}, [yz = &\ivzi = Dql(f)])

for i = 1,2 (with pairwise distinct vertices z;s and y;s), we know by inductive hypothesis

that T* —* T where the I'js are idle. Since (g, f,(q1,92)) € © we have D,(f) :=
f(Dg, (f), Dy, (f)) + 5 € Defy for some (possibly null) sum s. On the other hand @ =
f(ai,az). Therefore T —{y.2) " = ({y1, 92, 21, 22}, {{y1, 21}, {y2, 22} }, ™) where 7(y;) =
@ and 7(z;) = Dy, (f) for i = 1,2 (up to some = steps). Since I' reduces to an idle
process graph for 7 = 1,2, it follows that I also reduces to an idle process graph.

If now I' —* I'Y where I'V is idle, since @ = f(ai,as), ¢ cannot be the final state,
and Dy (f) must =, normalize (by updating the value of this constant D, using Defr)
to a sum of the form f(py,p2) + s where the p;s are processes and s is a (possibly nil)
sum. In view of the definition of Defr, this means that, for some ¢1,q2 € Q, one has

(g, f, (q1,92)) € © and p; = Dy, (f) for i = 1,2 and moreover the reduction starting from
I is of the form

I'=, ({y. 2} {{y. 2}y e f(@,a@), 2 f(Dg, (), Dg, () + s])
—{y,z} _
y1,y2, 21, 22}, Hyn, 20} {ye, 224} [y = @iy 2 = D,, (f)]iel,Q)

and, calling I'/ this latter graph process, we know that IV —* I'°. In view of the communi-
cations allowed by the graph structure of I, this implies that I'* reduces to an idle process
graph for i = 1,2, where I'* = ({y;, 2}, {{ws, z: } s [yi — @i, 2i — Dq(f)]) Therefore, by
inductive hypothesis, a; € £(T,¢;) and hence a € L(T, q) since (q, f,(q1,92)) € O. O

3.2. Threads and shared memory

We illustrate here the fact that CBP naturally models thread-like synchronization,
using shared memory, and process-like communication by means of remote procedure
calls. We first model a simple one bit register:

Regy, =def 70(Regy) + wo(Regy) + w1(Reg;)
Reg; =der 71(Reg;)+ wo(Regy) + w1(Reg,)

Now a thread that attempts to read or write b € {0,1} from the register is simply

Read, =gef ’fb(O)
Write, =gef w5(0)

Eventually we consider a server that may (indefinitely) spawn pairs of threads upon
calling the function symbol sp:

Spawn =4¢f sp(0, 0, Spawn)

4Note that the encoding of the one-bit register is done in a fragment of CBP that coincides with CCS
(unary CBP).

Ink (5p(Read;, Write;, 0),5p(Read; , Writeg, 0)) Reg, Reg,

Ao — [&]

Ink(Regy, Regy) O
sp(Read;, Writey, 0)

5p(Read;, Write, 0)

Reg, Reg,

0 /‘\ 0 Spawn T

Read; Write; 0 sp(Read;, Writeg, 0)

Regy Regy

/\ /\ 0 Spawn
>

Read1 erte1 Read1 erteo

Reg, Reg,

—> - — S~
Read;

Figure 2: A computation of the threads processes (thick edges denote reduction redexes). Edges that
connect two processes that have no complementary function symbols are dotted. Idle nodes are garbage
collected.

Now consider the following process:
Ink(Reg, Regy) | Ink (3p(Read;, Write;, 0), 3p(Read; , Writeg, 0)) | Spawn

its computation, which is depicted in Figure 2, proceeds as follows: two pairs of reader-
writer threads are packed on the green node, guarded by two function symbols ink and
5p. The Ink function is called at step 1, and links both packs of threads to different
registers (both initialized to 0). The first and second pairs of threads are then spawned
using the function sp at steps 2 and 3. Because the two combinations of threads do not
share the same register, and the second register does not hold the value expected by
the associated reader thread, the second combination of threads is not able to terminate
successfully.

3.83. Graph self-assembly

Consider a specification process graph I', which describes how a computation should
be distributed, and in particular how processes that are located on the vertices of I' should
be topologically separated. The self-assembly challenge is to conceive of a process p (the

9

implementation) that eventually produces the specification T', up-to garbage collection
of idle nodes, as depicted in Figure 2. We finally show that CBP is able to realize non
trivial assembly patterns.

Definition 3.1 (Convergence). A process graph I' weakly converges to T if there exists
a trace of the form I' —* I'V. We say that I" strongly converges to I if all traces I" —* T'”/
either factor through IV, or I'” strongly converges to I".

Definition 3.2 (Homomorphism). Let T' =4¢¢ (V, E,7) and TV =4¢ (V',E',7'). A
process graph homomorphism ¢ : I’ — I is an injective map ¢ : V < V' that is:

e Edge preserving : {x,y} € F implies {¢(z), #(y)} € E'.
e Label preserving: n'¢(x) = w(z), for all x € V.
We say that a homomorphism ¢ : I' — IV is a quasi-iso if it is, in addition:
e Edge reflecting: {¢(z),#(y)} € E' implies {z,y} € E
e Full: for all 2/ € V' \ ¢(V), 7'(2') = 0.
We write I' <4 I” whenever there is a quasi-iso ¢ from I" to IV.

Proposition 3.2. The relation = =qef {(I',IV) | 3¢ : T’ <4 I'} is a bisimulation, i.e it
is a symmetric relation that satisfies:

F=Il' = V[= T,,3l" =1
such that I'g ~ I'y.

Definition 3.3 (Assembly). A process p (strongly or weakly) assembles into I'spec, with
Tspec =def (Vs, Bs, 7s), if {z : p} (strongly or weakly) converges to a graph I' = (V, E, x)
such that I'spec =g T

For simplicity, in the following example we consider only function symbols that are
self dual, i.e f = f for all f. Consider the following process definitions and the process
graph specification of the 3 dining philosophers:

P
F/O\ P
P =ger take(take(Eat) + put(P))
Eat =daer put(put(P)) J)\ /é Lohilo,
P P
Consider the process:

F =der take(put(F))
P =def g(h(P, P)ai(07w(P))) H f(’(Fv O)’w(h(F’ F))) || f(07g<0’0))

Figure 3 illustrates the proof of p’s assembly into I'phio,. We obtain the desired
hexagon by transforming a triangle graph, which is the normalization of the process graph
{z : p}, following the reductions of Fig. 3. Importantly the reduction I's — T'y is enforced
by symbol w which is positioned to prevent the reduction of symbol i before symbol i
that would entail weak convergence only. Without symbol w, from I'y, one may reduce

10

F

symbol h to reach a state where two P processes have access to a single fork each. Now
a philosopher may enter into infinite interactions with the fork by taking it and putting
it back without letting the whole process ever reach the specification graph. Strong
convergence requires that process p is able to assemble into the 3 dining philosophers in
an atomic fashion: no philosopher may start taking forks before all philosophers are able
to do so.

Figure 3: Proof of the assembly of p into the 3-dining philosophers. Nodes labeled with a nil process as
well as edges connecting to them are faded out. Reductions are applied modulo quasi-iso.

4. Compositional semantics

In this section, we introduce a labeled transition system (LTS) for CBP. It relies on
a localization of top-level function symbols using a form of locality [5, 6] or proof terms
[3, 4]. The main idea behind the LTS is to “freeze” a process graph I into a tree ¢ whose
leaves correspond to nodes of I'; and whose remaining nodes contain information allowing
one to decide whether the leaves of the sub-tree are connected. The correspondence
between CBP trees and CBP graphs is depicted in Figure 4. We formally address this
correspondence in Section 5.

4.1. Syntax
Along with CBP processes, defined in Section 2:

f.p) |0 D(f)|s+s
slplip)p\H

we introduce CBP process trees, which provide an algebraic representation of graphs

N ®»
|

to=p|({t@at)|t\H
11

/N N e

(Pm%) f(p) gpa) 9(py @)

Ty

t]_ (01,10) t2 (01’10)

(00,10)
(01,11) (00,10) D (00,10)
(01,11) (01,11)

/ \ /

0 1017 Q1 pl, q1

1011

Py o

Iy

Figure 4: Representation of CBP graphs (I'p,I'1 and I'2) as trees (tg,t1 and t2). Each leaf of the process
tree t; contains a different vertex of the process graph I'; (for ¢ € {0,1,2}). Roots of (sub)trees are
labeled by a list of pairs of addresses (in the example: the blue, red and green rectangles, subtrees
labeled by the empty list are pictured unlabeled). Addresses in these pairs are relative to the position of
the root containing the list: 0 stands for the left subtree and 1 stands for the right subtree. The process
graph I'; denoted by the process tree t; is obtained by adding edges connecting two leaves (dotted in
the picture) as indicated by the lists of address pairs in the root above them. For instance, the red
router of process tree t2, associates address 01 to address 10, which point respectively to the subtrees
t =p{®q)and t' = p1 ® q1. This implies that all leaves of ¢ and ¢’ should be pairwise connected in
the corresponding process graph I's. Note that the leaves labeled by p1 and q1 in I'2 are not connected
since the subtree ' is labeled by the empty list.

where A € 20017 x{0.13") * We use T to denote the set of process trees generated by
non terminal symbol t. As presented in Fig 4, operators @4, that we call routers, act
as “regulators” for communication. In the tree tg @4 t1, a function symbol originating
from the subtree ty will only be able to synchronize with a dual symbol in ¢; if the table
A allows them to do so. Router table A is updated upon synchronization between ¢y and
t1 as shown in the next section.

In the meantime we introduce an important function that allows one to unfold a leaf
labeled with p || ¢ into a tree. To do so, process trees are equipped with a distribution
function, dist : P — T and that is defined as:

diSt(S) =def S
dist(p [| ') =daef P ©r0,1)} P
dist(p \ H) =daer p\H

4.2. Router update
We consider addresses (meta-variables ¢, j, k, . ..), which are words over the alphabet

{0,1}. For all addresses i, j, we write ¢ < j if j = i.k for some address k (j is more
12

precise than).

For all X € 2{%1}" we define 1+ X =qer {i € {0,1}* | 3j € X : j <i}. Similarly, we use
J X to denote the set of addresses that are less precise than those in X.

For all A € 200101} the set of edges denoted by A is

E(A) =aer {(3,5) | 300", 5') € Avi e t{i't Aj e {5’}

After a synchronization has occurred, the table A needs to be updated to take into
account the change in the topology of permissible communications, as specified in Fig. 1.
We turn now to the formal description of this router update mechanism. For all I €
2{01" and b € {o,1}, we use the meta operation b- I defined as b- I =qer {b.i | i € I}.

For all b € {0,1} we write —b to denote (1 — b). We define ~: {0,1}* — 2101} as:

For all +/ < i we define ¢’ |7 as:

We leave i [j undefined if i £ j.
Lemma 4.1. For alli <j, 1 7)) =i} \ i}

For instance, 10 [1011 =4¢f 10 - {0, 10}, which is {100, 1010}, and 1{100, 1010} contains all
addresses above 10 that are not above 1011.

For all i € {o,1}* and all I C |[{i}, we write I [i for |J, ;' [4. Now, consider a set
A € 20014011 and two addresses 7, j € {0,1}* and let

Iy =der {i €{o,1}* | Tk: (k) e ANV <i}
Ta w17 € {0k |3h: (b i) € AN <)

One defines:
6i,(A) =der A\ (i} x L{GH U La x (Jalj)U(Lal4) X Ja)

Theorem 4.2. The effect of 0; j(A) is to prevent all synchronizations between localities
that are more precise than (i,j) and to preserve all other previously possible communi-
cations, i.e.:

£(0:5(A) =€(A)\ £({i.j})
Definition 4.1 (Router update). For all 4,5 € {o,1}*, the router update is:

upd(A4,1,7) =defr 6; ;(A) U{(3.0,4.0), (¢.1,5.1)}

Corollary. For all A € 2101 <01 gnd i j e {o,1}*:
E(upd(A,i,1)) = (£(A) \ £({i, 7)) U E{(i-0,0), (i1,4.1)})

13

4.3. labeled transition system

Let « € FU{r} and 0 € {o,1}* + ({o,1}* x {o,1}*). For all (¢,5), let b+ (i,75) =def
(b.i,b.7). The compositional semantics of CBP is induced by the following derivations:

o7 (act)
f(p1,p2) —> p1 B9 p2
e:f e:f
—1 —1
(sum — left) o1 o7 52 - (sum — right)
81+$2;)t 51+82;>t
s Lt (D(R) = s{h/§}) € Def (k)
in
D(g) <t
to “Lwn 4 Zh 4t (0.,1.5) € E(A) B = upd(A,0.4,1.9) (synch)
0.4,1.5):7
to ®ath (—]>) t, ®p t}
0:c0 a7 . 0:¢
t—t HUH dist(p) —t" .
(res) 03 z s (I;)a (dist)
t\H—t\H p—t
0:cx 0:cx
t—t t—t
(par — left) (par — right)
t@AtlIO"g_w?t/@At// tl/@Atl'G_w?t//@At/

5. Correctness of the labeled transition system

This section is dedicated to the proof of correctness of the LTS semantics of CBP
introduced in Section 4. In Section 5.1 we show that any rigid process tree ¢ can “thaw”
into a process graph I'. This “thawing” relation is defined by induction on the structure
of t and produces eventually a bijective map that associates leaves of ¢t to nodes of T'.
Theorem 5.1 then formalizes the correctness of the LTS as a bisimulation between the
7-transitions of CBP trees and the reductions that can be triggered from their thawed
versions. The (main parts of the) proof of the theorem is split into Section 5.2, where
we show that reductions can simulate the LTS, and Section 5.3 where the LTS is shown
to simulate the reductions.

5.1. Thawing trees into graphs
For all t € T define |t| C 2{%1}" as:

D] =def {€} [t ®at'| =qgefo-|t|Ur-|t|

We define the thaw relation ¢ ~, (V, E,), where ¢ is a bijective map ¢ : [t| — V, as
the least relation satisfying:

I — 3

t\ H~y I fresh(g)

E\ (W)~ (V. E,m{g/f})
14

(4)

to ~ ko (Vo,Eo,ﬂ'()) t Sy (%,Eh’frl) Vi € |t0| U |t1|,Vb S {071} : ¢(b2) = ¢b(2)
to Daty~g (VoW Vi, EgWEL W Ey,mo + 1)

(5)
with:

Ex =aef {{z,y} € Vo x Vi | (0 (65" (2)),1- (67" () € E(A)}
Theorem 5.1. The relation:

~ =def {(t,F) ‘ 3(;5 ot qu F}

s a bisimulation between process graphs reductions, and T-transitions of process trees,
i.e. for all ¢, there exists a v that satisfies the following diagrams:

V(4,5):m (o (@), 0~ (W)er

¢ ¢/ ¢ - ¢/
] = A
r s T r I/
{6(),6()} iy}

5.2. Process graph reductions simulate T-transitions

Structural congruence for processes =, C P x P is defined as =, =gef (Ep U Ep’l U ip)
where:

s+ s =, §' +s
(s+8)+s" =, s+(s+5")
5s+0 =, S

and structural congruence for process graphs is =g =gef (¢ U=, U =) with:
(V.E,m) = (VE,m{g/f})if g & fn(m)
(VU{zh Eir+le—p)) = (VU{zh Ertlr—q))ifp=,q
Lemma 5.2. =; is a bisimulation for process graph reduction semantics.

The above lemma insures that it is safe to consider process graphs up-to consistent
substitution of function symbols. There is an equivalent proposition for process trees:

Definition 5.1. Consider =,C 7 x T that is the least relation satisfying:

to=aty t1=ath t'=t{g/f} fresh(g)
toDati DathyDat) t\{fIUH) 2.\ H

Lemma 5.3. The relation =, is a bisimulation for CBP’s labeled transition system.

This lemma allows us to consider terms of CBP with restrictions occurring exclusively
inside recursive definition bodies and to safely erase them upon definition unfolding. Note
that this procedure is not needed for the operational semantics but simplifies greatly the
proofs.

Definition 5.2. Let ¢ a process tree. For all ¢ € | |¢|, we define t@¢ by induction on i:

tQe =gef T

(t®a t’)@o.z’ =gef 1Q7

(t Da t/>@1.i =def t'Q1

pQb.i undefined for all b € {o,1}
15

Lemma 5.4. For all transition t Z—f> t', there exist po,p1 € P such that tQi =,
f(po,p1) + s for some (possibly null) s.

Lemma 5.5. Lett ~¢4 I' =qef (V. E, 7). For all i € |t|, if tQi = p then 7o ¢(i) = p.

Lemma 5.6. For all process tree t and process graph T' =4 (V, E,7), the following
derivation holds Vb € {o,1}:

t sy ’ Vi€ [\ i} v(d) = o))
{tVT;F gV =T {w(i.b):xbelse

t ~oy T [z £/ @4.0, 21 @ ¢/ @Q5.1/ (1))

Theorem 5.1, left diagram. We wish to show:

t (z,ﬂ)‘r t' At 3 I' — 3]:",1/) : T —{p(1),6(j)} ''At b r’

We proceed by induction on the derivation of the 7-transition.

e Base case is t (O'M):T t’, for some i,j € {o,1}*, by application of rule (synch). We
have: . o
to =5ty 0 Zhiy (0d,15) € E(A) B =updg, . (A)

(6)

0.3,1.5):
t:tO@Atl(Z—J>)Tt6@3t/1:t/

Since t ~»4 I' we can use derivation (5) to deduce:
to ~¢o (Vo, Eo,m0) t1 ~g¢, (Vi, Er,m1)

for some V;, E;, 7; satisfying ' = (VoW Vi, Eg W Ey W E4, 7). We apply Lemma 5.4,
to the premises of derivation (6) and we obtain:

to@i =, f(po, 1) +s t1Qj =, f(pp,pl) + 5

We apply Lemma 5.5 to deduce mg o ¢o(i) =p f(po,p1) + s and m o ¢1(j) =p

f(po,py) + s’ Now according to the premises of derivation (5), ¢(0.i) = ¢o() and
@(1.5) = ¢1(j). Hence we have:

mog(0.i) = f(po,p1) +5 o d(1h) =p f(po,py) + 5

Since ¢g(i) € Vo and ¢1(j) € Vi and V = VowV; we have ¢(0.7) € V and ¢(1.5) € V.
It remains to verify that ¢(0.7) and ¢(1.5) are connected in I'. The only possibility
is to verify that {¢(0.i), #(1.5)} € E4. It is indeed the case if:

(0- ¢ (6(00)),1- 61 (6(1.9))) € E(A)
which is equivalent to:
(0- 65" (d0(i)),1- 67 (61(3))) € E(A)

and reduces to (0.4,1.5) € £(A) which holds by the premises of derivation (6). We
can conclude that I' = 4(0.5),6(1.5)} IV since all preconditions to trigger a reduction

of the process graph I' hold. It remains to verify that t' = t{; &p t} ~~, I’ for some
1. We apply Lemma 5.6 to the premises of

to <Lt 1 2y

to@®ats "2 ¢ @pt

and derivation (5) applied to to @4 t1 ~¢ ', and we obtain t ~ 4 I'y and] ~ g
I'i. Let I'y = (V, E},). We apply derivation (5) to deduce ¢y ®&p t} ~»y IV with
I"'=(VygwV/,ElWEl W Eg, 7ty + 7).

e We conclude by applying a straightforward induction for the contextual rules in
the particular case of a 7-transition.

O

5.8. T-transitions simulate process graph reductions

In order to prove the right diagram of Theorem 5.1 we need a couple of definitions
and lemmas.

Definition 5.3 (dist-normal form). We define the dist-normalization function dnf : 7 —
T as:
dnf(t ©a t') =qer dnf(t) © 4 dnf(t)) dnf(t \ H) =der dnf(t) \ H

dnf(0) =ger O dnf(p) =qer dist(p)
Note that dnf(¢) returns after exactly |¢| calls to dist.

Lemma 5.7. Let D=qer {(t,t’) | dnf(t) = dnf(t')}. The relation D is a bisimulation for
CBP’s labeled transition system.

Lemma 5.8. For allT',T" € G and allt € T satisfyingT =4I and t ~»4 T, there exists
) such that dnf(t) ~ I,

Lemma 5.9. For allt and T = (V, E, 7), the following derivation holds:

te D eV w@)=, fp,g)+s i=0¢ ()

¢ Ly ~y Do p, 1 1 ¢/]

for some ¢ : |t'| = V.

We have now everything in place to prove the final part of the theorem.

Theorem 5.1, right diagram. We need to show

t g TAT Sy D Ai=¢" @) Aj=0 ' (y) = t 5 ¢y (7)
We prove this derivation by induction on the derivation of the reduction I' =, 4 I'.

e Suppose I' =, 1 I by application of reduction rule (1). We show statement (7)
by induction on the derivation of ¢ ~~4 I'.

— Base case: if t = p then no reduction is possible from I'" through reduction
rule (1).
17

— Suppose t =ty Pa t1 ~»¢ I'. By derivation (5) we have ¢ty ~»4, I'o and
t1 g, ['1. If z € Vp and y € V; then we can apply Lemma 5.9, rule (synch)
and derivation (5) to obtain the derivation:

to ~go Lo mo(@) = f(p,q)+s t1~¢, 1 my)=Ffp.¢)+5

to ~ th ~gy Tolzo 1 pow1 s q/a] 1y L5t vy Tilyo : oy = ¢'/y)

to Pa t1 (Z’L))T t6 DB t/l ~y I

with TV = (V" B, 7'} with

V" = Volzo,z1/x] W Vilyo, v1/y]
E" = Eplxo,z1/2]W E1[ye,y1/y] W Ep
7'('// = 7'('0[.’,1’,‘021?7.’,[]1 q/x]‘i_ﬂ—l[y() :pl7y1 q//y]

We have t' = t, ®p t} and by derivation (5) we have:
Bp =qer {{z', '} € Vg x VI | (0- (¢ ' (2")),1- (7' (1))) € E(B)}

with Vy = Vo[xo, z1/2] and V] = Vi[yo,y1/y].
Now, CBP reduction rule (1) produces IV =g (V', E',7"), where according
to Def. 2.1:

\vgd =def V[CL'(), xl/x] [y07 yl/y]
B =g (B\ {zy}) /2] /5) U ({0, wo), {1, 13}

/

7 =4t TV \{z,y})+[zo—=pizi = gyo =055 — (]

We have V/ = V' and 7" = #’. It remains to verify that E” = E’. We
decompose E = Ey W E1 W Epp where Eg; = {{z,t} € Vo x V1 | {2,t} € E}.
Now we deduce:

E\ {{z,y}} = (BEo W E1 W Eo1) \ {{z,y}} = Eo W E1 W (Eo1 \ {{z,y}})

since x € V) and y € V3. We have:

E' = (EoWEW (Eo \ {{z,y}})[#:/2][7i/y] U {{z0, yo}, {21, 91 }}
= Eol#i/a] W Ex[g:/y] & (Eor \ {{z, y}} U {{zo, g0}, {z1,41}})

Since Eo1 \ {{z,y}} U {{z0,v0},{x1,y1}} = Ep we conclude that E' = E”
and hence IV =T".

e Suppose I' =, 3 IV by application of the reduction rule (2). We summarize the
inductive step in the diagram below.

r ¢ A {=,y} A e T
8
Eq. (2)
T P {z,y} 51/;/ F/

% b

“1(g -1
P (), (y)>t/ Lem. 5.8 dnf ()

H.R
18

f
5
o} E

¢ Lem. 5.8 dn (t)

We conclude that ¢ 225 t', for i = ¢~1(x) and j = ¢~ 1(y), by Lemma 5.7. Since
(i) = ¢(¢) for all ¢ in |¢|, this terminates the proof. O

O

6. Conclusion

We have introduced CBP, a calculus of branching processes, which is a generalization
of CCS with branching continuations. Importantly, CBP is not conceived as an ad
hoc calculus aiming at capturing a particular feature of concurrent systems. Yet, this
arguably natural generalization of CCS provides powerful means to model a combination
of distribution, thanks to non trivial communication graphs, and synchronization. Several
theoretical investigations are suggested by the present work:

o A structural theory for process graphs. As pointed out in Section 3 we lack a theory
of reachable process graphs in order to establish expressivity results. Being able
to characterize whether a graph I' can be obtained by successive reductions from
a clique would characterize precisely which specification graphs are amenable to
assembly from a purely local initial process.

o Self-assembly. More generally, techniques to produce a CBP implementation that
converges to a specification need to be formally established. We conjecture that
unlabeled process graph reductions, where one is interested in the assembly of a
particular graph, without considering the way nodes are labeled, should play an
important role. Also given weak convergence between {z : p} and T, it would
be interesting to establish under which conditions one may automatically obtain
strong convergence, by transformation of p.

e Other classes of automata. Following the CBP approach, one may wonder what
class of concurrent systems corresponds to other types of communicating automata.
In particular, possible connections with pushdown automata [2] and final state
machines [8] would be worth studying.

e Behavioral equivalences. CBP is a localized process calculus. Locality aware bisim-
ulations [5, 1] should naturally provide tools to compare branching processes.

Acknowledgment

This work is supported by the Chinese Academy of Science-INRIA project Verifica-
tion, Interactions and proofs, VIP GJHZ1844.

References

[1] Bednarczyk, M.A., 1991. Hereditary History Preserving Bisimulations or What is the Power of the
Future Perfect in Program Logics. Technical Report. ICS PAS.

(2] Bouajjani, A., Esparza, J., Schwoon, S., Strejcek, J., 2005. Reachability analysis of multithreaded
software with asynchronous communication, in: Sarukkai, S., Sen, S. (Eds.), FSTTCS 2005: Foun-
dations of Software Technology and Theoretical Computer Science, Springer Berlin Heidelberg. pp.
348-359.

19

3]

(4]

(5]
[6]
[7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]
(15]

[16]

(17]

(18]

Boudol, G., Castellani, 1., 1988. A non-interleaving semantics for CCS based on proved transitions.
Fundamentae Informaticae 11, 433-452.

Boudol, G., Castellani, 1., 1989. Permutation of transitions: an event structure semantics for CCS
and SCCS, in: REXSchool/Workshop on Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, pp. 411-427.

Boudol, G., Castellani, 1., Hennessy, M., Kiehn, A., 1994. A theory of processes with localities.
Formal Aspects of Computing 6, 165—200. doi:10.1007/BF01221098.

Castellani, 1., 1995. Observing distribution in processes: Static and dynamic localities. International
Journal of Foundations of Computer Science 6, 353—-393.

De Nicola, R., C. B. Hennessy, M., 1984. Testing equivalences for processes. Theor. Comput. Sci.
34, 83-133.

Deniélou, P.M., Yoshida, N., 2012. Multiparty session types meet communicating automata, in:
Seidl, H. (Ed.), Programming Languages and Systems, Springer Berlin Heidelberg, Berlin, Heidel-
berg. pp. 194-213.

Doner, J., 1970. Tree acceptors and some of their applications. Journal of Computer and System
Sciences 4, 406—451.

Fehnker, A., van Glabbeek, R., Hofner, P., Mclver, A., Portmann, M., Tan, W.L., 2012. A process
algebra for wireless mesh networks, in: Seidl, H. (Ed.), Programming Languages and Systems,
Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 295-315.

Fournet, C., Gonthier, G., 1996. The reflexive CHAM and the join-calculus, in: Boehm, H., Jr.,
G.L.S. (Eds.), Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ACM Press. pp. 372-385. URL: http://dl.acm.org/
citation.cfm?id=237721, doi:10.1145/237721.237805.

Fournet, C., Gonthier, G., 2002. The join calculus: A language for distributed mobile program-
ming, in: Applied Semantics, International Summer School, APPSEM 2000, Caminha, Portugal,
September 9-15, 2000, Advanced Lectures, Springer-Verlag, London, UK, UK. pp. 268-332. URL:
http://dl.acm.org/citation.cfm?id=647424.725795.

Hennessy, M., 2007. A Distributed Pi-Calculus. Cambridge University Press. doi:10.1017/
CB09780511611063.

Hoare, C.A.R., 1985. Communicating Sequential Processes. Prentice-Hall.

Milner, R., 1989. Communication and Concurrency. International Series on Computer Science,
Prentice Hall.

Milner, R., 1999. Communicating and mobile systems: the 7-calculus. Cambridge University Press,
Cambridge.

Montanari, U., Sammartino, M., 2015. Network-conscious m-calculus — a model of pastry. Electronic
Notes in Theoretical Computer Science 312, 3 — 17. doi:https://doi.org/10.1016/j.entcs.2015.
04.002.

Peschanski, F., Hym, S., 2006. A stackless runtime environment for a pi-calculus, in: VEE 2006 -
Proceedings of the Second International Conference on Virtual Execution Environments, pp. 57-67.

20

http://dx.doi.org/10.1007/BF01221098
http://dl.acm.org/citation.cfm?id=237721
http://dl.acm.org/citation.cfm?id=237721
http://dx.doi.org/10.1145/237721.237805
http://dl.acm.org/citation.cfm?id=647424.725795
http://dx.doi.org/10.1017/CBO9780511611063
http://dx.doi.org/10.1017/CBO9780511611063
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2015.04.002
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2015.04.002

Appendix

Missing proofs of important lemmas are listed here.

Lemma 5.4. By induction on the derivation of ¢ Z—f> t/

e (act) we have t@Qe = f(po, p1) which is readily of the desired form.

o (sum-left) by induction hypothesis, we have s1Qe =, f(po,p1)+ssot = (f(po,p1)+
s)+ so and t =, f(po,p1) + (s + s2), which is in the desired form. The symmetric
argument applies for (sum-right).

e (link) we have t@e = D(g). Since Def contains only guarded sums, we have D(g) =,
f(po,p1) + s and one proceeds as before.

e (dist) The interesting case is whenever p =qef po || p1. We have dist(p) = po ©1(0,1)}

p1 and dist(p) RNy

— Suppose ¢ = 0.i’ for some i’. The only rule that has:
0.4
Po Dy(0,1)} P1 SR

in its conclusion is (par — left). Therefore we have pg i, to (by the premises
of the rule) and ¢ = to ©y(0,1); p1- By induction hypothesis we have po@i’ =,
f(®',q')+s. One deduces that dist(p)@o.i" =, f(p’, ¢')+s or written otherwise
dist(p)@Qi =, f(p',q’) + s, which is the desired form.

— The case i = 1.7/ for some ¢’ is treated likewise using the (par — right) rule.
— The case where 7 = € is not applicable because no rule having t 4 t’ on the
left hand side has label with an € address.
e (synch) This rule may not produce a transition of the correct form.

o (par-left,par-right) one applies induction hypothesis on the premises of the rules.

O

Lemma 5.6. We proceed by induction on the derivation of ¢ RENS

e Case (act). We have t = f(po,p1) and I' = ({z},0, [z — f(po,p1)]), and ¢ = [e —
x], by derivation (3). Furthermore, we have ¢’ = py @¢ p1 and for all b € {o,1}, by
derivation (3), we have py, ~4, I'y with 'y = ({xp}, 0, [2p — ¢p]) for some g, =, ps,
and with ¢, = [e — x3]. W.l.o.g we suppose xg # 1. We apply derivation (5) to
deduce:

Po Do p1 >y ({zo, 21}, 0, [x0 = qosz1 — q1]) =g Iz : po,x1 : p1/2]
since gy =p Dp-

e Cases (sum-left/right). We have t = sg+s; ~+4 I and we apply induction hypothesis

to so TN (resp. s1 2N t') to obtain t' ~»y I'[zg, x1/¢(7)].
21

Case (link). By derivation (3), we have I' = ({z},0, [z — D(g)]) and ¢ = [e — z].
Following the (link) rule, D(g) 245 4 is derivable if (D(g), s) € Def (modulo proper

. 2 . .
renaming) and s RN (i). Now because s is a sum, we have s ~»g I =ge

({z},0,[x — §']) (ii) with s =, s’. We apply induction on (i) and (ii) to deduce
'~y I [0, 21 /2'] and we can conclude since:

T =aer ({},0, [z = D(@)]) =¢ ({},0, [z = 5]) =qer T'

Case (dist). The interesting case is when p = pg || p1. By derivation (3), we have
I = ({z},0,[z = po || p1]), and ¢ = [e — z]. Furthermore we have dist(p) =gef

Po D{(0,1)} P1 By ¢ and i = b.i’ for some address i’ and some b € {o,1}.
Applying derivation (5) and derivation (3), we have:
dist(p) ~¢ ({z,y} {{z, y}} [2 = q0;y = @1]) =aer T
with g5 =p ps.
— Suppose ¢ = 0.7'. We apply inductive step to deduce:
t/ Mrah ({an T, y}7 {{an ZJ}’ {331, y}}7 [Jfb = t/@va Y= ql]) —def FN
Since I'"" = T"[x¢, z1/x] and IV =, T' we may conclude.

— The case i = 1.’ follows a symmetric argument.

Cases (par-left/right). Let t = to @4 t; i ty ©a t1. By the premises of (par-left)
and derivation (5) we have t LGN to and ty ~»g, Iy for all b € {o,1}. We apply
induction hypothesis to deduce:

t ~y Tolzo @ t0Qi 0,1 : ty@Qi" .1/ (2")]

with I'y =¢ To.
Let py, = t{@i".b and T'y[zo : po, x1 : p1/po(?)] = (Vy, B}, 7). We use the fact that
t1 ~¢, I'1 =def (V1, Eq,m1) to obtain, thanks to derivation (5):

to @ats ~y (Vo WV, Eg W EL W Ex,mp + 1) =der T

We verify now that IV =, I'[zo,x1/¢(i)]. Since t = to ®a t1 we know, by
derivation (5) that I' = (Vo W V1, Eg W E1,mp). Since Vj is the set of vertices
of T'{[zo : po, 1 : p1/do ()] with Iy = 'y we have:

Vo = Wolzo,21/do(i')]
Ey = Eolzo,x1/¢0(i')]
mo = molxo : th@i'.0,xq : t{Q.1/o(i)]

Since ¢o(i') = ¢(0.i') = ¢(i) and t[Q".b = (¢ ®a t1)Qo.i'.b = t'Qi.b we can
conclude.

The case (res) is straightforward.
22

Lemma 5.9. By induction on the derivation of ¢ ~»4 I'.

e Base case is t = f(p,q) + s ~4 I' = ({z},0,[z — f(p,q) + s]). By rule (act),

¢t <4 p ®g q. We apply derivation (3) to construct p ~»4, ({zo},0, [z — p]) and
q ~¢ ({21}, 0, [z1 — ¢]). By derivation (5) we build p &y g ~»¢ ({zo,z1},0, [z0 —
;21— q]) =def I'. We can conclude since IV = T'[zq : p, 27 : ¢/x].

e In the inductive step one assumes ¢ = to @4 t1 ~4 I and for all b € {o,1},
ty ~+4, I'v. Since V =qe¢ Vo W V1, x is either in I'g or I';. W.l.o0.g., suppose x € I'y.
We can derive by induction hypothesis:

to ¢, Do mo(x) =m(x) = f(pg) +5 i=¢y ()
7
to —L th ~uo Lolzo : p, 21 1 ¢/x] =qer T

By rule (par-left), we derive:

to L5 1

t=to®ats =t @ty =t
Additionally, for derivation (5) we derive:

t6 o F6 t g, I
t’ N (VOI W Vl,E(,) W 4 &JEAJT(,) +7T1) =gef I

with, for all 4 € [t'], ¥'(0.7) = ¥ (i) and ¥’ (1.3) = ¢1(3).
It remains to verify that TV = T'[zg : p, 271 : ¢/x]. By definition of the substitution
operation we have:

Vo = Volzo,x1/2]
E6 = Eo[l‘o,xl/x]
Ty = molro:p,r1:q/]

Since I' = (Vo WV, EgW By WE4, 1o+ 1) and « € Vy we do have IV =T'[xg : p, z1 :
q/x].
O

23

	Introduction
	The calculus CBP and its reduction semantics
	Syntax
	Update
	Normalization
	Process graph rewriting

	Expressivity
	Encoding tree automata
	Threads and shared memory
	Graph self-assembly

	Compositional semantics
	Syntax
	Router update
	labeled transition system

	Correctness of the labeled transition system
	Thawing trees into graphs
	Process graph reductions simulate -transitions
	-transitions simulate process graph reductions

	Conclusion

