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Abstract. This work focuses on the detection of anomalies in a railway
communication system. We present the detection method as well as the
architecture of the system supporting it. The method is based on a pre-
liminary stage to collect and aggregate the data. It then combines the use
of a multidimensional indexation tree (i.e., iSax tree) to store time series,
and the computation of an anomaly detection score (i.e., CFOF score).
We propose a fast estimation of this anomaly score, based on the infor-
mation stored in the indexation tree, so that the score can therefore be
computed on the fly over the stream of messages in the communication
system. We show by mean of experiments that this estimation is close to
the exact score. We describe the platform that has been implemented,
and we show that it effectively support abnormal behaviour detection
in the real stream of messages within the communication system of the
French Railway Company (SNCF).

1 Introduction

Detecting abnormal behaviours in numerical data streams is an important task,
necessary in a wide range of domains. Such behaviours, called anomalies, novel-
ties, or outliers, tend to deviate from the main dynamics as if they were generated
by a different underlying mechanism [1]. In the current context of exponentially
growing volume of numerical data coming from a wide panel of applications,
anomaly detection represents a challenge of ever-increasing importance.

The French Railway Company (SNCF) produces and processes in real time,
in its information system, a large amount of heterogeneous data. It operates
the national rail traffic, including the high-speed rail network (TGV), and its
functions include railway services for passengers and freight, as well as railway



maintenance and signalling. Some data, like for example real time passenger
information including upcoming departures, disturbances, etc., originate from
ground local information systems. Others, like geolocation data, remote admin-
istration, train state, etc., are generated on board, produced by the so-called
communicating trains. All these data are transferred throughout the main in-
formation system by messages, generating traces handled mainly using the ELK
Stack [2], an open source software platform including the Elasticsearch, Logstash
and Kibana tools5.

In the industrial context of the SNCF company, the aim of this work is to
detect abnormal behaviours in the stream of message traces. The main contri-
bution of this paper is twofold. Firstly, it introduces the detection method based
on aggregation, indexation and scoring to assess the current state of the system
with respect the past states. Secondly, it presents the whole platform based on
ELK Stack and supporting the method. The software has been implemented, and
tested on real data. These experiments show that the approach is effective and
efficient to detect abnormal behaviours in the communication system of SNCF.
In addition, when compared to the anomalies detected by the Machine Learning
toolbox of ELK Stack, it gives more information about the anomaly durations.
This is very important in an industrial context, since this provides evidences to
know if the system has returned to a normal state or not.

In order to compare the recent observed parts of the message stream to the
past states, we use the CFOF (Concentration Free Outlier Factor) anomaly de-
tection score recently proposed by Angiulli [3]. This score is the only one for
which the robustness to the curse of dimensionality has been observed experi-
mentally and formally proven. Unfortunately its existing computation methods
are not suitable for data stream, and a technical contribution of our work is to
efficiently and closely approximate the CFOF score over this kind of data. This
fast estimation is performed by taking advantage of iSax trees [4, 5], that are
multidimensional indexing structures developed for time series.

The rest of the paper is organised as follows. The next section presents the
related work. The method is presented in Section 3 and the system architecture
is described in Section 4. The results are presented and discussed in Section 5,
and we conclude with a summary in Section 6.

2 Related Work

New challenges are emerging in the intelligent transport literature, related in
particular to the use of data mining and simulation-based solutions. With the fast
development of connected transport, many axis of research focus on improving
the quality of service and on reducing the maintenance costs in this context.
Successful applications of data mining approaches have been recently reported,
as for instance, the detection of defective rail anchors investigated by Khan
et al. [6], the wavelet-based identification of rail surface defects using images

5 Elastic, Elasticsearch, Logstash and Kibana are trademarks of Elasticsearch BV,
registered in the U.S. and in other countries.

2



presented by Molodova et al. [7], or the detection of illegal pickups using GPS
traces reported by Yin et al. [8]. In this paper, we consider the problem of
detecting anomalies in a railway communication system. Anomaly detection is
a very active research area with many different applications, as for instance the
recent work of Abàmoff et al. [9] to help diabetic retinopathy diagnosis using
convolutional neural networks. There are a multiple methods applied to various
domains [10, 11]. The main approaches are quickly recalled hereafter.

2.1 Different methods

There are two main families of anomaly detection methods: supervised and unsu-
pervised. One of the representative approaches among the unsupervised methods
is, for instance, the isolation forests used by Ting et al. [12], where data that
can be isolated easily (by several decision trees) are considered as abnormal.
Another more recent approach, proposed in [13], is distributed in the widely use
ELK software solution. It is based on Bayesian methods to build a statistical
model of the system state, and is available in the Machine Learning toolbox of
ELK.

For the supervised methods, typical approaches are the one of Mukkamala
et al. [14] that uses a support vector machine classifier in order to detect in-
trusions, and also patterns/rules-based methods as the work by Li et al. [15] to
detect objects having abnormal trajectories. The main difference between super-
vised and unsupervised approaches is that the supervised ones require a training
dataset containing objects that are already labelled as normal or abnormal, and
in most applications this dataset needs to be large and representative of many
of the possible normal and/or abnormal objects that could be encountered. In
our case, the data are not labelled and thus the method must be unsupervised.
Let us then focus on the most widely used family of approaches: the proximity
based anomaly detection methods.

2.2 Proximity based methods

These methods have a lot of variants, and can be split in three subfamilies [16]:
clustering based, density based, and distance based methods. Clustering based
methods assess if an object belongs or not to a cluster. The object is considered
abnormal if it is not sufficiently close to any of the clusters [14]. Density based
methods include techniques that take into account the density distribution of
objects in their representation space like the LOF method proposed by Breunig
et al. [17]. Distance based methods are the most prevalent, and simply use the
distances between an object and objects in its neighborhood to compute an
anomaly score [18].

Recently, Angiulli proposed CFOF [3], a new distance based score to detect
anomalies. The main advantage of this score is that it can be applied in high
dimensional space, i.e., when object are described by many features. Thus, it
could be well adapted to handle sequence of measures (where each measure is
a dimension). However, the existing methods to compute this score [3] are not
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designed to process streaming data as it is the case in our railway communication
system.

3 Method

This method aims to detect abnormal patterns in sequences containing the
counts of messages at a crucial node in the information system. Anomaly detec-
tion in such sequences of measures is a classical task, that is usually performed
by comparing news sequences to a base of sequences of reference and by comput-
ing an anomaly score [16]. However, in general, this approach is adapted only for
small sequences, since, as shown in [3], when the number of dimensions (i.e., the
size of the sequences) increases, the anomaly scores suffer from the concentration
phenomenon. This phenomenon is part of the so called curse of dimensionality
problem, and limits the ability to distinguish between normal and abnormal se-
quences. In order to overcome this limitation, in this work, we use the CFOF
score, proposed by [3], and that has been proven not to concentrate when dimen-
sionality increases. [3] proposed an efficient technique for calculating the CFOF
score by sampling, where the scores of all the objects of a sample are computed
with respect to all the other objects of the same sample. This technique takes
advantage of a the factorisation of the necessary operations within each sample.
The quality of the approximation depends on the size of the sample, and this
technique is well suited when one wishes to calculate the scores of all the objects
of a database. However, it is not adapted when one wants to compute only the
score of a new object against a reference history. So, we propose to take advan-
tage of the properties of the iSAX tree structure [4, 5] to efficiently compute a
close approximation of the CFOF score of new sequence in a data stream.

In this section, we first describe how we build the sequences from the raw
data gathered from the SNCF information system. Then, we briefly recall the
definition of the CFOF score, and present the approximation scheme of this
score using an iSAX tree.

3.1 From raw streams to iSAX data

The main component of the information system, called CanalTrain, manages the
exchange of all digital information between ground-stations and mobile equip-
ment. When the behaviour of any of the routing component involved in this
essential service becomes abnormal, serious malfunctions can not only disrupt
this central component, but also indirectly impact other services. The raw stream
of data is too detailed and voluminous to be directly analysed. As we are inter-
ested in the global health of the communication system, we extract a simplified
description of the dynamics of the stream from the available raw data. This
process is described in figure 1.

The raw data flow is steadily gathered from the various collection points
implemented in the system, and made available through a Logstash service (the
ELK component that collects and transforms data). The content and semantics
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Fig. 1: Extraction process, from raw data to sequences.

of the raw messages are ignored and the message rate is monitored by counting
the number M of messages per minute. Every dm minutes, an average value of M
is computed. A series of dk consecutive average rate values M1,M2, . . . ,Mdk is
called a sequence, than spans a time dh = dk×dm. Such sequences are generated
every dd minutes and can overlap over time. A collection of past sequences will
form the objects of reference inserted in the iSAX tree, and an approximation
of the CFOF anomaly score will be computed for the new sequences constructed
from the stream. In the results presented Section 5, the sequences are built with
dm = 15 minutes, dk = 24 (and thus dh = 6 hours), and dd = 30 minutes.

3.2 Formal definition of the CFOF score

By using an iSAX tree and its space-structuring properties, we are able to accu-
rately approximate the anomaly score of a new series that is not already indexed
into the tree. This method will be presented in detail later, but let us first recall
more precisely the definition of the CFOF score.

Defined by [3], the CFOF score of an object q is computed by taking into
account a set of neighboring objects R. One must first define the minimal neigh-
borhood size km such that the object q is among the km nearest neighbors of at
least a fraction % of all the objects in R.

CFOF(q), the CFOF score, is equal to the value km normalized by the size
of R. One can see that the value of the score is controled by the parameter
% ∈ [0; 1]. Defining the ratio of the objects of R that must include q in their
neighborhood of size km, it can therefore control the stringency of the score: a
high value of % will increase the value of CFOF score for even small anomalies.
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We explain in Section 5 how this parameter can be tuned in order to adapt the
score to the intended applications.

Let us now define the score in a more formal way. Let us define nnk(x) as the
kth nearest neighbor of an object x (meaning that only k−1 objects are closer to
x than the object nnk(x)). We can then define NNk(x) as the set of the k nearest
neighbors of x, i.e. the set of all the objects such that {nni(x) | 1 ≤ i ≤ k}. If
Nk(x) is the number of objects that contain x among their k nearest neighbors,
i.e., Nk(x) = |{y | x ∈ NNk(y)}|, then the CFOF score of an object q is defined
as: CFOF(q) = min{k/|R| : Nk(q) ≥ %× |R|}

Being fundamentally defined by taking into account the local structure of
the neighborhood of each object, the CFOF score is, to the best of our knowl-
edge, the only one that has formally been shown to be resistant to the distance
concentration phenomenon in high-dimensional data [3].

3.3 Method to approximate the real CFOF score

We propose in this section a method to compute an approximation of the
exact CFOF score in order to apply it to our specific industrial context. The ob-
jects to score are considered as multidimentional objects described by sequences
of values of the same length dk. They are stored in a space-structured iSAX
tree [4, 5].

This tree performs traditional multi-dimensional indexing based on the sim-
ilarity of objects, but also exhibits additional properties that we exploit to com-
pute the anomaly score:

1. No leaf of the tree is overlapping with any other, so that each region of the
space is represented by exactly one leaf. This property let us pre-compute
statistics about the distribution of the objects over the whole space covered
by the tree.

2. Due to the indexing mechanism, we can use the distances between objects
as boundaries during searches in the tree: for any possible object p, we can
quickly derive, for any node N of the tree, a lower bound of the distance
between p and the closest object to p indexed in the subtree rooted atN . This
property is used during the CFOF score computation to prune the search
space. We can therefore avoid the detailed exploration of areas containing
objects for which we can be sure they are not contained in the neighborhood
of interest.

To compute the CFOF score of any new object q in relation with the objects
already indexed in the iSAX tree, the crux is to obtain the rank of q in the
neighborhood of p for each object p stored in the tree. This rank is 1 if q is the
closest neighbor of p, 2 if q if the second closest neighbor, and so on. Denoted
v-rankp(q), this rank is more precisely defined, as described in Section 3.2, as the
value k such that nnk(p) = q. When the ranks are known for all the objects of
reference p, then the computing CFOF(q) can be done quite directly as follows.
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We maintain a list lv-rank containing the values v-rankp(q) sorted in ascending
order. Let dxe denotes the rounding up of a number x. If we consider the element
in lv-rank at index d% × |R|e, then the value of this element is the minimal
neighborhood size km, such that q belongs to the km nearest neighbors of at
least a fraction % of the objects in R. We therefore possess the main information
to compute the CFOF score CFOF(q) that is the value of km normalized by the
size of R: CFOF(q) = lv-rank[d%× |R|e]/|R|.

However, in order to compute the rank v-rankp(q), we must first obtain the
number of objects of reference r such that distance(p, r) ≤ distance(p, q). We
can do this efficiently by avoiding to count each object r one by one: v-rankp(q)
can be approximated using the distributions of the distances in the different
regions of space that are not empty. We exploit the fact that the Euclidean norm
of vectors that have normally distributed components follow a χ distribution.
Since this distribution tends toward a normal distribution when the number of
dimensions of the space increases, we can therefore use a cumulative normal
distribution function of the distance for each leaf Nl, in order to approximate
the number of objects r of the leaf for which distance(p, r) ≤ distance(p, q).

Let Φµ,σ(x) be the cumulative distribution function of the normal distribution
N (µ, σ2). For a leaf Nl and an object p, let µ̃ and σ̃ be approximations of the
mean and of the standard deviation of the distance between p and the objects
in Nl. Then, the fraction of the objects of leaf Nl that are located within a
distance to p that is less than or equal to distance(p, q) can be approximated by
Φµ̃,σ̃(distance(p, q)). This is the approximation used by the algorithm described
in the next section.

3.4 Search process into the iSAX tree

In order to implement the efficient search method decribed above, we must first
compute and store the numerical approximations of µ̃ and σ̃ for each object
of reference with respect to each leaf. The algorithm itself is independant of
the method used to perform these approximations, and several methods can be
envisionned. We present in Section 3.5 the method we used.

Let us denote d̃ist(Nl, p) and σ̃Nl
(p) the value of µ̃ and σ̃ that will be

computed for an object of reference p and a leaf Nl. The method also requires
the root Nroot of the iSAX tree, the set R of objects of reference (that can be
retrieve directly from the leaves of the tree) and the CFOF sensitivity parameter
%. The approximation method is described in detail by Algorithm 1.

Given on object of reference p, the algorithm first build an approximation of
v-rankp(q) by performing a traversal of the tree to count the number of objects
that are closer to p than q, that is then inserted in a ascending order-sorted list
(line 19). This list is used to get an approximation of CFOF (q) (line 20), as
detailed Section 3.3.

The traversal of the tree for a given p is performed by the loop starting line 6.
The nodes remaining to visit are stored in the list listN , from which the current
node is removed once it has been visited (line 7). The algorithm uses the bounds
minDist and maxDist (derived from the indexing structure of the iSAX tree)
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on the distances between p and the objects contained in the subtree rooted at
the current node.

Two cases can thus stop the exploration of the subtree:

1. If the minimal distance between p and the objects contained in the current
subtree is greater than the distance between p and q (line 8), then no object
that can count for the computing of v-rankp(q) can exist in this subtree.

2. If the maximal distance is less than the distance between p and q (line 10),
then all the objects in the current subtree are closer to p than q is. We can
therefore directly add the number of object contained in this current subtree
(denoted nbObj(Ncurrent) and stored in each node) to v-rank.

Two cases must be taken into account while searching into a subtree:

1. If the current node is an internal node (line 16), we keep track that its
children must be explored by adding them to the list of nodes to visit listN .

2. If the current node is a leaf (line 12), then the number of objects in the
leaf that are closer to p than q is approximated with the cumulative normal
distribution φµ̃,σ̃.

Algorithm 1: Computation of an approximation of CFOF (q) in an iSAX
tree.
Data: Object q, set R of objects of reference, root Nroot of the iSAX tree,

values d̃ist(Nl, p) and σ̃Nl(p), CFOF parameter %

1 lv-rank ← ∅
2 forall p in R do
3 v-rank← 0
4 dist← distance(p, q)
5 listN ← [Nroot] ; // Remaining nodes to visit

6 while listN 6= ∅ do
7 Ncurrent ← listN .pop()
8 if minDist(p,Ncurrent) > dist then
9 Do nothing, no need to explore the subtree rooted at Ncurrent

10 else if maxDist(p,Ncurrent) ≤ dist then
11 v-rank← v-rank + nbObj(Ncurrent)
12 else if Ncurrent is a leaf then

13 µ̃← d̃ist(Ncurrent, p)
14 σ̃ ← σ̃Ncurrent(p)
15 v-rank← v-rank + Φµ̃, σ̃(dist) ∗ nbObj(Ncurrent)

16 else
17 forall N in Ncurrent.children do
18 Add N to listN
19 Insert v-rank in lv-rank in ascending order

20 return lv-rank[d%× |R|e]/|R|
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3.5 Estimation process of d̃ist(N , p) and σ̃N (p)

We briefly explain here how we compute the estimations of µ̃ and σ̃: d̃ist(N , p)
and σ̃N (p) respectively. They can be computed in different ways, but must be
accurate enough to ensure an accurate approximations of the CFOF score. All
the results presented in Section 5 were produced with this method.

Estimation of d̃ist(N , p) For any object p and any given node N containing a

set of objects, then d̃ist(N , p) is the quadratic mean:

d̃ist(N , p) =

√
1

|N |
× (

∑
r∈N
|r − p|2)

If C is considered as the center of mass of the objects in N (all having a unitary
mass), then the Huygens theorem states that:∑

r∈N
|r − p|2 =

∑
r∈N
|r − C|2 + |N | × |C − p|2

and so:

d̃ist(N , p) =

√
1

|N |
× (

∑
r∈N
|r − C|2 + |N | × |C − p|2) (1)

In this formula, the sum
∑
r∈N
|r − C|2 can be precomputed and stored in

each leaf. So, when Algorithm 1 requires the value of d̃ist(N , p), we only need

to compute the distance |C − p|2 in order to get d̃ist(N , p).

Estimation of σ̃N (p) We compute a weighted sum of all the standard deviations
along each dimension, that assign more importance to the dimension where p
is far from C. Let D be the number of dimension of the space in which each
object is embedded, let σ1, σ2, . . . , σD be the standard deviations of the coordi-
nates of the objects stored in N for each dimension. Let (p1, p2, . . . , pD) (resp.
(C1, C2, . . . , CD)) be the coordinates of p (resp. of C). Then the value σ̃N (p) is:

σ̃N (p) =

D∑
d=1

(σd ∗
|Cd − pd|∑D
i=1 |Ci − pi|

)

4 System Architecture

Nearly 5 billion messages are exchanged every day within the SNCF informa-
tion system. All are handled by the central plateform CanalTrain, and are re-
distributed between trains and other software components providing additional
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services, like for instance the Geomobiles plateform to geolocalize trains. The
ELK software is used to monitor these messages and to ensure that they transit
properly within the information system. This global architecture is illustrated
in figure 2. ELK is composed of three tools: Elaticsearch, Logstash and Kibana.
Elasticsearch is used to index and store data in the JavaScript Object Notation
(JSON) format. Logstash is a tool used to collect and forward data and events
(also named traces) to Elasticsearch – in our case, Logstash creates a trace for
each new message arriving in CanalTrain. Kibana, the third tool of ELK suite, is
a visualization tool used to create dashboards. Elasticsearch is used to build and
store a monthly index of all the traces created by Logstash. SNCF supervisors
create dashboards to visualise statistics and features (histograms, scatter plots,
. . .) related to these traces. The central indicator is the number of messages
received per minute, the measure on which we perform the anomaly detection.

Fig. 2: Architecture of the system supporting the anomaly detection method.

The data preprocessing is structured in three steps: collection, aggregation
and indexation. The data collection and aggregation steps are performed using
requests to Elasticsearch, that return the result of the queries in JSON format,
including the number of messages received per minute. Then, the data sequences
are constructed by aggregating the measurements of the number of messages.
The last preprocessing step consists in indexing past sequences in an iSAX tree,
to build a history of objects of reference for the anomaly detection.

For every new sequence, an approximation of the CFOF anomaly score is
computed with the method described in Section 3, and stored using Elastic-
search, in order to be available in Kibana for vizualisation.
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5 Results

We present in this section the results of the evaluation of our anomaly detection
method in the real industrial context of the SNCF communication infrastructure.
The indicator that is monitored is the overall number of messages per minute.

To compute the sequences of reference (i.e., the objects stored in the iSAX
tree) as defined in section 3, we use dk = 24 measures where each measure is
the average over dm = 15 minutes of the number of messages per minute. Thus,
each sequence contains 24 measures and represents 6 hours (24 ∗ 15 minutes),
which is consistent with the time scale of the railway activity regularities. One
such sequence was built every 30 minutes (i.e., sequence shift dd = 30 minutes).

The same setting is used to build the new sequences for which the CFOF
score is computed.

To illustrate the use of the method and of the system supporting it, we
report results based on a period of reference starting the 1st of November 2017
and ending the 31th of August 2018. This period was preprocessed according
to Section 3.1, leading to 14592 overlapping sequences. These sequences were
extracted by requests to the Elasticsearch engine, and indexed into the iSAX
tree.

5.1 Anomaly score

In this section, we present anomaly scores computed for the sequences from the
1st of September 2018 to the 25th of September 2018. These sequences were built
in the same way as the sequences of reference. The measures used to construct
the sequences over this period are shown in Figure 3 (top).

The approximation of the CFOF score obtained with our method for % =
0.001 is given Figure 3 (bottom, in orange). On this figure, we can observe four
periods of disturbance, that are pointed out by a higher CFOF score. The first
occurs from the 6th to 7th of September, the second from the night between the
13th and 14th to the 15th of September, the third during the 19th of September,
and the last spans from the evening of the 20th to the 22th of September. The
analysis of these periods of disturbance is detailed Section 5.2.

The 14592 sequences of reference led to an iSAX tree containing 3449 nodes.
The figure 4 shows that the pruning made by Algorithm 1 is effective and re-
duced the number of visited node during the approximation of the CFOF score.
This computation took less than 2 minutes per sequence on a standard desktop
computer (Intel Xeon Silver4114 at 3.40GHz with 4GB of main memory), and
was 25 times faster than the computation of the exact score. This approximation
can thus easily be performed on the fly, allowing to monitor the message stream
with a sequence shift dd = 30 minutes.

Figure 3 (bottom) also shows the exact CFOF score (in blue). One can ob-
serve that the approximation closely follows the exact score. The Spearman
rank-order correlation confirm the quality of the approximation. Its value, cal-
culated between the real and estimated CFOF scores during the period reported
in Figure 3, is 0.788. Computing the CFOF score with other % values shows
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Fig. 3: Number of messages received per minute during the period from the 1st

of September 2018 to the 25th of September 2018 (top). CFOF anomaly score
over this period with % = 0.001 (bottom).

Fig. 4: Number of visited nodes in the iSAX tree during the computation of the
CFOF approximation.

that when rho increases, the Spearman rank-order correlation is even better and
increases monotonically. We observe for instance a value of 0.886 for % = 0.01
and up to 0.998 for % = 0.1. The reduction of execution times as well as the
quality of the approximation were also confirmed on the synthetic datasets used
to evaluate CFOF itself in [3]. On these datasets, the approximation was per-
formed more than 40 times faster than the computation of the exact score, and
the Spearman rank-order correlation ranged from 0.876 to 0.999.

To study the impact of the parameter % on the detection, we consider two
extreme values of %. For % = 0.1, the CFOF value of a sequence is computed
by taking into account its rank in a neighbourhood of 10% of the sequences
of reference. This leads to higher scores, that are based on a very stringent
similarity requirement. The second value of % = 0.001 takes into account the
rank in a neighbourhood of 0.1% of the sequences of reference. This is a much
weaker requirement, leading to lower scores. Some anomalies are not detected
for all values of %. For instance, in Figure 5, with % = 0.1, we can observe
two small anomalies the 17th and the 18th of September, that are not captured
with % = 0.001. However, the most salient anomalies are detected for all % in
[0.001; 0.1], as for example the one occurring on the 19th of September (see
Figure 6 (bottom) for other intermediate values of %). One can see that with
% = 0.05 and % = 0.1, the complete period between the 20th and 21st is detected
as anomalous, while with % = 0.001 and % = 0.01, only the beginning and end
are flagged. This is explained by the fact that the whole period is a pattern
less frequently observed in the past than the transitions that start and end it
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considered independently. In the case of an automatically-controlled detection
process, the last step of the anomaly detection can be performed by setting a
threshold above which the score generates an alarm message. In this context, the
tuning of % can be made by increasing/decreasing % to be more/less tolerant to
variations of the shape of the signal with respect to the sequences of reference. In
our case, we do not rely on a fully automated detection process, but on experts
that inspect dashboards. Thus, it is not necessary to select a single value of %,
and the CFOF anomaly scores is plotted for several values of % on the same
graph, and presented to the experts, as for instance in Figure 6 (bottom).

Fig. 5: Sensitivity of CFOF anomaly score with respect to %.

5.2 Description of the anomalies

In this subsection, we describe the four periods of disturbance observed in fig-
ure 3. Within the SNCF information system, two main classes of known anoma-
lies are related to messages buffering and signal collapse. The first kind of
anomaly is caused by the near saturation at a given point in the processing
and communication chain, entailing the buffering and accumulation of messages
in a node of the information system. This creates oscillations in the signal as
the buffer is emptied/filled. Such anomalies occur when a node reaches capacity
limits or when a computing resource becomes too scarce. When this load bursts
have been processed and corrective actions have been implemented, the traf-
fic returns back to a normal state. The second class of anomalies occurs when
the processing and communication pipeline becomes completely clogged at some
point. This situation requires most of the time a partial or complete restart of
the impacted equipement.

The first anomaly, from the 6th to the 7th of September, happened because
of messages accumulated on an upstream platform. The period of disturbance,
from the night between the 13th and the 14th to the 15th of September has
not been detected by neither the SNCF supervisors nor the different SNCF
services. Our method however detected this anomaly, which could be interpreted
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as the premises of the next one arising the 19th of September. The last anomaly,
where the signal collapses during the night between the 20th and the 21th of
September, results from an internal dysfunction of a message broker (Apache
ActiveMQ). These two last anomalies (19th and 20th-21th of September) are
typical representatives of the two classes of known anomalies aforementioned
(i.e., messages buffering and signal collapse).

Fig. 6: Number of messaged received per minute during the period from 13th
September 2018 to 24th of September 2018, and lower and upper bounds obtained
by ELK-ML (top). ELK-ML anomaly score (middle) and CFOF anomaly score
over this period for % = 0.01 and % = 0.05 (bottom).

5.3 Comparison with ELK Machine Learning method

In a second step of validation of the method, we compared the results with
the anomaly detection method proposed by the ELK Machine Learning tool-
box (ELK-ML) on the period ranging from the 1st of September to the 25th of
September. We show on the figure 6 this comparison from the 13th to the 24th

of September. The raw signal (the number of messages received per minute) is
given Figure 6 (top) with the lower and upper bounds computed by the ELK-ML
method. If the signal value stays between these two thresholds, then ELK-ML
considers it as normal. Otherwise ELK-ML provides an anomaly score greater
than zero as shown Figure 6 (middle).

When comparing these values with our anomaly scores given Figure 6 (bot-
tom), it turns out that the anomaly on the 22nd of September is captured by
our method but not by ELK-ML. For the other anomalies, both methods are
able to underline the beginning of the anomaly. For ELK-ML the anomaly score
quickly vanishes after the beginning of the anomaly (dropping to zero), whereas
our method outputs a coherent score up to the end of the anomaly. Providing
such information, about the anomaly durations, is very important in an indus-
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trial context that requires to know if the communication system is back in a
normal state or not.

6 Conclusion

In this paper, we focused on the problem of anomaly detection in the message
streams of a railway communication system. We presented a method dedicated to
this task, as well as a software architecture supporting it. This method is based
on the collection and aggregation of message counts, the indexation of reference
data, and the scoring of the new data arriving in the stream with respect to the
reference data. The score used is the CFOF anomaly score, and we proposed
an algorithm to efficiently compute an approximation of this score, using data
indexing in an iSAX tree.

We presented experiments in a real industrial context, showing that the
method is effective in detecting relevant anomalies. When compared to an ap-
proach of reference for this kind of data (the ELK Machine Learning toolbox),
one of the main advantage of the method is the information it provides about the
anomaly durations. The approximation of the score performed by the method
is very close to the real CFOF score and is computed 25 times faster, enabling
the scoring of the anomalies to be performed on the fly over the stream. Future
work includes the application of the method to other indicators in the SNCF
communication system, such as the variance of the message rate, or the average
latency between two points of collect. Another promising direction is to use the
context of the messages -as for example the type of the data or the type of the
source- to define and compute context-dependant anomaly scores.
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LABX-0088) of Université de Lyon, within the program Investissements dAvenir
(ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).
It was funded by the French National Association of Research and Technol-
ogy (ANRT). We gratefully acknowledge strong support from the CNRS/IN2P3
Computing Center (Lyon/Villeurbanne - France), for providing a significant
amount of the computing resources needed for this work.

References

1. D. M. Hawkins, Identification of outliers. Springer, 1980, vol. 11.
2. “ELK Stack Homepage,” 2019-06-12. [Online]. Available: https://www.elastic.co/

fr/elk-stack
3. F. Angiulli, “Concentration free outlier detection,” in Machine Learning and

Knowledge Discovery in Databases. Springer International Publishing, 2017, pp.
3–19.

15



4. J. Shieh and E. Keogh, “iSAX: Indexing and mining terabyte sized time series,”
in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York, NY, USA: ACM, 2008, pp. 623–631.

5. ——, “iSAX: disk-aware mining and indexing of massive time series datasets,”
Data Mining and Knowledge Discovery, vol. 19, no. 1, pp. 24–57, Aug 2009.

6. R. A. Khan, S. Islam, and R. Biswas, “Automatic detection of defective rail an-
chors,” in Proceedings of the 17th International IEEE Conference on Intelligent
Transportation Systems, Oct 2014, pp. 1583–1588.

7. M. Molodova, Z. Li, A. Nez, and R. Dollevoet, “Monitoring the railway infras-
tructure: Detection of surface defects using wavelets,” in Proceedings of the 16th
International IEEE Conference on Intelligent Transportation Systems, Oct 2013,
pp. 1316–1321.

8. L. Yin, J. Hu, L. Huang, F. Zhang, and P. Ren, “Detecting illegal pickups of
intercity buses from their gps traces,” in Proceedings of the 17th International
IEEE Conference on Intelligent Transportation Systems (ITSC), Oct 2014, pp.
2162–2167.
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