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A NON-ARCHIMEDEAN APPROACH TO K-STABILITY

SÉBASTIEN BOUCKSOM AND MATTIAS JONSSON

Abstract. We study K-stability properties of a smooth Fano variety X using non-Archi-
medean geometry, specifically the Berkovich analytification of X with respect to the trivial
absolute value on the ground field. More precisely, we view K-semistability and uniform K-
stability as conditions on the space of plurisubharmonic (psh) metrics on the anticanonical
bundle of X. Using the non-Archimedean Calabi–Yau theorem and the Legendre transform,
this allows us to give a new proof that K-stability is equivalent to Ding stability. By choosing
suitable psh metrics, we also recover the valuative criterion of K-stability by Fujita and Li.
Finally, we study the asymptotic Fubini–Study operator, which associates a psh metric to
any graded filtration (or norm) on the anticanonical ring. Our results hold for arbitrary
smooth polarized varieties, and suitable adjoint/twisted notions of K-stability and Ding
stability. They do not rely on the Minimal Model Program.

Contents

Introduction 1
1. Background 6
2. Adjoint K-stability and Ding-stability 11
3. Graded norms and filtrations 17
4. The asymptotic Fubini–Study operator 22
5. A valuative criterion of K-stability 29
Appendix A. Properties of the log discrepancy 35
References 37

Introduction

Consider a polarized, smooth projective variety (X,L) defined over a field k of characteris-
tic zero. For the purposes of this introduction, we identify (X,L) with its analytification—in
the sense of Berkovich—with respect to the trivial absolute value on k. As a set, X is thus
the disjoint union of the spaces of real-valued valuations on the function field of each sub-
variety of X. Our goal in this paper is to use plurisubharmonic (psh) metrics on L to study
problems involving K-stability.

We start by recalling some notions and results from [BoJ18]. There is a canonical map
L → X, with fibers being Berkovich affine lines. A metric on L is a function on L satis-
fying a certain homogeneity property on each fiber. Since k is trivially valued, L admits a
canonical trivial metric, which we use to identify metrics on L with functions on X. For
such metrics/functions, there are several natural positivity notions.
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2 SÉBASTIEN BOUCKSOM AND MATTIAS JONSSON

First we have the class H(L) of positive metrics [BHJ17]. They are defined via ample test
configurations [Don02] for (X,L). In [BoJ18] they are called Fubini–Study metrics, as each
positive metric is built from a finite set of global sections of some multiple of L.

By taking uniform limits of positive metrics we obtain the class of continuous psh metrics,
a notion going back to Zhang [Zha95] and Gubler [Gub98], and explored much more generally
by Chambert-Loir and Ducros [CD12], see also [GK15, GM16]. By instead taking decreasing
limits of positive metrics, we obtain the larger class PSH(L) of psh metrics on L. This class
has many good properties, as studied in [BoJ18], see also [BFJ16a, BoJ18] for the discretely
valued case. As in the usual complex case, psh metrics are not necessarily continuous, and
may even be singular in the sense of taking the value −∞ at certain points in X.

The class PSH(L) contains several natural subclasses. First, we have the continuous psh
metrics. A larger class is formed by the bounded psh metrics, i.e. psh metrics that are
bounded as functions on X. This class is, in turn, contained in the class E1(L) of psh
metrics ϕ of finite energy, E(ϕ) > −∞. Here E is the Monge–Ampère energy functional.
For positive metrics, it can be defined in terms of intersection numbers, is monotonous, and
hence has an extension to all of PSH(L), with values in R ∪ {−∞}. Our thesis is that the
class E1(L) is quite natural for problems in K-stability, to be discussed in detail below. The
functional defined by J(ϕ) = supX ϕ−E(ϕ) acts as an exhaustion function on E1(L)/R. In
particular, J(ϕ) ≥ 0, with equality iff ϕ is constant.

The Monge–Ampère operator assigns a Radon probability measure MA(ϕ) on X to
any metric ϕ ∈ E1(L). It is continuous under monotone limits and extends the oper-
ator introduced by Chambert-Loir [Cha06] and Gubler [Gub07]. The Calabi–Yau the-
orem [BFJ15, BoJ18] asserts that we have a bijection MA: E1(L)/R → M1(X), where
M1(X) is the space of Radon probability measures µ of finite energy, i.e. such that

E∗(µ) := sup
ϕ∈E1(L)

(
E(ϕ)−

∫
ϕdµ

)
<∞.

K-stability and Ding stability. The notion of K-stability was introduced by Yau, Tian
and Donaldson, as a conjectural criterion for the existence of special metrics in Kähler
geometry; this conjecture was proved in the Fano case, see [CDS15, Tia15] and also [DS16,
BBJ15, CSW15]. K-stability involves studying the sign of the Donaldson–Futaki functional
on the space of ample test configurations for (X,L), i.e. on the space H(L). In [BHJ17]
we showed that K-stability can be expressed in terms of a modified functional, the (non-
Archimedean) Mabuchi functional, that has better properties with respect to base change,
and which naturally extends to a functional M : E1(L)→ R ∪ {+∞}.

In the Fano case, when L = −KX , the Mabuchi functional factors through the Monge–
Ampère operator as

M(ϕ) = Ent (MA(ϕ))− E∗ (MA(ϕ)) ,

where E∗(µ) is the energy of µ ∈ M1(X), whereas Ent(µ) :=
∫
X Adµ is the entropy of µ,

defined as the integral of the log discrepancy function A : X → R+ ∪ {+∞}.
Another functional, the (non-Archimedean) Ding functional is also useful. First defined

in [Berm16], it can be written as D = L−E, where E is the Monge–Ampère energy, and L
is the Legendre transform of entropy: L(ϕ) = infX(ϕ+A), with A the log discrepancy.

In this language, a Fano manifold X is K-semistable (resp. uniformly K-stable) if M ≥ 0
(resp. there exists ε > 0 such that M ≥ εJ) on H(L). Similarly, X is Ding-semistable (resp.
uniformly Ding-stable) if the corresponding inequalities hold with the Mabuchi functional
M replaced by the Ding functional D. It was proved in [BBJ15] (see also [Fuj16]), using
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techniques from the Minimal Model Program along the same lines as [LX14], that Ding
semistability is equivalent to K-semistability, and similarly for the uniform versions.

Here we give a new proof of (a version of) the equivalence of Ding-stability and K-stability.
Let L be any ample line bundle on X. The definitions of the functionals M and D still make
sense; we call them the adjoint Mabuchi functional and adjoint Ding functional, respectively.
We say that (X,L) is K-semistable in the adjoint sense if the adjoint Mabuchi functional
is nonnegative on E1(L). Similarly, we define adjoint versions of Ding semistability, and
uniform Ding and K-stability.

Outside the Fano case, the adjoint Mabuchi functional differs from the Mabuchi func-
tional discussed in the beginning of this section. Up to a conjectural approximation result
(Conjecture 2.5), adjoint K-stability is equivalent to Dervan’s notion of twisted K-stability
[Der16] in the ‘twisted Fano case’, i.e. when the (not necessarily semipositive) twisting class
T is defined so that L = −(KX + T ), see §2.9.

Theorem A. For any ample line bundle L on a smooth projective variety X, we have:

(i) L is K-semistable in the adjoint sense iff it is Ding-semistable in the adjoint sense;
(ii) L is uniformly K-stable in the adjoint sense iff it is uniformly Ding-stable in the

adjoint sense.

The proof is an adaptation to the non-Archimedean case of ideas of Berman [Berm13],
who was inspired by thermodynamics. It is based on the non-Archimedean Calabi–Yau
theorem together with the fact that the functionals L and E on E1(L) are the Legendre
transforms of the functionals Ent and E∗, respectively, on M1(X).

The adjoint stability notions above were defined in terms of metrics of finite energy. This
is because the Calabi–Yau theorem is an assertion about metrics and measures of finite
energy. It is natural to ask whether the adjoint stability notions remain unchanged if we
replace E1(L) by the space H(L) (i.e. ample test configurations). The answer is ‘yes’ for
adjoint Ding stability, since the Ding functional is continuous under decreasing limits. In
the Fano case, the answer is also ‘yes’ by [BBJ15, Fuj16]. We expect the answer to be ‘yes’
in general, even though the Mabuchi functional is not continuous under decreasing limits.

Filtrations, norms, and metrics. Donaldson, Székelyhidi and others have suggested to
strengthen the notion of K-stability by allowing more general objects than test configura-
tions. One generalization is the class E1(L) above. Another one, explored by Székelyhidi [Szé15],
is given by (graded) filtrations of the section ring R = R(X,L). Such filtrations are
(see §3) in 1–1 correspondence with graded norms ‖ · ‖• on R, i.e. the data of a non-
Archimedean k-vector space norm ‖ · ‖m on Rm := H0(X,mL) for each m ≥ 1 such that
‖s⊗ s′‖m+m′ ≤ ‖s‖m‖s′‖m′ for s ∈ Rm, s′ ∈ Rm′ . A graded norm is bounded if there exists
C ≥ 1 such that C−m ≤ ‖ · ‖m ≤ Cm on Rm \ {0} for all m. To such a graded norm we
associate a bounded psh metric on L, the asymptotic Fubini–Study metric FS(‖ · ‖•).

Our next result characterizes the range of the asymptotic Fubini–Study operator. A
bounded metric ϕ ∈ PSH(L) is regularizable from below if it is the limit of an increasing
net of positive metrics. For example, any continuous psh metric is regularizable from below.
The analogous notion on domains in Cn was studied by Bedford [Bed80].

Theorem B. A psh metric on L lies in the image of the asymptotic Fubini–Study operator
iff it is regularizable from below.

It follows from the construction of the asymptotic Fubini–Study operator that any metric
in its image is regularizable from below. To prove Theorem B we construct a one-sided
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inverse, the supremum graded norm ‖ · ‖ϕ,• of any bounded ϕ ∈ PSH(L). The formula ϕ =
FS(‖·‖ϕ,•) can be viewed as a non-Archimedean L∞-version of Bergman kernel asymptotics.

The asymptotic Fubini–Study operator is not injective in general, and we study the lack of
injectivity. To each bounded graded norm is associated a limit measure [BC11], a probability
measure on R that describes the asymptotic distribution of norms of vectors in Rm as
m→∞. More generally, Chen and Maclean [CM15] showed that any two bounded graded
norms on R induce a relative limit measure. The second moment of this measure (i.e. of the
corresponding random variable) defines a semidistance d2 on the space of bounded graded
norms. More generally, there is a semidistance dp for any p ∈ [1,∞). One can show that
two bounded graded norms are at dp-distance zero for some p iff they are so for all p; in
this case the graded norms are called equivalent. For p = 2, the semidistance d2 on bounded
graded norms coincides with the limit pseudo-metric introduced in [Cod18].

Theorem C. Two bounded graded norms induce the same associated Fubini–Study metric
iff they are equivalent.

This theorem is proved by exhibiting a formula for the d1-semidistance:

d1(‖ · ‖•, ‖ · ‖′•) = E(ϕ,Q(ϕ ∧ ϕ′)) + E(ϕ′, Q(ϕ ∧ ϕ′)), (0.1)

where ϕ := FS(‖ · ‖•), ϕ′ := FS(‖ · ‖′•), and Q(ϕ ∧ ϕ′) is the largest psh metric that is
regularizable from below and dominated by ϕ ∧ ϕ′ := min{ϕ,ϕ′}. In fact, the right-hand
side of (0.1) defines a distance on the space PSH↑(L) of psh metrics regularizable from
below. This is analogous to the Darvas distance in the complex analytic case [Dar15]. The
asymptotic Fubini–Study operator now becomes an isometric bijection between the space of
equivalence classes of bounded graded norms and the space PSH↑(L).

To prove (0.1), the main step is to establish the equality

E(ϕ,ϕ′) = vol(‖ · ‖•, ‖ · ‖′•), (0.2)

where the relative volume vol(‖ · ‖•, ‖ · ‖′•) is the barycenter of the relative limit measure. By
taking the two graded norms as supremum norms of continuous metrics on L, we recover a
version of the main results of [BE18, BGJKM16] in the trivially valued case.

The L2-norm of a (graded) filtration introduced by Székelyhidi is equal to the variance
of the relative limit measure with respect to the trivial graded filtration. It follows that a
filtration has L2-norm zero iff its associated Fubini–Study metric is constant. Székelyhidi
also defined a notion of (Donaldson–)Futaki invariant of a (graded) filtration F . We show
that if X is uniformly K-stable, then the Donaldson–Futaki invariant is strictly positive for
every filtration of positive norm.

A valuative criterion for adjoint K-stability. Next we study the valuative criterion
for K-stability of Fujita [Fuj16] and Li [Li17] using psh metrics. There is a subset Xval ⊂ X
consisting of valuations of the function field of X (the latter being in fact the disjoint union
of Y val, as Y ranges over irreducible subvarieties of X). To each point x ∈ Xval, we can
associate several invariants. First we have the log discrepancy A(x) ∈ [0,+∞]. Second,
given an ample line bundle L on X, the valuation x defines a graded norm on the section
ring R = R(X,L), see [BKMS16]. When bounded, this norm induces a limit measure on R,
whose barycenter is denoted by S(x) ∈ [0,+∞), and can be viewed as the expected vanishing
order of elements of R along x. When the filtration is unbounded, we set S(x) = +∞.
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Theorem D. For any point x ∈ Xval, we have S(x) = E∗(δx), the energy of the Dirac mass
at x. We have S(x) = ∞ iff the point x is pluripolar, i.e. there exists ϕ ∈ PSH(L) with
ϕ(x) = −∞. If S(x) <∞, then the unique solution to the Monge–Ampère equation

MA(ϕx) = δx

normalized by ϕx(x) = 0 is continuous.

The adjoint Mabuchi functional can be written as Mad(ϕ) = Ent(MA(ϕ))−E∗(MA(ϕ)).
By the Calabi–Yau theorem, L is therefore K-semistable in the adjoint sense iff Ent(µ) ≥
E∗(µ) for all µ ∈M1(X). Note also that Mad(ϕx) = A(x)−S(x). By studying the entropy
and energy functionals, we prove

Theorem E. The following conditions are equivalent:

(i) L is K-semistable in the adjoint sense;
(ii) Mad(ϕx) ≥ 0 for all nonpluripolar x ∈ Xval;

(iii) A(x) ≥ S(x) for all nonpluripolar x ∈ Xval;
(iv) A(x) ≥ S(x) for all divisorial valuations x ∈ Xval.

Theorem E’. The following conditions are equivalent:

(i) L is uniformly K-stable in the adjoint sense;
(ii) there exists ε > 0 such that Mad(ϕx) ≥ εJ(ϕx) for all nonpluripolar x ∈ Xval;

(iii) there exists ε > 0 such that A(x) ≥ (1+ε)S(x) for all for all nonpluripolar x ∈ Xval;
(iv) there exists ε > 0 such that A(x) ≥ (1+ε)S(x) for all divisorial valuations x ∈ Xval.

Theorem E and Theorem E’ generalize Li and Fujita’s valuative criterion [Li17, Fuj16] for
K-stability to the adjoint setting. Our proof is completely different from theirs. However,
we should mention that Fujita also proves that in (iv), it suffices to consider “dreamy”
valuations x. These are points x ∈ Xdiv such that ϕx ∈ H(L).

Adjoint K-stability and uniform K-stability. Above we have used adjoint notions of
K-semistability and uniform K-stability. As an intermediate notion, we say that L is K-stable
in the adjoint sense if Mad(ϕ) ≥ 0 for all ϕ ∈ E1(L), with equality iff ϕ is constant.

Theorem F. If k = C, then L is K-stable in the adjoint sense iff L is uniformly K-stable
in the adjoint sense.

This relies on [BlJ17, Theorem E], which guarantees that the ratio A(x)/S(x) attains its
minimum at some nonpluripolar point x ∈ Xval.

In the Fano case, it follows from [CDS15] and [BHJ16] that K-stability is equivalent to
uniform K-stability. However, there seems to be no algebraic proof of this fact. We would
get such a proof if we knew that the point x above was a “dreamy” divisorial valuation in
the sense of Fujita, i.e. ϕx ∈ H(L).

Approaches to K-stability. We have tried to demonstrate that psh metrics form a useful
tool for studying K-stability. They encompass not only test configurations, but also graded
filtrations/norms on the section ring, and nonpluripolar valuations. Another way of studying
K-stability of Fano varieties was introduced by Chi Li [Li15, Li17] and involves considering
the cone over the variety. The cone point is a klt singularity, and there has been much recent
activity on the study of general klt singularities [Blu16, LL16, LX17, BL18], but we shall
not discuss this further here.
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Organization of paper. After reviewing some background material from [BoJ18] in §1 we
start in §2 by proving Theorem A on the equivalence of adjoint K-stability and Ding-stability.
Then, in §§3–4, we study the relationship between graded norms/filtrations and psh metrics,
proving Theorems B and C. Finally, the valuative criterion for K-stability (Theorems D, E
and E’) is proved in §5, as is Theorem F.

Acknowledgment. We thank E. Bedford, R. Berman, H. Blum, G. Codogni, R. Dervan,
A. Ducros, C. Favre, T. Hisamoto, C. Li, J. Poineau and M. Stevenson for fruitful discussions
and comments. The first author was partially supported by the ANR grant GRACK. The
second author was partially supported by NSF grant DMS-1600011 and the United States—
Israel Binational Science Foundation.

1. Background

For details on the material in this section, see [BoJ18].

1.1. Setup. Throughout the paper, k is field of characteristic zero, equipped with the trivial
absolute value. By a k-variety we mean an integral separated scheme of finite type over k.
We fix a logarithm log : R×+ → R, with inverse exp: R→ R×+.

1.2. Analytification. The analytification functor in [Berk90, §3.5] associates to any k-
variety a k-analytic space in the sense of Berkovich. Typically we write X for the analyti-
fication and Xsch for the underlying variety, viewed as a scheme. Let An = An

k , Pn = Pn
k

and Gm = Gm,k be the analytifications of An = Ank , Pn = Pnk , Gm = Gm,k, respectively.

The analytification X of Xsch consists of all pairs x = (ξ, | · |), where ξ ∈ Xsch is a point
and | · | = | · |x is a multiplicative norm on the residue field κ(ξ) extending the trivial norm
on k. We denote by H(x) the completion of κ(ξ) with respect to this norm. The surjective
map ker : X → Xsch sending (ξ, | · |) to ξ is called the kernel map. The points in X whose
kernel is the generic point of Xsch are the valuations of the function field of Xsch that are
trivial on k. They form a subset Xval ⊂ X.

There is a section Xsch ↪→ X of the kernel map, defined by associating to ξ ∈ Xsch the
point in X defined by the trivial norm on κ(ξ). The image of the generic point of Xsch is
called the generic point of X: it corresponds to the trivial valuation on k(X).

If Xsch = SpecA is affine, with A a finitely generated k-algebra, X consists of all multi-
plicative seminorms on A extending the trivial norm on k.

The Zariski topology on X is the weakest topology in which ker : X → Xsch is continuous.
We shall work in Berkovich topology, the coarsest refinement of the Zariski topology for
which the following holds: for any open affine U = SpecA ⊂ Xsch and any f ∈ A, the
function ker−1(U) 3 x → |f(x)| ∈ R+ is continuous, where f(x) denotes the image of f
in k(ξ) ⊂ H(x), so that |f(x)| = |f |x. The subset Xval ⊂ X is dense. In general, X is
Hausdorff, locally compact, and locally path connected; it is compact iff Xsch is proper. We
say X is projective (resp. smooth) if Xsch has the corresponding properties.

When X is compact, there is a reduction map red: X → Xsch, defined as follows. Let
x ∈ X and set ξ := kerx ∈ Xsch, so that x defines valuation on κ(ξ) that is trivial on k.
If Y is the closure of ξ in Xsch, then η = red(x) ∈ Y ⊂ Xsch is the unique point such that
|f(x)| ≤ 1 for f ∈ OY,η and |f(x)| < 1 when further f(η) = 0.
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1.3. Divisorial and quasimonomial points. If x ∈ Xval, let s(x) := tr. deg(H̃(x)/k) be

the transcendence degree of x and t(x) := dimQ

√
|H(x)×| the rational rank. The Abhyankar

inequality says that s(x) + t(x) ≤ dimX. A point x is quasimonomial if equality holds. It
is divisorial if s(x) = dimX − 1 and t(x) = 1. We write Xqm and Xdiv for the set of
quasimonomial and divisorial points, respectively. Thus Xdiv ⊂ Xqm ⊂ Xval.

From now on, assume X is smooth and projective. Then any divisorial point is of the
form exp(−c ordE), where c > 0 and E is a prime divisor on a smooth projective variety Y
that admits a proper birational map onto Xsch.

Similarly, quasimonomial points can be geometrically described as follows, see [JM12]. A
log smooth pair (Y,D) over Xsch is the data of a smooth k-variety Y together with a proper
birational morphism π : Y → Xsch, and D a reduced simple normal crossings divisor on Y
such that π is an isomorphism outside the support of D. To such a pair we associate a
dual cone complex ∆(Y,D), the cones of which are in bijection with strata (i.e. connected
components of intersections of irreducible components) of D. We embed ∆(Y,D) into Xval

as the set of monomial points with respect to local equations of the irreducible components
of D at the generic point of the given stratum. The apex of ∆(Y,D) is the generic point of
X. We have x ∈ Xqm iff x ∈ ∆(Y,D) for some log smooth pair (Y,D) over Xsch.

For many purposes, it is better to describe divisorial and quasimonomial points using snc
test configurations, see below.

1.4. Test configurations. A test configuration X for X consists of the following data:

(i) a flat and projective morphism of k-schemes π : X → A1
k;

(ii) a Gm-action on X lifting the canonical action on A1
k;

(iii) an isomorphism X1
∼→ X.

The trivial test configuration for X is given by the product Xsch×A1
k, with the trivial Gm-

action on Xsch. Given test configurations X , X ′ for X there exists a unique Gm-equivariant
birational map X ′ 99K X extending the isomorphism X ′1 ' X ' X1. We say that X ′
dominates X if this map is a morphism. Any two test configurations can be dominated by
a third. Two test configurations that dominate each other will be identified.

For any test configuration X for X, we have a Gauss embedding σX : X → X an, whose
image consists of all k×-invariant points y ∈ X an satisfying |$(y)| = exp(−1), where $ is the
coordinate on A1. Each such point has a well-defined reduction redX (y) ∈ X0. Somewhat
abusively, we denote the composition redX ◦σX : X → X0 by redX . When X is the trivial
test configuration, X0 ' X, and redX coincides with the reduction map considered earlier.

1.5. Snc test configurations. An snc test configuration is a test configuration X that
dominates the trivial test configuration and whose central fiber X0 has strict normal crossing
support. By Hironaka’s theorem, the set SNC(X) of snc test configurations is directed and
cofinal in the set of all test configurations.

To any snc test configuration X ofX is associated a dual complex ∆X , a simplicial complex
whose simplices are in 1-1 correspondence with strata of X0, i.e. connected components of
nonempty intersections of irreducible components of X0. For example, the dual complex of
the trivial test configuration has a single vertex, corresponding to single stratum Xsch×{0}.

We can view (X ,X0) as a log smooth pair over X , whose dual cone complex ∆(X ,X0)
is the cone over the dual complex ∆X . The Gm-equivariance of X implies that the im-
age of ∆(X ,X0) in X an consists of k×-invariant points. We identify ∆X with the subset
of ∆(X ,X0) ⊂ X an cut out by the equation |$| = exp(−1). Via the Gauss embedding
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σX : X → Xan, this allows us to view the dual complex ∆X as a subset of X. The points in
∆X are all quasimonomial, and every quasimonomial point belongs to some dual complex.
Similarly we define a retraction pX : X → ∆X . The directed system (pX )X∈SNC(X) induces

a homeomorphism X
∼→ lim←−∆X .

1.6. Metrics on line bundles. We view a line bundle L on X as a k-analytic space
with a projection p : L → X. Its fiber over x ∈ X is isomorphic to the Berkovich affine
line over the complete residue field H(x). Write L× for L with the zero section removed.
We typically work additively, so that a metric on L is function φ : L× → R such that
| · |φ := exp(−φ) : L× → R×+ behaves like a norm on each fiber p−1(x).

If φ is a metric on L, any other metric is of the form φ+ ϕ, where ϕ is a function on X,
that is, a metric on OX . If φi is a metric on Li, i = 1, 2, then φ1 +φ2 is a metric on L1 +L2.
If φ is a metric on L, then −φ is a metric on −L. If φ is a metric on mL, where m ≥ 1,
then m−1φ is a metric on L. If φ1, φ2 are metrics on L, so is max{φ1, φ2}.

If φ1 and φ2 are metrics on L inducing the same metric mφ1 = mφ2 on mL for some
m ≥ 1, then φ1 = φ2. We can therefore define a metric on a Q-line bundle L as the choice of
a metric φm on mL for m sufficiently divisible, with the compatibility condition lφm = φml.

1.7. Metrics as functions. Any line bundle L on X admits a trivial metric φtriv defined
as follows. Given a point x ∈ X, set ξ := red(x) ∈ Xsch, and let t be a nonvanishing section
of L on an open neighborhood U ⊂ Xsch of ξ. Then t defines a nonvanishing analytic section
of L on the Zariski open neighborhood Uan of x in X, and φtriv(t(x)) = 0.

As multiplicative notation for the trivial metric, we use | · |0 = exp(−φtriv). Given a global
section s of L, the function |s|0 on X has the following properties. Given x ∈ X, pick U and
t as above, and write s = ft, where f ∈ Γ(U ,OXsch). Then |s|0(x) = |f(x)|.

The trivial metric allows us to think of metrics on L as functions on X, and we shall
frequently do so in what follows. Indeed, if φ is a metric on L, then ϕ := φ − φtriv is a
function on X. In this way, the trivial metric becomes the zero function.

1.8. Metrics from test configurations. A test configuration for a Q-line bundle L on X
consists of a test configuration X for X together with the following data:

(iv) a Gm-linearized Q-line bundle L on X ;
(v) an isomorphism L|X1 ' L.

If more precision is needed, we say that (X ,L) is a test configuration for (X,L).
Given a Gm-action on (Xsch, Lsch) we have a product test configuration (Xsch×A1, Lsch×

A1), with diagonal action. If the action on (Xsch, Lsch) is trivial, we obtain the trivial test

configuration for (X,L). A test configuration (X̃ , L̃) dominates another test configuration

(X ,L) for (X,L), if X̃ dominates X and L̃ is the pullback of L under X̃ → X .
Any test configuration L for L induces a metric ϕL (viewed as function on L×) on L

as follows. First assume L is a line bundle. Using the Gauss embedding σL : L → Lan it
suffices to define a metric ϕL on Lan. Pick any point y ∈ X an with |$(y)| = exp(−1), write
ξ := redX (y) ∈ X0, and let s be a section of L on a Zariski open neighborhood of ξ in X such
that s(ξ) 6= 0. Then s defines a section of Lan on a Zariski open neighborhood of y, and we
declare ϕL(s(y)) = 0. One checks that this definition does not depend on the choice of s.
Further, ϕmL = mϕL, which allows us to define ϕL when L is a Q-line bundle. The metric
ϕL does not change when replacing L by a pullback. When L is the trivial test configuration
for L, φL is the trivial metric on L.
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As in [BHJ17], the restriction of the function ϕ = ϕL to Xdiv can be described as follows.
We may assume L dominates the trivial test configuration via ρ : X → Xsch × A1. Then
L − ρ∗(Lsch × A1) = OX (D) for a divisor D on X cosupported on X0, and

ϕL(vE) =
ordE(D)

ordE(X0)

for every irreducible component E of X0, where vE ∈ Xdiv is the restriction of ordE / ordE(X0)
from k(X ) to k(X). Varying X determines ϕ|Xdiv completely.

1.9. Positive metrics. Suppose L is ample. A test configuration L for L is ample (resp.
semiample) if L is relatively ample (resp. semiample) for the canonical morphism L → A1.
A metric on L is positive if it is defined by a semiample test configuration for L. Every
positive metric is in fact associated to a unique normal ample test configuration for L
(which may not dominate the trivial test configuration). A positive metric is the same thing
as a Fubini–Study metric (or FS metric), i.e. a metric ϕ (viewed as function on X) of the
form

ϕ := m−1 max
α

(log |sα|0 + λα), (1.1)

where m ≥ 1, (sα) is a finite set of global sections of mL without common zero, and λα ∈ Z.
Denote by H(L)R the set of metrics of the form (1.1) with λα ∈ R for each α. Such

metrics are continuous and can be uniformly approximated by positive metrics.

1.10. DFS metrics. A DFS metric on a Q-line bundle L on X is a metric of the form
φ1 − φ2, with φi an FS metric on Li, i = 1, 2, where L = L1 − L2. Equivalently, a DFS
metric is a metric defined by a test configuration for L. The set of DFS metrics on L is
dense in the space of continuous metrics in the topology of uniform convergence. It plays
the role of smooth metrics in complex geometry.

1.11. Monge–Ampère operator and energy functionals. As a special case of the the-
ory of Chambert-Loir and Ducros [CD12], there is a mixed Monge–Ampère operator that
associates to any DFS metrics φ1, . . . , φn on line bundles L1, . . . , Ln on X, a signed finite
atomic measure ddcφ1 ∧ · · · ∧ ddcφn on X, supported on divisorial points, and of mass
(L1 · . . . · Ln). This measure is positive if the Li are positive metrics.

As above, we think of the metrics as functions ϕi = φi − φtriv on X, and write

ddcφi = ωϕi = ω + ddcϕi,

so that the mixed Monge–Ampère measure becomes ωϕ1 ∧ · · · ∧ωϕn . Here ω and ωϕi can be
viewed as currents [CD12] or δ-forms [GK17] on X, but we do not need this terminology.

Now suppose L1 = · · · = Ln =: L is an ample Q-line bundle. We then write

MA(ϕ) := V −1ωnϕ,

where V = (Ln). If ϕ ∈ H(L), this is a probability measure on X. Since ϕ = 0 corresponds
to the trivial metric on L, MA(0) = ωn is a Dirac mass at the generic point of X.

If ϕ and ψ are DFS metrics on L, the Monge–Ampère energy of ϕ with respect to ψ is
defined by

E(ϕ,ψ) =
1

(n+ 1)V

n∑
j=0

∫
(ϕ− ψ)ωjϕ ∧ ω

n−j
ψ .
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In addition to the functional E, we set

I(ϕ,ψ) =

∫
(ϕ− ψ)(MA(ψ)−MA(ϕ)) and Jψ(ϕ) =

∫
(ϕ− ψ) MA(ψ)− E(ϕ,ψ).

On positive metrics, the functionals I, J , and I − J are nonnegative and comparable:

n−1J ≤ I − J ≤ nJ. (1.2)

The functionals E, I and J naturally have two arguments. Often it is convenient to fix the
second argument ψ as the trivial metric, and write E(ϕ), I(ϕ) and J(ϕ).

1.12. Psh metrics. For the rest of this section, L is an ample Q-line bundle. A psh
(plurisubharmonic) metric on L is the pointwise limit of any decreasing net of positive
metrics, provided the limit is 6≡ −∞. We denote by PSH(L) the set of all psh metrics.

By subtracting the trivial metric, we can view the elements of PSH(L) as functions on X
with values in R ∪ {−∞}. This is analogous to the notion of ω-psh functions in complex
geometry; we can think of ω as the curvature form of the trivial metric,

We equip PSH(L) with the topology of pointwise convergence on Xqm. If ϕ ∈ PSH(L) and
x ∈ X, then the net (ϕ ◦ pX (x))X∈SNC(X) is decreasing, with limit ϕ(x). Any ϕ ∈ PSH(L)
takes its maximum value at the generic point of X. If ϕ ∈ PSH(L), then ϕ + c ∈ PSH(L)
for all c ∈ R. If ϕ,ψ ∈ PSH(L), then ϕ ∨ ψ := max{ϕ,ψ} ∈ PSH(L).

If (ϕj)j is a decreasing net in PSH(L), and ϕ is the pointwise limit of (ϕj), then ϕ ∈
PSH(L), or ϕj ≡ −∞. If instead (ϕj)j is an increasing net that is bounded from above,
then ϕj converges in PSH(L) to some ϕ ∈ PSH(L). Thus ϕ = limj ϕj pointwise on Xqm,
and in fact ϕ is the usc regularization of the pointwise limit of the ϕj .

The set of continuous psh metrics can be viewed as the set of uniform limits of positive
metrics, in agreement with [Zha95, Gub98]. In particular, any metric in H(L)R is psh.

1.13. Metrics of finite energy. We extend the Monge–Ampère energy functional to all
metrics ϕ ∈ PSH(L) by setting E(ϕ) := inf{E(ψ) | ϕ ≤ ψ ∈ H(L)} ∈ R∪ {−∞} and define
the class E1(L) as the set of metrics of finite energy, E(ϕ) > −∞.

The mixed Monge–Ampère operator and the functionals I, J extend to E1(L) and are
continuous under decreasing and increasing (but not arbitrary) limits, as is E. The inequal-
ities (1.2) hold on E1(L). If ϕ,ψ ∈ E1(L), then I(ϕ,ψ) = 0 iff ϕ − ψ is a constant, and
similarly for J and I − J .

1.14. Measures of finite energy and the Calabi–Yau theorem. The energy of a prob-
ability measure µ on X is defined by

E∗(µ) = sup{E(ϕ)−
∫
ϕdµ | ϕ ∈ E(L)} ∈ R ∪ {+∞}.

This quantity depends on the ample line bundle L, but the setM1(X) of measures of finite
energy, E∗(µ) < +∞, does not. The following result will be referred to as the Calabi–Yau
theorem. It is proved in [BoJ18], see also [BFJ15, BFJ16b, YZ17], and is a trivially valued
analogue of the fundamental results in [Yau78, GZ07, BBGZ13].

Theorem 1.1. [BoJ18] The Monge–Ampère operator defines a bijection

MA: E1(L)/R→M1(X)

between plurisubharmonic metrics of finite energy modulo constants, and Radon probability
measures of finite energy. For any ϕ ∈ E1(L), we have E∗(MA(ϕ)) = (I − J)(ϕ).
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1.15. Scaling action and homogeneity. As k is trivially valued, there is a scaling action
of the multiplicative group R×+ on X defined by powers of norms. We denote by xt the

image of x by t ∈ R×+. There is an induced action on functions. If ϕ is a metric on a Q-line

bundle (viewed as function on X) and t ∈ R×+, we denote by ϕt the metric on L defined by

ϕt(x
t) = tϕ(x). This action preserves the classes H(L)R, PSH(L), and E1(L). The energy

functional E is homogeneous in the sense E(ϕt) = tE(ϕ) for ϕ ∈ E1(L) and t ∈ R×+. The
same is true for I and J .

There is also an induced action on Radon probability measures. We have E∗(t∗µ) =
tE∗(µ) for any t ∈ R×+, so the space M1(X) is invariant under scaling. Further, MA(ϕt) =

t∗MA(ϕ) for ϕ ∈ E1(L) and t ∈ R×+.

2. Adjoint K-stability and Ding-stability

In [Berm13], Berman introduced ideas from thermodynamics to the existence of Kähler–
Einstein metrics on Fano manifolds. In particular, he used the Legendre transform, together
with the (Archimedean) Calabi–Yau theorem to prove that the Mabuchi functional is proper
on the space of smooth positive metrics on L if and only if the Ding functional is proper.
When X admits no nontrivial vector fields, these two conditions are, further, equivalent to
the existence of a Kähler–Einstein metric on X [BBEGZ16, DR17]

Here we adapt Berman’s ideas to the non-Archimedean setting. Namely, we use the
Legendre transform and the non-Archimedean Calabi–Yau theorem to prove that uniform
Ding stability is equivalent to uniform K-stability. In fact, we work on an arbitrary polar-
ized smooth variety, using adjoint versions of the Ding and Mabuchi functionals, the latter
inducing Dervan’s notion of twisted K-stability in the twisted Fano case [Der16]. The re-
sults here are used in [BBJ18], to give criteria for the existence of twisted Kähler–Einstein
metrics.

In the rest of the paper, X is smooth and projective, and L is an ample Q-line bundle.

2.1. Log discrepancy. There is a natural log discrepancy function

A = AX : X → R+ ∪ {+∞}.
This is perhaps most naturally viewed as a metric on the canonical bundle [Tem16], see [MMS],
but here we present it differently. First consider a divisorial point x ∈ Xdiv. There exists
c > 0, a proper birational morphism Y → Xsch, with Y smooth, and a prime divisor D ⊂ Y,
such that x = exp(−c ordD). We then set

A(x) = c
(

1 + ordD(KY/Xsch)
)
, (2.1)

where KY/Xsch is the relative canonical divisor.

The log discrepancy functional was extended to all of Xval in [JM12] (following earlier
work in [FJ04, BFJ08]). Instead of explaining this construction here, we state the following
characterization, which is proved in the appendix.

Theorem 2.1. There exists a unique maximal lsc extension A : X → [0,+∞] of the function
A : Xdiv → R×+ defined above. Further, this function satisfies:

(i) A = +∞ on X \Xval and A < +∞ on Xqm;
(ii) A(xt) = tA(x) for all x ∈ X and t ∈ R×+;

(iii) for any snc test configuration X for X, we have
(a) A is continuous on the dual complex ∆X and affine on each simplex;
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(b) for any point x ∈ X, we have A(x) ≥ A(pX (x)), with equality iff x ∈ ∆X ;
(iv) A = supX A ◦ pX , where X ranges over snc test configurations for X.

Here pX : X → ∆X denotes the retraction onto the dual complex.

2.2. Entropy. The entropy of a Radon probability measure µ on X is defined by

Ent(µ) =

∫
X
A(x) dµ(x) ∈ [0,+∞].

where A is the log discrepancy function on X. The integral is well-defined since A is lsc.

Remark 2.2. If µ, ν are probability measures on a space X, then the classical entropy of µ

with respect to ν is defined as
∫

log
(
dµ
dν

)
dµ, when µ� ν, and +∞ otherwise. Our notion

of entropy can be seen as a non-Archimedean degeneration of the usual notion, see [BHJ16].

The entropy behaves well with respect to regularizations of measures:

Lemma 2.3. For any snc model X of X, set µX := (pX )∗µ. Then (Ent(µX ))X forms an
increasing net converging to Ent(µ).

Proof. Note that Ent(µX ) =
∫

(A◦pX )µ. The result follows since µ is a Radon measure and
(A ◦ pX )X is an increasing net of lsc functions converging to A, see [Fol99, 7.12]. �

The entropy functional is a linear functional. In particular, it is convex. It is homogeneous
and lsc on the space of Radon probability measures (with weak convergence) since A is lsc.
However, it is not continuous, since A is not continuous.

2.3. The twisted Mabuchi functional. Given a Q-line bundle T on X, define a relative
Monge–Ampère energy functional ET on E1(L) by

ET (ϕ) = (nV )−1
n−1∑
j=0

∫
ϕωjϕ ∧ ωn−1−j ∧ η.

Here ω and η are the curvature forms for the trivial metrics on L and T , respectively. When
ϕ ∈ H(L), ET (ϕ) can be computed using intersection numbers, as in [BHJ17, §7.4]. That
ET is well-defined and finite on E1(L) is seen by writing T as a difference between ample
Q-line bundles. We have ET (ϕ+ c) = ET (ϕ) + V −1(T · Ln−1)c for c ∈ R.

As in [BHJ17], we define the Mabuchi functional M on E1(L) via the Chen–Tian formula:

M = H + EKX
+ S̄E, (2.2)

where S̄ = −nV −1(KX · Ln). Now, given a Q-line bundle T on X, we define the twisted
Mabuchi functional MT on E1(L) by replacing KX by KX + T everywhere. This amounts
to

MT = M + nET − nV −1(T · Ln)E,

and is translation invariant: MT (ϕ+ c) = MT (ϕ) for c ∈ R.
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2.4. The adjoint Mabuchi functional and free energy. We are interested in the adjoint
case L = −(KX +T ), i.e. T = −(KX +L), which corresponds to the twisted Fano case in the
terminology of [Der16]. In this situation, the adjoint Mabuchi functional Mad := M−(KX+L)

takes a particularly nice form:

Mad = H − (I − J), (2.3)

where the functional H : E1(L)→ R+ ∪ {+∞} is given by

H(ϕ) = Ent(MA(ϕ)) =

∫
X
AMA(ϕ).

While I and J are continuous under decreasing nets, this is not true for H and Mad.

Example 2.4. Let X = P1 and L = O(1). Pick each n ≥ 1, pick 2n divisorial points
xn,j ∈ X, 1 ≤ j ≤ 2n such that red(xn,i) 6= red(xn,j) for i 6= j, and A(xn,j) = 1. Define

ϕn ∈ PSH(L) by max(ϕn) = 21−n and MA(ϕn) = 2−n
∑2n

j=1 δxn,j . Then ϕn(xn,j) = 2−n

for all n, j, from which it follows that 2−n ≤ ϕn ≤ 21−n on X. In particular, the sequence
(ϕn)∞1 is decreasing, and converges to 0. Now H(ϕn) = 1 for all n, while H(0) = 0.

For this reason—and in contrast to Lemma 2.9 below—we do not know whether Mad ≥ 0
on H(L) implies Mad ≥ 0 on E1(L). However, this implication would follow from

Conjecture 2.5. Given any metric ϕ ∈ E1(L), there exists a decreasing net (ϕj)j of positive
metrics converging to ϕ, such that limj Ent(MA(ϕj)) = Ent(MA(ϕ)).

In the Archimedean case, the corresponding conjecture is true: any metric ϕ of finite
energy can be approximated by smooth positive metrics, see [BDL17, Lemma 3.1]. The
proof in loc. cit. proceeds by approximating the Monge–Ampère measure of ϕ, and then
using the Calabi–Yau theorem. The problem in the non-Archimedean case is that we don’t
know how to characterize the image of H(L) under the Monge–Ampère operator.

2.5. Free energy. Being a translation invariant functional on E1(L), the adjoint Mabuchi
functional factors through the Monge–Ampère operator: we have

Mad(ϕ) := F (MA(ϕ)),

where the free energy functional F : M1(X)→ R ∪ {+∞} is given by

F = Ent−E∗;

see [Berm13]. In other words,

F (µ) =

∫
X
Aµ− E∗(µ).

Note that while the space M(X) does not depend on L, the energy functional E∗ does;
hence the same is true for F .

2.6. The Legendre transform of entropy. Define L : E1(L)→ R ∪ {−∞} by

L(ϕ) = inf
x

(A(x) + ϕ(x)), (2.4)

where the infimum is taken over divisorial valuations x ∈ Xdiv. When X is Fano and
L = −KX , this extends the functional in [BHJ17, Definition 7.26].
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Proposition 2.6. The infimum in (2.4) is unchanged when taking it over quasimonomial
points x ∈ Xqm, or over points x ∈ Xval with A(x) <∞. Further, we have

L(ϕ) = inf
µ∈M1(X)

{Ent(µ) +

∫
ϕµ}, (2.5)

Proof. Let Lqm(ϕ) denote the infimum in (2.4) taken over quasimonomial points, and let
L′(ϕ) denote the right-hand side of (2.5). We will prove that L(ϕ) = Lqm(ϕ) = L′(ϕ), which
implies the result since taking µ = δx shows that the infimum in (2.4) over x ∈ Xval with
A(x) <∞ is bounded from below and above by L(ϕ) and L′(ϕ), respectively.

We have Lqm(ϕ) = L(ϕ) since for any snc test configuration X for X, the functions A
and ϕ are continuous on the dual complex ∆X , inside which divisorial points are dense.

Taking µ = δx for x ∈ Xqm shows that L′(ϕ) ≤ Lqm(ϕ). For the reverse inequality, pick
ε > 0 and µ ∈ M1(X) such that Ent(µ) +

∫
ϕµ ≤ L′(ϕ) + ε. Replacing µ by pX∗µ for

a large enough X ∈ SNC(X), we may assume µ is supported on a dual complex ∆X , see
Lemma 2.3. But then it is clear that

Ent(µ) +

∫
ϕµ =

∫
∆X

(A+ ϕ) dµ ≥ inf
∆X

(A+ ϕ),

so Lqm(ϕ) ≤ L′(ϕ) + ε. �

Lemma 2.7. The functional L is usc and non-increasing on E1(L). As a consequence, it is
continuous along decreasing nets in E1(L).

Proof. The only nontrivial statement is the upper semicontinuity, and this follows from the
continuity of ϕ 7→ ϕ(x) for x ∈ Xqm. �

We may think of (2.5) as saying that L is the Legendre transform of Ent. Now, the natural
setting of the Legendre duality is between the space M′(X) of all signed Radon measures
on X and the space C0(X) of continuous functions on X. Extend Ent to all of M′(X) by
Ent(µ) =

∫
Aµ when µ is a probability measure, and Ent(µ) = +∞ otherwise. Then define

L(f) for f ∈ C0(X) by L(f) = infx∈X{A(x) + f(x)}.

Proposition 2.8. For any f ∈ C0(X) we have

L(f) = inf
µ∈M′(X)

{Ent(µ) +

∫
fµ}, (2.6)

and for every µ ∈M′(X), we have

Ent(µ) = sup
f∈C0(X)

{L(f)−
∫
fµ}. (2.7)

Proof. In (2.6) it clearly suffices to take the infimum over Radon probability measures µ.
The equality then follows as in the proof of Proposition 2.6.

That (2.7) holds in now a formal consequence of A being lsc. Indeed, fix µ ∈M′(X) and
let Ent′(µ) be the right-hand side of (2.7). It follows from (2.6) that Ent′(µ) ≤ Ent(µ). To
prove the reverse inequality, first suppose µ is a probability measure and pick ε > 0. Since
−A is usc, we can find a continuous function f on X with f ≥ −A and

∫
f µ ≤ −

∫
Aµ+ε =

−Ent(µ) + ε. Thus L(f) ≥ 0, and hence Ent′(µ) ≥ L(f)−
∫
f µ ≥ Ent(µ)− ε.

Now suppose µ ∈ M′(X) is not a probability measure. If µ(X) 6= 1, picking f ≡ ±C,
where C � 1 gives Ent′(µ) = +∞. If µ is not a positive measure, then there exists g ∈ C0(X)
with g ≥ 0 but

∫
g µ < 0. Picking f = Cg for C � 0 again gives Ent′(µ) = +∞, �
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2.7. The adjoint Ding functional. Define the adjoint Ding functional on E1(L) by

Dad = L− E, (2.8)

where L is the functional in (2.4), and E is the Monge–Ampère energy. When X is Fano and
L = −KX , the restriction of Dad to H(L) coincides with the Ding functional of [Berm16,
BHJ17]. The name derives from [Din88].

Lemma 2.9. The adjoint Ding functional Dad is continuous along decreasing nets in E1(L).
As a consequence, Dad ≥ 0 on E1(L) iff Dad ≥ 0 on H(L).

Proof. It suffices to prove the continuity assertion, since every element in E1(L) is the limit
of a decreasing net in H(L). Now, we know that E is continuous along decreasing nets, so
the result follows from Lemma 2.7. �

2.8. Non-Archimedean thermodynamics. Using the Calabi–Yau theorem, we now re-
late the adjoint Ding and Mabuchi functionals. The following result can be viewed as a
non-Archimedean version of [Berm13, Theorem 1.1].

Theorem 2.10. Let L be an ample line bundle on a smooth projective variety X. Then we
have Mad ≥ Dad on E1(L). Further, the following conditions are equivalent:

(i) F ≥ 0 on M1(X);
(ii) Mad ≥ 0 on E1(L);

(iii) Dad ≥ 0 on E1(L).

In the Archimedean situation, the conditions analogous to (ii) and (iii) are that the
Mabuchi and Ding functionals are bounded from below. In the non-Archimedean setting,
the presence of an R×+-action on E1(L) under which Mad and Dad are homogeneous, shows
that this is equivalent to (ii) and (iii).

Proof. Pick any ϕ ∈ E1(L). If Dad(ϕ) > −∞, then

Mad(ϕ)−Dad(ϕ) =

∫
(A+ ϕ) MA(ϕ)− inf(A+ ϕ) ≥ 0,

so we get Mad ≥ Dad on E1(L).
Thus (iii) implies (ii). By the Calabi-Yau theorem, it follows that (ii) implies (i). Hence

it suffices to prove that (i) implies (iii). By (i) we have F (δx) ≥ 0 for every divisorial point
x ∈ Xdiv, which translates into A(x) ≥ E∗(δx) for every x ∈ Xdiv. By the definition of E∗,
this implies E(ϕ)−ϕ(x) ≤ A(x) for every ϕ ∈ E1(L). Taking the infimum over x ∈ Xdiv we
get L(ϕ) ≥ E(ϕ), that is, Dad(ϕ) ≥ 0 for all ϕ ∈ E1(L). �

2.9. Adjoint semistability. We can reformulate Theorem 2.10 as follows. First, we say
that L is Ding semistable in the adjoint sense if Dad ≥ 0 on E1(L), and K-semistable in the
adjoint sense if Mad ≥ 0 on E1(L).

As in [BHJ17, Proposition 8.2], one shows that Mad ≥ 0 on H(L) is equivalent to twisted
K-semistability in the twisted Fano case, in the sense of [Der16]. According to Conjecture 2.5,
Mad ≥ 0 on H(L) should imply Mad ≥ 0 on E1(L), i.e. adjoint K-semistability.

Second, we define the stability threshold of L as

δ(L) = inf
µ∈M(X)

Ent(µ)

E∗(µ)
. (2.9)
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We shall see in Theorem 5.16 that this invariant, which was suggested by Berman [Berm],
coincides with the one defined in [FO16, BlJ17]. In particular, this will show that δ(L) > 0.

Corollary 2.11. For any ample line bundle L on X, the following are equivalent:

(i) δ(L) ≥ 1;
(ii) L is Ding semistable in the adjoint sense;
(ii) L is K-semistable in the adjoint sense.

2.10. Uniform adjoint stability. In analogy with [BHJ17, Der16]) we say that L is uni-
formly Ding-stable in the adjoint sense if there exists ε > 0 such that Dad ≥ εJ on E1(L).
Similarly, L is uniformly K-stable in the adjoint sense if there exists ε > 0 such that
Mad ≥ εJ on E1(L). Here again, this is equivalent (at least up to Conjecture 2.5) to
uniform twisted K-stability in the twisted Fano case, in the sense of [Der16].

Theorem 2.12. For any ample line bundle L, the following are equivalent:

(i) δ(L) > 1;
(ii) L is uniformly K-stable in the adjoint sense;

(iii) L is uniformly Ding-stable in the adjoint sense.

Together with Corollary 2.11, this proves Theorem A in the introduction.

Proof. The Calabi–Yau theorem shows that if δ ≥ 1, then Ent ≥ δE∗ on M1(X) iff Mad ≥
(δ − 1)(I − J) on E1(X). Since the functionals I − J and J are comparable, see (1.2), this
implies that (i)⇔(ii). The inequality Mad ≥ Dad shows that (iii) implies (ii).

It remains to prove that (i) implies (iii). We follow the proof of Theorem 2.10. Pick
any δ ∈ (1, δ(L)). Then Ent(µ) ≥ δE∗(µ) for any µ ∈ M1(X). When µ = δx, this
gives A(x) ≥ δE∗(δx) for any x ∈ Xdiv. Now consider any ϕ ∈ E1(L). Since δ > 1
and E1(L) is convex, we have δ−1ϕ ∈ E1(L). This gives E∗(δx) ≥ E(δ−1ϕ) − δ−1ϕ(x).
Thus A(x) + ϕ(x) ≥ δE∗(δx) + ϕ(x) ≥ δE(δ−1ϕ). Taking the infimum over x ∈ Xdiv

and subtracting E(ϕ) gives Dad(ϕ) ≥ δE(δ−1ϕ) − E(ϕ). By translation invariance, we
may assume supX ϕ = 0. Then E(ϕ) = −J(ϕ) and E(δ−1ϕ) = −J(δ−1ϕ). By [BoJ18,
Lemma 6.17], we have

J(δ−1ϕ) ≤ δ−(1+n−1)J(ϕ).

This implies Dad(ϕ) ≥ εJ(ϕ), with ε = (1− δ−n−1
). �

2.11. The Fano case. The adjoint stability notions above are defined in terms of the space
E1(L) of metrics of finite energy. This is a natural framework for applying the Calabi–Yau
theorem. On the other hand, K-stability and Ding stability are usually expressed in terms
of test configurations, that is, metrics in H(L). For Ding-stability, this makes no difference,
in view of Lemma 2.9. If Conjecture 2.5 holds, then the same is true for K-stability.

When X is Fano and L = −KX , the adjoint notions do coincide with the usual ones:

Theorem 2.13. If X is a Fano manifold, then the following are equivalent:

(i) X is K-semistable (resp. uniformly K-stable);
(ii) X is K-semistable (resp. uniformly K-stable) in the adjoint sense;

(iii) X is Ding semistable (resp. uniformly Ding-stable);
(iv) X is Ding semistable (resp. uniformly Ding-stable) in the adjoint sense;
(v) δ(−KX) ≥ 1 (resp. δ(−KX) > 1.
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Proof. The equivalence of (ii), (iv) and (v) follow from Corollary 2.11 and Theorem 2.12.
Now Theorem 5.16 below shows that δ(−KX) agrees with the invariant considered in [FO16,
BlJ17]. The equivalence of (i), (iii) and (v) therefore follow from [BlJ17, Theorem B]. �

3. Graded norms and filtrations

In this section, we study the space of bounded graded norms (or, equivalently, filtrations)
on the section ring R = R(X,L). As before, k is a trivially valued field, whereas L is an
ample line bundle (as opposed to a Q-line bundle) on X.

Much of the material here is studied for more general valued fields k in [CM15, BE18],
but we present the details for the convenience of the reader. There is also some overlap with
the recent work of Codogni [Cod18].

3.1. Norms and filtrations. Let V be a k-vector space. By a filtration F of V we mean a
family (FλV )λ∈R of k-vector subspaces of V , satisfying FλV =

⋂
λ′<λFλ

′
V ,
⋃
λFλV = V ,

and
⋂
λFλV = 0. A filtration is bounded if FλV = V for λ� 0 and FλV = 0 for λ� 0.

Filtrations of V are in bijection with (non-Archimedean) norms on V , i.e. functions
‖ · ‖ : V → R+ satisfying ‖v‖ = 0 iff v = 0, ‖av‖ = |a|‖v‖ for a ∈ k, v ∈ V , and ‖v + w‖ ≤
max{‖v‖, ‖w‖} for v, w ∈ V . To a filtration F is associated the norm ‖v‖ = exp(− sup{λ ∈
R | v ∈ FλV }); conversely, a norm ‖ · ‖ on V induces the filtration FλV = {v ∈ V | ‖v‖ ≤
exp(−λ)}. In what follows, we will usually work with norms rather than filtrations.

Bounded filtrations correspond to bounded norms, i.e. norms for which there exists A > 0
such that A−1 ≤ ‖v‖ ≤ A for all v 6= 0. If V is finite dimensional, then any filtration/norm
on V is bounded. The trivial norm on V is defined by ‖v‖ = 1 for v 6= 0. A norm is almost
trivial if it is a multiple of the trivial norm.

If V is a normed vector space, any subspace W ⊂ V is naturally equipped with the
subspace norm, and the quotient V/W with the quotient norm defined by ‖v + W‖ :=
inf{‖v + w‖ | w ∈ W}. In general, this is only a seminorm on V/W (i.e. there may be
nonzero elements of norm zero) but it is a norm when V is finite dimensional.

The space NV of norms on V admits two natural operations. First, if ‖ · ‖ and ‖ · ‖′ are
norms on V , so is their maximum ‖ · ‖∨ ‖ · ‖′ := max{‖ · ‖, ‖ · ‖′}. Second, we have an action
of R on NV given by (t, ‖ · ‖) 7→ exp(t)‖ · ‖.

3.2. Relative successive minima and volume. As k is trivially valued, any finite-
dimensional normed k-vector space V admits a basis {ej}j that is orthogonal for the norm
in the sense that ‖

∑
j ajej‖ = maxj |aj |‖ej‖ for all aj ∈ k. More generally, given any two

norms ‖ · ‖, ‖ · ‖′ on a finite-dimensional k-vector space V , there exists a basis {ej}Nj=1 for V
that is orthogonal for both norms. The numbers

λj := log
‖ej‖′

‖ej‖
, 1 ≤ j ≤ N,

are called the relative successive minima of ‖ · ‖ with respect to ‖ · ‖′. They do not depend
on the choice of orthogonal basis1.

Following [BE18], the average of the relative successive minima,

vol(‖ · ‖, ‖ · ‖′) := N−1
N∑
j=1

λj , (3.1)

1This is not completely obvious: see [BE18, §3.1]
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is called the (logarithmic) relative volume of ‖ · ‖ with respect to ‖ · ‖′. It can be described
as follows. The norms ‖ · ‖, ‖ · ‖′ on V canonically induce norms det‖ · ‖, det‖ · ‖′ on the
determinant line detV , and

vol(‖ · ‖, ‖ · ‖′) = N−1(log det‖η‖′ − log det‖η‖) (3.2)

for any nonzero element η ∈ detV . As a consequence we have the cocycle condition

vol(‖ · ‖, ‖ · ‖′) + vol(‖ · ‖′, ‖ · ‖′′) = vol(‖ · ‖, ‖ · ‖′′) (3.3)

for any three norms on V .
When ‖ · ‖′ is the trivial norm, we drop the term “relative” and simply say successive

minima and volume, and write vol(‖ · ‖) for the latter. The successive minima of a norm are

exactly the jumping numbers of the associated filtration, i.e. the λ ∈ R such that Fλ ) Fλ′

for any λ′ > λ (counted with multiplicity).

3.3. Distances. We use the relative successive minima to define a distances dp, 1 ≤ p ≤ ∞
on the space NV of norms on V . Namely, we set

dp(‖ · ‖, ‖ · ‖′) := (N−1
N∑
j=1

|λj |p)1/p (3.4)

for p ∈ [1,∞), and d∞(‖ · ‖, ‖ · ‖′) := max1≤j≤N |λj |. One can prove that dp satisfies the
triangle inequality, see [BE18, §3.1]. Note that

dp(‖ · ‖, ‖ · ‖′)p = dp(‖ · ‖, ‖ · ‖ ∨ ‖ · ‖′)p + dp(‖ · ‖′, ‖ · ‖ ∨ ‖ · ‖′)p (3.5)

for p ∈ [1,∞). There is a similar formula when p =∞.
The distance d1 is easier to control than the others, because of its close relationship to

the relative volume. Indeed, if ‖ · ‖ ≤ ‖ · ‖′ pointwise on V , then

d1(‖ · ‖, ‖ · ‖′) = vol(‖ · ‖, ‖ · ‖′). (3.6)

We will later need the following estimate.

Lemma 3.1. Let ‖ · ‖i, ‖ · ‖′i, i = 1, 2, be norms on V . Then

d1(‖ · ‖1 ∨ ‖ · ‖2, ‖ · ‖′1 ∨ ‖ · ‖′2) ≤ d1(‖ · ‖1, ‖ · ‖′1) + d1(‖ · ‖2, ‖ · ‖′2). (3.7)

Proof. To begin, consider the case when ‖ · ‖i ≤ ‖ · ‖′i, i = 1, 2.
Further, we first assume there exists a basis e = (e1, . . . , eN ) for V that is orthogonal for

all four norms. Write ‖ej‖i = exp(ai,j) and ‖ej‖′i = exp(a′i,j) for 1 ≤ j ≤ N and i = 1, 2.

Then ai,j ≤ a′i,j for all i, j, and we must show that

N∑
j=1

a′1,j ∨ a′2,j −
N∑
j=1

a1,j ∨ a2,j ≤
N∑
j=1

(a′1,j − a1,j) +

N∑
j=1

(a′2,j − a2,j);

this is straightforward.
When no such basis exists, we use the following construction: see [BE18, §3.1] for details.

For any basis e = (e1, . . . , eN ) of V there is a “projection” ρe : NV → NV with the following
properties: (1) ρe(‖ · ‖) = ‖ · ‖ iff ‖ · ‖ is orthogonal for e; (2) ρe ◦ ρe = ρe; (3) detρe(‖ · ‖) =
det‖ · ‖; and (4) if ‖ · ‖ ≤ ‖ · ‖′, then ρe(‖ · ‖) ≤ ρe(‖ · ‖′).

Now assume e is orthogonal for ‖ · ‖′i, i = 1, 2. Replacing ‖ · ‖i by ρe(‖ · ‖i), i = 1, 2 does
not change the right-hand side of (3.7). As for the left-hand side, (2) and (4) above imply

ρe(‖ · ‖1) ∨ ρe(‖ · ‖2) ≤ ρe(‖ · ‖1 ∨ ‖ · ‖2) ≤ ‖ · ‖′1 ∨ ‖ · ‖′2,
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which in view of (3) and (3.2) implies that the left-hand side of (3.7) can only increase upon
replacing ‖ · ‖i by ρe(‖ · ‖i), i = 1, 2.

Finally consider arbitrary norms. Set ‖ · ‖′′i = ‖ · ‖i ∨ ‖ · ‖′i for i = 1, 2. By (3.5) we have

d1(‖ · ‖1 ∨‖ · ‖2, ‖ · ‖′1 ∨‖ · ‖′2) = d1(‖ · ‖1 ∨‖ · ‖2, ‖ · ‖′′1 ∨‖ · ‖′′2) + d1(‖ · ‖′1 ∨‖ · ‖′2, ‖ · ‖′′1 ∨‖ · ‖′′2)

and ‖·‖i, ‖·‖′i ≤ ‖·‖′′i , for i = 1, 2, so (3.7) follows from (3.5) and the case just considered. �

3.4. Graded norms and filtrations. Let L be an ample line bundle. For m ∈ N, write
Rm := H0(X,mL). Thus Rm 6= 0 for m� 0. Consider the section ring R =

⊕
mRm.

A graded norm ‖ · ‖• on R is the data of a norm ‖ · ‖m on the k-vector space Rm for
each m, satisfying ‖s ⊗ s′‖m+m′ ≤ ‖s‖m · ‖s′‖m′ for s ∈ Rm, s′ ∈ Rm′ . Since R is finitely
generated, there exists C ≥ 0 such that ‖ · ‖m ≤ exp(Cm) on Rm for all m. We say ‖ · ‖ is
(exponentially) bounded if ‖ · ‖m ≥ exp(−Cm) on Rm \ {0} for some C ≥ 0 and all m.

If ‖ · ‖• and ‖ · ‖′• are (bounded) graded norms on V , so is their maximum ‖ · ‖• ∨‖ · ‖′•. If
‖ · ‖• is a (bounded) graded norm and c ∈ R, then exp(c •)‖ · ‖•, defined by exp(cm)‖ · ‖m on
Rm, is a (bounded) graded norm on V . The trivial graded norm on R is the graded norm
for which ‖ · ‖m is the trivial norm on Rm for every m.

A graded norm is generated in degree one if R is generated in degree one, that is, the
canonical morphism SmR1 → Rm is surjective for all m ≥ 1, and the associated norm on
Rm is equal to the quotient norm from this morphism. If R is generated in degree 1, and
‖ · ‖1 is any norm on R1, then R admits a unique graded norm that is generated in degree
one and extends ‖ · ‖1. A graded norm is finitely generated if the induced graded norm on
R(X, rL) is generated in degree 1 for some r ≥ 1.

A graded filtration on R is the collection of a filtration (FλRm)λ of Rm for all m, satis-

fying FλRm · Fλ
′
Rm′ ⊂ Fλ+λ′Rm+m′ . As above, graded norms on R are in bijection with

graded filtrations of R, and bounded graded norms correspond to (linearly) bounded graded
filtrations, i.e. graded filtrations for which there exists C ∈ R such that FλRm = 0 for
λ ≥ Cm and FλRm = Rm for λ ≤ −Cm. We say that a graded filtration is generated
in degree one if the associated graded norm is generated in degree one. The trivial graded
norm on R corresponds to the trivial graded filtration of R, defined by FλRm = Rm for
λ ≤ 0 and FλRm = 0 for λ > 0.

A graded filtration F of R(X,L) is a graded Z-filtration if all jumping numbers are

integers, i.e. FλRm = FdλeRm for all λ and m. They correspond to graded norms taking
values in {0} ∪ exp(Z). Any graded filtration F induces a graded Z-filtration FZ by setting

FλZRm := FdλeRm. There is a similar operation on graded norms.
Finitely generated bounded Z-filtrations of R(X,L) are in 1-1 correspondence with ample

test configurations for (X,L), see [BHJ17, §2.5].

3.5. Relative limit measures. Let ‖ · ‖• and ‖ · ‖′• be bounded graded norms on R(X,L).
For m ≥ 1, let λm,j , 1 ≤ j ≤ Nm be the relative successive minima of ‖ · ‖m with respect to
‖·‖′m. Since the graded norms are bounded, there exists C > 0 such that |λm,j | ≤ Cm for all
m, j. The following result was proved by Chen and Maclean [CM15], building upon [BC11].

Theorem 3.2. There exists a compactly supported Borel probability measure ν on R such
that the probability measures

νm :=
1

Nm

Nm∑
j=1

δλm,j/m

converge weakly to ν as m→∞.
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We call ν is the relative limit measure of ‖ · ‖• with respect to ‖ · ‖′•. To indicate the
dependence on the graded norms, we write ν = RLM(‖ · ‖•, ‖ · ‖′•). When ‖ · ‖′• is the trivial
graded norm, we write ν = LM(‖ ·‖•) and call it the limit measure of ‖ ·‖• following [BC11].

Proof. Since our setting and notation differs slightly from [CM15], we sketch the proof. The
idea is to reduce to the case when ‖ · ‖′• is the trivial graded norm; this case was treated
in [BC11] (see also [Bou14]) using the technique of Okounkov bodies.

Since L is ample, Rm 6= 0 for m� 0. As already noted, there exists C > 0 such that νm
is supported in [−C,C] for m� 0. It suffices to prove that∫

R
max{λ, c} dνm(λ) =

1

mNm

Nm∑
j=1

max{λj,m,mc}

converges as m → ∞, for all c ∈ R, see [CM15, Proposition 5.1]. But the numbers
max{λj,m, cm}, 1 ≤ j ≤ Nm, are the relative successive minima of ‖ · ‖m with respect
to the norm ‖ · ‖′m ∨ exp(cm)‖ · ‖m on Rm. Replacing ‖ · ‖′• by ‖ · ‖′• ∨ exp(c •)‖ · ‖•, we are
reduced to proving that the barycenters (mNm)−1

∑
j λm,j of the measures νm converge as

m→∞. But if {em,j}j is a basis for Rm that is orthogonal for both norms, then

1

mNm

Nm∑
j=1

λm,j =
1

mNm

Nm∑
j=1

log
‖em,j‖′

‖em,j‖
=

1

mNm

Nm∑
j=1

log
1

‖em,j‖
− 1

mNm

Nm∑
j=1

log
1

‖em,j‖′

is the difference of the barycenters of the probability measures defined by the successive min-
ima of ‖ · ‖m and ‖ · ‖′m respectively, and hence converges to the difference of the barycenters
of the limit measures of ‖ · ‖• and ‖ · ‖′•. �

Corollary 3.3. For any two bounded graded norms ‖ · ‖ and ‖ · ‖′ on R, the limit

vol(‖ · ‖•, ‖ · ‖′•) := lim
m→∞

m−1 vol(‖ · ‖m, ‖ · ‖′m)

exists, and equals the barycenter of the relative limit measure RLM(‖ · ‖•, ‖ · ‖′•).

We call vol(‖ · ‖•, ‖ · ‖′•) the relative volume of ‖ · ‖• with respect to ‖ · ‖′•. It satisfies a
cocycle condition as in (3.3). The proof of Theorem 3.2 shows that if ν = RLM(‖ · ‖•, ‖ · ‖′•),
then ∫

max{λ, c} dν(λ) = vol(‖ · ‖•, ‖ · ‖′• ∨ exp(c •)‖ · ‖•). (3.8)

Proof of Corollary 3.3. This follows from Theorem 3.2 since m−1 vol(‖ · ‖m, ‖ · ‖′m) is the
barycenter of the measure νm, which converges weakly to ν := RLM(‖ · ‖•, ‖ · ‖′•). Indeed,
the supports of all the νm are all contained in a fixed interval [−C,C]. �

The next results show how relative limit measures behave under operations on graded
norms. They follow from elementary computations of relative successive minima in bases
for Rm that are orthogonal for both ‖ · ‖m and ‖ · ‖′m. The details are left to the reader.

Proposition 3.4. Let ‖ · ‖• and ‖ · ‖′• be bounded graded norms on R, and c ∈ R. Then:

(i) RLM(‖ · ‖′•, ‖ · ‖•) is the pushforward of RLM(‖ · ‖•, ‖ · ‖′•) under λ 7→ −λ.
(ii) RLM(exp(c •)‖ · ‖•, ‖ · ‖′•) is the pushforward of RLM(‖ · ‖•, ‖ · ‖′•) under λ 7→ λ− c.

(iii) RLM(‖·‖•, ‖·‖•∨‖·‖′•) is the pushforward of RLM(‖·‖•, ‖·‖′•) under λ 7→ max{λ, 0}.
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Proposition 3.5. Let ‖·‖• and ‖·‖′• be bounded graded norms on R. Given r ≥ 1, let ‖·‖(r)•
and ‖ · ‖′(r)• be their restrictions to R(X, rL). Then RLM(‖ · ‖(r)• , ‖ · ‖′(r)• ) is the pushforward
of RLM(‖ · ‖•, ‖ · ‖′•) under λ 7→ rλ.

3.6. Equivalence of bounded graded norms. Theorem 3.2 yields

Corollary 3.6. Let ‖ ·‖• and ‖ ·‖′• be bounded graded norms on R. For p ∈ [1,∞), the limit

dp(‖ · ‖•, ‖ · ‖′•) = limm−1dm,p(‖ · ‖m, ‖ · ‖′m)

exists, and we have

dp(‖ · ‖•, ‖ · ‖′•) =

∫
R
|λ|p dν(λ), (3.9)

where ν = RLM(‖ · ‖•, ‖ · ‖′•) is the relative limit measure of ‖ · ‖• with respect to ‖ · ‖′•.

The function dp on pairs of bounded graded norms is symmetric and satisfies the triangle
inequality. Further (3.5) implies

dp(‖ · ‖•, ‖ · ‖′•)p = dp(‖ · ‖•, ‖ · ‖• ∨ ‖ · ‖′•)p + dp(‖ · ‖′•, ‖ · ‖• ∨ ‖ · ‖′•)p. (3.10)

In particular, the distance d1 can be computed in terms of relative volumes:

d1(‖ · ‖•, ‖ · ‖′•) = vol(‖ · ‖•, ‖ · ‖• ∨ ‖ · ‖′•) + vol(‖ · ‖′•, ‖ · ‖• ∨ ‖ · ‖′•). (3.11)

We’d like to analyze how far dp is from being a distance. If ‖ · ‖• and ‖ · ‖′• are bounded
graded norms on R, then p 7→ dp(‖ · ‖•, ‖ · ‖′•) is increasing. Further, if C ≥ 0 is such that

exp(−Cm) ≤ ‖ · ‖m, ‖ · ‖′m ≤ exp(Cm)

on Rm for all m ≥ 1, then dp(‖ · ‖•, ‖ · ‖′•) ≤ Cp−1d1(‖ · ‖•, ‖ · ‖′•) for all p ∈ [1,∞). In
particular, for any two graded norms and any p ∈ [1,∞), we have dp(‖ · ‖•, ‖ · ‖′•) = 0 iff
d1(‖ · ‖•, ‖ · ‖′•) = 0. In this case we say that the two graded norms are equivalent. As a
consequence of Corollary 3.6 we have:

Corollary 3.7. If ‖ · ‖• and ‖ · ‖′• are bounded graded norms on R, then ‖ · ‖• and ‖ · ‖′• are
equivalent iff the relative limit measure RLM(‖ · ‖•, ‖ · ‖′•) is a Dirac mass at the origin.

Remark 3.8. The equivalence notion above is the natural one in our study, but there other
possibilities. For example, let us say two bounded graded norms ‖ · ‖• and ‖ · ‖′• are ∞-
equivalent if limm−1d∞(‖ · ‖m, ‖ · ‖′m) = 0. This implies equivalence in the sense above, but
the converse is not true. Indeed, let X = P1 and L = O(1), so that R = k[S, T ]. Let ‖ · ‖′•
be the trivial graded norm, and define a graded norm ‖ · ‖• on R by ‖Q(S, T )‖m = exp(m)
if S - Q and ‖Q(S, T )‖m = 1 if S | Q. The measure in Theorem 3.2 is given by νm =

1
m+1δ−1 + m

m+1δ0. Thus the relative limit measure is equal to δ0, but d∞(‖ · ‖m, | · ‖′m) = m

for all m. See also [Szé15, p.458].

All the constructions so far involving graded norms only depend on equivalence classes:

Theorem 3.9. Let ‖ · ‖i,• and ‖ · ‖′i,•, i = 1, 2, be bounded graded norms on R such that

‖ · ‖i,• is equivalent to ‖ · ‖′i,•. Then RLM(‖ · ‖1,•, ‖ · ‖2,•) = RLM(‖ · ‖′1,•, ‖ · ‖′2,•). As a

consequence, vol(‖ · ‖1,•, ‖ · ‖2,•) = vol(‖ · ‖′1,•, ‖ · ‖′2,•).

Lemma 3.10. With notation and assumptions as in Theorem 3.9, we have:

(i) ‖ · ‖1,• ∨ ‖ · ‖2,• is equivalent to ‖ · ‖′1,• ∨ ‖ · ‖′2,•;
(ii) For i = 1, 2 and any c ∈ R, exp(c •)‖ · ‖i,• and exp(c •)‖ · ‖′i,• are equivalent.
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Proof. The estimate in Lemma 3.1 implies a corresponding estimate for bounded graded
norms, and yields (i). The statement in (ii) follows from the equality

d1(exp(c •)‖ · ‖•, exp(c •)‖ · ‖′•) = d1(‖ · ‖•, ‖ · ‖′•)

for any two bounded graded norms. �

Proof of Theorem 3.9. Set ν := RLM(‖ · ‖1,•, ‖ · ‖2,•) and ν ′ := RLM(‖ · ‖′1,•, ‖ · ‖′2,•). We

must show that ν = ν ′. It suffices to prove that
∫

max{λ, c} dν(λ) =
∫

max{λ, c} dν ′(λ) for
all c ∈ R. This follows from (3.8) and Lemma 3.10. �

3.7. Almost trivial graded norms and filtrations. Given p ∈ [1,∞) we define the pth
central moment ‖F‖p of a graded filtration F of R as the pth central moment of its limit

measure. Thus ‖F‖p = (
∫
|λ−λ|p dν(λ))1/p, where ν is the limit measure and λ =

∫
λ dν(λ)

is its barycenter. We define pth central moments of bounded graded norms in the same way,
although the notation becomes rather cumbersome!

When F is associated to a test configuration (X ,L) for (X,L), ‖F‖p coincides with the
Lp-norm of the test configuration as defined in [Don05, WN12, His16]. For a general bounded
graded filtration, ‖F‖2 equals the L2-norm considered by Székelyhidi [Szé15].

We say that a bounded graded norm (or filtration) is almost trivial if its pth central
moment is zero, i.e. its limit measure is a Dirac mass. This means that it is equivalent to a
graded norm in the orbit of the trivial graded norm under the R-action. By what precedes,
a bounded graded filtration is almost trivial iff its L2-norm in the sense of [Szé15] is zero.

4. The asymptotic Fubini–Study operator

In this section we define and study the asymptotic Fubini–Study operator. This associates
a bounded psh metric on L to any graded norm on the section ring R = R(X,L). In
particular, we prove Theorems B and C in the introduction. As in §3, L is an ample line
bundle (as opposed to Q-line bundle) on X.

4.1. Psh metrics regularizable from below. A bounded psh metric ϕ ∈ PSH(L) is reg-
ularizable from below if there exists an increasing net (ϕj)j∈J of metrics in H(L) converging
to ϕ in PSH(L). Thus ϕ = limj ϕj pointwise on Xqm, and ϕ is the usc regularization of the
pointwise limit of the ϕj . It is equivalent to demand the same property with the ϕj being

continuous psh metrics. We write PSH↑(L) for the set of metrics regularizable from below.

Remark 4.1. Inspired by the main result in [Bed80], we conjecture that a psh metric is
regularizable from below iff it is continuous outside a pluripolar set, see Definition 5.1.

Not every bounded psh metric is regularizable from below.

Example 4.2. Let X = P1
k and L = O(1), where k is an infinite field, and let (xn)∞1 be

a Zariski dense set in X(k). There exists a metric ψ ∈ PSH(L) such that maxψ = 0 and
ψ(xn) = −∞ for all j. (We can take ψ with MA(ψ) =

∑
j cnδxn where cn > 0 and

∑
j cn =

1). Then ϕ := exp(ψ) ∈ PSH(L) is bounded, supX ϕ = 1, and ϕ(xn) = 0 for all j. Suppose
ϕ = limj ϕj for an increasing net (ϕj)j of positive metrics. Then ϕj(xn) ≤ ϕ(xn) = 0 for
all j and n, so since ϕj is continuous and xn converges to the generic point of X, we must
have ϕj ≤ 0 for all j, and hence ϕ ≤ 0, a contradiction.
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4.2. Psh envelopes of bounded metrics. Next we introduce

Definition 4.3. For any bounded metric ϕ on L we set

Q(ϕ) = usc sup{ψ ∈ H(L) | ψ ≤ ϕ}, (4.1)

In (4.1) it would be equivalent to replace H(L) by H(L)R or PSH(L)∩C0(X), since any
continuous psh metric can be uniformly approximated by positive metrics. Also note that
Q(ϕ) = Q(lscϕ). Indeed, if ψ ∈ H(L), then ψ ≤ ϕ iff ψ ≤ lscϕ.

Lemma 4.4. For any bounded metric ϕ, we have Q(ϕ) ∈ PSH↑(L). Further, if ϕ is usc,
then Q(ϕ) ≤ ϕ, with equality iff ϕ ∈ PSH↑(L).

Proof. The set J of metrics ψ ∈ H(L) such that ψ ≤ ϕ is directed in the obvious way: ψ ≤ ψ′
iff ψ(x) ≤ ψ′(x) for all x ∈ X. We can then view J as an increasing net in H(L), indexed
by itself. This net converges to Q(ϕ) in PSH(L), so Q(ϕ) ∈ PSH↑(L). The remaining
statements are clear. �

In [BoJ18] we considered a different envelope: for any bounded metric ϕ on L, set

P (ϕ) = sup{ψ ∈ PSH(L) | ψ ≤ ϕ}. (4.2)

In view of Example 4.2, we can have P (ϕ) 6= Q(ϕ), even when ϕ ∈ PSH(L).

Proposition 4.5. Let ϕ be a bounded metric on L.

(i) If ϕ is continuous, so if P (ϕ), and Q(ϕ) = P (ϕ);
(ii) In general, Q(ϕ) = uscP (lscϕ).

Proof. First assume ϕ is continuous. By Corollary 5.28 in [BoJ18], P (ϕ) is a continuous
psh metric. Since the supremum in (4.2) is taken over a larger set of metrics than in (4.1),
we have Q(ϕ) ≤ usc(P (ϕ)) = P (ϕ). On the other hand, since P (ϕ) can be uniformly
approximated by positive metrics, it follows from (4.1) that Q(ϕ) ≥ P (ϕ). This proves (i).

To prove (ii), we may assume ϕ is lsc, since Q(ϕ) = Q(lscϕ). We must then prove that
Q(ϕ) = uscP (ϕ). The inequality Q(ϕ) ≤ uscP (ϕ) is clear from the definitions. Being lsc,
ϕ is the limit of an increasing net ϕj of continuous metrics on L. Pick ε > 0 and suppose
ψ ∈ PSH(L) satisfies ψ ≤ ϕ. Then ψ < ϕj + ε for j � 0. Thus (i) gives

ψ = P (ψ) ≤ P (ϕj + ε) = P (ϕj) + ε = Q(ϕj) + ε ≤ Q(ϕ) + ε,

Taking the supremum over ψ yields P (ϕ) ≤ Q(ϕ) + ε, and hence uscP (ϕ) ≤ Q(ϕ) + ε. �

4.3. The asymptotic Fubini–Study operator. First suppose L is globally generated,
and consider a norm ‖ · ‖ on H0(X,L). Define a metric FS(‖ · ‖) on L by setting

FS(‖ · ‖) := max{log(|s|0/‖s‖) | s ∈ H0(X,L) \ {0}}.
This can more concretely be described as follows. Pick a basis {sj}Nj=1 for H0(X,L) that is

orthogonal for ‖ · ‖ and write λj := − log ‖sj‖. Then

FS(‖ · ‖) = max
j

(log |sj |0 + λj) (4.3)

Clearly FS(‖ · ‖) belongs to H(L)R, and is hence a continuous psh metric.
Now assume L is an ample bundle. Then mL is globally generated for m� 0.

Lemma 4.6. The set H(L)R coincides with the set of metrics of the form m−1 FS(‖ · ‖),
where m� 0 and ‖ · ‖ is a norm on Rm.
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Proof. It is clear from (4.3) that any metric of the form m−1 FS(‖ · ‖) belongs to H(L)R.
Conversely, any metric ϕ ∈ H(L)R is of the form ϕ = m−1 max1≤j≤N ′(log |sj |0 + λj), where
m ≥ 1, s1, . . . , sN ′ are global sections of mL without common zero, and λj ∈ R, 1 ≤ j ≤ N ′.
We may assume λ1 ≥ λ2 ≥ · · · ≥ λN ′ . We may also assume that sj does not lie in the
linear span of (si)i<j for 1 ≤ j ≤ N ′, or else we could remove the entry log |sj |+λj from the
max defining ϕ. Now (sj)j≤N ′ are linearly independent, and can be completed to a basis
(sj)j≤Nm of Rm. If we pick λj � 0 for j > N ′, then ϕ = m−1 maxj≤Nm(log |sj |+λj). Define
a norm ‖ · ‖ on Rm by ‖

∑
ajsj‖ = maxj |aj | exp(−λj). Then ϕ = m−1 FS(‖ · ‖). �

Now consider a bounded graded norm ‖ · ‖• on R. Then ϕm := m−1 FS(‖ · ‖m) ∈ H(L)R
for m � 0. The fact that ‖ · ‖• is bounded means that there exists C > 0 such that
|ϕm| ≤ C for all m � 0. The submultiplicative property ‖s ⊗ s′‖m+m′ ≤ ‖s‖m · ‖s′‖m′
implies (m + m′)ϕm+m′ ≥ mϕm + m′ϕm′ pointwise on X. By Fekete’s lemma, the limit
limm→∞ ϕm therefore exists pointwise on X, is finite, and equals supm ϕm. Now set

FS(‖ · ‖•) := usc( lim
m→∞

ϕm) = usc(sup
m
ϕm),

where usc denotes upper semicontinuous regularization. Thus FS(‖ · ‖•) is a bounded psh
metric on L, called the asymptotic Fubini–Study metric associated to ‖ · ‖•.

Remark 4.7. It will be useful to consider Z>0 as a set directed by r1 ≤ r2 iff r1 | r2; then
(ϕr)r is an increasing net in PSH(L) that converges to ϕ.

The next result shows how the asymptotic Fubini–Study operator interacts with natural
operations on graded norms and metrics. The proof is left to the reader. See Proposition 4.20
for a deeper result.

Proposition 4.8. Let ‖ · ‖• be a bounded graded norm on R, c ∈ R, and r ∈ Z>0. Then:

(i) FS(exp(c •)‖ · ‖•) = FS(‖ · ‖•)− c;
(ii) if ‖ · ‖(r)• is the restriction of ‖ · ‖• to R(X, rL), then FS(‖ · ‖•) = r−1 FS(‖ · ‖(r)• )

4.4. The range of the asymptotic Fubini–Study operator. We now turn to the proof
of Theorem B in the introduction. It is clear that any asymptotic Fubini–Study metric is
regularizable from below. To prove the converse, we associate to any (not necessarily psh)
bounded metric ϕ on L its graded supremum norm ‖ · ‖ϕ,• defined by

‖ · ‖ϕ,m := sup
X
| · |0 exp(−mϕ)

for m ≥ 1. This is a bounded graded norm on R, and it follows from the definition that

‖ · ‖ϕ,• ∨ ‖ · ‖ϕ,• = ‖ · ‖ϕ∧ϕ′,• (4.4)

for bounded metrics ϕ and ϕ′ on L.

Proposition 4.9. For any bounded metric ϕ on L we have Q(ϕ) = FS(‖ · ‖ϕ,•).

Remark 4.10. As a consequence, it would have sufficed to use sequences rather than nets
in Definition 4.3. This can be viewed as an instance of Choquet’s lemma.

Proof. We will use the fact that (4.1) remains true with H(L) replaced by H(L)R. Write
ϕm := m−1 FS(‖ · ‖ϕ,m) for m ≥ 1 so that FS(‖ · ‖ϕ,•) = usc supm ϕm. On the one hand,
ϕm ∈ H(L)R and ϕm ≤ ϕ for all m� 0, so FS(‖·‖ϕ,•) ≤ Q(ϕ). On the other hand, suppose
ψ ∈ H(L)R and ψ ≤ ϕ. Write ψ = m−1 max1≤j≤N (log |sj |0 + λj), where sj ∈ Rm, λj ∈ R
and the sj have no common zero. Since ψ ≤ ϕ, we have ‖sj‖mϕ = sup |sj |0 exp(−mϕ) ≤
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exp(−mλj), and hence log(|sj |0/‖sj‖mϕ) ≥ log |sj |0 + λj for all j. Taking the max over j
gives

ψ ≤ m−1 max
j

log(|sj |0/‖sj‖mϕ) ≤ m−1 FS(‖ · ‖ϕ,m) = ϕm ≤ FS(‖ · ‖ϕ,•).

This gives Q(ϕ) ≤ FS(‖ · ‖ϕ,•) and concludes the proof. �

As a consequence, we obtain the following result, which implies Theorem B.

Corollary 4.11. If ϕ ∈ PSH(L) is regularizable from below, then ϕ = Q(ϕ) = FS(‖ · ‖ϕ,•).

The following result is more restrictive but also more precise.

Lemma 4.12. Suppose that R is generated in degree 1, and that ϕ = ϕL is defined by a
globally generated test configuration (X ,L) for (X,L). Then ϕ = Q(ϕ) = FS(‖ · ‖ϕ,1).

Proof. Since FS(‖ · ‖ϕ,1) ≤ Q(ϕ) ≤ ϕ, it suffices to prove FS(‖ · ‖ϕ,1) = ϕ.
By assumption, L defines a Gm-equivariant morphism of X into a product test configu-

ration P × A1
k, where P = P(H0(X,L)), and L is the pullback of OP×A1

k
(1). Since ϕ and

FS(‖ · ‖ϕ,1) are the pullbacks of the corresponding metrics on OP(1), it suffices to consider
the case when X is a projective space, L = OP(1), and the test configuration for (X,L) is a
product (but not necessarily trivial) test configuration. Pick a basis s0, . . . , sN of H0(X,L)
that diagonalizes the Gm-action, with the weights being λ0 ≤ λ1 ≤ · · · ≤ λN .

On the one hand, FS(‖ · ‖ϕ,1) = maxj log |sj |0 + λj . On the other hand, for each j, sj
extends as a Gm-equivariant section s̄j of L over P × Gm. Then $−λj s̄j , 1 ≤ j ≤ N are
global sections of L without common zero on P × A1

k. Thus the metric ϕL defined by the
test configuration (X ,L) is given by ϕL = maxj(|sj |0 + λj), which completes the proof. �

4.5. Monge–Ampère energy and relative limit measures. Next we show that the
relative Monge–Ampère energy of two asymptotic Fubini–Study metrics is equal to the
relative volume of the graded norms, as well as the barycenter of their relative limit measure.

Theorem 4.13. Let ‖ · ‖• and ‖ · ‖′• be bounded graded norms on R = R(X,L), and set
ϕ := FS(‖ · ‖•), ϕ′ := FS(‖ · ‖′•). Then we have

E(ϕ,ϕ′) =

∫
R
λ dν(λ) = vol(‖ · ‖•, ‖ · ‖′•), (4.5)

where ν = RLM(‖ · ‖•, ‖ · ‖′•) is the relative limit measure of ‖ · ‖• with respect to ‖ · ‖′•.

Corollary 4.14. If ϕ and ϕ′ are bounded metrics on L, then

E(Q(ϕ), Q(ϕ′)) = vol(‖ · ‖ϕ,•, ‖ · ‖ϕ′,•). (4.6)

Proof. This follows since Q(ϕ) = FS(‖ · ‖ϕ,•) and Q(ϕ′) = FS(‖ · ‖ϕ′,•). �

If ϕ and ϕ′ are continuous metrics on L, then by Proposition 4.5, the envelopes Q(ϕ),
Q(ϕ′) coincide with the envelopes considered in [BE18, BGJKM16], namely P (ϕ), P (ϕ′), so
Corollary 4.14 recovers the main result of loc. cit. in the case of a trivially valued field.

Proof of Theorem 4.13. The last equality in (4.5) follows from Corollary 3.3. By the cocycle
properties of E and vol, we may assume ‖ · ‖′• is the trivial graded norm, and ϕ′ the trivial
metric on L.

After replacing L by a multiple, and using Propositions 3.5 and 4.8, we may assume that
L is a line bundle, and that the canonical map SmRr → Rmr is surjective for all r,m ≥ 1.



26 SÉBASTIEN BOUCKSOM AND MATTIAS JONSSON

Let F be the graded filtration associated to ‖ · ‖•. It is easy to see that replacing F by
the associated graded Z-filtration FZ (and modifying the graded norm accordingly) does
not change ϕ, ν, or vol(‖ · ‖•). We may therefore assume that F is a graded Z-filtration.

First assume F is generated in degree 1. In this case, F is associated to an ample test
configuration (X ,L) for (X,L), and ϕ = ϕL is the metric defined by (X ,L), see Lemma 4.12.
The first equality in (4.5) then follows from [BHJ17, Proposition 5.9].

Now consider a general bounded graded norm ‖ · ‖• whose associated graded filtration
F is a graded Z-filtration. Since the canonical map SmRr → Rrm is surjective for all
r,m ≥ 1, we can equip Rrm with the quotient norm from the norm ‖ · ‖r on Rr. This defines

a bounded graded norm ‖ · ‖(r)• on the section ring R(X, rL). By definition, this graded

norm is generated in degree 1. Let F (r) be the associated graded filtration of R(X, rL),

νr := r−1
∗ LM(‖ · ‖(r)• ) its (scaled) limit measure, and ϕr := r−1 FS(‖ · ‖(r)• ) the corresponding

metric on L. By what precedes, we have E(ϕr) =
∫
λ dνr(λ) for each r ≥ 1.

As in Remark 4.7, consider Z>0 as a set directed by r1 ≤ r2 iff r1 | r2. Then (ϕr)r
is an increasing net in PSH(L) that converges to ϕ. Since the Monge–Ampère energy is
continuous along increasing nets, we get limr E(ϕr) = E(ϕ).

It remains to prove that limr→∞
∫
λ dνr(λ) =

∫
λ dν(λ). Since the measures νr have sup-

port contained in a fixed compact interval, it suffices to prove that limr νr = ν weakly. To do
so, we recall the construction of the limit measure from [BC11]. For each λ ∈ R, consider the

graded subalgebra V
(λ)
• of R(X,L) defined by V

(λ)
m = {s ∈ Rm | ‖s‖m ≤ exp(−mλ)}. Using

Okounkov bodies [LM09], one shows that the limit vol(V
(λ)
• ) := limm→∞ n! vol(V

(λ)
m )/mn

exists, and is a decreasing function of λ. The limit measure then satisfies

ν = − vol(L)−1 d

dλ
vol(V

(λ)
• )

in the sense of distributions. Similarly, for r ≥ 1 and λ ∈ R, we have a graded subalgebra

W
(r,λ)
• of R(X, rL), given by W

(r,λ)
m = {s ∈ Rrm | ‖s‖(r)m ≤ exp(−rmλ)}. Again, the limit

vol(W
(r,λ)
• ) := limm→∞ n! vol(W

(r,λ)
m )/mn exists, and is a decreasing function of λ, and

νr = − vol(rL)−1 d

dλ
vol(W

(r,λ)
• ) = − vol(L)−1 d

dλ
r−n vol(W

(r,λ)
• ).

Set g(λ) := vol(V
(λ)
• ) and gr(λ) := r−n vol(W

(r,λ)
• ). By Lemma 4.15 below, gr → g pointwise

on R. Since 0 ≤ gr, g ≤ vol(L), it follows from dominated convergence that gr → g in
L1

loc(R). Hence νr → ν in the sense of distributions, which completes the proof. �

Lemma 4.15. Let V• ⊂ R(X,L) be a graded subalgebra. Suppose that for r ≥ 1 we have a

graded subalgebra W
(r)
• ⊂ V (r)

• , where V
(r)
m := Vrm for m ≥ 1, satisfying W

(r)
1 = V

(r)
1 . Then

limr→∞ r
−n vol(W

(r)
• ) = vol(V•).

Proof. We use Okounkov bodies, following [Bou14]. Pick a valuation µ : k(X)× → Zn of

rational rank n. Set Γm := µ(Vm \ {0}) and Γ
(r)
m := µ(W

(r)
m \ {0}) for m ≥ 1. Let ∆(V•) and

∆(W
(r)
• ) be the closed convex hull inside Rn of

⋃
mm

−1Γm and of
⋃
mm

−1Γ
(r)
m , respectively.

Then vol(V•) = n! vol(∆(V•)) and vol(W
(r)
• ) = n! vol(∆(W

(r)
• )), so it suffices to prove that

limr→∞ vol(r−1∆(W
(r)
• )) = vol(∆(V•)).

Since W
(r)
m ⊂ Vrm, we get Γ

(r)
m ⊂ Γrm for all r,m, and hence r−1∆(W

(r)
• ) ⊂ ∆(V•) for

all r. If vol(∆(V•)) = 0, we are done, so we may assume ∆(V•) has nonempty interior.
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Pick compact subsets K and L of Rn with K ⊂⊂ L ⊂⊂ ∆(V•). It suffices to prove that

r−1∆(W
(r)
• ) ⊃ K for r � 1. Now r−1Zn∩L = r−1Γr∩L for r � 1, see [Bou14, Lemme 1.13].

If ∆r is the convex hull of r−1Γr, it follows that ∆r ⊃ K for r � 1. But W
(r)
1 = Vr, so

Γ
(r)
1 = Γr, and hence r−1∆(W

(r)
• ) ⊃ ∆r ⊃ K, which completes the proof. �

4.6. Injectivity of the asymptotic Fubini–Study operator. The next result is a re-
formulation of Theorem C in the introduction.

Theorem 4.16. Let ‖ · ‖• and ‖ · ‖′• be bounded graded norms on R(X,L) and write ϕ :=
FS(‖ · ‖•), ϕ′ := FS(‖ · ‖′•). Then ‖ · ‖• and ‖ · ‖′• are equivalent iff ϕ = ϕ′.

We will prove this using the Monge–Ampère energy. For this we need some preparation.

Lemma 4.17. If ϕ,ϕ′ ∈ E1(L) and ϕ ≥ ϕ′, then ϕ = ϕ′ iff E(ϕ,ϕ′) = 0.

Proof. The direct implication is trivial. For the reverse direction, note that

E(ϕ,ϕ′) =
1

(n+ 1)V

n∑
j=0

∫
(ϕ′ − ϕ)ωjϕ ∧ ω

n−j
ψ ≥ 1

n+ 1
I(ϕ,ϕ′).

This implies I(ϕ,ϕ′) = 0, and hence ϕ − ϕ′ is constant, say ϕ = ϕ′ + c, with c ≥ 0. But
then c = E(ϕ,ϕ′) = 0, completing the proof. �

Corollary 4.18. The assertion of Theorem 4.16 holds when ‖ · ‖• ≤ ‖ · ‖′•.

Proof. Indeed, in this case, ϕ ≥ ϕ′, and (3.11), (4.5) imply that

d1(‖ · ‖•, ‖ · ‖′•) = vol(‖ · ‖•, ‖ · ‖′•) = E(ϕ,ϕ′),

which concludes the proof in view of Lemma 4.17. �

Lemma 4.19. If ‖ ·‖• is a bounded graded norm, and ϕ := FS(‖ ·‖•) its asymptotic Fubini–
Study metric, then the supremum graded norm ‖·‖ϕ,• is equivalent to ‖·‖•. It is the smallest
bounded graded norm equivalent to ‖ · ‖•.

Proof. We first prove that ‖ · ‖ϕ,• ≤ ‖ · ‖•. Recall that ϕ = supm ϕm, where ϕm :=

m−1 sups∈Rm\{0} log |s|0
‖s‖m . Thus, for every s ∈ Rm \ {0},

‖s‖ϕ,m = sup
X
|s|0 exp(−mϕ) ≤ sup

X
|s|0 exp(−mm−1 log

|s|0
‖s‖m

) = ‖s‖m.

Since ϕ ∈ PSH↑(L), Corollary 4.11 shows that FS(‖ · ‖ϕ,•) = ϕ = FS(‖ · ‖•). Thus ‖ · ‖• and
‖ · ‖ϕ,• are equivalent by Corollary 4.18. �

Proposition 4.20. Let ‖ · ‖• and ‖ · ‖′• be bounded graded norms on R. Then

FS(‖ · ‖• ∨ ‖ · ‖′•) = Q(ϕ ∧ ϕ′), (4.7)

where ϕ := FS(‖ · ‖•) and ϕ′ := FS(‖ · ‖′•).

Proof. By Lemma 4.19, the graded norms ‖ · ‖• and ‖ · ‖ϕ,• are equivalent, as are ‖ · ‖′• and
‖ · ‖ϕ′,•. Lemma 3.10 then shows that ‖ · ‖• ∨ ‖ · ‖′• is equivalent to ‖ · ‖ϕ,• ∨ ‖ · ‖ϕ′,•. Thus
we may assume ‖ · ‖• = ‖ · ‖ϕ,• and ‖ · ‖′• = ‖ · ‖ϕ′,•. Now ‖ · ‖• ∨‖ · ‖′• = ‖ · ‖ϕ∧ϕ′,•, see (4.4),
so the result follows from Proposition 4.9. �
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Corollary 4.21. If ‖ · ‖• and ‖ · ‖′• are bounded graded norms on R(X,L), then

d1(‖ · ‖•, ‖ · ‖′•) = E(ϕ,Q(ϕ ∧ ϕ′)) + E(ϕ′, Q(ϕ ∧ ϕ′)), (4.8)

where ϕ := FS(‖ · ‖•) and ϕ′ := FS(‖ · ‖′•).

Proof. This follows from Theorem 4.13, (3.11) and (4.7). �

Proof of Theorem 4.16. By definition, the graded norms are equivalent iff d1(‖·‖•, ‖·‖′•) = 0.
This happens iff both terms in the right hand side of (4.8) vanish, since the terms are
nonnegative. By Lemma 4.17, this occurs iff ϕ = Q(ϕ ∧ ϕ′) = ϕ′. �

We also mention a related result. Let F be a bounded graded filtration, with associated
graded norm ‖ · ‖• and metric ϕ = FS(‖ · ‖•) ∈ PSH↑(L). Then

cnJ(ϕ) ≤ ‖F‖1 ≤ 2J(ϕ), (4.9)

where cn = 2nn/(n + 1)n+1 and ‖ · ‖1 is the first central moment defined in §3.7. Indeed,
by [BHJ17, Theorem 7.9], this holds when F is induced by an ample test configuration, and
the general case is reduced to this case by approximation, as in the proof of Theorem 4.13.

4.7. The Darvas distance. If ϕ,ϕ′ ∈ PSH(L) are regularizable from below, then we set

d1(ϕ,ϕ′) := E(ϕ,Q(ϕ ∧ ϕ′)) + E(ϕ′, Q(ϕ ∧ ϕ′)).
It follows that d1 defines a distance on the space PSH↑(L). Further, the asymptotic Fubini–
Study operator gives an isometric bijection between the space of equivalence classes of
bounded graded norms on R, and the space PSH↑(L).

The metric on PSH↑(L) is analogous to the metric on E1(L) considered by Darvas in the
Archimedean case. Indeed, in our setting, if ϕ and ϕ′ are continuous, then d1(ϕ,ϕ′) :=
E(ϕ, P (ϕ ∧ ϕ′)) + E(ϕ′, P (ϕ ∧ ϕ′)), in accordance with [Dar15, Corollary 4.14]. A positive
answer to the following conjecture would make the analogy even stronger.

Conjecture 4.22. We have P (ϕ ∧ ϕ′) = Q(ϕ ∧ ϕ′) for ϕ,ϕ′ ∈ PSH↑(L).

4.8. K-stability and filtrations. Székelyhidi proved in [Szé15] that if the (reduced) auto-
morphism group of (X,L) is finite and X admits a cscK metric in c1(L), then (X,L) satisfies
a condition—involving filtrations—that is stronger than the usual notion of K-stability.

For simplicity assume R(X,L) is generated in degree 1. Consider a bounded graded Z-

filtration F of R(X,L). For r ≥ 1, the filtration of Rr induces a filtration F (r) of R(X, rL)
that is generated in degree one. This filtration defines an ample test configuration Lr for L.
Let DF(Lr) be its Donaldson–Futaki invariant, and set Fut(F) := lim infr DF(Lr).

Now suppose (X,L) is uniformly K-stable in the strong sense that there exists ε > 0
such that M(ϕ) ≥ εJ(ϕ) for all ϕ ∈ E1(L). Pick ϕ = FS(‖ · ‖•), where ‖ · ‖• is the graded
norm associated to F . By (4.9), we have M(ϕ) ≥ ε

2‖F‖1. For r ≥ 1, ϕr := r−1 FS(‖ · ‖r)
is the positive metric associated to Lr. As in Remark 4.7, partially order Z>0 by r ≤ r′

iff r | r′. Then the net (ϕr)r increases to ϕ. Thus limr E(ϕr) = E(ϕ), and similarly
EKX

(ϕr) → EKX
(ϕ). Further MA(ϕr) → MA(ϕ), which implies lim infrH(ϕr) ≥ H(ϕ),

since H(ϕ) = Ent(MA(ϕ)), and Ent is lsc. In view of (2.2), this gives lim infrM(ϕr) ≥
M(ϕ) ≥ ε

2‖F‖1. Now DF(Lr) ≥M(ϕr) by [BHJ17, (7.7)], so we get

Fut(F) ≥ ε
2‖F‖1.

Since ‖F‖2 = 0 iff ‖F‖1 = 0, we conclude that Fut(F) > 0 whenever ‖F‖2 > 0; this is the
condition considered in [Szé15].
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If the (reduced) automorphism group of (X,L) is finite and X admits a cscK metric in
c1(L), then (X,L) is uniformly K-stable in the usual sense, see [BDL16, Theorem 1.7].

5. A valuative criterion of K-stability

In [Fuj16], Fujita gave a valuative criterion of K-semistability and uniform K-stability of
Fano varieties. The case of K-semistability was treated independently by C. Li [Li17]. Here
we use psh metrics to prove a version of the valuative criterion in the general adjoint setting
of an ample Q-line bundle L on a smooth projective variety X. In particular, we prove
Theorems D, E and E’ of the introduction.

5.1. Alexander-Taylor capacity. Inspired by [AT84] we define the Alexander-Taylor ca-
pacity2 of a point x ∈ X (relative to L) as

T (x) = sup{sup
X
ϕ− ϕ(x) | ϕ ∈ PSH(L)}.

Here it is equivalent to take the supremum over metrics ϕ ∈ H(L) and/or normalized by
ϕ(x) ≤ 0. The following definition will be used in what follows.

Definition 5.1. A subset E ⊂ X is pluripolar if there exists ϕ ∈ PSH(L) with ϕ|E ≡ −∞.

This notion does not depend on the choice of ample Q-line bundle L. Indeed, if L′ is
another ample Q-line bundle, then there exists ε > 0 rational such that L′′ := L′ − εL is
ample. If ϕ′′ ∈ H(L′′), then ϕ′ := εϕ+ ϕ′′ ∈ PSH(L′′) and ϕ′ ≡ −∞ on E.

We say that a point x ∈ X is pluripolar if {x} is pluripolar. Any point x ∈ X \ Xval

is pluripolar. Indeed, there exists a subvariety Y ( X containing x. Since L is ample,
there exists m ≥ 1 and a nonzero section s ∈ H0(X,mL) vanishing along Y . Then ϕ :=
m−1 log |s|0 ∈ PSH(L) and ϕ(x) = −∞. There also exist pluripolar points x ∈ Xval. A
simple example from [ELS03] is explained in [BKMS16, Remark 2.19].

Proposition 5.2. Let x ∈ X be any point. Then:

(i) T (x) ≥ 0, with equality iff x is the generic point of X;
(ii) T (x) =∞ iff x is pluripolar.

Proof of Proposition 5.2. Clearly, T (x) ≥ 0. If x is the generic point, then ϕ(x) = supX ϕ
for every ϕ ∈ PSH(L), so T (x) = 0. Now suppose x is not the generic point of X and set
ξ = red(x). There exists m ≥ 1 and a nonzero section s ∈ H0(X,mL) vanishing at ξ. Then
ϕ := m−1 log |s|0 ∈ PSH(L) satisfies supX ϕ = 0 and ϕ(x) < 0, so T (x) > 0. This proves (i).

As for (ii), it is clear that T (x) =∞ when x is pluripolar. Conversely, if T (x) =∞, there
exists a sequence (ϕj)

∞
1 of metrics in PSH(L) such that supX ϕj = 0 and ϕj(x) ≤ −2j .

Then ϕ :=
∑

j 2−jϕj ∈ PSH(L) satisfies ϕ(x) = −∞, so x is pluripolar. �

We shall later use the following description of the Alexander-Taylor capacity.

Lemma 5.3. Given a subset P ⊂ PSH(L), set TP (x) := supϕ∈P {supX ϕ−ϕ(x)}. Then we
have TH(L) = TP1(x) = TP2(x) = T (x), where

P1 = {ϕ = m−1 log |s|0 | m ≥ 1, s ∈ H0(X,mL) \ {0}},

and P2 = {f = ψ + r | ψ ∈ P1, r ∈ Q}.

2It is the “multiplicative” version e−T (x) of T (x) that behaves like the capacity T in [AT84].
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Proof. That TH(L)(x) = TPSH(L)(x) is clear since every function in PSH(L) is a decreasing
limit of functions in H(L). That TP1(x) = TP2(x) is also clear since ϕ 7→ supX ϕ − ϕ(x) is
translation invariant. Finally, since every function in H(L) is the maximum of finitely many
functions in P2, it follows that TH(L) = TP2(x). This completes the proof. �

5.2. Monge–Ampère energy. The Monge–Ampère energy of a point x ∈ X is

S(x) := E∗(δx) ∈ R+ ∪ {+∞}.
We can write this as

S(x) = sup{E(ϕ)− ϕ(x) | ϕ ∈ E1(L)},
where we may equivalently take the supremum over ϕ ∈ H(L). For such ϕ we have

n

n+ 1
minϕ+

1

n+ 1
sup
X
ϕ ≤ E(ϕ) ≤ sup

X
ϕ, (5.1)

so that (n+ 1)−1T (x) ≤ S(x) ≤ T (x). (See (5.3) for a better estimate.) In particular,

Lemma 5.4. For any x ∈ X, we have S(x) =∞ iff T (x) =∞ iff x is pluripolar.

The following result will be used later on.

Proposition 5.5. We have E∗(µ) ≤
∫
S(x) dµ(x) for any Radon probability measure µ

on X.

Proof. For any x ∈ X and any ϕ ∈ H(L), we have E(ϕ) ≤ S(x) + ϕ(x). Integrating with
respect to x, we get E(ϕ) ≤

∫
S(x) dµ(x)+

∫
ϕdµ, and taking the supremum over ϕ ∈ H(L)

gives the desired inequality. �

5.3. Continuity properties. We now study S and T as functions on X.

Proposition 5.6. Any point in Xqm is nonpluripolar. Further, S and T are continuous on
the dual complex ∆X of any snc test configuration X for X.

Proof. For any X ∈ SNC(X), it follows from [BoJ18, Theorem 5.29] that the restriction to
∆X of the family {ϕ − supX ϕ | ϕ ∈ H(L)} is equicontinuous. In view of (5.1), the same
holds for the family {ϕ− E(ϕ) | ϕ ∈ H(L)}. The result follows. �

Remark 5.7. There exist nonpluripolar points in Xval\Xqm. See Example 2.14 in [BKMS16],
and also Example 5.24 below.

Lemma 5.8. For any x ∈ X, the nets (S(pX (x)))X∈SNC(X) and (T (pX (x)))X∈SNC(X) are
increasing, with limits S(x) and T (x), respectively.

Proof. For every ϕ ∈ PSH(L), the net (ϕ(pX (x)))X is decreasing, with limit ϕ(x). This
implies both results. �

Corollary 5.9. The functions S and T are lsc on X.

We also note

Proposition 5.10. The functions S and T are homogeneous on X in the sense that S(xt) =
tS(x) and T (xt) = tT (x) for x ∈ X and t ∈ R×+.

Proof. By [BoJ18, Proposition 7.12] we have S(xt) = E∗(t · δx) = tE∗(δx) = tS(x). Second,

if ϕ ∈ PSH(L), the function ϕt on X defined by ϕt(y) = tϕ(y1/t) also lies in PSH(L),
see [BoJ18, Proposition 5.13]. Further, ϕt ≤ 0 when ϕ ≤ 0. This easily implies T (xt) ≥
tT (x). Replacing (x, t) by (xt, t−1) shows that equality must hold. �
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5.4. Associated graded norm. If L is an ample line bundle (as opposed to Q-line bundle),
any point x ∈ Xval defines a graded norm ‖ · ‖x,• on R = R(X,L) given by

‖s‖m = |s|0(x)

for s ∈ Rm. Its associated graded filtration was studied in detail in [BKMS16].

Proposition 5.11. The graded norm ‖ · ‖x,• is bounded iff x is nonpluripolar. Further, the
Alexander-Taylor capacity T (x) coincides with the invariant T in [BlJ17].

The latter invariant was already introduced (but denoted differently) in [BKMS16]. It is
called the maximum order of vanishing in [BlJ17]. We will see below that the Monge–Ampère
energy S(x) coincides with the expected order of vanishing as studied in [BKMS16, BlJ17].

Proof. For m ≥ 1, consider the successive minima 0 = λm,1 ≤ λm,2 ≤ · · · ≤ λm,Nm of the
norm ‖ · ‖x,m on Rm. The maximum order of vanishing in [BKMS16, BlJ17] is then given by
limm→∞m

−1λm,Nm = supmm
−1λm,Nm , and hence equals T (x) in view of Lemma 5.3. �

5.5. Metrics associated to points. Given any point x ∈ X, define

ϕx := sup{ϕ ∈ PSH(L) | ϕ(x) ≤ 0}.

This is a function on X with values in [0,+∞]. We shall see that the behavior of ϕx is vastly
different, depending upon whether x is pluripolar or not.

Proposition 5.12. If x is pluripolar, then the usc envelope of ϕx is equal to +∞ on X.

Proof. Since Xqm is dense in X, it suffices to prove that ϕx(y) = +∞ for every point y ∈
Xqm. But by Izumi’s inequality [BoJ18, Theorem 2.21], there exists a constant C = C(y) > 0
such that ϕ(y) ≥ supX ϕ− C for all ϕ ∈ PSH(L). This implies that ϕx(y) = +∞. �

The following result is a more precise version of Theorem D.

Theorem 5.13. Let L be an ample Q-line bundle. For any nonpluripolar point x ∈ X, ϕx
is a continuous psh metric on L, and satisfies MA(ϕx) = δx, ϕx(x) = 0. Further,

E(ϕx) = S(x), I(ϕx) = T (x), and J(ϕx) = T (x)− S(x). (5.2)

When L is a line bundle, ϕx is the asymptotic Fubini–Study metric of the graded norm ‖·‖x,•
defined by x, and we have S(x) = vol(‖ · ‖x,•).

Before starting the proof, we make a few remarks. First, the continuity of ϕx can be
interpreted as the singleton {x} being a regular compact set in the sense of pluripotential
theory. Second, the last equality shows that S(x) agrees with the expected order of vanishing
in [BKMS16, BlJ17], see also [MR15]. Third, combining (5.2) and (1.2) gives

1

n+ 1
T (x) ≤ S(x) ≤ n

n+ 1
T (x). (5.3)

for any nonpluripolar point x ∈ X. In fact, this also holds when x is pluripolar, since then
S(x) = T (x) = ∞. The inequality (5.3) is reminiscent of the Alexander-Taylor inequal-
ity [AT84, Theorem 2.1]. It was proved in [Fuj17] for a divisorial point. The proof here is
quite different; however, both proofs ultimately reduce to the Hodge Index Theorem.
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Proof of Theorem 5.13. During the proof we denote the generic point of X by xg.
First assume x is quasimonomial. To prove that ϕx is continuous and that MA(ϕx) = δx,

we can use ground field extension to reduce to [BFJ15, §8.4], which treats the case of a
discretely valued ground field, but let us give a direct proof, based on the argument in loc. cit.

Given any open neighborhood U of x in X, we may find an snc test configuration X for X,
with dual complex ∆ = ∆X , such that p−1

X ({x}) ⊂ U . This follows from the homeomorphism

X
∼→ lim←−X ∆X . Let ∆′ be a (possibly irrational) simplicial subdivision of ∆ such that x is a

vertex of ∆′. (Thus ∆′ and and ∆ have the same underlying space.) Fix a constant C � 0
and let fx be the unique function on ∆′ that is affine on each face, fx(x) = 0, and fx(y) = C
for every vertex y of ∆′ with y 6= x. Extend fx to all of X by demanding fx = fx ◦ pX .
Then fx is continuous.

We claim that ϕx = P (fx), where P (fx) = sup{ϕ ∈ PSH(L) | ϕ ≤ fx} is the psh envelope
of fx, see §4.2. To see this, note that P (fx) ≤ ϕx, so it suffices to prove that if ϕ ∈ PSH(L)
and ϕ(x) ≤ 0, then ϕ ≤ fx. Now, if C � 0, it follows from the Izumi estimate in [BoJ18,
Theorem 2.21] that ϕ(y) < C = fx(y) for all vertices y 6= x of ∆′. Further, ϕ is convex on
each face of ∆ (see [BoJ18, Theorem 5.29]), and hence also on each face of ∆′, so we must
have ϕ ≤ fx on ∆, with equality only at x. Since ϕ ≤ ϕ ◦ pX by loc. cit., this gives ϕ ≤ ϕx
on X, with strict inequality outside p−1

X {x} ⊂ U .
Now fx is continuous, so ϕx = P (fx) is also continuous by [BoJ18, Corollary 5.28]. By

the orthogonality property (see [BoJ18, Theorem 6.30]), the support of MA(ϕx) is contained
in the locus where ϕx = fx. But this locus is contained in U , which was an arbitrary
neighborhood of x, so we must have MA(ϕx) = δx, and also ϕx(x) = 0.

We further have ϕx(xg) = supX ϕx = T (x). Indeed, T (x) ≥ ϕx(xg) − ϕx(x) = ϕx(xg),
and if ϕ ∈ H(L), then ϕ− ϕ(x) ≤ ϕx, so ϕ(xg)− ϕ(x) ≤ ϕx(xg), and hence T (x) ≤ ϕx(xg),
so that T (x) = ϕx(xg). Using MA(ϕx) = δx, this implies I(ϕx) = ϕx(xg) − ϕx(x) = T (x).
We also have (I − J)(ϕx) = E∗(δx) = S(x). As a consequence, J(ϕx) = T (x) − S(x), and
hence E(ϕx) = J(ϕx)− ϕx(xg) = S(x).

Now consider a general nonpluripolar point x ∈ X. Thus S(x), T (x) < ∞. To simplify
notation, denote by J := SNC(X) the directed set of snc test configurations forX. For j ∈ J ,
we have a retraction rj : X → X onto the corresponding dual complex. Set xj := rj(x). Then
limj xj = x, and by Lemma 5.8, S(xj) and T (xj) increase to S(x) and T (x), respectively.

The net (ϕxj )j is increasing and bounded from above by T (x); hence it converges in
PSH(L) to the solution ϕ′x of MA(ϕ′x) = δx, normalized by supX ϕ

′
x = T (x). Thus E(ϕxj )→

E(ϕ′x). We claim that ϕ′x = ϕx. To see this, note that since MA(ϕ′x) = δx, we have

S(x) = E∗(δx) = E(ϕ′x)−
∫
ϕ′xδx = E(ϕ′x)− ϕ′x(x)

and similarly S(xj) = E(ϕxj )−ϕxj (xj) = E(ϕxj ). Since limj S(xj) = S(x) and limj E(ϕj) =
E(ϕ′x), we conclude that ϕ′x(x) = 0. Now consider any metric ϕ ∈ PSH(L) with ϕ(x) ≤ 0.
Set ψ := max{ϕ,ϕ′x}. Then ψ ≥ ϕ′x so E(ψ) ≥ E(ϕ′x). Further, ψ(x) = 0, so

E(ψ)−
∫
ψδx ≥ E(ϕ′x) = E∗(δx).

Thus ψ maximizes the functional ϕ 7→ E(ϕ) −
∫
ϕδx, whose supremum equals E∗(δx) and

is also maximized by ϕ′x. Since the maximizer is unique up to an additive constant, and
since ψ(x) = ϕ′x(x) = 0, we must have ψ = ϕ′x. This amounts to ϕ ≤ ϕ′x, and taking the
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supremum over all ϕ gives ϕx ≤ ϕ′x. On the other hand, ϕ′x is a competitor in the definition
of ϕx, so ϕ′x ≤ ϕx, and we conclude that ϕ′x = ϕx, as claimed.

It remains to prove that ϕx is continuous. Since ϕx is psh, εj := ϕx(xj) decreases to
ϕx(x) = 0. Now ϕxj ≤ ϕx ≤ ϕxj + εj on X, so we see that ϕxj converges uniformly to ϕx.
Since ϕxj is continuous for all j, ϕx is continuous.

Finally suppose L is a line bundle. We must prove ϕx = FS(‖·‖x,•) =: ψx. In the definition
of ϕx, it suffices to take the supremum over positive metrics. Recall that ψx = usc supm ϕm,

where ϕm = m−1 max{log |s|0
|s(x)| s ∈ Rm \ {0}}. Since ϕm(x) = 0, this gives ϕm ≤ ϕx and

hence ψx ≤ ϕx since ϕx is continuous. On the other hand, if ϕ ∈ H(L) and ϕ(x) ≤ 0, then
ϕ ≤ ϕm for some m, and hence ϕ ≤ ψx. Thus ϕx = ψx. The equality E(ϕx) = vol(‖ · ‖x,•)
now follows from Theorem 4.13 (with ‖ · ‖′• the trivial graded norm). �

Remark 5.14. Suppose (X ,L) is a normal test configuration for (X,L) with irreducible
central fiber X0. This includes the case of “special” test configurations of [LX14]. Then the
associated metric ϕ = ϕX ,L on L satisfies MA(ϕ) = δx, where x ∈ Xdiv is the divisorial
point corresponding to X0. Therefore ϕx = ϕ + c is a positive metric in this case. More
generally, if x is a “dreamy” divisorial valuation in the sense of [Fuj16], then ϕx ∈ H(L).
However, given [Kür03], we do not expect ϕx ∈ H(L) for a general divisorial point x ∈ Xdiv.

Note that x 7→ ϕx is equivariant for the R×+-actions on X and PSH(L): we have ϕxt(y
t) =

tϕx(y) for x, y ∈ X, t ∈ R×+.

5.6. Thresholds. Recall (see e.g. [CS08]) that the log canonical threshold α(L) of L is
the infimum of the log canonical threshold lct(D), where D ranges over effective Q-divisors
Q-linearly equivalent to L. We have α(L) > 0, see for instance [BHJ17, Theorem 9.14].
In [BlJ17, Theorem E] the following valuative formula was given.

Theorem 5.15. We have α(L) = infx
A(x)
T (x) , where x may range over either divisorial points

or nonpluripolar points. Here A is the log discrepancy and T the Alexander-Taylor capacity.

Indeed, this follows from [BlJ17, Theorem E] since T (x) is equal to the maximum order
of vanishing of x.

In §2 we defined the adjoint stability threshold δ(L) using measures of finite energy,
see (2.9). We now show that this definition coincides with the one in [BlJ17].

Theorem 5.16. We have δ(L) = infx
A(x)
S(x) , where x may range over either divisorial points

or nonpluripolar points. Here A is the log discrepancy and S the Monge–Ampère energy.

Proof. We have seen that a point x ∈ Xval is nonpluripolar iff S(x) < ∞ iff T (x) < ∞
iff the valuation x has linear growth in the sense of [BKMS16]. Further, for such x, the
Monge–Ampère energy S(x) = E∗(δx) coincides with the expected order of vanishing as
in [BKMS16]. It therefore follows from [BlJ17, Theorem E] that the infima of A(x)/S(x)
over the set of divisorial points and the set of nonpluripolar points agree. Denote the
common infimum by δ′(L). It remains to show that δ′(L) = δ(L).

By considering Dirac masses µ = δx, we get δ(L) ≤ δ′(L). By definition of δ′(L), we have
A(x) ≥ δ′(L)S(x) for all divisorial points x, and hence for all x ∈ X by (iv) in Theorem 2.1
and Lemma 5.8. On the other hand, for any measure µ ∈ M1(X), we have Ent(µ) =∫
X A(x) dµ(x) =

∫
X Ent(δx) dµ(x) and E∗(µ) ≤

∫
X E

∗(δx) dµ(x), see Proposition 5.5. This
implies δ′(L) ≤ δ(L) and completes the proof. �
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The Alexander-Taylor inequality (5.3) together with Theorems 5.15 and (5.16) immedi-
ately shows that

n+ 1

n
α(L) ≤ δ(L) ≤ (n+ 1)α(L); (5.4)

in particular, δ(L) > 0.

5.7. A valuative criterion of adjoint K-stability. In this section we prove Theorems E
and E’. Recall that these say that to test K-stability, it suffices to consider metrics in E1(L)
of the form ϕ = ϕx, where x is a nonpluripolar (or even divisorial) point.

First we note the following consequence of Theorem 5.13.

Corollary 5.17. For any nonpluripolar point x ∈ X,

H(ϕx) = A(x) and Mad(ϕx) = A(x)− S(x).

Indeed, MA(ϕx) = δx implies H(ϕx) = Ent(δx) = A(x), (I − J)(x) = E∗(δx) = S(x), and
hence Mad(ϕx) = A(x)− S(x).

To prove Theorem E we use Corollary 2.11, which says that L is K-semistable in the
adjoint sense iff δ(L) ≥ 1. By the valuative formula for δ(L) in Theorem 5.16, this is
equivalent to A(x) ≤ S(x) for all divisorial points x, or, equivalently, for all nonpluripolar
points x. Since Mad(ϕx) = S(x)−A(x), this proves Theorem E.

The proof of Theorem E’ is similar. By Theorem 2.12, L is uniformly K-stable in the
adjoint sense iff δ(L) > 1, and this is equivalent to the existence to ε > 0 such that (1 +
ε)S(x) ≤ A(x) for all divisorial (resp. nonpluripolar) points x ∈ X. This is in turn equivalent
to Mad(ϕx) ≥ ε(I − J)(ϕx), and the proof is complete since the functionals I − J and J are
comparable, see (1.2).

Remark 5.18. For the convenience of the reader, we compare our notation with the one
in Fujita [Fuj16, Fuj17]. Assume X is Fano, and L = −KX . Let F be a prime divisor
over X, and write x = exp(− ordF ) ∈ Xdiv. Then τ(F ) = T (x), j(F ) = V (T (x) − S(x)),

β(F ) = V (A(x)− S(x)), and β̂(F ) = 1− S(x)/A(x).

5.8. Adjoint K-stability and uniform K-stability. Suppose that k = C (or k alge-
braically closed and uncountable). By [BlJ17, Theorem E], there exists a nonpluripolar
point x ∈ Xval such that A(x) = δ(L)S(x) > 0. This implies Theorem F in the introduc-
tion. Indeed, if L is K-stable in the adjoint sense, it is K-semistable in the adjoint sense,
so δ(L) ≥ 1 by Corollary 2.11. In view of Theorem 2.12 we must show that δ(L) > 1.
But if δ(L) = 1, pick x ∈ Xval as above. Then ϕx is a nonconstant metric in E1(L), and
Mad(ϕx) = 0, contradicting L being K-stable in the adjoint sense.

If L is not K-stable in the adjoint sense, i.e. δ(L) < 1, and x ∈ Xval is a nonpluripolar point
with A(x) = δ(L)S(x) > 0, then ϕx ∈ E1(L) can be viewed as a “maximally destabilizing
metric”. In general, we don’t know whether ϕx ∈ H(L).

5.9. The Tian–Odaka–Sano criterion. In [Tia97], Tian gave an analytic sufficient con-
dition for the existence of Kähler–Einstein metrics on Fano manifolds. An algebraic version
of this was proved by Odaka and Sano [OS12]; see also [Der16, BHJ17]. Our next result
gives a generalization to the general adjoint setting.

Corollary 5.19. Let L be an ample Q-line bundle. If α(L) ≥ n
n+1 (resp. α(L) > n

n+1), then

L is K-semistable (resp. uniformly K-stable) in the adjoint sense.

Proof. Immediate consequence of (5.4), Corollary 2.11 and Theorem 2.12. �
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The same proof also gives a necessary condition for adjoint K-stability.

Corollary 5.20. Let L be an ample Q-line bundle. If α(L) < 1
n+1 (resp. α(L) ≤ 1

n+1), then

L cannot be K-semistable (resp. uniformly K-stable) in the adjoint sense.

In the case of K-semistability, this generalizes [FO16, Theorem 3.5].

5.10. A criterion of finite energy. Using the positivity of the stability threshold, we now
give a criterion for a measure to have finite energy.

Corollary 5.21. Any Radon probability measure of finite entropy has finite energy.

Proof. Indeed, if Ent(µ) <∞, then E∗(µ) ≤ δ(L)−1 Ent(µ) <∞. �

Corollary 5.22. If µ is a Radon probability measure on X such that the log discrepancy A
is bounded above on the support of µ, then E∗(µ) <∞.

Applying this result to a Dirac mass µ = δx and using Theorem 5.13, we get

Corollary 5.23. If x ∈ Xval and A(x) <∞, then x is nonpluripolar.

Remark 2.19 in [BKMS16] contains an example of a point x ∈ Xval whose associated
graded norm is not bounded; hence x is pluripolar. In this example, A(x) = ∞. On the
other hand, it is also possible that x is nonpluripolar even though A(x) =∞.

Example 5.24. Suppose dimX = 2 and that ξ = red(x) is a closed point of Xsch. Thus
v := − log |·|x is a valuation (in the additive sense) on the local ring OXsch,ξ centered at ξ, and
after scaling we may assume minf∈m v(f) = 1, where m is the maximal ideal. This means v
can be viewed as a point in the valuative tree V = Vξ at ξ, see [FJ04] and also [Jon12]. The
log discrepancy A(x) equals the thinness A(v) considered in [FJ04]. By [FJ04, Remark A.4]
we can find v of infinite thinness, A(v) = ∞ but finite skewness, α(v) < ∞. The latter
condition means that there exists C > 0 such that v ≤ C ordξ on OXsch,ξ, and implies that
the associated graded norm is bounded, see [BKMS16, Theorem 2.16], and hence T (x) <∞.

Corollary 5.25. If µ is a Radon probability measure on X whose support is contained in
the dual cone complex ∆(Y,D) of some log smooth pair (Y,D) over X, then E∗(µ) <∞.

Proof. Indeed, the support of µ must then be a compact subset of ∆(Y,D), so since the log
discrepancy is continuous on ∆(Y,D), it must be bounded on the support. �

Appendix A. Properties of the log discrepancy

In this section we prove Theorem 2.1. We first define the log discrepancy function AX .
On X \Xval, we declare AX ≡ ∞, and on Xval we define AX as in [JM12, §5]. Let us recall
how this is done. Consider a log smooth pair (Y,D) over Xsch. The function AX is defined
on the dual cone complex ∆(Y,D) by (2.1) on the one-dimensional cones, and by linearity
on the higher-dimensional cones. It is shown in [JM12] that this gives a well-defined function
on Xqm. To extend AX to Xval, we use the fact that the set of log smooth pairs is directed,
and that we have a homeomorphism

Xval ∼→ lim←−
(Y,D)

∆(Y,D),
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where pY,D : Xval → ∆(Y,D) is a natural retraction defined by evaluation. One can then
show that the net AX ◦ pY,D is increasing and set

AX(x) = lim
Y,D

AX(pY,D(x)) = sup
Y,D

AX(pY,D(x))

for x ∈ Xval. Finally we set AX =∞ on X \Xval.
We claim that AX is lsc on X. Since AX ◦ pY,D is continuous for every (Y,D), the

restriction of AX to Xval is lsc. Now AX =∞ on X \Xval, so this implies that AX is lsc at
every point in Xval. It remains to prove that AX is lsc at any point x ∈ X \ Xval. There
exists an ample line bundle L on X and a nonzero global section s of L such that |s(x)| = 0.
Now there exists C = C(L) > 0 such that ordξ(s) ≤ C for all ξ ∈ Xsch, cf [BHJ17, p.830].
By the Izumi inequality, see e.g. [JM12, Proposition 5.10], this gives

|s(x′)| ≥ exp(−AX(x′) ordξ(x
′)) ≥ exp(−CAX(x′)) (A.1)

for every x′ ∈ Xval, where ξ = redx′ ∈ Xsch. The same inequality trivially holds also when
x′ ∈ X \Xval, since AX(x′) =∞ in this case

Now, given any B > 0, we have |s| < exp(−CB) on any sufficiently small neighborhood of
x in X, and hence AX ≥ B on the same neighborhood. This proves that limx′→xAX(x′) =
AX(x) =∞. In particular, AX is lsc at x, and hence lsc everywhere on X.

Next we prove that AX is the largest lsc extension of AX : Xdiv → R. (This of course
implies the uniqueness statement in Theorem 2.1.) Let A′ : X → [0,∞] be any other lsc
extension. Since AX is continuous on any dual cone complex ∆ = ∆(Y,D), and Xdiv is
dense in ∆, we have AX ≥ A′ on ∆; hence AX ≥ A′ on Xqm. Now suppose x ∈ X \Xqm.
By construction, there exists a a net (xj)j in Xqm such that limAX(xj) = AX(x). Then
A′(xj) ≤ AX(xj) for all j, so A′(x) ≤ AX(x) since A′ is lsc.

It remains to prove that A satisfies (iii) and (iv) in Theorem 2.1. For this, we use the
Gauss extension σ : X → X × P1. Its image consists of all Gm-invariant points satisfying
log |$| = −1, and σ(Xval) ⊂ (X ×P1)val. If x ∈ Xval, then σ(x) is divisorial iff x is either
divisorial or the generic point of x.

Consider X ∈ SNC(X). We view (X ,X0) as a log smooth pair over Xsch × P1. The dual
cone complex ∆(X ,X0) embeds in (X×P1)val ⊂ X×P1, σ maps ∆X homeomorphically onto
the subset of ∆(X ,X0) cut out by the equation log |$| = −1, and σ−1(∆(X ,X0)) = ∆X .
The embedding σ : ∆X ↪→ ∆(X ,X0) is affine in the sense that if f ∈ C0(∆(X ,X0)) is linear
on each cone, then f ◦ σ is affine on each simplex of ∆X . The retractions pX : X → ∆X and
pX ,X0 : (X ×P1)val → ∆(X ,X0) satisfy

pX ,X0 ◦ σ = σ ◦ pX on Xval. (A.2)

Lemma A.1. For any x ∈ X, we have AX×P1(σ(x)) = AX(x) + 1.

Granted this lemma, property (iii) follows from (A.2). Indeed, AX×P1 is affine on each
cone of ∆(X ,X0), so since σ is affine, AX = AX×P1 ◦ σ − 1 is affine on each simplex of ∆X ,

proving (a). Similarly, by [JM12] we have AX×P1(y) ≥ AX×P1(pX ,X0(y)) for y ∈ (X×P1)val,
with equality iff y ∈ ∆(X ,X0). Using Lemma A.1, this translates into (iii) (b). Property (iv)
now follows formally. Indeed, if x ∈ X, then x = limX pX (x), so AX(x) ≤ limX AX(pX (x))
since AX is lsc. But AX(x) ≤ AX(pX (x)) for all X , so (iv) follows.
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Proof of Lemma A.1. For x divisorial or the generic point of X, the equality is a special
case of [BHJ17, Proposition 4.11]. Set A′ := AX×P1 ◦ σ− 1. Then A′ is lsc and A′ = AX on

Xdiv, so A′ ≤ AX by what precedes.
Now consider X ∈ SNC(X), let S be a simplex in ∆X , and Ŝ the corresponding cone in

∆(X ,X0). Then AX×P1 is continuous on Ŝ, so A′ is continuous on S. Further, A′ = AX on
a dense subset of S, so AX ≤ A on S, since AX is lsc. Thus A′ = AX on Xqm.

Finally consider an arbitrary point x ∈ X. If x has nontrivial kernel, so does σ(x)
and A′(x) = AX(x) = ∞. Now suppose x ∈ Xval. The net (pX (x))X converges to x, so
pX ,X0(x) = σ(pX (x)) converges to σ(x), by the continuity of σ. Now AX×P1(pX ,X0(σ(x))) ≤
AX×P1(σ(x)) for every x, so limX AX×P1(pX ,X0(σ(x)) = AX×P1(σ(x)) by lower semiconti-
nuity. Thus A′(x) = limX A

′(pX (x)) = limX AX(pX (x)) ≥ AX(x), where the last inequality
follows since AX is lsc. Since A′ ≤ AX , this completes the proof. �
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