## **SUPPLEMENTARY INFORMATION**

## Novel Porous Carbons derived from Coal Tar Rejects: Assessment of the Role of Pore Texture in CO<sub>2</sub> Capture under Realistic Post-combustion Operating Temperatures

Enrique García-Díez<sup>†</sup>, Sebastien Schaefer<sup>‡</sup>, Angela Sanchez-Sanchez<sup>‡</sup>, Alain Celzard<sup>‡</sup>, Vanessa Fierro<sup>‡</sup>\*, M. Mercedes Maroto-Valer<sup>†</sup>, Susana García<sup>†</sup>\*

<sup>†</sup> Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences,

Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

<sup>‡</sup> Université de Lorraine, CNRS, IJL, F-88000 Epinal, France

- \* <u>Vanessa.Fierro@univ-lorraine.fr</u>
- \* <u>s.garcia@hw.ac.uk</u>

| Sample  | CO <sub>2</sub> capture capacity |
|---------|----------------------------------|
|         | (mmol $CO_2 / g AC$ )            |
| MSP-20X | $2.64 \pm 0.04$                  |
| MSC-30  | $1.95 \pm 0.01$                  |
| XiPPO_3 | $2.49\pm0.02$                    |
| XiPPO_4 | $2.26 \pm 0.01$                  |
| XiPPO_5 | $2.25 \pm 0.06$                  |
| XPPO_1  | $2.86 \pm 0.03$                  |
| XPPO_2  | $2.24 \pm 0.02$                  |
| XPPO_3  | $2.21 \pm 0.03$                  |
| XPPO_4  | $2.17 \pm 0.03$                  |
| XPPO_5  | $1.95 \pm 0.03$                  |
| CWPO_1  | $2.66 \pm 0.07$                  |
| CWPO_2  | $2.47\pm0.07$                    |
| CWPO_3  | $2.29 \pm 0.01$                  |
| CWPO_4  | $2.10 \pm 0.02$                  |

Table S1. Reproducibility of  $CO_2$  capture capacity values at 25°C and 1 bar under a 90%  $CO_2$  atmosphere.



**Figure S1.** Coefficients of multiple linear regressions for  $CO_2$  adsorption at 25°C for four different pore classes (below 0.5 nm, and in the ranges 0.5-0.7 nm, 0.7-2 nm and 2-50 nm) ( $R^2 = 0.891$ ).



**Figure S2.** Simple linear regression between adsorbed amounts of  $CO_2$  at 25°C and pore volumes: a) VL<0.5, or b) V0.5<L<0.7.



**Figure S3.** Adsorbed amount of  $CO_2$  per unit of BET surface area as a function of the average micropore size calculated by application of the Dubinin-Radushkevich method.



**Figure S4.** a) Ultramicropore fraction, b) supermicropore fraction, and c) mesopore fraction, as a function of the average micropore size according to the NLDFT.

As the temperature is at least 25°C for all experiments and the pressure is constant and low, the  $CO_2$  concentration (in molecules per nm<sup>2</sup>) in the micropores is assumed low. Under those conditions, it can be assumed that adsorption only forms a monolayer and that  $CO_2$  behaves like an ideal gas. In these conditions, the equilibrium constant can be identified with Henry's constant (eq. S1)<sup>13</sup>:

$$K_{mono}^{H} = \frac{C_{mono}^{s}}{P}$$
(eq. S1)

with  $C_{mono}^{s}$  the concentration of adsorbed gas in mol per m<sup>2</sup> and *P* the pressure (Pa). At constant pressure, the Van't Hoff equation can be written as (eq. S2):

$$\frac{d\ln(K)}{dT} = \frac{\Delta H_{ads}}{R.T^2}$$
(eq. S2)

where  $\Delta H_{ads}$  stands for the standard enthalpy of adsorption, *K* the equilibrium constant, *R* the ideal gas constant (8.314 J/mol/K) and *T* the temperature (K). After integration, the Van't Hoff equation becomes (eq. S3):

$$\ln(K) = A - \frac{\Delta H_{ads}}{R.T}$$
(eq. S3)

with *A* a constant. Thus, by representing  $\ln(K)$  with respect to 1/T, the slope gives the enthalpy of adsorption ( $\Delta H_{ads}$ ). Figure S5 gives the Van't Hoff plot for the four materials.



**Figure S5.** Van't Hoff plot for  $CO_2$  adsorption at a pressure of  $10^5$  Pa.



**Figure S6.** Thermal stability of ACs from room temperature to 220°C: a) MSP-20X, b) XiPPO\_3, c) XPPO\_1, and d) CWPO\_1.