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Introduction

The increase in both global warming and worldwide energy demand requires a transition to divestment of fossil fuels and the use of clean and environmentally friendly sources of energy [START_REF] Hosseini | Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development[END_REF][START_REF] Singh | Hydrogen: A sustainable fuel for future of the transport sector[END_REF][START_REF] Marchenko | The future energy: Hydrogen versus electricity[END_REF][START_REF] Ball | The hydrogen economy -Vision or reality?[END_REF][START_REF] Mazloomi | Hydrogen as an energy carrier: Prospects and challenges[END_REF]. Hydrogen could be a valid alternative to fossil fuels [START_REF] Edwards | Hydrogen and fuel cells: Towards a sustainable energy future[END_REF][START_REF] Agbossou | Renewable energy systems based on hydrogen for remote applications[END_REF][START_REF] Edwards | Hydrogen energy[END_REF][START_REF] Jain | Hydrogen the fuel for 21st century[END_REF], but its low volumetric energy density (0.01079 MJ L -1 STP, much lower than that of gasoline, 34 MJ L -1 ) hinders the development of adequate and safe storage systems. Among all the methods nowadays adopted for hydrogen storage [START_REF] Züttel | Hydrogen storage methods[END_REF], physisorption on activated carbons (ACs) is quite promising [START_REF] Sircar | Activated carbon for gas separation and storage[END_REF] because no chemical bond between hydrogen and the carbon surface is involved, thus giving completely reversible hydrogen uptakes and releases [START_REF] Rzepka | Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes[END_REF][START_REF] Bénard | Storage of hydrogen by physisorption on carbon and nanostructured materials[END_REF] with adsorption energies between 4 and 8 kJ mol -1 [START_REF] Schaefer | Physisorption, chemisorption and spill-over contributions to hydrogen storage[END_REF].

Hydrogen adsorption on ACs has proven to be a more advantageous way to store hydrogen than pure compression up to 20 MPa at room temperature [START_REF] Fierro | Adsorption and compression contributions to hydrogen storage in activated anthracites[END_REF]. To store 5 kg of hydrogen at 20 MPa and at room temperature, a tank with a volume of 340 L would be needed if hydrogen is purely compressed, whereas a volume of 263 L would be necessary under the same conditions if the tank is filled with ACs [START_REF] De La Casa-Lillo | Hydrogen Storage in Activated Carbons and Activated Carbon Fibers[END_REF][START_REF] Berry | Onboard Storage Alternatives for Hydrogen Vehicles[END_REF]. Further improvements are possible at cryogenic temperatures due to the higher density of the adsorbed phase [START_REF] Petitpas | A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods[END_REF]. At 77 K, the amount of adsorbed hydrogen stored in microporous carbons is predominant relative to the amount of hydrogen in the gas phase, especially at low pressure, and significantly increases the total storage compared to the pure compression under identical temperature and pressure conditions. Thus, the adsorbed phase represents approximately 60% of the maximum storage capacity measured at 2 MPa [START_REF] Dumont | Hydrogen storage by adsorption onto different activated carbons[END_REF], leading to the possibility of adopting a cryogenic hydrogen adsorption system for storing hydrogen, the efficiency of which would essentially depend on two main features: (i) AC textural properties and (ii) thermal management of the entire system.

With regard to the textural properties of ACs, the physisorption of hydrogen is enhanced on microporous carbons with high specific surface areas [START_REF] Fierro | Pore size distribution in microporous carbons obtained from molecular modeling and density functional theory[END_REF][START_REF] Jagiello | Characterization of Carbon Micro and Ultramicropores Using Adsorption of Hydrogen and Other Simple Gases[END_REF]. The maximum storage capacity and the specific surface area of ACs are related to each other by the "Chahine rule", which assumes that the hydrogen uptake on ACs increases progressively by 1 wt.% per 500 m 2 g -1 of specific surface area at 77 K [START_REF] Poirier | Hydrogen adsorption in carbon nanostructures[END_REF]. However, Dubinin [START_REF] Dubinin | Adsorption in micropores[END_REF] stated that in microporous adsorbents, the concept of surface area loses its physical significance because hydrogen uptake is due to pore volume filling and not to monolayer adsorption. Thus, high hydrogen uptakes can be achieved with ACs having substantially high micropore volumes, the optimal micropore diameter depending on pressure and temperature [START_REF] Heo | Defining contribution of micropore size to hydrogen physisorption behaviors: A new approach based on DFT pore volumes[END_REF].

The hydrogen adsorption capacities on ACs are among the highest ever reached and reported in the open literature [START_REF] Sdanghi | Hydrogen Adsorption on Nanotextured Carbon Materials[END_REF], regardless of the carbon precursor (i.e., anthracites, bituminous coal or cellulose [START_REF] Blankenship Ii | Oxygen-rich microporous carbons with exceptional hydrogen storage capacity[END_REF][START_REF] Tellez-Juarez | Hydrogen storage in activated carbons produced from coals of different ranks: Effect of oxygen content[END_REF][START_REF] Zhao | Optimization of activated carbons for hydrogen storage[END_REF]). A hydrogen excess capacity as high as 6.4 wt.% at 77 K and 4 MPa with ACs having a micropore volume of 0.87 cm 3 g -1 is among the best results ever obtained for a carbon material [START_REF] Fierro | Adsorption and compression contributions to hydrogen storage in activated anthracites[END_REF]. This value is higher than the gravimetric hydrogen storage recommended by the DOE for automotive applications, i.e., 5.5 wt.% by 2025 [START_REF] Klebanoff | 5 Years of hydrogen storage research in the U.S. DOE Metal Hydride Center of Excellence (MHCoE)[END_REF][START_REF]DOE Technical Targets for Onboard Hydrogen Storage for Light[END_REF].

Nevertheless, not only the weight of the adsorbent but that of the whole system must be taken into account in the DOE target and, therefore, a hydrogen capacity well above 5.5 wt.% should be reached if only the adsorbent is considered. As a result, the DOE target remains difficult to reach at room temperature [START_REF] Samantaray | Investigation of room temperature hydrogen storage in biomass derived activated carbon[END_REF], although hydrogen storage capacities can be improved by doping with metal nanoparticles or heteroatoms [START_REF] Zhao | Synthesis and characterization of Pt-N-doped activated biocarbon composites for hydrogen storage[END_REF][START_REF] Zhao | Hydrogen uptake of high surface area-activated carbons doped with nitrogen[END_REF].

Appropriate heat management is necessary to achieve good hydrogen storage performance, as hydrogen adsorption on ACs is an exothermic process [START_REF] Schaefer | Assessment of hydrogen storage in activated carbons produced from hydrothermally treated organic materials[END_REF]. Thus, hydrogen adsorption increases the temperature and significantly affects the net hydrogen storage capacity if the heat of adsorption is not evacuated [START_REF] Wang | Thermal Management and Enhancement of Adsorption Based Onboard Hydrogen Storage System[END_REF]. Indeed, Hermosilla-Lara et al. [START_REF] Hermosilla-Lara | Hydrogen storage by adsorption on activated carbon: Investigation of the thermal effects during the charging process[END_REF] found that the heat of adsorption contributes up to 22% of all the thermal effects involved in a cryogenic adsorption system. Rogacka et al. [START_REF] Rogacka | Modeling of low temperature adsorption of hydrogen in carbon nanopores[END_REF] showed that the heat of adsorption is independent of the gas pressure in the narrow pores, whereas it becomes pressure-dependent as the pore size increases. Moreover, Broom et al. [START_REF] Broom | Concepts for improving hydrogen storage in nanoporous materials[END_REF] found that the usable capacity of hydrogen in an adsorption system could be increased by reducing the heat of adsorption.

The heat of adsorption is generally evaluated by using the sorption isosteric method [START_REF] Kloutse | Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric method, and analytical models[END_REF], which consists in applying the Clausius-Clapeyron equation to the adsorption isotherms calculated over a wide range of temperature and pressures. The latter method reliably determines the isosteric heat of adsorption [START_REF] Giraldo | Isosteric Heat: Comparative Study between Clausius-Clapeyron, CSK and Adsorption Calorimetry Methods[END_REF], which ranges from 3 to 7.5 kJ mol -1 [START_REF] Lupu | Hydrogen storage potential in MIL-101 at 200 K[END_REF] for hydrogen adsorption on the Metal Organic Framework (MOF) MIL-101 and on different microporous carbon adsorbents [START_REF] Fomkin | Adsorption of Hydrogen in Microporous Carbon Adsorbents of Different Origin[END_REF]. The smallest pores contribute the most to the average heat of adsorption and are the first to be filled [START_REF] Schmitz | Heat of Adsorption for Hydrogen in Microporous High-Surface-Area Materials[END_REF], and the heat of adsorption decreases with the surface coverage [START_REF] Ma | Hydrogen adsorption behavior of graphene above critical temperature[END_REF][START_REF] Tian | Nanoscale cobalt doped carbon aerogel: microstructure and isosteric heat of hydrogen adsorption[END_REF].

In the present study, hydrogen adsorption on two commercial ACs with different textural characteristics was investigated in the temperature range of 77 to 273 K and up to 15 MPa.

The relationship between textural properties and hydrogen adsorption capacity for the two

ACs was analysed by using the Modified Dubinin-Astakhov (MDA) equation, proposed by Richard et al. [START_REF] Richard | Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified Dubinin-Astakhov model[END_REF]. The MDA equation was also used to evaluate the isosteric heat of hydrogen adsorption, and the results obtained from this approach were compared to those obtained by using the sorption isosteric method and the Sips model. This approach allowed us to analyse (i) the temperature dependence of the isosteric heat of hydrogen adsorption and (ii) its variation with the textural properties of the selected ACs. These two questions are fundamental for developing and designing efficient hydrogen storage systems by cryoadsorption.

Experimental

Textural properties of ACs

In this study, two super-activated carbons (ACs) from Kansai Coke & Chemicals TM (Japan) were selected, the MAXSORB ® MSC-30 and MSP20X.

The textural characterization of both MSC-30 and MSP20X was performed using a Micromeritics ® ASAP 2020 automatic adsorption apparatus. The samples were outgassed under vacuum at 523 K until the pressure stabilised around 0.2-0.4 mPa for more than 24 h prior to any adsorption measurement. Both nitrogen adsorption at 77 K and carbon dioxide adsorption at 273 K were carried out. All data was processed using Micromeritics ® Microactive software.

The surface areas were first calculated with the BET method to compare our results with those reported in the open literature. The BET area, A BET , was then obtained using the BET equation in the range of relative pressures 0.01-0.05, according to Rouquerol [START_REF] Rouquerol | Is the bet equation applicable to microporous adsorbents?[END_REF]. Pore size distributions (PSDs) were obtained by non-local density function theory (NLDFT) using the SAIEUS ® software of Jagiello et al. [START_REF] Jagiello | Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2[END_REF]. SAIEUS ® provides more accurate PSDs by combining N 2 and CO 2 adsorption data. By integrating the PSDs over the entire range of pore sizes [START_REF] Centeno | The assessment of surface areas in porous carbons by two model-independent techniques, the DR equation and DFT[END_REF], we also obtained the S NLDFT surface areas. The average micropore diameter, L 0 , was calculated using the NLDFT model. Micropore volumes were evaluated by both the NLDFT model and the Dubinin-Raduskevich (DR) equation. Finally, the NLDFT was also used to calculate the micropore surface areas.

Hydrogen adsorption measurements

The hydrogen adsorption measurements were carried out in the temperature range of 77 to 273 K and up to 15 MPa using the HPVA II high-pressure volumetric device from Micromeritics-Particulate Systems. Temperature control was achieved through a one-stage closed-cycle cryogenic refrigerator providing accurate temperature control with an error margin of ± 0.005 K and capable of operating between 25 and 350 K. A sample cell of 10 cm 3 of volume was used for the measurements, filled with an amount of carbon of about 1.2 g.

Prior to any measurement, the sample was outgassed under vacuum (6×10 -4 Pa) at 423 K for 10 h. The pressure steps chosen for hydrogen adsorption were 0.1, 0.5, 0.8, 1, 2, 3, 5, 7.5, 10, 12.5 and 14 MPa, while pressure steps for desorption were 11.5, 8, 4.5, 1.5 and 0.5 MPa. The contribution of the empty cell was systematically measured at each temperature and subtracted.

The isosteric heat of adsorption, Q st , was calculated using the isosteric method [START_REF] Kloutse | Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric method, and analytical models[END_REF] from the Micromeritics ® Microactive 4.01 software, based on the Clausius-Clapeyron equation: [START_REF] Hosseini | Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development[END_REF] where R is the universal gas constant (8.314 J mol -1 K -1 ), P is the absolute pressure (Pa) and T is the temperature (K). Q st was calculated using nine isotherms at nine different temperatures between 93 and 253 K.

Modelling

Modified Dubinin-Astakhov (MDA) equation

Experimental storage data provide values of excess hydrogen adsorption, n exc [mol/kg],

particularly when volumetric methods are used for measurements. It is defined as the difference between the hydrogen uptake on the surface of AC at a specific temperature and pressure and the amount that would be present in the same volume and at the same temperature and pressure in the absence of adsorption forces [START_REF] Bénard | Storage of hydrogen by physisorption on carbon and nanostructured materials[END_REF]: [START_REF] Singh | Hydrogen: A sustainable fuel for future of the transport sector[END_REF] where n abs [mol kg -1 ] is the absolute amount of adsorbed hydrogen, ρ g [kg m -3 ] is the hydrogen bulk phase density and V a [m 3 kg -1 ] is the volume of the adsorbed phase. V a is considered constant by several authors [START_REF] Richard | Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified Dubinin-Astakhov model[END_REF][START_REF] Czerny | Adsorption of Nitrogen on Granular Activated Carbon: Experiment and Modeling[END_REF][START_REF] Do | Adsorption of supercritical fluids in non-porous and porous carbons: analysis of adsorbed phase volume and density[END_REF], thus the adsorbed hydrogen is supposed to occupy a defined volume near the surface of the carbon where the adsorption field exists, and where its density increases gradually up to an asymptotic value. V a cannot be measured experimentally. According to Eq. ( 2), excess adsorption isotherms exhibit a maximum. Indeed, ρ g increases significantly at high pressures, while n abs does not increase anymore once it reaches its maximum value at a specific pressure. We used the Modified Dubinin-Astakhov (MDA) equation proposed by Richard et al. [START_REF] Richard | Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified Dubinin-Astakhov model[END_REF] to model hydrogen excess adsorption on ACs:

(3)

The model requires 5 parameters: n max [mol kg -1 ] is the amount of adsorbed hydrogen corresponding to the saturation of the total available porous volume, α [J mol -1 ] is an "enthalpy" factor, β [mol J -1 K -1 ] is an "entropy" factor [START_REF] Richard | Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 2: conservation of mass and energy[END_REF] and P 0 [MPa] is the pseudosaturation pressure, as defined by Dubinin [START_REF] Dubinin | Adsorption in micropores[END_REF]. According to Eq. ( 3), V a is considered constant and is also a fitted parameter.

The non-linear fitting of the curves was also carried out by considering that the density of the adsorbed phase was equal to the density of liquid hydrogen, ρ liq , i.e., 70.8 kg m -3 at 20 K and 0.1 MPa [START_REF] Dreisbach | Highest Pressure Adsorption Equilibria Data: Measurement with Magnetic Suspension Balance and Analysis with a New Adsorbent/Adsorbate-Volume[END_REF]. By adopting this approach, V a is defined as n abs / ρ liq . Thus, the MDA equation takes the following form: [START_REF] Ball | The hydrogen economy -Vision or reality?[END_REF] The pressure dependence of ρ g was determined for each temperature considered in this study using the REFPROP-7 software and introduced into Eq. (3) and Eq. ( 4). The Levenberg-Marquardt algorithm was used to solve the nonlinear curve fitting in sense of least squares.

All the experimental data obtained for the eleven temperatures chosen for this study were fitted simultaneously. This solution allowed obtaining a set of only five parameters valid for the entire temperature range considered.

When using the MDA equation, the isosteric heat of adsorption, Q st , takes the following form: [START_REF] Mazloomi | Hydrogen as an energy carrier: Prospects and challenges[END_REF] where n abs / n max is the hydrogen fractional filling of the AC pore volume, θ.

According to the second law of thermodynamics, the variation of entropy due to the hydrogen adsorption, ΔS ads , and are related as follows:

In addition, the entropy of the adsorbed hydrogen with respect to the entropy of the perfect gas phase at 0.1 MPa and at the same temperature (ΔS ads ) can be calculated from the MDA equation [START_REF] Richard | Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 2: conservation of mass and energy[END_REF]: [START_REF] Agbossou | Renewable energy systems based on hydrogen for remote applications[END_REF] where s g 0 is the entropy of the perfect gas phase at 0.1 MPa and at the same temperature than the adsorbed phase, and P 0 is the reference state pressure, i.e., 0.1 MPa.

The Sips equation

The Sips equation was also used to model hydrogen adsorption on ACs. This approach allows evaluating n abs as follows:

Replacing a k by b, Eq. ( 8) can be rewritten as follows: [START_REF] Jain | Hydrogen the fuel for 21st century[END_REF] where is the maximum adsorption capacity of the material, the Langmuirian coefficient and the coefficient related to the Freundlich equation. When k is equal to 1, equation [START_REF] Jain | Hydrogen the fuel for 21st century[END_REF] becomes the Langmuir equation. Alternatively, when P or b approaches 0, equation [START_REF] Jain | Hydrogen the fuel for 21st century[END_REF] becomes the Freundlich equation [START_REF] Belhachemi | Comparative adsorption isotherms and modeling of methylene blue onto activated carbons[END_REF]. Unlike the MDA equation, the Sips equation evaluates n abs instead of n exc . Thus, it is not possible to directly fit the experimental data using the Sips equation, and Eq. ( 2) was used to convert n exc into n abs . When applying the Sips equation, it was first assumed that V a was equal to the value obtained from the fit of the data using the MDA equation, then V a was estimated by empirical methods.

The Sips equation proved to be more appropriate than the MDA equation for studying the thermodynamics of hydrogen adsorption [START_REF] Lam | Modeling and predicting total hydrogen adsorption in nanoporous carbon materials for advanced nuclear systems[END_REF]. Indeed, the five parameters of the MDA equation do not depend on the temperature, therefore the calculated isosteric heat and the entropy of adsorption, by Eq. ( 5) and ( 7), respectively, do not depend on temperature either.

The temperature dependence of the heat of adsorption can be determined by applying the Clausius-Clapeyron equation, presented in Eq. ( 1), to groups of three adsorption isotherms fitted using the MDA equation. Nevertheless, the MDA equation may have some limitations when evaluating the heat of adsorption because it does not take into account the formation of hydrogen clusters confined in micropores [START_REF] Murata | Adsorption Mechanism of Supercritical Hydrogen in Internal and Interstitial Nanospaces of Single-Wall Carbon Nanohorn Assembly[END_REF][START_REF] Chen | Theoretical Basis for the Potential Theory Adsorption Isotherms. The Dubinin-Radushkevich and Dubinin-Astakhov Equations[END_REF] or cooperative adsorption processes, which were observed for other gases [START_REF] Stadie | Anomalous Isosteric Enthalpy of Adsorption of Methane on Zeolite-Templated Carbon[END_REF][START_REF] Murialdo | Observation and Investigation of Increasing Isosteric Heat of Adsorption of Ethane on Zeolite-Templated Carbon[END_REF] and may result in an increase of the heat of adsorption.

In order to evaluate the validity of both the MDA equation and the sorption isosteric method, Q st was calculated using also the Sips model, taking into account the fugacity (f) instead of the pressure in all the calculations, and considering a non-constant V a . Eq. ( 9) was first reformulated by considering the fugacity as a dependent variable:

(10)

The adsorption isosteres (Van't Hoff curves) were then obtained at several fixed values of n abs . Thus, Q st [kJ mol -1 ] was calculated by the linear regression applied to each adsorption isostere and on the entire range of temperature between 77 and 273 K. The following equation was used: [START_REF] Sircar | Activated carbon for gas separation and storage[END_REF] where c is the slope of the linear regression, and R is the universal gas constant.

Specific heat at constant pressure of the adsorbed hydrogen phase

The specific heat at constant pressure of the adsorbed hydrogen phase, c p,ads , was evaluated from Q st . To do this, the Kirchhoff law applied to a physicochemical transformation was used:

In the specific case of adsorption, Eq. ( 12) can be written as follows [START_REF] Zhao | Hydrogen adsorption on functionalized nanoporous activated carbons[END_REF]:

where c p,bulk [J K -1 mol -1 ] is the specific heat at constant pressure of the hydrogen bulk phase.

The evolution of c p,bulk with temperature was determined by using the REFPROP-7 software.

Results and discussion

Textural properties of ACs

Table 1 summarises the measured textural properties of the two investigated ACs, namely MSC30 and MSP20X.

Table 1 -Textural properties of MSC30 and MSP20X.

Method

Parameter MSC30 MSP20X BET [START_REF] Rouquerol | Is the bet equation applicable to microporous adsorbents?[END_REF] A BET [m 2 g -1 ] 3305 2363

NLDFT [21,48] S NLDFT [m 2 g -1 ] 2216 2007 S micro [m 2 g -1 ] 1708 1963 S meso [m 2 g -1 ] 508 44 V tot [cm 3 g -1 ] 1.60 0.93 V micro [cm 3 g -1 ] 0.96 0.88 V meso [cm 3 g -1 ] 0.64 0.05 V (<0.5 nm) [cm 3 g -1 ]
0.00 0.02 V (0.5 -0.7 nm) [cm 3 g -1 ] 0.04 0.17

V (0.7 -2 nm) [cm 3 g -1 ]
0.91 0.69 Dubinin-Radushkevich and Stoeckli [START_REF] Stoeckli | Recent developments in the Dubinin equation[END_REF] Average Micropore Size [nm] 1.28 1.04

Dubinin-Radushkevich

[62]

V micro, N2 [cm 3 g -1 ] 1.02 0.83

Dubinin-Radushkevich

[62]

V micro, CO2 [cm 3 g -1 ] 0.37 0.45

Overall, MSC30 exhibited more developed textural properties than MSP20X. First, an A BET of 3305 m 2 g -1 was obtained for MSC30, about 700 m 2 g -1 more than that of MSP20X. This value confirms the limits of the BET method: in fact, the maximum possible geometrical area for a carbon material is estimated at 2630 m 2 g -1 [START_REF] Fierro | Adsorption and compression contributions to hydrogen storage in activated anthracites[END_REF][START_REF] Fierro | Experimental evidence of an upper limit for hydrogen storage at 77 K on activated carbons[END_REF]. The BET method is known to overestimate the surface area when micropores wider than 1 nm exist, since pore filling occurs instead of monolayer adsorption, which is one of the main assumptions of the BET method. To solve this problem, the specific surface area of MSC30 and MSP20X was also evaluated by using the NLDFT method, obtaining a S NLDFT of 2216 m 2 g -1 for MSC30 and 2007 m 2 g -1 for MSP20X. MSC30 also had a very high total pore volume, 1.60 cm 3 , among the highest values ever reached for an AC [START_REF] Sdanghi | Hydrogen Adsorption on Nanotextured Carbon Materials[END_REF], while the measured total pore volume of MSP20X was 0.93 cm 3 g -1 .

Figure 1 shows the PSDs calculated using the NLDFT model. MSC30 exhibited a bimodal PSD, with the first peak around 0.8-0.9 nm and the second peak around 2 nm. On the other hand, MSP20X showed a broad peak around 0.7-0.8 nm and a shoulder around 1-2 nm. Thus, the presence of supermicropores (0.7-2 nm) was observed. Furthermore, MSC30 had larger pores than MSP20X: an average micropore pore size (L 0 ) of 1.28 nm was found for MSC30, while a L 0 of 1.04 nm was found for MSP20X. The presence of mesopores was also observed for MSC30, whereas MSP20X was found to be an almost completely microporous carbon. The 2D-NLDFT HS method was also used to evaluate the micropores volume (V µ ) of the two ACs. The results were compared to those obtained using the Dubinin-Radushkevich (DR) method. V µ equal to 0.96 cm 3 g -1 for MSC30 and 0.88 cm 3 g -1 for MSP20X were obtained by 2D-NLDFT HS. The same quantities obtained using the DR equation were 1.02 cm 3 g -1 and 0.83 cm 3 g -1 , respectively. Hence, 2D-NLDFT HS method gave higher values of V µ than the DR method applied to nitrogen isotherms because the former method also takes into account the microporosity only accessible to CO 2 . Indeed, the 2D-NLDFT HS method offers several advantages over the DR method. In particular, (i) it models physisorption in slit-shaped pores;

(ii) it takes into account non-uniform fluid behaviour of hydrogen confined in the pores; and

(iii) it considers the adsorption of CO 2 for the evaluation of the volume of the narrowest pores in order to overcome the limitations of N 2 [START_REF] Lozano-Castelló | Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons[END_REF]. Thus, the higher values obtained with the 2D-NLDFT HS method can be explained by the fact that it takes better account the contribution of very narrow pores to the overall volume of micropores. The adsorption was completely reversible for all experimental temperatures investigated and the amount of hydrogen adsorbed gradually decreased by increasing the adsorption temperature. The maximum excess hydrogen uptake measured was equal to 29 mmol g -1 (5.8 wt.%) and 23.8 mmol g -1 (4.8 wt.%) for MSC30 and MSP20X, respectively. The higher value obtained for MSC30 over MSP20X was related to its higher specific surface area in good agreement with Chahine's rule. Figure 3a shows the correspondence between A BET and the maximum excess hydrogen adsorption for the two investigated ACs and for other ACs of the open literature. Figure 3a also shows that MSP20X follows Chahine's rule perfectly, whereas MSC30 is slightly below the straight line representing the rule. Indeed, according to the Chahine rule, an A BET as high as 3305 m 2 g -1 should correspond to a higher hydrogen uptake of about 6.5 wt.%. However, this inconsistency is related to the overestimation of the specific surface area by the BET method, as mentioned previously.

Application of the Modified Dubinin-Astakhov (MDA) equation

By gradually increasing the temperature, the maximum hydrogen uptake decreased and progressively moved to higher pressures, which means that a maximum of adsorption is located at very high pressures for temperatures closer to 273 K. In the pressure range considered, (0-15 MPa), a maximum of the excess hydrogen adsorption was obtained only up to 153 K (Figure 3b). The five parameters of Eq. ( 3) obtained by non-linear curve fitting are listed in Table 2. The results are shown in Figure 2 with the corresponding experimental data. Overall, a coefficient of determination R 2 between 0.973 and 0.999 was obtained for each isotherm, highlighting the good quality of the fit. 

Parameter MSC30 MSP20X

n max (mol kg -1 )

72.46 47.38

α (J mol -1 )
3300 4094

β (J mol -1 K -1 )
15.8 11.5

P 0 (MPa)
1013 632 The quality of the curve fitting remains very good even considering V a as a variable (Figure S1 of Supplementary Information). However, the results obtained in the latter case were not as good as than those obtained by considering V a as constant. Indeed, lower coefficients of determination R 2 have been obtained and, moreover, the values of P 0 were not consistent with those found in the literature (Table S1) [START_REF] Richard | Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified Dubinin-Astakhov model[END_REF]. Figure 4 shows the evolution of V a considering that the volume of the adsorbed phase is equal to that of liquid hydrogen. V a was found to decrease considerably when the temperature increases. Furthermore, V a was always lower than the values reported in Table 2 and in the pressure range considered. This could explain the high value of P 0 obtained by the curve fitting (Table S1). Several authors have argued that the density of the adsorbed hydrogen phase can be approximated by the density of liquid hydrogen [START_REF] Kadono | Dense hydrogen adsorption on carbon subnanopores at 77 K[END_REF][START_REF] Poirier | On the Nature of the Adsorbed Hydrogen Phase in Microporous Metal-Organic Frameworks at Supercritical Temperatures[END_REF]. However, the results of our simulations have shown that hydrogen adsorption on ACs was best described by considering that V a was constant, the density of the hydrogen adsorbed phase increasing asymptotically until reaching a stationary value when the pressure increases [START_REF] Dohnke | On the high density hydrogen films adsorbed in carbon nanospaces[END_REF]. In one of our previous a. b.

studies, we found that the density of adsorbed hydrogen could be 66 kg m -3 at 77 K and 4

MPa, a little less than the density of liquid hydrogen, 70 kg m -3 [START_REF] Sdanghi | Modelling of a hydrogen thermally driven compressor based on cyclic adsorption-desorption on activated carbon[END_REF]. Nevertheless, a density of adsorbed hydrogen of 96.6 kg m -3 was obtained for MSC30, while 87.74 kg m -3 was obtained for MSP20X using the parameters obtained from the fits and listed in Table 2. These values even exceed the density of solid hydrogen, i.e., 87.4 kg m -3 .

P 0 was found to be 1013 MPa for MSC30 and 632 MPa for MSP20X assuming that V a was constant. Even higher values were obtained when V a was supposed to vary (6035 MPa for MSC30 and 2217 MPa for MSP20X). P 0 represents the saturation pressure in the original model proposed by Dubinin [START_REF] Dubinin | Adsorption in micropores[END_REF], which describes gas adsorption in subcritical systems.

Nevertheless, in the specific case of hydrogen adsorption, which occurs under supercritical conditions, this parameter is usually called "pseudo-saturation" pressure. Richard et al. [START_REF] Richard | Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified Dubinin-Astakhov model[END_REF] have established a relationship between the density of the adsorbed phase density and the quasi-saturation pressure, arguing that the adsorbate behaves like a supercritical fluid that should be compressed at several hundred MPa to a density equal to that of the liquid or solid form. Furthermore, Do and Do [START_REF] Do | Adsorption of supercritical fluids in non-porous and porous carbons: analysis of adsorbed phase volume and density[END_REF] have claimed that supercritical molecules can form clusters within micropores large enough to exert a quasi-saturation vapour pressure in the same way the subcritical fluids exhibit their vapour pressure. According to this theory, ACs with smaller micropores would have a lower pseudo-saturation pressure, as confirmed by our fits. We found 1013 MPa for MSC30 (L 0 = 1.28 nm) and 632 MPa for MSP20X (L 0 = 1.04 nm). P 0 depends on both the gas and the type of adsorbent. Richard et al. [START_REF] Richard | Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified Dubinin-Astakhov model[END_REF] found a P 0 equal to 11320 MPa for N 2 and 1850 MPa for CH 4 . In the first case, the AC C034 (A BET = 2000 m 2 g -1 ) was used, and the data fit was performed in the temperature range of 93-298 K and up to 6 MPa. On the other hand, the material CNS-201 TM (A BET = 1150 m 2 g -1 ) was used for CH 4 adsorption measurements, carried out in the range of 243 to 333 K and up to 10 MPa.

In the case of hydrogen, they found 1470 MPa, a value almost 30% higher than that obtained in this study. This value was obtained using the AC AX-21 (A BET = 2800 m 2 g -1 ) up to 6 MPa.

Therefore, the difference with the value of P 0 obtained by our fit can be explained both by the different textural properties and by the reduced pressure range considered. Other authors [START_REF] Hardy | Modeling of adsorbent based hydrogen storage systems[END_REF] found a P 0 of 322 MPa when using MOF-5 TM in the case of hydrogen.

n max was found to be higher for MSC30, 72.46 mol kg -1 , than for MSP20X, 47.38 mol kg -1 .

This difference can be explained by the superior textural properties of MSC30 compared to MSP20X. Indeed, hydrogen adsorption on ACs is roughly proportional to their specific surface area, i.e., to their micropore volume [START_REF] Panella | Hydrogen adsorption in different carbon nanostructures[END_REF][START_REF] Cheng | Hydrogen storage in carbon nanotubes[END_REF], but it also depends on the total pore volume because the entire volume is filled at the high pressures considered in this study [START_REF] Fierro | Pore size distribution in microporous carbons obtained from molecular modeling and density functional theory[END_REF].

Thus, these values are not completely surprising if we consider the textural properties reported in Table 1.

The values of P 0 and n max obtained by the isotherms fitting highlight the empirical nature of the adopted model. Indeed, according to Schlapbach and Zuttel [START_REF] Schlapbach | Hydrogen-storage materials for mobile applications[END_REF], the maximum hydrogen adsorption capacity on a porous solid is 1.3 × 10 -5 mol m -2 , which leads to a maximum uptake of 34 mol kg -1 (i.e., 6.8 wt.%) for a graphene sheet whose specific surface area is 2630 m 2 g -1 [START_REF] Fierro | Experimental evidence of an upper limit for hydrogen storage at 77 K on activated carbons[END_REF]. Using the A BET obtained from the textural characterisation of the two ACs studied, we calculated the hypothetical maximum hydrogen storage for both MSC30 and MSP20X, i.e., 42.96 mol kg -1 and 30.72 mol kg -1 , respectively, which are considerably lower than the values obtained from the fit of the data (i.e., 72.46 and 47.38 mol kg -1 , respectively). In addition, the definition of V a still remains ambiguous. Indeed, the value estimated was 1.5 cm 3 g -1 for MSC30, whereas V T is 1.6 cm 3 g -1 for the same AC. On the other hand, the value of V a obtained was slightly higher than that of V T obtained by NLDFT in the case of MSP20X (1.1 cm 3 g -1 against 0.93 cm 3 g -1 ). This inconsistency could be due not only to the inaccuracy in the determination of the MDA parameters, but also to the fact that V T was obtained by fitting the 2D-NLSDT HS model to both N 2 and CO 2 isotherms. Further experiments are underway to establish clear correlations between textural properties and MDA parameters.

Application of the Sips equation

The Sips equation was also used to model hydrogen adsorption on the two investigated ACs.

Unlike the MDA equation, the Sips equation describes the evolution of n abs with respect to the fugacity. Hence, Eq. ( 2) was used to determine n abs from n exc . V a was first set to 0.0015 m 3 kg - 1 and to 0.0011 m 3 kg -1 for MSC30 and MSP20X, respectively, i.e., the values obtained from the curve fitting by using the MDA equation. The fugacity of hydrogen at different temperatures and pressures was obtained using the REFPROP-7 software. Only a few isotherms have reached an asymptotic value within the defined pressure range (Figure S2 of the Supplementary Information). In addition, the difference between n abs and n exc was quite important at high temperature and high fugacity. For example, it exceeded 103.8 % and 102.4

% for MSC30 and MSP20X, respectively, at 273 K. This behaviour was mainly due to the disparity between fugacity and pressure (for a pressure of 14 MPa, the fugacity is 15.29 MPa).

For these reasons, we concluded that the values of V a obtained by the MDA equation do not allow an accurate evaluation of n abs from experimental data.

Thus, we evaluated V a using an empirical method. The experimental data presented in Figure 2 show that a maximum of n exc was reached at 77, 93, 113 and 133 K. From the excess isotherms curves, we obtained those reaching an asymptotic value by adjusting the hydrogen fractional coverage, n abs / n max . In this way, we estimated V a using Eq. ( 2). Figure S3, included in the Supplementary Information, shows the results obtained by applying this procedure to the adsorption isotherm at 93 K. For this particular case, V a was found to be 0.0006 m 3 kg -1 , which is almost 43% lower than that obtained using the MDA equation. The values of V a related to the adsorption isotherms at higher temperatures (> 133 K), thus having no Absolute adsorbed amount (mmol g -1

)

Fugacity (MPa) maximum, were deduced from an exponential model obtained by fitting the values of V a estimated for the 4 aforementioned temperatures (Figure S3). Some studies on CO 2 adsorption on ACs have reported a similar quasi-linear evolution of V a with respect to the temperature [START_REF] Srinivasan | A method for the calculation of the adsorbed phase volume and pseudo-saturation pressure from adsorption isotherm data on activated carbon[END_REF].

Figure 5 shows the evolution of n abs with respect to the fugacity using the Sips equation and the values of V a calculated as described above. The coefficient of determination, R 2 , was higher than 0.99 for almost all isotherms A slightly lower R 2 (~ 0.98) was obtained for the isotherm at 77 K and for MSP20X. By adopting this approach, a maximum n abs equal to 37 mmol g -1 was obtained for MSC30 in the pressure range considered, while an experimental maximum of 28 mmol g -1 was obtained at 4 MPa (excess). These values correspond to a hydrogen adsorption equal to 7.4 wt.% and 5.6 wt.%, respectively, not too far from the upper limit for hydrogen adsorption (6.8 %) obtained experimentally by Fierro et al. [START_REF] Fierro | Experimental evidence of an upper limit for hydrogen storage at 77 K on activated carbons[END_REF].

Using the values of V a estimated from the approach described above, an adsorbed hydrogen density even higher than the solid hydrogen density (86 kg m -3 ) was obtained, especially at low temperature (Figure 6), in good agreement with some authors [START_REF] Jagiello | DFT-Based Prediction of High-Pressure H2 Adsorption on Porous Carbons at Ambient Temperatures from Low-Pressure Adsorption Data Measured at 77 K[END_REF][START_REF] Silvera | The solid molecular hydrogens in the condensed phase: Fundamentals and static properties[END_REF][START_REF] Sharpe | Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in pores[END_REF] who highlighted the solid-like behaviour of the hydrogen adsorbed phase. Moreover, Romanos et al. [START_REF] Romanos | Local Pressure of Supercritical Adsorbed Hydrogen in Nanopores[END_REF] found that the density of supercritical hydrogen adsorbed in nanopores could be higher than that of the condensed phase.

Figure 6 -Estimation of the maximum density of the hydrogen adsorbed phase as a function of temperature.

Isosteric heat of adsorption

Figure 7 shows the evolution of the isosteric heat of adsorption, Q st , for various fractional fillings of the AC pore volume, θ, when using the MDA equation. Q st diverges to infinity when θ is close to zero, according to Eq. ( 5). Therefore, the MDA equation is not able to evaluate Q st for a very small fractional filling of the AC pore volume.

Nevertheless, Figure 7 shows that different stages of the adsorption as well as of the filling of pores, occur. Q st significantly decreases in the range of θ ~ 0 to θ = 0.2 due to the preliminary saturation of the narrowest pores, where the adsorption forces are enhanced by the proximity of the pore walls. Thereafter, an almost linear decrease in Q st is obtained because of the progressive filling of all other pores. Q st decreases from 5 to 1 kJ mol -1 in the θ range from 0.2 to 0.95. Finally, Q st tends to zero when θ approaches 1 as the pore volume of the AC becomes almost completely saturated.

Figure 7 also shows that Q st is globally higher for MSP20X than for MSC30 due to its much lower average micropore size than that of MSC30 (1.04 vs. 1.28 nm), and that narrow pores, especially ultramicropores, induce a higher Q st due to the overlapping of Van der Waals forces present [START_REF] Rzepka | Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes[END_REF].

Figure 8 shows the evolution of the heat of adsorption calculated directly with the experimental data, thus we named it as "isoexcess", Q st,exc . Hydrogen was considered as an ideal gas, and the pressure was used instead of the fugacity in all calculations. In Figure 8, Q st,exc was reported as a function of n exc , in the range 0 -3.5 mmol g -1 . The evolution of Q st,exc in the whole range of n exc can be found in Figure S5 of the Supplementary Information. Q st,exc values between 4.5 and 9 kJ mol -1 were obtained. These values are in agreement with those obtained in our previous works [START_REF] Schaefer | Assessment of hydrogen storage in activated carbons produced from hydrothermally treated organic materials[END_REF][START_REF] Schaefer | Rice straw-based activated carbons doped with SiC for enhanced hydrogen adsorption[END_REF], but are slightly higher than those commonly obtained for the adsorption of hydrogen on graphite [START_REF] Dundar | Modified potential theory for modeling supercritical gas adsorption[END_REF][START_REF] Kumar | Heat of adsorption and binding affinity for hydrogen on pitch-based activated carbons[END_REF][START_REF] Gigras | Feasibility of tailoring for high isosteric heat to improve effectiveness of hydrogen storage in carbons[END_REF]. Q st,exc was found to be almost constant in the range of n exc considered, which corresponds to a relatively low fractional filling. Nevertheless, it increases dramatically for n exc values above 3.5 mmol g -1 (see Figure S5 in the Supplementary Information), which could be due in part to both the increased uncertainty and the accumulation of errors in the measurements, as concluded in previous studies [START_REF] Julis | Differential Heats of Adsorption[END_REF][START_REF] Park | Enhanced isosteric heat of H2 adsorption by inclusion of crown ethers in a porous metal-organic framework[END_REF][START_REF] Bimbo | Isosteric enthalpies for hydrogen adsorbed on nanoporous materials at high pressures[END_REF]. However, lateral interactions between hydrogen molecules and cooperative adsorption could also play an important role. The increase of Q st,exc with θ has also been observed for other gases, such as water [START_REF] Farmahini | Differences in the adsorption and diffusion behaviour of water and non-polar gases in nanoporous carbon: role of cooperative effects of pore confinement and hydrogen bonding[END_REF], ethane [START_REF] Murialdo | Observation and Investigation of Increasing Isosteric Heat of Adsorption of Ethane on Zeolite-Templated Carbon[END_REF], carbon dioxide [START_REF] Furmaniak | The influence of carbon surface oxygen groups on Dubinin-Astakhov equation parameters calculated from CO2 adsorption isotherm[END_REF][START_REF] Murialdo | A thermodynamic investigation of adsorbate-adsorbate interactions of carbon dioxide on nanostructured carbons[END_REF] and methane [START_REF] Stadie | Anomalous Isosteric Enthalpy of Adsorption of Methane on Zeolite-Templated Carbon[END_REF]. Torres-Knopp et al. [START_REF] Torres-Knoop | Behavior of the Enthalpy of Adsorption in Nanoporous Materials Close to Saturation Conditions[END_REF] found that lateral interactions between hydrogen molecules and cooperative adsorption lead to an increase of Q st with θ.

Figure 8 also shows that the higher the adsorption temperature, the higher the Q st,exc . The same behaviour was observed for water vapour [START_REF] Shaoying | Equilibrium and Heat of Adsorption for Water Vapor and Activated Carbon[END_REF], ethane [START_REF] Murialdo | Observation and Investigation of Increasing Isosteric Heat of Adsorption of Ethane on Zeolite-Templated Carbon[END_REF], methane [START_REF] Rahman | Heat of Adsorption and Adsorbed Phase Specific Heat Capacity of Methane/Activated Carbon System[END_REF], n-hexane [START_REF] Walton | Adsorbed-Phase Heat Capacities: Thermodynamically Consistent Values Determined from Temperature-Dependent Equilibrium Models[END_REF] and carbon dioxide [START_REF] Caravella | Evaluation of pure-component adsorption properties of silicalite based on the Langmuir and Sips models[END_REF] as well. In the case of methane [START_REF] Rahman | Heat of Adsorption and Adsorbed Phase Specific Heat Capacity of Methane/Activated Carbon System[END_REF], the increase of Q st,exc with temperature was explained by the increase of the specific heat capacity at constant pressure of the adsorbed phase, c p,ads , with temperature. Furthermore, Q st,exc was found to increase only under supercritical conditions, while the opposite behaviour was observed under subcritical conditions. Thus, the same approach could be applied herein: the increase of Q st,exc with the increase of the adsorption temperature would be due to the increase of c p,ads with the temperature, since only supercritical hydrogen adsorption took place under the conditions of temperature and pressure investigated in the present study.

Overall, Q st,exc values obtained for MSP20X were higher than those found for MSC30, in full agreement with the results obtained by applying the MDA equation. Hence, we can assert that ACs with narrow pores and increased microporosity are materials providing high values of isosteric heat of adsorption (Q st and Q st,exc ).

Q st was then calculated by using the Sips equation (Figure 9a). It was found that Q st first decreased at low n abs and then it became fairly constant in the range of n abs from 2 to 6 mmol g -1 . For relatively high values of n abs ( > 8 mmol g -1 ), Q st increased significantly. The linear regression performed to calculate Q st was very good, a coefficient of determination R 2 > 0.99 was obtained for intermediate values of n abs , while slightly lower values were obtained, especially for the high values of n abs (Figure S7). The values of Q st obtained using the Sips equation were between 5 and 7 kJ mol -1 , which are not too far from those obtained with the MDA equation and the sorption isosteric method. In this case, the calculated Q st was also higher for MSP20X than for MSC30, reinforcing the above conclusions.

A temperature scanning of the adsorption isosteres was also carried out to highlight the temperature dependence of Q st (Figure S8 in the Supplementary Information). Figure 9a and 9b show the Q st calculated in a wide range of n abs for MSC30 and MSP20X, respectively. This additional analysis confirmed the results obtained using the Sips equation. For a specific temperature, Q st initially decreased at low n abs , became constant for intermediate values and increased significantly at high values of n abs . In fact, the value of n abs above which Q st begins to diverge corresponds to the "limiting fractional filling", θ lim , which moved to lower values when the adsorption temperature increased. This behaviour could be due to a confinement effect of hydrogen in the smallest pores. As the adsorption temperature increases, hydrogen adsorption can be particularly improved in very small pores. The temperature dependence of Q st is more evident for low values of n abs , as shown in Figure 11a.

Figure 10b shows the average values of Q st in the temperature range between 77 and 273 K and for low values of θ (0 -0.1) evaluated by the temperature scanning. A linear distribution was observed, just as when applying the sorption isosteric method. Moreover, Q st was higher for MSP20X than for MSC30 also in this case. Thus, these results allowed to prove that the values of the isosteric heat of adsorption calculated using n exc or n abs are almost identical, and that the temperature dependency of Q st is maintained whatever the method used. Bhatia and Myers [START_REF] Bhatia | Optimum Conditions for Adsorptive Storage[END_REF] found that Q st is higher at a high adsorption temperature and when using ACs with narrow pores. Their results are reported in Figure 10b with our data. The different slope of the curves can be due to both the different curvature of the carbon layers and the PSD. In fact, the ACs used in [START_REF] Bhatia | Optimum Conditions for Adsorptive Storage[END_REF] exhibited different textural properties from those of MSC30 and MSP20X used in the present work, which presented an enhanced super-microporosity. Temperature dependence of specific heat capacities of the adsorbed phase.

In conclusion, the MDA equation provided Q st values between 5 and 9 kJ mol -1 , which are in the range of those determined by the Clausius-Clapeyron and temperature scanning methods.

This range of values was slightly broader than that provided by the Sips equation, between 5 and 7 kJ mol -1 . Furthermore, -ΔS ads was generally higher for MSC-30 than for MSP20X at any given θ, because the amount of adsorbed hydrogen at the saturation conditions, n m , was higher, according to the values found from the fitting of the isotherms shown in Section 4.1.

Increasing values of n m lead to a more exothermic process, which explains the higher values observed for -ΔS ads for MSC-30 at any given θ.

Nevertheless, the MDA equation is not able to find the temperature dependence of thermodynamic properties, as previously asserted in Section 3.2. For this reason, ΔS ads was also evaluated by considering the isoexcess heat of adsorption, Q st,exc , using Eq. ( 6). Figure 11b shows the average -ΔS ads calculated using this additional approach, in the range of temperature 77-298 K and at low amount of adsorbed hydrogen (0-3.5 mmol g -1 ). -ΔS ads decreased when the adsorption temperature increased. This is due to the fact that Q st,exc does not change significantly with temperature (5 -9 kJ mol -1 ), whereas the ratio Q st,exc / T decreases when the adsorption temperature increases. -ΔS ads was found to be higher for MSP20X than for MSC-30 at any given temperature, so a higher variation in adsorption entropy was found for the AC having narrower pores (1.04 vs. 1.28 nm). Indeed, this is a consequence of the second law of thermodynamics (see. Eq. 6), since Q st,exc was found to be higher for AC having narrow pores (see Section 4.4). -ΔS ads between 30 and 60 J mol -1 K -1 was obtained considering the isoexcess heat of adsorption, in the temperature range from 77 to 298 K. These values are close to those found in the literature for hydrogen adsorption on zeolites [START_REF] Garrone | Enthalpy-entropy correlation for hydrogen adsorption on zeolites[END_REF] and MOFs [START_REF] Liu | Entropy prediction for H2 adsorption in metal-organic frameworks[END_REF][START_REF] Palomino | Enthalpy-Entropy Correlation for Hydrogen Adsorption on MOFs: Variable-Temperature FTIR Study of Hydrogen Adsorption on MIL-100(Cr) and MIL-101(Cr)[END_REF] under similar conditions.

Finally, we concluded that Q st and ΔS ads (in absolute values) are higher and c p,ads is lower, for ACs having narrow pores, as in the case of MSP20X compared to MSC30.

Conclusion

The Modified Dubinin-Astakhov (MDA) equation was used to investigate hydrogen adsorption on two commercial ACs with different textural properties, MSC30 and MSP20X. MSC30 had a A BET higher than 3000 m 2 g -1 and a total pore volume of 1.60 cm 3 g -1 , whereas the A BET of MSP20X was about 2363 m 2 g -1 and the total pore volume of 0.93 cm 3 g -1 . The superior textural properties of MSC30 led to higher hydrogen adsorption capacities (maximum of excess 5.8 wt.% at 77 K and 4 MPa, compared to 4.8 wt.% for MSP20X under the same conditions). The MDA equation proved to be a good analytical tool for understanding experimental hydrogen adsorption data over a wide range of pressures and temperatures.

In this study, the isosteric heat of hydrogen adsorption, Q st , was investigated. Its dependence on both the adsorption temperature and the textural properties has been discussed. To prove the validity of the estimate obtained by using the MDA equation, Q st was also calculated using the Clausius-Clapeyron and the Sips equations. The three strategies gave Q st values very close to each other, ranging from 5 to 9 kJ mol -1 . The higher the adsorption temperature, the higher the Q st . Q st was found to be higher in ACs with narrow pores and high microporosity.

Finally, we calculated the heat capacity at constant pressure for the adsorbed hydrogen phase, which varied from 10 to 18 J mol -1 K -1 ; the lowest values were obtained with ACs having both narrow pores and high microporosity. The entropy of adsorbed hydrogen (in absolute values) was also found to be higher for ACs having both narrow pores and high microporosity.

Further experiments are underway on more ACs to confirm these trends.
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 1 Figure 1 -PSDs of MSC30 and MSP20X (semi-log plot).
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 2 Figure 2 -Excess hydrogen adsorption-desorption isotherms of the two investigated ACs: (a) MSC30 and b) MSP20X (full and empty symbols indicate adsorption and desorption data, respectively).
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 3 Figure 3 -a) Increase of maximum of hydrogen excess adsorption with A BET and b) maximum of excess adsorption isotherms[START_REF] Fierro | Experimental evidence of an upper limit for hydrogen storage at 77 K on activated carbons[END_REF][START_REF] Arshad | Preparation of activated carbon from empty fruit bunch for hydrogen storage[END_REF][START_REF] Sethia | Activated carbon with optimum pore size distribution for hydrogen storage[END_REF][START_REF] Zhao | Activated carbons doped with Pd nanoparticles for hydrogen storage[END_REF][START_REF] Li | Preparation and characterization of the hydrogen storage activated carbon from coffee shell by microwave irradiation and KOH activation[END_REF][START_REF] Wang | Nitrogen-doped porous carbons with high performance for hydrogen storage[END_REF][START_REF] Bader | Optimization of biomass-based carbon materials for hydrogen storage[END_REF] 
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 4 Figure 4 -Evolution of V a as a function of pressure when one considers that the density of the adsorbed phase is equal to the density of liquid hydrogen: a) MSC30 and b) MSP20X.
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 5 Figure 5 -Fits of the hydrogen adsorption-desorption isotherms of (a) MSC30 and (b) MSP20X with the Sips equation (full and empty symbols correspond to adsorption and desorption, respectively).
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 7 Figure 7 -Isosteric heats of adsorption obtained for hydrogen adsorbed on MSC30 and MSP20X according to the MDA equation, as a function of the fractional filling θ.
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 8 Figure 8 -Isoexcess heats of adsorption of (a) MSC30 and (b) MSP20X
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 9 Figure 9 -(a) Temperature-averaged Q st for hydrogen adsorption on MSC30 and MSP20X found using the Sips equation. Q st for (b) MSC30 and (c) MSP20X, calculated by temperature scanning of the adsorption isosteres.
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 10 Figure 10 -Results of the temperature scanning analysis: (a) Isosteric heat of adsorption of hydrogen on MSP20X versus adsorbed amount; (b) Low-coverage average isosteric heat for MSP20X and MSC30 (with theoretical values from [99]); (c) Temperature dependence of isosteric heats of adsorption at 2 MPa; and (d)
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 11 Figure 11 -(a) Entropy of hydrogen adsorption for MSC30 and MSP20X, calculated using the MDA equation; and (b) average isosteric entropy of adsorption of MSC 30 and MSP20X as a function of temperature and at low amount of adsorbed hydrogen (0-3.5 mmol g -1 ).
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of the Modified Dubinin-Astakhov equation obtained by non-linear fitting of adsorption isotherms for MSC30 and MSP20X, considering a constant value of V a .
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Specific heat capacity of adsorbed phase and entropy of adsorption

The specific heat capacity of the adsorbed hydrogen phase was calculated by using Eq. ( 12) and [START_REF] Bénard | Storage of hydrogen by physisorption on carbon and nanostructured materials[END_REF] shown in Section 3.3. The quantity dQ st / dT was evaluated from the evolution of Q st with respect to the temperature at constant pressure (Figure 10c). At the specific pressure of 2 MPa, this amount was found to be 10.79 and 13.95 J K -1 mol -1 for MSC30 and MSP20X, respectively. Figure 10d shows the evolution of c p,ads with temperature at a constant pressure of 2 MPa, calculated using Eq. ( 13). The values of c p,ads for MSC30 and MSP20X were both higher than those of hydrogen in solid-state and in the supercritical bulk phase. Moreover, the c p,ads of MSC30 was higher than that of MSP20X. c p,ads ranged from 10 to 18 J mol -1 K -1 .

These values are very close to those obtained in the case of methane adsorption (12 -20 J mol -1 K -1 ), evaluated between 270 and 350 K and at 0.5 MPa [START_REF] Rahman | Heat of Adsorption and Adsorbed Phase Specific Heat Capacity of Methane/Activated Carbon System[END_REF].

The entropy of adsorption, ΔS ads [kJ mol -1 K -1 ] was evaluated using the MDA equation as previously described in Section 3.1 and using Eq. ( 7) (Figure 11a). Absolute values of ΔS ads between 0 and 9 J mol -1 K -1 were found by applying the MDA equation, and a linear increase with the fractional filling of the AC pore volume was obtained for both MSC30 and MSP20X. This was due to the increase of the amount of hydrogen adsorbed in the AC pore volume, resulting in an increase of Q st released. Indeed, Figure 11a shows that the obtained values for ΔS ads were negative, in good agreement with the exothermic nature of hydrogen adsorption.