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ABSTRACT11

Electrical Impedance Tomography (EIT) is an imaging technique with advantages of non-12

intrusiveness, low-cost and high temporal resolution, which is promising for multiphase flow13

instrumentation. However, it produces smooth images with low spatial resolution where14

the interface between phases cannot be distinguished and from which the phase fraction15

cannot be estimated correctly. In this article, an eigenvalue analysis of EIT raw data is16

used to estimate the void fraction, i.e. the phase area ratio in 2D, without reconstructing17

images. For a given EIT sensor, each acquisition frame is represented by an impedance18

matrix whose eigenvalues are computed after normalization. The main characteristics of19

the eigenvalue distribution for different two-phase flow patterns within a cylindrical pipe are20

analyzed numerically. The behaviors of the leading eigenvalue and of the sum of the absolute21

values of the following ones are assessed as functions of the void fraction. This leads to an22

estimation of the two-phase flow void fraction based on the characteristics of the EIT sensor23

configuration. The presented numerical results highlight the existing correlation between24

the eigenvalues and the void fraction for the phase distribution patterns considered. These25

simulation results are compared with experimental static tests for validation.26

KEYWORDS27

Electrical Impedance Tomography, impedance matrix, flow patterns, static test.28

1 Introduction29

In the research field of experimental multiphase flow, instrumentation techniques for local30

void fraction (phase area ratio) and phase distribution estimation are in great need. These31

parameters are essential to understand the heat transfer coefficient and assess the risk of32

critical boiling, for example in nuclear industry [1, 2]. Various techniques have been de-33

veloped for multiphase flow phase fraction estimation, for example, wire-mesh sensors can34

provide information about local, cross-section or in-situ volume profiles and distributions of35

phase fraction, but they have disruptive effects on the flow [3]; optical probes are sensitive to36
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interfacial passages enabling to measure local void fraction with a high precision, however,37

they are intrusive [4], as are electrical probes as well [5]; X-ray and Gamma-ray tomography38

allow fast measurements of multiphase flows at high spatial resolution but they require high39

acceleration voltage (hundreds of kV) and radiation protection [6,7]; Electrical Capacitance40

Tomography (ECT) has similar characteristics to the EIT but it requires high voltage exci-41

tation signals. Note that Huang et al. [8] used ECT to measure void fraction based on image42

reconstruction with a satisfactory accuracy. With the advantages of non-intrusiveness, high43

temporal resolution and low cost, the Electrical Impedance Tomography (EIT) technique44

seems to be promising for dynamic multiphase flow instrumentation.45

EIT is a technique to determine the material distribution inside a 2D or 3D domain46

based on their constitutive electric properties, e.g. the electric admittivity (conductivity47

and permittivity), with an image acquisition rate that can be up to hundreds of frames48

per second [9]. For an EIT sensor, the measurements are acquired on the boundary and49

the typical way to handle the measurement data is through image reconstruction, which50

leads to an approximate reconstruction of the admittivity distribution within the domain.51

Theoretically, continuous boundary measurement determines a unique solution to the re-52

construction problem [10], while in practice the boundary measurement is limited by the53

number of electrodes.54

A number of reconstruction methods have been proposed based on non-iterative or iter-55

ative algorithms. Some non-iterative algorithms are based on linear approximation, such as56

the linear back projection method [11], the one-step Newton method [12,13] or the Calderon’s57

approach [14]. Iterative methods tackle the reconstruction problem by minimizing some cost58

functions, e.g. the variational method [15] or the modified Newton-Raphson method [16].59

In general, non-iterative algorithms produce smooth images with low spatial resolution com-60

pared to the hard-field tomography techniques, like X-ray or Gamma-ray tomography [17].61

This makes it difficult to distinguish the phase interface in the reconstructed images. It-62

erative methods yield reconstructions at higher resolutions but they usually require high63

computation power. In the present article, an alternative methodology is proposed to esti-64

mate the void fraction of two-phase flows. It circumvents the need to reconstruct images in65

the extreme non-linear case of two-phase flows, which are characterized by a high resistivity66

contrast between phases, while it allows to consider a wide range of void fraction.67

A typical EIT sensor has a set of electrodes installed on the boundary of a domain, Fig-68

ure 1 shows an EIT sensor with 16 electrodes. A stimulation current (or voltage) are exerted69

on one pair of selected electrodes (noted as source and drain electrode), the corresponding70

voltage (or current) at all the other electrodes are measured, this is called a stimulation71

pattern. This procedure continues until each independent pair of electrodes has been se-72

lected as source and drain [18,19], a strategy referred to as the full scan stimulation strategy.73

Since source and drain are essentially the same, the measurements would be reciprocal for74

a specific pair of electrodes. For an EIT sensor with ` electrodes, there are `(`− 1)/2 inde-75

pendent stimulation patterns in total for one frame of image. Each stimulation pattern has76

a representative bulk impedance, which depends on the phase area ratio and distribution,77

as well as on the source/drain electrodes. The impedance array of each frame can be con-78

veniently arranged into a `× ` symmetric matrix, whose diagonal entries are related to the79

mutual impedances. In the work of Fang et al. [20], the relation between the void fraction80

and the eigenvalues of the capacitance matrix obtained from ECT data is investigated and81
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it is shown that the multiplicity of the eigenvalues is correlated to the degree of symmetry of82

the flow. Dupré et al. applied the eigenvalue analysis to ECT data for the purpose of flow83

regime identification as well as the estimation of two-phase flow void fraction, the result is84

promising [19, 21]. In this context, and up to the Author’s knowledge, the literature deal-85

ing with void fraction estimation from EIT data and through eigenvalue analysis is scarce.86

Therefore, in the present article, the impedance matrix is investigated and its eigenvalues87

are used to devise some metrics of the void fraction.88

Figure 1. schematic of an EIT sensor with 16 electrodes.

The EIT problem is associated with an elliptic boundary-value problem and it aims at89

recovering the information on the admittivity distribution inside a domain of interest from90

boundary measurements. In Section 2, the mathematical basis of EIT is introduced with91

the Neumann-to-Dirichlet (NtD) operator along with the bulk impedance that is the dis-92

crete realization of the former. The impedance data can be computed numerically using the93

Finite Element Method (FEM) and arranged into a square impedance matrix, the eigen-94

values of which are the focus of this study. In Section 3, the typical regimes of two-phase95

flows are classified into three different canonical cases that are studied separately: the dis-96

tribution of the eigenvalues of the impedance matrix is studied for each pattern based on a97

suitable normalization, with the relation between eigenvalues and void fraction being inves-98

tigated numerically. In Section 4, the influence of noisy data and an extension to conductive99

inclusions are investigated. In Section 5, the EIT system developed in the laboratory is100

introduced and the simulation results are validated by experimental results associated with101

static configurations. These results are discussed and concluded in Section 6.102

2 Mathematical basis103

Considering the electric field in a two- or three-dimensional domain Ω, from Maxwell’s equa-104

tion, the electric potential u inside is governed by,105

∇ ·
(
γ(x)∇u(x)

)
= 0, x in Ω, (1)

where γ(x) = σ(x) + iωε(x) is the isotropic admitivity distribution in Ω, in which σ is106

the electric conductivity, ε is the electric permittivity, ω is the stimulation frequency. In the107
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application to multiphase flow instrumentation, usually only the conductivity σ is considered,108

because the electric permittivity ε of liquid phase can be neglected in the chosen working109

frequency range of EIT sensors [22].110

2.1 Neumann-to-Dirichlet map111

The domain is assumed to be homogeneous except for a number of non-conductive inclusions,112

which are denoted as Ωi. These inclusions have a conductivity significantly different with113

the background, and they are simply connected domains contained in Ω. Specifically for114

two-phase flow, the conductivity σ of the water phase is within 10−4 − 10−2S/m, and that115

of gas is around 10−15 − 10−9S/m, i.e.,116

σ =

{
∼ 0 in Ωi,

1 in Ω \ Ωi,
(2)

with σ of the water phase normalized to 1.117

Denoting as n the unit outward normal vector on the boundary ∂Ω, which is assumed118

to be smooth, we have the Neumann boundary conditions119

σ∇u · n = f on ∂Ω, (3)

in which f ∈ L2(∂Ω) represents the boundary current that satisfies
∫
∂Ω
f dS = 0. Note that120

the model (2) entails that σ∇u · n ≈ 0 on the boundary ∂Ωi of the inclusions.121

Introducing the functional space H1
� (Ω) = {ϕ ∈ H1(Ω) :

∫
∂Ω
ϕ dS = 0}, the Neumann122

boundary value problem is as follows: find u ∈ H1
� (Ω) that satisfies123 ∫

Ω

σ∇u ·∇ϕ dV =

∫
∂Ω

fϕ dS, ∀ϕ ∈ H1
� (Ω). (4)

On denoting L2
�(∂Ω) = {ϕ ∈ L2(Ω) :

∫
∂Ω
ϕ dS = 0}, the Neumann-to-Dirichlet (NtD)124

map is introduced as Λσ : L2
�(∂Ω)→ L2

�(∂Ω) so that the boundary potential can be written125

as Λσf = u|∂Ω, where u ∈ H1
� (Ω) is the solution to (4). The boundary potential can be126

measured and compared with the boundary potential Λ0f = u0|∂Ω for the same f and Ω but127

without inclusions, i.e. Ωi = ∅, with u0 ∈ H1
� (Ω) being the solution of:128 ∫

Ω

∇u0 ·∇ϕ dV =

∫
∂Ω

fϕ dS, ∀ϕ ∈ H1
� (Ω), (5)

which corresponds to the reference problem with a homogeneous conductivity distribution129

inside the domain Ω. The relative NtD map is denoted as Π = Λσ − Λ0. In the study130

by M. Hanke et al. [23], the eigenvalues of Λσ − Λ0 are used to locate the inhomogeneities131

non-iteratively.132

2.2 Electrode models133

In practical implementation, the current density cannot be measured, only the current or134

voltage at discrete electrodes could be obtained. There are various electrode models available135
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depending on their assumptions on current density, i.e. the gap model, the shunt model and136

the complete model [24, 25]. The gap model assumes that the current density is constant137

over electrodes, while the shunt model considers that the integral of the current density over138

the electrode equals to the total current flowing through that electrode. Furthermore, the139

complete model is based on the shunt model, but takes into account the electrochemical140

effect at the interface between the electrode and the probed medium, which is called the141

“contact impedance”. Compared to the gap model, the shunt and complete models are142

closer to reality [18]. In the numerical simulation part, the shunt model is used, while in143

the static tests, the complete model is considered, the electrode specific contact impedance144

is computed and excluded from the measurement data.145

In the shunt model, considering a number ` of identical electrodes placed on ∂Ω equally146

spaced, the integral of the current density over the electrode is equal to the current through147

this electrode, while the current density at the isolated gaps between electrodes is zero, i.e.148 ∫
ek

σ∇u · n ds = Ik for k = 1, . . . , ` while σ∇u · n = 0 on ∂Ω \ ∪
k
ek, (6)

where Ik is the current passing through the kth electrode and ek is the surface of the kth149

electrode. Besides, the electrodes are assumed to be perfectly conducting so that the elec-150

trostatic potential u|ek is constant at each electrode. Recall that the electrostatic potential151

inside the domain satisfies the Laplace equation (since σ = 1 in Ω \ Ωi),152

∆u = 0, in Ω \ Ωi. (7)

The shunt model has a unique solution. This allows to define a matrix Z, which is the153

discrete mapping from the boundary current stimulations to the boundary voltage measure-154

ments. The matrix Z is referred to as the impedance matrix and it takes over the role of155

the NtD operator Λσ as its discrete representation. Defining the discrete version of L2
�(∂Ω)156

as the `-dimensional vector space R`
� = {y = [y1 · · · y`] ∈ R`,

∑`
i=1 yi = 0}, one gets157

Z : R
`
� → R

`
�

[I0 I1 · · · I`] 7−→ [V0 V1 · · · V`]
(8)

where Vk = u|ek for k = 1, . . . , ` are the boundary measurements of the electric potential158

solution u corresponding to the set of imposed currents Ik considered.159

Each element in Z is a bulk impedance corresponding to a certain imposed current and160

boundary measurement. when the continuous liquid phase is the only conducting phase,161

given the mixture conductivity σm, the liquid conductivity σl and the liquid volume fraction162

αl, the Maxwell-Hewitt relation [26] reads:163

αl = 1− 1− σm/σl
1 + σm/σl

, in 2D, αl = 1− 1− σm/σl
1 + 0.5 · σm/σl

, in 3D. (9)

This relation yields an approximation of the volume fraction of each phase, as shown in [27].164

The water-gas two-phase flow system conforms this relation, so that the measured impedance165

can be correlated to the void fraction. In the present study, the impedance matrix contains166

the impedance of all the possible electrode separations. In this framework, the impedance167
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matrix is assumed to be directly correlated to the void fraction and our objective is to168

investigate this correlation based on an eigenvalue analysis of numerical and experimental169

standardized tests.170

2.3 Impedance matrix and normalization171

For each stimulation pattern, denoting the source and drain electrodes pair as (i, j), there172

is a corresponding bulk impedance Zi,j, which is governed by the conductivity distribution173

σ(x) in Ω, as well as the selected source and drain electrodes. The impedance between174

source electrode j and drain electrode i is the mutual impedance of Zi,j, so that they satisfy175

the reciprocity relation Zi,j = Zj,i. According to the definition of R`
�, the diagonal term176

Zi,i is not measured but computed by summing up the corresponding mutual impedances as177

Zi,i = −
∑

j 6=i Zi,j, which finally yields the `× ` square impedance matrix Z = (Zi,j)1≤i,j≤`.178

The relative NtD map Π is commonly used in EIT to retrieve information on the probed179

medium. This amounts to consider the matrix ∆Z = Z − Z0, where Z0 denotes the180

impedance matrix of the homogeneous conductivity distribution for which Ωi = ∅. The181

matrix ∆Z is referred to as the Differential Impedance matrix (DIM). To perform a non-182

dimensional analysis, a normalization method of the matrix entries Zi,j is needed to reduce183

the dependencies on the geometric parameters of the sensor and on the background conduc-184

tivity, as well as to enhance the presence of inhomogeneities. In this study, the normalization185

method is proposed as:186

Ẑi,j =
Zi,j − Z0

i,j

Z0
i,j

for i, j ∈ {1, . . . , `}. (10)

The associated matrix Ẑ = (Ẑi,j)1≤i,j≤` is referred to as the Normalized Impedance Matrix187

(NIM). Note that Ẑi,j is equal to zero for all i, j when Ωi = ∅ and is infinite when Ωi = Ω.188

(a) Differential impedance matrix ∆Z (b) Normalized impedance matrix Ẑ

Figure 2. Effect of the normalization on the entries of the impedance matrices in the case of
a single bubble (Case 1).
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Considering the case shown in Figure 1 with a single bubble of radius 0.3 and an EIT189

system with 16 electrodes, the corresponding DIM and NIM are visualized with the horizon-190

tal axes as the matrix entry indices and the vertical axis for the associated entry value, as in191

Figure 2. The effect of normalization is highlighted: The DIM has significant values on the192

diagonal, which is consistent with the computation of its diagonal terms Zi,i. The normal-193

ization diminishes this effect and enhances the impedance discrepancies between electrodes,194

see for example the entries associated with the electrodes 2 and 3 that are the closest to the195

bubble.196

2.4 Eigenvalue analysis197

As, by definition, the normalized impedance matrix Ẑ is a real-valued symmetric matrix,198

it is diagonalizable and its eigenvalues λ(i) are real. Therefore, it has a set of ` pairs of199

eigenvectors v(i) ∈ R`
� and eigenvalues λ(i) ∈ R satisfying200

Ẑ · v(i) = λ(i)v(i), i ∈ {1, . . . , `}. (11)

Sorting the eigenvalues in an increasing order, the resulting eigenvalue array is defined as201

λ = [λ(1) λ(2) · · · λ(`)] with λ(1) < λ(2) < · · · < λ(`), (12)

where λ(`) is the leading eigenvalue. Moreover, considering the rotational symmetry of the202

electrodes placement, the eigenvalues of Ẑ are invariant under similarity transformations of203

the electrodes, such as rotation or renumbering.204

The largest eigenvalues contain the most information about the matrix Ẑ and represent205

its main features, while Ẑ is decided by the conductivity distribution within the probed206

medium, the other smallest eigenvalues are also affected by it but contain qualitatively less207

information. Hereafter, the characteristics of these eigenvalues are investigated numerically.208

Note that in the configurations where different numbers of electrodes are used to impose the209

current and to measure the potential on the domain boundary, then the associated impedance210

matrices are not square. In such cases, their singular value decompositions can be considered211

alternatively.212

3 Numerical simulations213

In the previous section, the mathematical model of EIT and the normalized impedance214

matrix are introduced. In this section, numerical simulations are considered to investigate215

the relation between the eigenvalues and the conductivity distribution within the probed216

medium.217

3.1 Canonical cases considered218

The typical regimes of two-phase flows include bubbly flow, stratified flow, slug/plug/churn219

flow and annular flow, see [28–30]. The phase distributions can be classified into three220

classes, regardless of pipe placement and gas/liquid flow directions, that is, (i) Single bubble221
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case, representing the water slug in slug/plug/churn flow and the annular flow as well; (ii)222

Stratified case; (iii) Multiple bubbles case, relevant to the bubbly flow and the bubble cloud223

that follows the slug in slug/plug/churn flow.224

Consider a 2D circular pipeline Ω with a radius r0 = 1, i.e. Ω = {(x, y) : x2 + y2 < 1}.225

Given the rotational symmetry of the impedance matrix, three classes of bubble distribution226

patterns are defined as follows:227

• Case 1 (single bubble): Ωi = {(x, y) : (x − d cos θ0)2 + (y − d sin θ0)2 ≤ r2} with228

0 ≤ θ0 ≤ 2π and such that 0 ≤ r + d ≤ 1.0.229

• Case 2 (stratified): Ωi = {(x, y) : y ≥ r0 · cos θ}, with r0 = 1 and 0 ≤ θ ≤ π.230

• Case 3 (multiple bubbles): a number nbub ∈ {1, 3, 11, 36, 62, 84} of uniformly231

distributed bubbles of radius rdis is considered. To fix the void fraction relatively to232

an equivalent concentric bubble of radius re then rdis is defined as rdis = re/
√
nbub.233

The conductivity distributions of the three cases are depicted in Figure 3, the area in234

light blue represents the water phase and the one in white is the gas phase. The electrical235

conductivity of gas is set to be eight magnitudes lower than that of water, which is in236

accordance with the physical conductivity values of water and gas. Each case corresponds237

to specific regimes of two phase flow: in Case 1, one single bubble with various diameter is238

varied spatially along one specific diameter inside the domain; Case 2 represents stratified239

flow with various water level, in which h = 1 − d = 1 − cos θ; Case 3 is characterized by240

multiple bubbles uniformly distributed inside the domain, Figure 3 shows the case with 11241

bubbles.242

Figure 3. Conductivity distribution patterns for the three canonical cases considered.

To investigate the eigenvalues of the impedance matrix for these three canonical cases,243

boundary measurements have to be computed. The open source code Electrical Impedance244

Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS) is used.245

It is dedicated to solve EIT forward and inverse problems by the Finite Element Method246

(FEM) [31].247

The numerical model is a 2D circular model with unit radius and 16 electrodes placed248

evenly at the boundary, the width of the electrode is chosen to have the ratio between the249
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area occupied by the electrodes and the total area the same than the practical EIT system250

used in our experimental setting. A triangle mesh with 54177 nodes is used in the FEM251

model.252

A full scan stimulation strategy with a constant current of Istimu = 1A at source and253

drain electrodes is employed. For each stimulation pattern, the difference voltage between254

adjacent electrodes are computed, denoting the selected source and drain electrodes as (i, j),255

the voltage difference between source and drain Vi,j could be obtained by summing up the256

voltage differences at all adjacent electrodes between the source and drain. Since the injected257

current is a constant, the corresponding bulk impedance Zi,j can be obtained by Ohm’s law:258

259

Zi,j = Vi,j/Istimu. (13)

With 16 electrodes (i, j = 1, · · · , 16), there are 120 independent stimulation patterns,260

giving 120 different bulk impedances for one frame of acquisition. After normalization, the261

square matrix Ẑ of size 16× 16 is obtained, along with the ` = 16 pairs of eigenvalues and262

eigenvectors, see Eqn. (12).263

The NIM of the three simulated cases considered are visualized to highlight their correla-264

tion with the phase pattern. Case 1 is shown in Figure 2(b) with r = 0.3 and the cases 2 and265

3 are shown in Figure 4, in which Case 2 is computed with h = 0.8 and Case 3 is computed266

with 3 bubbles and re = 0.3. These parameters are chosen to obtain the same phase fraction267

for all three cases. As it can be seen, the main features of the NIM vary significantly with268

the phase pattern, even at the same phase fraction. This characteristic is at the foundation269

of the present study.270

(a) Ẑ of case 2 (stratified) (b) Ẑ of case 3 (three bubbles)

Figure 4. Entries of the normalized impedance matrix of the cases 2 and 3.

In the following sections, the eigenvalues of various simulation cases are investigated271

and compared to study their dependence on the bubble distribution. In particular, the void272

fraction is plotted with the leading eigenvalue and the sum of the absolute value of the first 15273

eigenvalues, to assess their correlations. For convenience, we denote the leading eigenvalue as274

λ(16) and the sum of the absolute value of the first 15 eigenvalues as
∑15
|λ| = |λ(1)|+· · ·+|λ(15)|.275
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Moreover, the void fraction α is defined in 2D by the area ratio occupied by the bubble276

inclusion over the total area, i.e. α = |Ωi|/|Ω| = |Ωi|/π.277

3.2 Result analysis278

3.2.1 Case 1279

Due to the fact that the properties of the impedance matrix are invariant with the rotation280

of the electrodes, we only need to simulate the bubble inclusion moving along one radius of281

the domain. We set θ0 = 0, which is representative of all cases of a single bubble moving282

within the domain. Applying the restriction condition r + d ≤ 0.95 and an increment step283

of 0.05, we get 19 different bubble radius r and placements d, separately, which will give 190284

different simulation cases (190 pairs of (r, d)) in total. Here, r+d ≤ 0.95 is chosen because of285

the extremely high sensitivity near the boundary, which could cause an abnormal deviation,286

besides, in practical applications it is also rare to have a bubble occupying 95% of the pipe287

diameter.288

The eigenvalues are computed for each case and plotted. Figure 5(a) shows the 16289

eigenvalues of concentric bubble inclusions with d = 0 and 0.05 ≤ r ≤ 0.95, while Figure 5(b)290

shows the 16 eigenvalues of eccentric bubble inclusions with d = 0.35 and 0.05 ≤ r ≤ 0.6.291

In both figures, each curve represents an eigenvalue λ(i), and they are evolving with the292

bubble radius. As we can see, the leading eigenvalue is much larger than the others, and its293

amplitude is correlated to the bubble size, especially when the bubble edge is close to the294

domain boundary. Besides, for concentric bubble configurations, the first 15 eigenvalues are295

symmetrical around zero due to the symmetry of the conductivity distribution.296

(a) Concentric bubble, d = 0 (b) Eccentric bubble, d = 0.35

Figure 5. Eigenvalue array for some configurations corresponding to Case 1.

Figure 6 shows the 16 eigenvalues of a bubble inclusion with r = 0.35 moving from297

d = 0 to d = 0.6. As it can be seen, as the bubble moves toward the boundary, the leading298

eigenvalue increases rapidly, while the other eigenvalues vary little with d.299
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Figure 6. Eigenvalue array of one bubble inclusion (r = 0.35) moving from d = 0 to d = 0.6.

As we know, adding bubble inclusions increases the overall bulk impedance, hence the300

normalized impedance Ẑi,j, which in turn affects the eigenvalues. That is why the eigenvalues301

are changing with bubble size. To study the influence of bubble location, the sensitivity map302

of EIT has to be considered. The sensitivity map s(x) of an EIT sensor quantifies the303

relation between the change of boundary measurement δVmeas caused by a local conductivity304

perturbation δσ(x), that is, s(x) = δVmeas/δσ(x). It describes how effectively each region is305

contributing to the measurement [32].306

Figure 7. Map of the logarithm of the sensitivity distribution: (left) source/drain at elec-
trodes (1,7) and measurement at electrodes (12,13); (right) full scan strategy.

EIT is a soft-field imaging technique for which high sensitivity areas concentrate near307

the boundary and the vicinity of the active electrodes while the domain interior contains308

low sensitivity regions. The sensitivity maps for one single measurement and for the full309

scan strategy are shown in Figure 7. The color map in the left panel shows the sensitivity310

distribution of one stimulation pattern with source and drain at electrodes 1 and 7, and one311
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single measurement at electrodes 12 and 13. The sensitivity map of the full scan strategy is312

shown in the right panel. Considering the same bubble inclusion placed either in the center313

or near the boundary, the boundary voltage turns out to be more affected on average in314

the latter configuration, and so are the impedance matrix and its eigenvalues. Thus, the315

eigenvalues are affected by both the size and position of the bubble inclusion.316

(a) λ(16) vs. α (b)
∑15

|λ| vs. α

Figure 8. Eigenvalues vs. void fraction for Case 1.

Figure 8 shows the relation between the void fraction and the leading eigenvalue λ(16)
317

and the sum of the absolute value of the first 15 eigenvalues
∑15
|λ|. For Case 1, the void318

fraction satisfies α = πr2/πr2
0 = r2, which is invariant with d. In both figures, each curve319

corresponds to a specific value d with varying r, for example, the curve at the right most320

represents a bubble in the center (d = 0), its radius r increases from 0.05 to 0.95, hence the321

void fraction ranges from 0 to 0.9025. The figures show that both λ(16) and
∑15
|λ| increase322

with the void fraction and vary with the distance to the center. The void fraction can be323

estimated by λ(16) or
∑15
|λ|, from Figure 8 we can estimate the void fraction with an error324

less than 10%. Furthermore, the error can be reduced drastically when the position of the325

bubble is known a priori (distance to the center d).326

3.2.2 Case 2327

In the stratified configuration, a horizontal liquid-gas interface is considered since the impedance328

matrix is invariant with electrodes rotation. Note that the void fraction α in Case 2 satisfies329

the relation330

α = (θ − sin θ · cos θ)/π with θ = arccos(1− h), (14)

where h is the thickness of the gas layer as in Figure 3.331

The eigenvalue array of Case 2 is plotted in Figure 9(a). A linear approximation can be332

found for the relation between h and the leading eigenvalue, while the data points at high333

void fraction (h > 1.99) are considered to be abnormal and discarded. The other eigenvalues334

are not strongly correlated to h. In Figure 9(b), λ(16) is plotted with h, and the curve is335
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fitted linearly with a fitting measure R2 of 0.9905. The deviation between the fitting line336

and the data points may originate from the finite number and size of the electrodes and from337

their limited geometrical extent too.338

(a) Eigenvalue array vs. h (b) λ(16) vs. h and its linear fit

Figure 9. Eigenvalue arrays and λ(16) as a function of h for Case 2.

3.2.3 Case 3339

In Case 3, a number nbub ∈ {1, 3, 11, 36, 62, 84} of bubble inclusions are considered with340

a radius adjusted to get the same water fraction as an equivalent single concentric bubble of341

radius re. The void fraction of Case 3 is α = r2
e , which is restricted by nbub to avoid contact342

among bubbles. With nbub = 3 the top limit of void fraction is 0.5, for nbub = 11 it is 0.6,343

while for other cases it ranges from 0.65 to 0.7. For practical two-phase flows, the intensive344

bubbly flow rarely reaches a void fraction over 0.5, otherwise the bubbles would collapse and345

form bigger bubbles and the flow regime would change.346

The eigenvalue λ(16) is plotted with the void fraction and the bubbles radius in Figure347

10 respectively. In Figure 10(a) the right most curve represents the single concentric bubble348

case, from right to left the curves correspond to an increasing value of nbub. As we can349

see, at the same void fraction the leading eigenvalue λ(16) is increasing with nbub. The same350

behaviour is also observed in Figure 10(b): at the same void fraction, λ(16) is decreasing with351

the bubbles radius. Besides, the smaller the bubbles are, the stronger the effect is on λ(16),352

which is shown by the drop of λ(16) when rdis is close to zero. After that point λ(16) decreases353

smoothly as rdis increases.354
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(a) λ(16) vs. α (b) λ(16) vs. re/
√
nbub

Figure 10. Eigenvalues vs. void fraction for Case 3.

For the multiple bubble case, two parameters have to be known to predict the void355

fraction: the eigenvalues and the number of bubbles within the sensor area. However, it is356

not practical to observe the bubble distribution inside a pipe. In the work of Bruhl et al. [33],357

the eigenvalues of Λσ − Λ0 are used to locate the inhomogeneities and estimate the number358

of inhomogeneities non-iteratively, which is a very promising method to be combined with359

the approach proposed here, to obtain a reliable and accurate void fraction estimation for360

two-phase flows.361

4 Robustness of the proposed approach362

The properties of the eigenvalue distribution of the normalized impedance matrix Ẑ are ana-363

lyzed in the previous section based on 2D simulations. In the present section, the robustness364

of this methodology is investigated by studying the case where the data is noisy and when365

the inclusions are conductive.366

4.1 Noisy data367

In practical EIT systems, the boundary measurements are always polluted by some noise,368

including background white noise or the cross-talk of electrical devices. Thus, the robustness369

of the eigenvalue analysis to noisy data has to be assessed. The Signal-to-Noise Ratio (SNR)370

of the EIT system developed for the present study at the Laboratory of Thermal-Hydraulics371

in Core and Circuits (LTHC) is higher than 60dB for all channels at a stimulation frequency372

of 20kHz and amplitude of 1V . Given this SNR value then adding a noise of 10dB to the373

measurement data from numerical simulations is conservative.374

The noise is added to the measurement data from both the homogenous and inhomoge-375

neous configurations. The eigenvalues of Case 1 are computed and compared to the results376

without noise. Again, λ(16) and
∑15
|λ| are the metrics this study is focusing on, so they are plot-377
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(a) λ(16) vs. α with error bars (b)
∑15

|λ| vs. α with error bars

Figure 11. Eigenvalue trends obtained with noisy data in Case 1.

ted with error bars as in Figure 11. The error ξ on λ(16) is computed as ξ = |λ(16)
noisy−λ(16)|/λ(16)

378

where λ(16) is computed without noise and λ
(16)
noisy is computed with a 10dB noise. The error379

on
∑15
|λ| is computed in the same fashion. As we can see, the relative error for both λ(16) and380 ∑15

|λ| are very small, the maximum values being 4.3% and 2.0% respectively.381

4.2 Extension to conductive inclusions382

Apart from the application in water-gas two phase flow measurements, EIT sensors can also383

be used in various industrial processes, which may concern conductive inclusions rather than384

non-conductive bubbles. Here, the definition of the conductivity contrast R = σhigh/σlow385

from Seagar et al. [34] is used to represent the conductivity difference between two phases.386

For water-gas two-phase flows, R tends to infinity. In the section, some configurations with387

R ∈ {100, 10, 5, 2.5, 1.25} are simulated and compared to the results associated with388

R ≈ ∞ (i.e. water-gas two-phase flows), to assess the general applicability of the proposed389

methodology.390

All three cases are simulated in 2D when varying R and the results for the cases 1 and 2391

are plotted in Figures 12 to 13. In Figure 12(a), the eigenvalue λ(16) for the single concentric392

bubble case is plotted with α and each curve represents different values of R. As we can see,393

the trends of λ(16) changing with α are similar for different values of R, while the amplitude394

are increasing globally with R. Also, as R increases to large values, λ(16) increases less and395

less, especially after R = 100, i.e. there exists a threshold effect. The same conclusions are396

obtained for
∑15
|λ|, see Figure 12(b).397

For the stratified case, the same results can be obtained, while the contrast R has a much398

stronger effect on the eigenvalues, especially for large values. As shown in Figure 13, λ(16) is399

5 to 6 magnitudes higher for R =∞ than for the other cases, so that λ(16) vs. h is plotted400

in Figure 13(b) excluding the case R = ∞. Nevertheless, a linear correlation can be found401

between λ(16) and h for varying R.402
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(a) λ(16) vs. α (b)
∑15

|λ| vs. α

Figure 12. λ(16) and
∑15
|λ| vs. α for various values of R in Case 1.

Lastly, the results for the multiple bubble case have been found to be similar to the single403

bubble case. The applicability of the eigenvalue analysis to conductive inclusions is therefore404

emphasized but the conductivity contrast R between phases is an important information to405

be known beforehand.406

5 Validation by experimental static tests407

In this section, the methodology for void fraction estimation, which has been devised based408

on numerical simulations, is validated experimentally. We perform static tests, with a pipe409

containing still water, for a number of configurations corresponding to the three inclusion410

patterns considered previously. The motivations for performing such static tests are as411

follows: (i) they are easily implementable using standard laboratory equipment and allow to412

control the phase distribution accurately, which is crucial to validate the proposed approach,413

(ii) EIT measurements can be performed at a high frame rate (of the order of 800fps for the414

system considered), which allows to treat a dynamic flow as if it were quasi-static on each415

frame. These experimental tests are carried out with the EIT system developed in LTHC.416

5.1 EIT system in LTHC417

The prototype EIT sensor has 16 electrodes on the boundary of the test section with an418

angular separation of 22.5◦. The test section is a pipe with diameter of 80mm and height of419

300mm while the electrode size is 170mm× 5mm [9], as shown in Figure 14.420
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(a) λ(16) vs. h, all cases (b) λ(16) vs. h, excluding R =∞

Figure 13. λ(16) vs. h in Case 2.

Figure 14. EIT system in LTHC.

Stimulation and signal acquisition are both performed using the PXIe system from Na-421

tional Instrument. The stimulation signal is a sinuous voltage with amplitude of 1V to avoid422

the electrolysis reaction of water. The signal is generated by the analogue output channel of423

the PXIe system, the sample rate ranges from 1 Hz to 3.33 MHz. Data acquisition is done424

by the differential analogue input channels of the system, the simultaneous sample rate of425

all channels reaches up to 2 MHz [35]. A multiplexer with 16 ports is used to route the426

stimulation signal to a selected pair of electrodes. A discrete Fourier transform is performed427

on the measurement data to obtain amplitudes and phases at the stimulation frequency.428

Static tests are carried out with still water filling the test section and a number of plastic429

rods emulating bubbles. Different diameters and numbers of rods are placed into the water430

to get various void fractions. In a first step, the impedance of each stimulation pattern has431

to be obtained from practical measurements. The prototype EIT uses voltage of ±1V as a432

stimulation signal, which is different from the current stimulation considered in the numerical433

simulations but we consider the two settings as being equivalent. Each stimulation pattern434
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can be assumed as a closed circuit as in Figure 15, in which the bulk impedance Zbulk and435

the contact impedances at the source/drain electrodes Zsource and Zdrain are connected as436

Ztot = Zsource + Zdrain + Zbulk = V/I. (15)

The terms Zsource and Zdrain are essentially equal, they are electrode-specific and invariant437

with phase distributions. In (15), V is the stimulation voltage and I is the sensor current.438

Figure 15. Closed circuit between the source and drain electrodes.

In the EIT system, a constant resistor R0 = 200Ω is included in the closed circuit and the439

voltage difference ∆VR0 across R0 is measured. Thus, the current I through the circuit can440

be obtained as I = ∆VR0/R0. Considering the homogeneous case, there are 120 independent441

equations as Eqn. (15). As Zbulk depends only on the angular separation of source/drain442

electrodes, there are 8 different values of Zbulk overall. Together with the 16 different values443

of Zsource (or Zdrain), the set of 120 linear equations contains 24 unknown parameters. Thus444

the values of Zsource and Zdrain can be obtained and used to apply the proposed methodology.445

For inhomogeneous configurations, the bulk impedances are computed as in the homogeneous446

case.447

5.2 Result comparison448

The static test results are compared to numerical simulations for validation. Simulations449

in 2D can be considered as being equivalent to configurations with infinite long electrodes450

and inclusions, while in practical 3D implementations, the electrodes and the inclusions have451

finite extents. Therefore, it is more relevant to compare the results from a practical EIT452

system with 3D simulations. As a consequence, we consider here a 3D cylindrical model453

implemented in EIDORS. The radius of the numerical model is 1 while all other parameters454

are normalized from the prototype EIT system so that the length of the model is 7.5, the455

electrodes have a width of 0.125 and a length of 4.25. The bubble inclusion is emulated456

by a non-conductive rod of the height of the model. The 3D numerical model has 198730457

tetrahedral mesh elements.458

As of the experimental tests, a series of configurations are investigated to obtain data for459

all of the three patterns considered. For Case 1, a single non-conductive rod with different460

diameters is placed in the test section at different distances to the center: the diameter of the461

18



(a) Case 1 (b) Case 3

Figure 16. Comparison between 3D simulations and experimental static tests for the cases
1 and 3: eigenvalue λ(16) as a function of the void fraction α.

rod ranges from 10mm to 70mm, the distance to the center being d ∈ {0, 12mm, 24mm},462

corresponding to d ∈ {0, 0.3r0, 0.6r0} in the 3D simulations. For Case 2, the test section463

is placed horizontally with different water levels. In Case 3, different tests with three rods464

placed symmetrically are carried out, the diameter of the rods ranges from 10mm to 40mm.465

The normalized impedance matrix and its eigenvalues are computed for each test. The466

evolutions of the eigenvalue λ(16) with the void fraction are shown along with 3D simulation467

results in Figure 16 for the cases 1 and 3, and in Figure 17 for Case 2.468

For the cases 1 and 3, the trends of the eigenvalue λ(16) for the static tests agree well with469

the 3D simulations, which validates the proposed methodology. Deviations of low relative470

amplitude can be observed, which may be due to the following facts: (i) the simulation471

model is non-dimensional with normalized size and conductivity; (ii) the stimulation signal472

is a constant current in the simulations while it is a constant voltage in the experiments.473

For Case 2, the trends of the eigenvalue λ(16) with the thickness h of the gas layer, see474

(14), for the experiments and the 3D numerical simulations are very different, as seen in475

Figure 17(a), especially at small h. The magnitudes in the experiments are also significantly476

lower than in the simulations. These discrepancies may come from: (i) the surface tension of477

water causes a rise at the interface between the plastic pipe and the water, especially at low478

h; (ii) a conductive water film may be present on the uncovered part of the pipe surface, while479

in the simulation there is no such film. Moreover, the magnitude of the eigenvalue λ(16) is480

remarkably high for all values of h compared to the other phase distribution patterns (at the481

same void fraction), as shown in Figure 17(b). Lastly, the electrodes that are immersed in482

water can be directly revealed by the distribution of the entries of the normalized impedance483

matrix, as seen in Figure 4(a), which could therefore be used as an indicator of the water484

level.485
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(a) λ(16) vs. h (b) λ(16) vs. α for low values of h

Figure 17. Comparison between 3D simulations and experimental static tests for Case 2.

6 Conclusion486

In this article, the impedance data from electrical impedance tomography sensor and its re-487

lation to the void fraction of two-phase flows is investigated numerically and experimentally488

for a cylindrical pipe configuration. The forward problem associated with EIT is a boundary489

value problem: prescribing Neumann boundary conditions, the Dirichlet boundary mea-490

surements depend on the internal conductivity distribution. In practical implementations,491

discrete electrodes are used for stimulation and boundary measurements, leading to one bulk492

impedance matrix for each stimulation pattern. A normalization of the impedance matrix493

is considered to extract information from the data and reduce the influences of factors other494

than the bubble inclusion distribution, such as the diameter of the sensor, the background495

medium conductivity or the stimulation signal.496

Numerical simulations are carried out for three different canonical cases that cover a497

diversity of bubble distribution patterns for two-phase flows. Synthetic boundary measure-498

ments are computed to obtain normalized impedance matrices, the eigenvalues of which are499

investigated in the different configurations considered. The robustness of the proposed ap-500

proach to noisy data is assessed by adding 10dB of noise to the measurement data and the501

presented results highlight some satisfying performances. Moreover, this methodology can502

be extended to case of conductive inclusions.503

From the numerical simulations, it is found that the leading eigenvalue λ(16) and the sum504

of eigenvalues
∑15
|λ| = |λ(1)| + · · · + |λ(15)| are strongly correlated to the void fraction for all505

of the cases considered: (i) in the single bubble case (Case 1), the simulation results are506

encapsulated by the curves of λ(16) and
∑15
|λ| vs. α excluding the data point at α > 0.9025.507

The void fraction can be estimated by
∑15
|λ| with an error of 10% regardless of the bubble508

position; (ii) in the stratified case (Case 2), a linear correlation is found between λ(16) and h509

with a fitting measure R2 = 0.9905; (iii) in the multiple bubble case (Case 3), the relation510

between the void fraction and the eigenvalues are strongly dependent on the number nbub511
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of inclusions and an accurate estimation of the void fraction requires the knowledge of both512

λ(16), or
∑15
|λ|, and nbub.513

Experimental static tests corresponding to the three cases considered are carried out and514

the eigenvalues of the NIM from experimental data are compared with 3D simulations. The515

trends for the eigenvalue λ(16) with α agree well for the cases 1 and 3, although there are516

small deviations in terms of the magnitudes; for Case 2 there is a large discrepancy between517

the static tests and the simulations, while λ(16) is remarkably high at all h compared to other518

phase distribution patterns at the same phase fraction.519

For a given EIT sensor with specific electrode size and placement, the void fraction can520

be estimated from the eigenvalues of the NIM. The estimation error would be reduced by521

incorporating a priori knowledge on the flow regime, which can be identified too from EIT522

data, see [19]. This overall approach provides a good estimation of the void fraction in two-523

phase flows without performing image reconstruction, especially for annular flow (concentric524

bubble column) and stratified flow. While the eigenvalue-based indicators considered here525

constitute valuable metrics for the state of the system, there is a need for an in-depth math-526

ematical analysis of the relation between the system and the eigenvalues of the impedance527

matrix. Such an analysis would allow to determine which information can be retrieved from528

such a matrix and which metrics are suitable to do so. Lastly and as in [36], this methodology529

can be used to devise an initial guess for iterative image reconstruction algorithms thereby530

improving their convergence. For further improvements, the MUltiple SIgnal Classification531

(MUSIC) algorithm, see [33], could be employed to obtain the number and positions of532

bubble inclusions within the probed medium to improve the estimation of the void fraction.533
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[23] Martin Hanke and Martin Brühl. Recent progress in electrical impedance tomography. Inverse592

Problems, 19(6):S65, 2003.593

[24] Kuo-Sheng Cheng, David Isaacson, JC Newell, and David G Gisser. Electrode models for elec-594

tric current computed tomography. IEEE Transactions on Biomedical Engineering, 36(9):918–595

924, 1989.596

[25] M Wang. Electrode models in electrical impedance tomography. Journal of Zhejiang597

University-SCIENCE A, 6(12):1386–1393, 2005.598

[26] SL Ceccio and DL George. A review of electrical impedance techniques for the measurement599

of multiphase flows. Journal of fluids engineering, 118(2):391–399, 1996.600

[27] DL George, JR Torczynski, KA Shollenberger, TJ O?Hern, and SL Ceccio. Validation of601

electrical-impedance tomography for measurements of material distribution in two-phase flows.602

International Journal of Multiphase Flow, 26(4):549–581, 2000.603

[28] Yemada Taitel and Abe E Dukler. A model for predicting flow regime transitions in horizontal604

and near horizontal gas-liquid flow. AIChE journal, 22(1):47–55, 1976.605

[29] L Rossi, R De Fayard, and S Kassab. Measurements using x-ray attenuation vertical distribu-606

tion of the void fraction for different flow regimes in a horizontal pipe. Nuclear Engineering607

and Design, 336:129–140, 2018.608

[30] Geoffrey Frederick Hewitt and DN Roberts. Studies of two-phase flow patterns by simultane-609

ous x-ray and flast photography. Technical report, Atomic Energy Research Establishment,610

Harwell, England (United Kingdom), 1969.611

[31] Nick Polydorides and William RB Lionheart. A matlab toolkit for three-dimensional elec-612

trical impedance tomography: a contribution to the electrical impedance and diffuse optical613

reconstruction software project. Measurement science and technology, 13(12):1871, 2002.614

[32] P Kauppinen, J Hyttinen, and J Malmivuo. Sensitivity distribution simulations of impedance615

tomography electrode combinations. In BEM & NFSI Conference Proceedings, volume 7, pages616

344–347, 2005.617
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