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Abstract In the context of multi-robot system and

more generally for Technological System-of-Systems, this

paper proposes a multi-UAV (Unmanned Aerial Ve-

hicle) framework for SLAM-based cooperative explo-

ration under limited communication bandwidth. The

exploration strategy, based on RGB-D grid mapping

and group leader decision making, uses a new utility

function that takes into account each robot distance in

the group from the unexplored set of targets, and al-

lows to simultaneously explore the environment and to

get a detailed grid map of specific areas in an optimized

manner. Compared to state-of-the-art approaches, the

main novelty is to exchange only the frontier points

of the computed local grid map to reduce the shared

data volume, and consequently the memory consump-

tion. Moreover, communications constraints are taken
into account within a SLAM-based multi-robot collec-

tive exploration. In that way, the proposed strategy is

also designed to cope with communications drop-out

or failures. The multi-UAV system is implemented into

ROS and GAZEBO simulators on multiple computers

provided with network facilities. Results show that the

proposed cooperative exploration strategy minimizes
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the global exploration time by 25% for 2 UAVs and

by 30% for 3 UAVs, while outperforming state-of-the-

art exploration strategies based on both random and

closest frontiers, and minimizing the average travelled

distance by each UAV by 55% for 2 UAVs and by 62%

for 3 UAVs. Furthermore, the system performance is

also evaluated in a realistic test-bed comprising an in-

frastructure-less network, which is used to support lim-

ited communications. The results of the test-bed show

that the proposed exploration strategy uses 10 times

less data than a strategy that makes the robots ex-

changing their whole local maps.

Keywords Coordinated multi-robot system · UAV ·
autonomous exploration, frontier-based exploration ·
SLAM · inter-robot communications.

1 Introduction

In the last decades, the robotic community has shown

a growing interest in the development of multi-robot

systems. Several research works showed that these sys-

tems present several advantages, such as increased effi-

ciency, reduced mission time, robustness to robot fail-

ures, and scalability. Hence, these systems are suffi-

ciently flexible to be used in different applications, such

as surveillance, infrastructure inspection, search and

rescue, etc. Among these applications, the exploration

and mapping of unknown environment is still one of

the fundamental problem in aerial robotics. The aim

is to get the most complete and accurate map of the

environment in a relatively short time. Still, when us-

ing multiple robots, many challenges arise especially

when using robots with limited embedded sensor range,

processing capabilities and energy [41]. Indeed, previ-

ous multi-robot exploration research focused on mo-
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tion planning and collision avoidance [21,15,3]. More

recently, the emphasis moved to robot coordination and

cooperation. Multi-robot systems are mainly composed

of three complementary components – perception [42],

planning and control [1], and communications [23] –

that interact together to get a consistent and robust

system. One of the main challenges of the perception

component is the Simultaneous Localization and Map-

ping (SLAM) where no global positioning system is

used. For the path planning and control component, co-

operative exploration represents one of the main prob-

lems. Thus, in the literature cooperative exploration

strategies have been proposed. Usually, these strategies

are based on a utility function to assign a robot with

an exploration target. The target assignment decision

is performed by using specific information exchanged

among robots. Therefore, communicatiosn are a funda-

mental component of the multi-robot system and com-

munications issues must be taken into account. In fact,

multi-robot systems have to cope with communications

failures in order to ensure the mission continuity. There-

fore, in this paper we address each of the three com-

ponents’ challenges towards the definition of a system

providing robots with precise localization, improving

robots area coverage and coordinating the fleet.

1.1 Contributions

In this paper, we present a coordinated Multiple Un-

manned Aerial Vehicles (UAVs) system in order to ef-

ficiently explore an unknown environment using poten-

tially heterogeneous robots. The main contributions of

this work are fourfold: i) From a System-of-Systems

point of view, we introduce a new fully distributed Multi-

UAV system architecture that does not exploit any global

information (neither map nor GPS); ii) Compared to

existing works, we propose a novel utility function that

takes into account the distance of each robot in the

group from the unexplored set of targets which allows

to cover a larger area by effectively spreading the robots

in the environment; iii) We detail a coordinated explo-

ration strategy, based on an on-line grid-based RGB-

D SLAM system and a dynamic-group-leader decision

making that helps minimizing the global exploration

time and the average traveled distance for each robot;

iv) We design a strategy behavior to deal with commu-

nication limitations and failures, which requires only a

limited information data exchange.

1.2 Paper structure

The paper is organized as follows. In section 2, we start

by introducing a brief state of the art on visual SLAM,

UAV to target assignment, utility function, and com-

munications for Multi-UAV systems. In section 3, we

present an overview of the proposed Multi-UAV sys-

tem. Then, in sections 4 and 5, we detail the proposed

exploration algorithm and the inter-robots communi-

cation module, respectively. We present the results and

discussions about the proposed framework in section 6.

And finally, we conclude in section 8. The nomencla-

ture and variables, used in this paper, are summarized

in Table 1.

Table 1 Nomenclature.

Designation Description

UAVi UAV of index i.
pi, vi, ωi Pose, linear velocity, and angular velocity

of UAVi.
0W Global reference frame.
WFi UAVi’s local reference frame w.r.t 0W.
W
[
R t

]
Fi

Transform of rotation R and translation t
from reference frame 0W to WFi.

PS ,O, L, F , G,
T , C

3D points cloud computed by SLAM, 3D
voxels, 2D cells, frontier points, candi-
date frontier points (candidate targets),
assigned targets and cluster sets, respec-
tively.

ou, of , oo Unknown, free and occupied 3D voxels, re-
spectively.

lu, lf , lo Unknown, free and occupied 2D cells, re-
spectively.

fi,j Frontier point j of UAVi

ti Target point i.
I (ti) Information gain of ti.
U (UAVi, tj) Utility of reaching target j by UAVi.
θ(i, j) Assignment of UAVi with target j.
id Identification number of UAV.
r Loop rate.
n Number of UAVs in the fleet.
nc Number of UAVs in C.
nt, Number of targets in T .
ng Number of targets in G.
ni Number of frontier points of UAVi.
s Sensor maximum range.
λ Tuning parameter ∈ [0, 1].
[rmin, rmax] Range to schedule information gain.
σx, σy Parameter to spread the blob in x and y

axis, respectively.
dtot Average distances of other UAVs to the

considered target.

2 RELATED WORKS

Cooperative multi-robot systems are playing important

roles in today’s unknown environment exploration ap-
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plications. Beside this growing interest for multi-robot

systems, several architectures have been proposed to

manage the system interoperability. The architecture

is often closely related to the decision making process

that can be either centralized or decentralized includ-

ing distributed, hybrid and hierarchical ones [41]. Those

architectures present several advantages and disadvan-

tages that are summarized in Table 2. The central-

ized architecture considers one robot/central server [30]

to manage all the computations and tasks assignment.

However, these centralized approaches are subject to

stranded missions when they do not take into account

communications or robot failures. On another side, works

such as [43,34], propose to use distributed approaches

with fully autonomous robots. These approaches re-

quire robots with increased resources to exchange and

process an important amount of information in order to

synchronize agents and achieve a cooperative mission.

Authors in [38] propose a hybrid approach that consists

in switching from individual to cooperative exploration

behavior when agents are not able to converge to a local

minimum at a satisfying rate. Important computation

requirements are used for this later approach. Taking

into account the advantage of solution optimality from

centralized approach, and the advantage of mission re-

liability and adaptability from decentralized approach;

a leader -based approach has been proposed in our pre-

vious work [22]. The fleet is subdivided into subgroups

– called clusters – such that one robot in each subgroup

is responsible for targets assignment. In this paper, we

propose to improve this work to tackle the problems of

relative localization and inter-robots communications.

In this paper, we also focus on the use of visual

sensor as the main perception modality. These visual

sensors are used to gather information to map the en-

vironment and to estimate the robot’s trajectory. For

that, visual odometry (VO) or SLAM method are dom-

inant. There exist several methods attempting to solve

SLAM [7]. Among them, the ORB-SLAM2 vision based

framework [25] has shown promising results for pose es-

timation. It is a lightweight RGB-D SLAM system and

a feature based method composed of: a tracking thread

for the localization; a local mapping thread for the map-

ping; and a loop closing thread in charge of detecting

loops. These three main threads work in parallel. A

place recognition module is used for re-localization and

loop detection. Hence, in this work, we make use of the

ORB-SLAM2 to construct a model of the environment

and to estimate the robot’s state within it. The map-

ping algorithm is performed while a robot attempts to

reach a target. So, for an effective environment map-

ping, the target should be chosen carefully. There is a

wide variety of goal assignment strategies to affect one

robot to a target.

In [20] a comparison of some assignment strategy

used for multi-robot system is done. The compared strate-

gies include Hungarian-based method [28], Greedy [40],

Broadcast of Local Eligibility (BLE) method [37] and

K-means clustering [36]. Results show that Hungarian-

based methods outperform other approaches in major-

ity of cases. Unlike the Hungarian-based method, the it-

erative assignment can be implemented in a distributed

environment. Also the Hungarian-based approach are

computationally heavy compared to the simple greedy

algorithm which is preferred in applicable scenario.

Most of the target to robot assignments are based

on an utility function that defines the advantage that

a robot have to reach this target according to the mis-

sion’s aim [5]. The work proposed in [2] presents a new

utility function that takes into account the traveling

cost to the target and the connectivity utility. This al-

lows a trade off between minimizing the amount of ex-

ploration time and connectivity. To speed up velocity,

authors in [8] propose a rapid frontier selection tech-

nique to select goals from the robot’s field of view. This

approach minimizes the overall mission time by mini-

mizing the change in velocity of the robot. Nonetheless,

it increases the total path length traveled. In [17], maxi-

mizing the reconstructed model is favored over the mis-

sion time. Further, the proposed approach solves simul-

taneously exploration and coverage problems in order

to maximize the completeness of reconstructed model.

Whereas in [35], the aim is to maximize the utility of

targets that minimizes the potential for overlap in infor-

mation gain amongst members of the fleet. The utility

of reaching a target depends basically on the aim of

the mission while taking into account some additional

constraint such as time, completeness of the map, lim-

ited sensor and communication range, and number of

robots.

For multi-robot exploration, one of the most criti-

cal point is linked to inter-robot communications. The

challenge is to maintain reliable communications dur-

ing the mission, in order to make the robots cooperate

[31,16]. The strategy used for exploration affects the

data exchange among robots including type, destina-

tion and frequency. The exchanged information may be

composed of key-frames and map points shared between

a robot and a server [32], or only features of selected

key-frames and relative-pose estimates shared among

robots and ground station [13]. But mostly, robots ex-

change their local copies of the map and their poses [4,

33,14]. The amount of exchanged data may rapidly in-

crease in size, which may cause network congestion and

data loss. In order to reduce the bandwidth require-
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Table 2 Multi-robot system decision making architecture.

Approach Centralized Decentralized
(distributed or hierarchical)

Advantages Optimal solution.
Simple and lightweight processing on-board
robots.

Robustness in dynamic environment.
Reliability in case of other robots failure.
Adaptability and flexibility.
Decision making autonomy.

Disadvantages Weakness in dynamic environment.
Important network requirement.
System vulnerability in front of central con-
trol agent.
Additional computational requirements.
Unsuitable for large scale systems.

Suboptimal solution.
Complex on-board processing.
Important amount of exchanged informa-
tion.

ments, authors in [24] propose to send only compressed

key-frames and updated key-frame poses. Authors in

[10] propose a Decentralized Data Fusion-Smoothing

And Mapping (DDF-SAM) approach, where each robot

propagates towards other robots, its condensed local

graph in order to achieve scalability and robustness to

node failure. Most works deal with the communication

problem while assuming ideal communications or aim

to keep team members within range of one another in

order to focus their attention in higher level problem

[33,6]. But considering communication losses and/or

limited bandwidth help to prevent from mission fail-

ure ensuring a more realistic scenario. Indeed, in real

scenarios, many issues can arise such as having distance

among robots that exceeds the communication range,

losing major information in a broken communication

link, losing precious time in sending information due

to limited bandwidth. The exploration strategy have to

take into account the mentioned issues to avoid mission

failure in real world scenario. This topic is understud-

ied, yet, some works began to tackle the exploration
problem while considering communication limitations

[9,32]. In [11], the aim is to sense a geometrically com-

plex environment by assigning targets to robots while

satisfying spatial and temporal resolutions. This ap-

proach uses a min-max energy path planning algorithm

that obeys to a deadline time. Other works [16,29] pro-

pose to use protocol and routing solutions to overcome

the robots’ communication issues. In our work, we make

the choice to let UAVs exchange with each other only

frontier points, robot poses, and assigned targets. This

exchange happens at each iteration while considering

UAVs’ role, which are adapted according to the net-

work topology. This adaptation allows also to cope with

communication limitations.
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Fig. 1 Architecture block diagram.

3 Multi-UAV system overview

Using potentially heterogeneous UAVs, the main objec-

tive of cooperative exploration is to achieve a full cov-

erage of an unknown environment in minimum time.

3.1 System architecture

The proposed framework in Fig. 1 is an overview of

the software architecture used for Multi-UAV system.

It presents the different modules and data flows among

them. This block diagram is distributed and embed-

ded over all fleet members composed of n UAVs. We

suppose that each UAV is equipped with an embedded

RGB-D visual sensor. To maintain an accurate estimate

of the UAV’s pose in the environment, a simultaneous

localization (block 1) and mapping (block 3) are per-

formed. Block 3 in the mapping layer is responsible for

constructing a detailed grid map of the explored regions

and keeping track of them. In the data processing block

(block 4), some specific information are picked out and

exchanged using the communication layer where the

network (block 7) is in charge of maintaining data flow

among UAVs. The collected data are then locally pro-

cessed in the same block 4 to get exploitable informa-

tion for exploration. Thereafter, block 5 performs tar-
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gets selection. Planning the path and reaching it are the

roles of block 6. Block 2 is used to visually detect other

UAVs in the environment then estimate their relative

transform using visual fiducial markers or tags such as

WhyCon [26] or AprilTag [27].

3.2 System coordinate frames

In this paper, we assume that the UAV fleet explore a

3D bounded unknown environment with a global refer-

ence frame 0W (See Fig. 2). Each robot (UAVi, with i ∈
N∗), maintains a relative motion matrix Fi

[
R t

]
UAVi

w.r.t. its corresponding local reference frame WFi, and

a global transform W
[
R t

]
UAVi

w.r.t. the global refer-

ence frame 0W. During the mission, the information

World frame

y

z

x

y

z

x

y

z

x

F1
W

F 2
W

F 3
W

[R t ]UAV1
F 1

[R t ]UAV 2
F 2

[R t ]UAV 3
F 3

UAV1

UAV 3

UAV 2

Local frame 1

Local frame 2

Local frame 3

[R t ]UAV3
UAV2

[R t ]UAV3
UAV1

[R t ]UAV2
UAV1

y

z

x
Wo

Fig. 2 Multi-UAV global and local coordinate systems.

computed within local frames WFi of all the UAVs

are processed in parallel. Before that, however, those
information need to be converted in 0W by knowing

the UAV’s local reference frame transform w.r.t. 0W

(W
[
R t

]
Fi

). Thereby, UAV’s initial pose in 0W needs

to be known. To do that, the UAV, with the lowest

id number in the fleet (UAV1 in Fig. 2), is consid-

ered as a landmark. The global frame is defined such

that it coincides with the UAV marker’s local frame

where W
[
R t

]
F1

=
[
I3 0

]
. Using block 2 in Fig. 1, the

relative transform UAV1
[
R t

]
UAVi

is estimated, from

which, transform W
[
R t

]
UAVi

and thus W
[
R t

]
Fi

are

computed.

3.3 Roles in the fleet

Cooperation in Multi-UAV systems often goes through

the exchange of data [41]. In a limited communication

ability, the data sharing link cannot always be correctly

established due to limited communication range, data

loss, obstacles, and traffic congestion. In the proposed

work, each group of robots that may communicate with

one another, form a cluster C. The fleet is composed of,

at least, one cluster (if n = nc). In each C, one robot

takes the role of leader and is in charge of making coop-

erative decision, based on some specific shared informa-

tion, for all the other robots in C that have the role of ex-

plorers. The decision making process relies completely

on the leader, which can lead to mission interruption;

especially when the leader to explorer communication

link is lost, or the leader is out of order. To overcome

these problems, the roles are constantly updated, in or-

der to select a leader if the current one experienced

any issue. The roles are not previously defined but are

adapted depending on the fleet topology changes. All

UAVs’ role are initialized to leader. Then, as soon as

UAVs start to exchange their identification number id,

clusters are formed and each UAV chooses its appropri-

ate role. The leader role is taken by the UAV with the

lowest id number in the C.

4 Multi-UAV exploration and coordination

4.1 Simultaneous Localization And Mapping

The exploration task requires the UAV to implicitly

maintain an accurate estimate of its pose in addition to

a map of the observed environment. Fig. 3 shows the

outline of the localization and mapping layers used in

the framework.

RGB-D 
sensor

Feature-based
 mapping

Relative 
Localization 

Octomap 
framework

illustration

Exploration
 and 

navigation

Projection 
onto z=0

SLAM

Grid-based mapping

P
i
 

P
i
 

P
S

P
S

O  L

C
t
, D

t

Fig. 3 Localization and Mapping layers outline. pi is the
robot’s estimated pose, PS represents the 3D point cloud
computed by the SLAM system, and O and L contain the 3D
and 2D grid map, respectively.

In this paper, the SLAM module provides an esti-

mate of the robot’s 3D coordinates pi = [x, y, z, qx, qy,
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qz, qw]> w.r.t. the local reference frame WFi.

Using the estimated motion and the 3D point cloud

from the RGB-D sensor, a 3D occupancy grid is built

during the grid-based mapping process. For that, the

Octomap framework [19] is used. The environment is

approximated to a 3D voxels grid O where each voxel

o ∈ O is represented by its centroid (See Fig. 4). Us-

ing the sensor measurements, voxels are labeled to un-

known ou, free of or occupied oo. This 3D occupancy

grid O is down-projected onto the plane z = 0 of the

local frame WFi to get a 2D cell grid L =proj(z=0)(O).

Cells are occupied as soon as there is an occupied voxel

in the z cell range. And, they are free if all voxels in the

z cell range are so. During the exploration, each robot

chooses a target from L and moves to it while maintain-

ing a fixed z altitude which leads to a 2D exploration

and navigation problem.

4.2 Proposed Exploration Strategy

In a Multi-UAV system, the exploration strategy needs

to be cooperative in order to be efficient. The proposed

strategy is described in Algorithm 1. The main objec-

tive is to cooperatively choose specific regions to be si-

multaneously explored using a frontier-based approach.

This is done by selecting candidate targets and assign-

ing them to each robot in an optimized manner.

Algorithm 1 Exploration strategy for coordinated

Multi-UAV.
1: From cells ll ∈ L, select frontier points fi,j ∈ F and

compute their respective information gain I (fi,j).
2: Process frontier points fi,j to get candidate goals tk ∈ G

(See Algorithm 2).
3: Assign UAVi with target k (See Algorithm 3).
4: Send targets to the corresponding robots.

4.2.1 Frontier selection and information gain

The frontier selection process is used to define the fron-

tiers of regions bounded by obstacles or unknown spaces.

In this work, the frontier cells fi,j ∈ F are selected

from the set of cells L (F ⊂ L) such that they are

either i) free lf and adjacent to unknown, or ii) la-

beled as occupied lo. Occupied cells lo are considered

as frontier cells to be able to perform frontier process-

ing in the next step. They could not be chosen as target

and will be discarded later. For example, in Fig. 4, the

frontier cells are: lf (2, 1), lf (2, 2), lo(2, 3), and lo(3, 3).

Thus, for a cluster C containing UAVi, the frontiers are

F={fi,1(2, 1), fi,2(2, 2), fi,3(2, 3), fi,4(3, 3)}.

In frontier-based exploration approaches, only cells ad-

jacent to unknown ones may be defined as candidate

frontier points and are likely to be chosen as target.

Thereby, the information gain is associated to each of

them in order to estimate the utility of reaching each

frontier. This corresponding information gain can be

defined in different manner depending on the mission

purpose. Authors in [6] propose to use a probability

function to reduce an assigned constant value thanks to

the relative distance to the UAV’s pose. This strategy

is general and does not take into account the updated

explored cells. The approach proposed in [17], affects to

the information gain the number of unknown and not

occluded cells in the view frustum of the target. This

method depends on the real estimate of information

gained when visiting the considered pose. However, it

requires more computation. In the proposed strategy,

the information gain are associated in a way that they

define the number of unknown cells lu around the tar-

get.

4.2.2 Frontier points processing

All frontier points fi,j ∈ F of UAVi in the cluster C
with i ∈ [1...nc], are collected. Points in F are then

processed using Algo. 2 to get candidate frontier points

considered as candidate targets tk ∈ G with k ∈ [1...ng]

(See Fig. 4). The operators
⋃

and
⋂

are defined such

that, for example, if we have two UAVs with the frontier

points f1,1 = [1, 0] and f1,2 = [2, 3] for UAV1, and f2,1 =

[1, 1] and f2,2 = [2, 3] for UAV2; we would have pu =

{[1, 0], [1, 1], [2, 3]} and pi = {[2, 3]}.

Algorithm 2 Frontier processing algorithm.

Input: Frontier points fi,j ∈ F of UAVi with i ∈ [1...nc].
Output: Candidate targets G.
1: pu =

⋃nc

i=1 fi,j .
2: pi =

⋂nc

i=1 fi,j .
3: G = pu \ pi.
4: Delete the obstacle frontier points fi,j(x, y) = lo(x, y)

from G.
5: return G.

The obstacle frontier points – labeled as occupied

– are only kept to compute the intersection of frontier

points. Only the free frontier cells lf can be considered

as candidate target. When using local frontier points

instead of local maps, the frontier process replaces the

map matching process where the aim is to clear overlap-

ping areas. Indeed, in the frontier processing step, the

points that belong to the overlapping areas are cleared.

Therefore, using frontier points allows important mem-

ory saving.
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– G (candidate targets) to 2D target cells – points – T .

4.2.3 Utility function

The proposed utility function (See Eq. 1) aims to simul-

taneously increase the explored area rate and to reduce

the distance of each UAV to its corresponding target.

It also considers the average distances to each robot in

the group to this target in order to maximize distances

among robots.

U (UAVi, tj) = I (tj) exp(−λ.(dmin(pi, tj)+

+
nc − 1∑nc

k=1,k 6=i(dmin(pk, tj))
)), (1)

where UAVi is the considered robot, tj ∈ G and I (tj)

are respectively the candidate target and its correspond-

ing information gain, λ is a trade-off parameter, nc is

the number of UAVs in the cluster C, and dmin(pi, tj)

is the minimum distance from UAVi’s pose to the candi-

date target j. The proposed utility function is inspired

from [17] and it has been presented in our previous work

[22]. In the case of a single UAV, the utility function

tends to choose the closest target with the maximum of

information gain. Regarding the Multi-UAV case, the

utility function is based on the average neighbors dis-

tances. As shown in Fig. 5, with an information gain of

I (tj) = 25 and three UAVs in the cluster (nc = 3); an

increasing distance of UAV to the target will reduce the

utility function. Whereas, the more average distance of

other UAVs w.r.t. the target, the more the utility. So

the function tends to chose the closest target to the

considered UAV but at the same time, the farthest one

from the others. The proposed utility function performs

a trade-off between rapid exploration and filling in de-

tails the map using a tuning parameter λ. From Fig.

5a and Fig. 5b, it is noticed that the bigger λ, the less

important the distance dmin(pi, tj) and thus filling in

details is favored over rapid exploration and vice versa.

(a) λ = 0.2

(b) λ = 0.8

Fig. 5 Utility function behavior: I (tj) = 25 , nc = 3,
dtot =

∑nc

k=1,k 6=i(dmin(pk, tj)). The average distance of
other UAVs dtot has a minimum value different from zero
since nc is different from zero too.
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4.2.4 Goal assignment process

In order to make appropriate target-to-UAV assign-

ment, the utility of reaching each candidate frontier is

considered. The goal assignment process is described

in Algo. 3. For each UAVi, the utilities of reaching all

Algorithm 3 Goal assignment algorithm.

Input: Candidate targets tk ∈ G, k ∈ [1...ng] and their re-
spective information gain U (tk), position pi of all robots
in the considered cluster C.

Output: θ(UAVi, tg) assignment of UAVi with target g.
1: T = ∅.
2: while no goal for UAVi do
3: Compute its corresponding utility of reaching each re-

maining candidate goal U (UAVi, tk) with tk ∈ G \ T .
4: tg= argmaxtk∈G∩T U (UAVi, tk).
5: Schedule the information gain of the remaining candi-

dates tk ∈ G \ T .
6: T = T ∪ {tg}.
7: end while
8: return θ(UAVi, tg) assignment.

the candidate targets are computed. Then, the target

tg that maximizes the utility is assigned to UAVi. Af-

ter that, tg is removed and the remaining candidate

targets are scheduled in order to avoid to select the

same target or another one close to it. This assignment

process is performed for the available UAVs in C in

a sequential manner until getting all assigned targets

tg ∈ T with g ∈ [1...nt] (See Fig. 4). The goal selec-

tion process is realized by each cluster/group leader (if

n > nc) or the Fleet leader (if n = nc). This assign-

ment aims to distribute the robots in the environment
in a cooperative way to explore simultaneously different

unknown regions. As long as candidate frontier points

are still available, the leader continues to assign targets

to explorers and they attempt to reach their assigned

goals. When the leader notices that no candidate tar-

gets are left, that means that all the environment has

been explored successfully and the mission is accom-

plished. Thus, it has to send back to the explorers an

acknowledgment to prevent them assuming a commu-

nication loss.

The target assignment process is performed in each

loop. The frequency of assigning targets is important

since it defines when a target should be assigned to the

UAV. This frequency impacts the duration and the ef-

ficiency of the mission. In a distributed approach, as

soon as the UAV reaches its current target, it selects a

new one without consulting the others. In a centralized

approach, the first UAV to reach its current target has

to wait until the others reach their respective targets.

This can be a problem as soon as one of them fails or

leaves the mission. Another possibility is to begin to as-

sign targets once one UAV reaches its target. But this

may generate incomplete tasks. In the proposed strat-

egy, the frequency of assignment or loop rate r is prede-

fined depending on the average time to reach a target

such that r = { s
vi,max

, s
vi,min

} where s is the maximum

sensor range and vi is the UAV’s velocity.

The information gain of each remaining candidate tar-

get I (tk)t with tk ∈ G \{tg} at time t − 1, that be-

longs to the threshold range [rmin, rmax], is scheduled

at time t depending on its distance w.r.t. the target

tg, using Eq. 2. This function is Gaussian with an am-

plitude that corresponds to the information gain max-

imum value; a center that corresponds to the target

position (tg(x), tg(y)); and σx and σy that spread the

blob in x and y axis, respectively.

I (tk)t = I (tk)t−1(1− exp(−(
(tk(x)− tg(x))2

2.σ2
x

+
(tk(y)− tg(y))2

2.σ2
y

))), (2)

where tk(x) and tk(y) are the remaining candidate tar-

get coordinates; tg(x) and tg(y) are the target coordi-

nates; and σx and σy are the spreads of the blob. The

less the distance of the frontier point tk w.r.t. the target

tg, the less the information gain. When reducing the in-

formation gain, the candidate targets are less likely to

be chosen and thus, robots ensure a certain distance

among their future targets.

4.2.5 Path planning and control

As explained in Sect.4.1, UAVs are assumed to nav-

igate in a simplified 2D environment with a fixed z

value. Block 6 in Fig. 1 is responsible for planning a

path to the selected target and attempting to reach it.

For the navigation task, each UAV maintains a local

and a global planner along with a local and a global

costmap, respectively. The costmap is a 2D cell grid

L with additional inflation that consists on propagat-

ing cost values out from occupied cells and decreasing

them with distance. The global costmap has the size of

the UAV’s map whereas, the local costmap has a fixed

size moving window. Given a starting point – the cur-

rent pose – and an endpoint – the assigned target – in

the global costmap, the global planner produces a plan

using a navigation function computed with Dijkstra al-

gorithm [12]. It consists on following the adjacent free

cells until reaching the goal. Then taking into account

the local costmap, the local planner generates velocity

commands for the UAV’s mobile base. A recovery rota-

tional behavior is also performed when needed in order
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to clear the robot’s field of view. The described tasks

above are ensured by the move base1 package.

The target assigned by the leader is ensured to belong

to an unknown area using the exploration strategy. The

trajectory planning process is performed locally on each

robot. And since the UAVs do not exchange their lo-

cal maps nor fuse them, they are likely to revisit al-

ready explored areas while following the planned path.

To minimize these overlapped regions during naviga-

tion, a priority is given to frontier points fi,j to be a

target for UAVi over UAVk with k 6= i. This helps the

UAV to maintain the same direction during exploration.

5 Inter-UAV communications

Interactions among members of the fleet are useful for

the exploration strategy to prevent UAVs to explore the

same regions, and allow them to cooperatively discover

the unknown areas more rapidly and in an optimized

manner. However, inter-UAV communications is a chal-

lenging issue that requires to answer some practical

questions: Which type of data nodes must exchange? If

so, how to identify the end-points of the data exchange?

How to cope with communication limitations and how

often data or control information must be exchanged?

In this Section, we will try to give a quick summary of

the answers to these questions.

Concerning the type of exchanged data and the end-

points of the communication flow, in the proposed co-

operative strategy, the UAVs must exchange data and

control information in the following way:

– Data: Only local frontier points fi,j ∈ F , current

pose pi, and current target point tg are exchanged

among the UAVs, instead of the whole copy of the

local map. This is expected to produce a consider-

able reduction of exchanged data volume, and, con-

sequently, memory consumption.

– Control : UAVi with i ∈ [1...nc] forward its id num-

ber and current pose pi. All the explorers UAVk

with k ∈ [1...nc] and k > i, send their local fron-

tier points fk,l ∈ F to the selected leader. Then, the

leader performs the goal assignment process and

sends back to each explorer in C a selected target

point tg to reach.

Concerning the communication limitations, it is impor-

tant to ensure the mission continuity. In case of losing

contact with the leader and before another one is se-

lected, explorers let a timer τ expire while waiting for

target assignment. If no target is received, the explorer

1 http://wiki.ros.org/move base

selects its own target according to local information.

Using this strategy, as long as – at least – one UAV

exists in the fleet, the mission will continue until all the

bounded environment is explored (no candidate frontier

points are left).

In the proposed strategy, data flow exchange is re-

peated at each iteration while taking into account net-

work topology changes to define clusters. The starting

points and endpoints are defined according to these

roles. The UAV’s role also specifies the type of ex-

changed data. In addition to the exchanged current

pose pi and id number i, if the UAVi is an explorer,

it would passively share information about itself and

its surrounding environment with the leader (frontier

points fi,j ∈ F); else, its role would be to send targets

to visit to the explorers (target points tk ∈ G).

6 Results

Simulations have been performed to evaluate the pro-

posed exploration strategy. Additional tests while using

relative localization have been done to measure the sys-

tem performances. Furthermore, experiments using an

infrastructure-less network have been conducted to get

as close as possible to a real UAVs deployment scenario.

The obtained results point out the performance of the

proposed multi-robot system under real network limi-

tations.

The number of robots used for evaluation is limited to

three, however, the proposed system architecture is not

constrained to a fixed number of robots.

6.1 Simulation results

The simulations are performed using Robot Operating

System (ROS) running on a 2.60GHz i7 Linux machine.

For the quad-rotor simulation, the AR-drone model2

equipped with an RGB-D camera in a forward-looking

configuration, is used. A bounded unknown environ-

ment is generated using Gazebo simulator.

6.1.1 Parameters tuning

The utility function (See Eq. 1) used in the exploration

strategy can be tuned, using a trade off parameter λ,

between fast exploration and filling in details the map.

2 http://wiki.ros.org/ardrone autonomy
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Fig. 6 The impact of variating the trade off parameter λ
over exploration time.

Fig. 6 shows different runs while varying this pa-

rameter. By increasing λ, the information gained when

reaching the goal is favored over the distance and thus

the cost to it, and vice versa. So, when λ is small, the

traveled distance is small and so the exploration time.

Though, some times during the mission, high values

of λ are noticed to reach higher exploration rate than

smaller ones.

The frequency or loop rate r of target assignment may

also affect exploration time performances. The values

of r are variated to take into account the robot velocity

vi and the sensor’s maximum range s. The impact of

varying the loop rate is evaluated in Fig. 7.

Fig. 7 Exploration time while varying the loop rate r.

Given a robot velocity vi = [0.1, 0.3] m.s−1 and a

maximum sensor range of s = 4 m, loop rate ranges

in r = [10, 40]. The loop rate should not be too small

to allow the robot to reach its target; nor too big to

prevent long waits for the next goal assignment.

Depending on results in Fig. 6 and Fig. 7, respectively,

λ is set to 0.2 and r to 20s. The simulation parameters

are summarized in Table 3.

6.1.2 Performance of the exploration strategy

The proposed exploration strategy has been evaluated

in terms of distribution of the robots in the environ-

ment, overlap rate, exploration time, and total trav-

eled distance by each robot. Furthermore, several val-

idations have been done to select the parameters con-

figuration.

The goal assignment process is performed according to

Table 3 Common parameters.

Parameter Value
RGB-D maximum range s (m) 4
loop rate l (s) 20
Trade-off parameter λ 0.2
RGB-D horizontal FoV π/3
Occupancy grid resolution (m) 0.05
Range to schedule Ig [σx, σy] (m) [3, 3]
Environment dimension (m2) 8× 8
Linear velocity vi (m.s−1) [0.1, 0.3]
Angular velocity ωi (rad.s−1) [0.1, 0.3]

the algorithm described in Sect. 4.2.4. Nevertheless, af-

ter assigning a target to the first robot in the list, the

same target or another one close to it may be assigned

to the second robot in the list. To overcome these is-

sues, the information gain of the remaining candidate

targets is scheduled. This allows to discard an already

assigned target and to keep a certain distance between

the new target and the previous one assigned.

Suppose that a target is assigned to the first robot in the

cluster list. Fig. 8 shows the goal selected for the second

robot when a sequential assignment is performed:

– without further frontier points processing (See Fig.

8b) which results in assigning the same target to

two different robots;

– while removing the assigned target from the remain-

ing candidate frontier points (See Fig. 8c) which re-

sults in too close assigned targets.

– while scheduling information gain after each tar-

get assignment (See Fig. 8d) which allows to space

out assigned targets. The information gain is sched-

uled following Eq. 2. The information gain value in-

creases with distance to the candidate target tg.

The goal assignment process may sometimes be not

optimal since it depends on the robots’ order in the

list. For example, suppose that robots UAVi and UAVj

have the same best target assignment tk such that it of-

fers the maximum utility over candidate frontier points:

tk = argmaxtmU (UAVi, tm) with tm ∈ G and tk =

argmaxtnU (UAVj , tn) with tn ∈ G. Robot UAVi have

another candidate frontier point tl with U (UAVi, tk) >

U (UAVi, tl) > U (UAVj , tk). So the optimal solution

would be to assign tl to UAVi and tk to UAVj . But, if

UAVi is the first in the list, tk is assigned to it and an-

other candidate frontier point with less utility than tk,

is assigned to UAVj . Thus the solution with sequential

goal assignment is not always optimal.

To overcome this problem, all the number of possi-

ble combination
ng !

ng ! (ng−nc)! with ng the number of can-

didate targets and nc the number of robots, needs to

be considered. This considerably increases the compu-

tation time when the robots number increases. There-
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(a) Candidate targets.

(b) Targets assignment when no further
process is performed for the remaining can-
didate targets.

(c) Targets assignment when UAV1’s tar-
get is removed from the remaining candi-
date targets.

(d) Targets assignment when the informa-
tion gain of the remained candidate targets
is scheduled.

Fig. 8 Goal assignment: after assigning a target to UAV1, a
target is assigned in a sequential manner to UAV2. (a) rep-
resents the candidate frontier points with their respective in-
formation gain. (b), (c), and (d) represent respectively, the
targets assignment when: no further process is performed for
the remaining candidate targets; UAV1’s target is removed
from the remaining candidate targets and; the information
gain of the remained candidate targets is scheduled.

fore, in the proposed algorithm, sequential assignment

is favored over computing all possible permutations.

The use of an effective goal assignment process should

limit the generated overlap. In Fig. 9, the time evolution

of overlap is evaluated using two cooperative robots.

The overlap undergoes a significant increase at the end

of the exploration to reach 33%. This is explained by

the closeness of the local maps at the end of the mission

to fully fill in details the global grid map.

While reaching their respective assigned goals, each

robot is in charge of creating a detailed grid map of

Fig. 9 Explored and overlapped area rate using two cooper-
ative UAVs.

the visited area in order to get a global map of the

environment.

Fig. 10 shows the evolution of the respective pro-

jected 2D local grid map of two robots during a co-

operative exploration mission. The global projected 2D

grid map is also created and represented for evaluation.

The robots’ initial positions are (1,0,0) for UAV1

and (1,-3,0) for UAV2. Despite a relatively close initial

positions, the proposed strategy effectively spread the

robots so that UAV1 is in charge of the left side of the

environment and UAV2 of the right one.

To effectively evaluate the exploration strategy perfor-

mance in terms of time and traveled distance, different

runs with 1, 2 and 3 UAVs have been conducted until

the explored area rate reaches almost 99%. A traveled

distance evaluation is represented in Fig. 11. This dis-

tance effectively decreases with the number of UAVs.

The average distance traveled by each UAV is reduced

by 55% for 2 UAVs and by 62% for 3 UAVs. The error

of the traveled distance is slightly reduced from 1 to 2

Local map 1 Local map 2 Global map

Fig. 10 Coordinated exploration using two robots. Columns
1, 2 and 3 show the evolution of the local grid map of UAV1,
UAV2 and the global grid map over time, respectively.
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Fig. 11 Traveled distance evaluation.

Fig. 12 Average exploration time.

and 3 UAVs.

Fig. 12 shows that the average exploration time de-

creases when the number of robots in the fleet increases.

The computed error is decreased as well. The explo-

ration time is reduced by 25% for 2 UAVs and by 30%

for 3 UAVs. The exploration time and distance are not

directly divided by 2 or 3 when multiplying by 2 or 3

the number of robots, respectively. During these sim-

ulations, the robots’ initial positions are: (1,0,0) for 1

UAV; (1,0,0) and (1,-3,0) for 2 UAVs; and (1,1,0), (1,-

1,0) and (1,-3,0) for 3 UAVs. The results presented

above (See Sec.6.1.2) were evaluated without a rela-

tive localization. So, for a more challenging realistic

scenario, runs with relative localization algorithm have

been performed to evaluate both SLAM and system

performances along relative localization.

6.1.3 Comparison with existing exploration strategies

In order to evaluate our proposed exploration strategy,

we compare it with some state-of-the-art well known

strategies based on both random and closest frontiers.

We present the results obtained with a Random Fron-

tier (RF) selection strategy, as a baseline for compari-

son [18]. Also, we compared our proposed strategy to a

simple but efficient frontier-based exploration strategy

based on exploring the Closest Frontier (CF) [39].

Fig. 13 shows this comparison using 1, 2 and 3 UAVs.

Our proposed strategy clearly outperforms the two other

methods in the three cases. By increasing the number

of UAVs, our strategy gives better results compared to

the others. Moreover, our strategy presents a relatively

small and almost constant variation against the trav-

eled distance range.
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Fig. 13 Exploration strategies comparison.

6.1.4 System performance with the relative localization

The ORB-SLAM2 approach [25] have been implemen-

ted3 and evaluated along with the proposed exploration

strategy. Each robot runs its own ORB-SLAM2 within

its local reference frame WFi. But, exchanged informa-

tion among robots have to be expressed in a common

reference frame. So information such as the pose pi and

the frontier points fi,j are necessarily transformed into

the global reference frame 0W before being exchanged.

Therefore the leader makes all the needed computa-

tion and sends back to the explorers the targets in 0W.

When a robot receives its assigned goal, it transforms

it into WFi in order to plan a path to it. To perform a

transformation from local reference WFi to global one
0W, the robot has to know – at least – its initial pose

w.r.t. 0W. So, as explained in Section 3.2, the global ref-

erence frame of the environment is initialized such that

it coincides with the local reference frame of the first

group leader in the fleet: 0W ≡ WF1 in this example.

Then, by detecting this robot using tags mounted on

it, the other robots are able to estimate their respective

transform to it F1
[
R t

]
Fj

, j ∈ [2...nc]. For simulation

evaluations, the information of transform – computed

while detecting the tag – are assumed to be known.

The SLAM approach has been implemented along

with our exploration strategy and evaluated using the

Gazebo virtual environment. Despite the need of struc-

ture and texture, the ORB-SLAM2 has been able to

perform localization in a simulated area. Table 4 re-

sumes tests to set some of the required parameters (lin-

ear velocity vi and angular velocity ωi) to perform vi-

sual SLAM without tracking loss or – at least – a fast

re-localization.

3 https : //github.com/raulmur/ORB SLAM2
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Table 4 SLAM behavior while modifying linear and angular
velocity. T.L: Tracking Loss; RL: Re-Localization.vi and ωi

are in m.s−1 and rad.s−1, respectively.

PPPPPPωi

vi0.1 0.2 0.3

0.1 No T.L. No T.L. T.L.,
R.L.

0.2 No T.L. T.L.,
R.L.

T.L.

0.3 T.L.,
R.L.

T.L. T.L.

Fig. 14 shows the SLAM system performances dur-

ing one robot exploration. The exploration time is rel-

atively important compared to the exploration without

SLAM since the velocity have been considerably re-

duced. The drift and so the trajectory error are limited

thanks to the loop-closure algorithm performed within

ORB-SLAM2.

Results for exploration using two UAVs running each

one the SLAM algorithm are presented in Fig. 15. As

expected, the exploration time using 1 UAV is greater

than using 2 UAVs. An important drift occurs at the

end of the UAV2’s trajectory because it did not visit a

known place and therefore it could not rectify its tra-

jectory with a loop closure optimization.

(a) The estimated trajectory versus the Ground
truth.

(b) The exploration rate and the estimated posi-
tion errors during the mission.

Fig. 14 One UAV exploration using SLAM algorithm. (the
kinect’s maximum range is 4m, the UAV’s linear velocity vi ∈
[0.1, 0.2] m.s−1 and angular velocity ωi = 0.1 rad.s−1). The
RMSE(x)=0.2968 and RMSE(y)=0.2944.

(a) The estimated trajectory versus the Ground
truth.

(b) The exploration rate and the estimated posi-
tion errors during the mission.

Fig. 15 Two UAVs cooperative exploration performing each
one SLAM algorithm. (the kinect’s maximum range is 4m,
the UAV’s linear velocity vi ∈ [0.1, 0.2] m.s−1 and angular
velocity ωi = 0.1 rad.s−1). For UAV1, the RMSE(x)=0.2419
and RMSE(y)=0.1415 ;for UAV2 the RMSE(x)=0.3649 and
RMSE(y)=0.1614.

6.2 System performance using an infrastructureless

network

As the UAVs are equipped with IEEE 802.11b,g wire-

less card, we setup an infrastructureless network within

the set of robots to quantify the data exchange among

members of the fleet, as well as, to determine the per-

formance of the robot network. Runs with 2 and 3

UAVs are performed. The network is composed of two

2.60GHz i7 Linux machines and one 2.50GHz i7 Linux

machine. A multi-master system – also called multi-core

system – is used. Each UAV manages its own master

to avoid losing contact with ROS master in case of un-

stable network connection. In this type of system, a

synchronization among ROS cores is required to allow

robot to robot communication. Hence, the multi-master

fkie package4, where cores synchronization is ensured by

UDP protocol, is used. The TCP protocol is responsible

for exchanging data among ROS topics through the net-

work. For an effective evaluation, especially concerning

the time, clock synchronization needs to be ensured.

Network time protocol (NTP) is used to synchronize

laptops within a few milliseconds of Coordinated Uni-

versal Time (UTC).

The first evaluation aims to point out the amount of

the exchanged data (See Fig. 16). The size of data to

4 http : //wiki.ros.org/multimaster fkie
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Fig. 16 Data size when UAVs exchange a whole copy of their
local grid map versus frontier points of it. Values represent
the average exchanged data during the mission.

Fig. 17 Network topology evolution during a loop r with
three cooperative UAVs.

be exchanged is almost divided by 10 in the proposed

strategy that shares only frontier points compared to a

strategy that makes robots to exchange a whole copy of

their local map. Depending on the size and frequency of

the exchanged data, the allocated time for communica-

tions may increase with the increasing number of UAVs.

Thus, evaluations of timing behavior and its potential

impact on the exploration performances have been con-

ducted. Fig. 17 shows the network topology evolution

during data exchange. Threes stages are noticed where

the exchanged information are the following:

– Stage 1: id number and poses pi, i ∈ [1...nc].

– Stage 2: frontier points fi,j , i ∈ [1...nc], j ∈ [1...ni].

– Stage 3: target points assignment θ(UAVi, tk), i ∈
[1...nc], k ∈ [1...ng].

Table 5 shows the average data exchange time during

exploration. A slight increase in the computed average

time occurs when increasing the number of UAVs. This

time spent in communication is negligible compared to

the total time of exploration.

To evaluate the system behavior during communi-

cation failure, the network connectivity has been volun-

tarily interrupted during the exploration. Fig. 18 shows

the UAV’s role and the exploration rate performance

when the network connectivity is interrupted and then

recovered.

The system performs neighbor discovering, role selec-

tion and target assignment at each loop of ti+1 = ti+i.r

with t0 = 0s and r = 20s. In Fig. 18a, at t = t0, both

robots begin with a leader role. When discovering each

other (at t = t1), UAV1 selects itself as leader and

UAV2 as explorer. Consequently, UAV1 assigns a tar-

get to UAV2. UAV2 receives the target and attempts

(a) Robot role along with network connectivity.

(b) Exploration rate along with network connectivity.

Fig. 18 Two cooperative robots exploration along with net-
work connectivity.

to reach it. At t = t2 + δ, the connectivity is voluntar-

ily interrupted, just after the role selection but before

the target information is assigned to UAV2. After a

time period τ , UAV2 selects a target taking into ac-

count its own local data. In the next loop (at t = t3),

since the connectivity is still interrupted, UAV2 finds

no neighbors and selects itself as a leader. Both robots

perform exploration independently, that is, without co-

operation. Shortly after t = t3, the connectivity is re-

established. Thus, robots are able to cooperate again

and UAV2 takes over the role of explorer.

In Fig. 18b, even after the network connectivity is in-

terrupted, the exploration continues to be performed

by both UAVs. When the connectivity is re-established,

the leader collects the frontier points and performs fron-

tier processing where it finds that no candidates targets

are remaining, that is, all the environment is now ex-

plored. Therefore, the mission is accomplished.

7 Discussion

The aim of this work is to propose a complete system-

of-systems framework used for multi-robot environment

exploration. In this work, we propose both novelty and

exploitation of state-of-the-art methods to make effec-

tive this scalable framework. As a property of system-

of-systems, each of the component/block presented in

Fig. 1 can be replaced using different approaches than

the ones we used here.
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Table 5 Communication module timings.

# UAVs
Time spent

in stage 1 (s)
Time spent

in stage 2 (s)
Time spent

in stage 3 (s)
Time for

exploration (s)
UAV1 UAV2 UAV3 UAV1 UAV2 UAV3 UAV1 UAV2 UAV3

Two
UAVs

UAV1 ∅ 0.136±
0.139

∅ ∅ ∅ 0.022±
0.017

120, 1

UAV2 0.065±
0.068

∅ 0.026±
0.008

∅ ∅ ∅

Three
UAVs

UAV1 ∅ 0.056±
0.065

0.575±
0.769

∅ ∅ ∅ ∅ 0.335±
0.407

0.765±
0.678

86

UAV2 0.107±
0.111

∅ 0.483±
0.678

0.185±
0.244

∅ ∅ ∅ ∅ ∅

UAV3 0.267±
0.165

0.616±
0.549

∅ 0.251±
0.109

∅ ∅ ∅ ∅ ∅

Moreover, the proposed exploration strategy ensures

a mission continuity in the case of communication loss.

Nevertheless, the robots may explore regions already

explored by the other ones, since no local maps are ex-

changed nor fused to keep track of visited areas. Thus,

in case of communication loss, the mission accomplish-

ment is favored over consumption minimization of re-

sources, such as time and energy.

In this paper, one limitation is that the explored en-

vironment is free of obstacles. This is due to the concave

shape assumption of the local maps (without obstacles

inside) in the frontier points processing step. This algo-

rithm needs to be adapted in order to take into account

obstacles. Consequently, the utility function will use the

robot path instead of the travelled distance.

8 Conclusions and future works

In this paper, we introduced a new distributed multi-

UAV system architecture for SLAM-based cooperative

exploration under limited communication bandwidth,

designed as a System-of-Systems. Based on their em-

bedded visual sensor, and using state-of-the-art visual-

SLAM algorithms, UAVs are individually able to lo-

calize themselves, discover their neighbors and create a

3D grid map of their environment. To explicitly han-

dle the connectivity limitations, the proposed coopera-

tive exploration strategy is based on a new utility func-

tion that takes into account the distance of each UAV

in the group from the unexplored set of targets, and

makes a trade-off between fast exploration and detailed

grid map using limited network resources. Using the

group leader decision making, targets are assigned to

UAVs in order to simultaneously explore different re-

gions of the environment in an optimized manner. Sim-

ulation results shows that the strategy adopted min-

imizes the mission time by 25% for 2 UAVs and by

30% for 3 UAVs. It also decreases the average trav-

eled distance by each UAV by 55% for 2 UAVs and

by 62% for 3 UAVs. In addition and in contrary to re-

cent approaches, by scheduling exchanged information,

UAVs are efficiently spread out into the environment

while avoiding to select the same target or another

one close to it. Moreover, test-bed results with net-

work communication, show that by exchanging frontier

points, local poses and assigned targets, the adopted

strategy reduces the data needed up to 10 times com-

pared to a strategy that makes the robots to exchange

the whole local maps. Furthermore, the group leader

decision making allows to take into account the com-

munication drop-out or failure by adapting the UAV’s

role according to the network topology changes.

When the communication is interrupted, ending the

mission is favored over the time spent to do it. Thus, in

the future work, under the proposed exploration strat-

egy, we aim to investigate the possibility of keeping

track of other UAVs’ explored area using the frontier

points. Also, we plan to implement the framework on

real quad-rotor fleet; and integrate obstacles for more

complex environment exploration.
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