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Impedance Spectroscopy Measurements in
Perovskite Solar Cells: Device Stability and
Noise Reduction

Perovskite solar cells (PSCs) are the most recent
newcomers to the photovoltaic field and have attracted
huge interest in the past few years due to their high

photoconversion efficiencies (higher than 22%)1 and their
relatively easy fabrication process.2 Despite that PSCs
constitute a category of solar cells with its own peculiarities,
earlier reports used perovskites to sensitize wide band gap
semiconductors.3,4 Undoubtedly, the rapid increase in efficiency
experienced by PSCs has much to be thankful for with all of the
previous work done on low-temperature processed technolo-
gies as sensitized cells or organic photovoltaics. In this sense, it
is not surprising to observe that researchers use most of the
characterization techniques developed for these former
technologies in order to characterize PSCs. However, trans-
lation of characterization methods has to take into account the
specificities of PSCs to avoid potentially misleading procedures
and results. In the case of PSCs, the most archetypical example
is the photoconversion efficiency determination through the
current−potential (J−V) curves that cannot be directly used
due to the reported hysteresis.5 Another electrical technique
extensively used for the characterization of photovoltaic
devices, especially on sensitized and organic solar cells, is
impedance spectroscopy (IS).6 This Viewpoint aims to clarify
some general aspects of IS characterization, focusing on the
special characteristic of PSCs in order to obtain reliable data
that can allow a fair comparison between different devices.
IS is a nondestructive electrical characterization method that

can be implemented coupled with device illumination in order
to characterize the solar cells under working conditions.
Usually, IS is a small-voltage perturbation method where a
DC potential establishes the stationary condition of the device
and a small AC signal at different frequencies is applied.
Consequently, IS allows complete device analysis at the
working conditions decoupling the different physical processes
with different characteristic times (frequencies).6 This fact
makes IS significantly appealing for characterization because,
potentially, different physical processes can be analyzed by a
single measurement. On the other hand, the experimental setup
is simple and the measurements are easy to perform. However,
to fully benefit from the IS potentiality, a complete model of
the device, conventionally formulated in terms of an equivalent
circuit in which each element has a physical meaning, is needed.
While this model is well-known for other kinds of devices,6 it is
not completely established for PSCs. Nevertheless, IS has been
extensively used for the characterization of PSC,7−24 as some
parts of the spectra have been identified as recombination
resistance, geometrical capacitance, or accumulation capaci-
tance, allowing a quantitative analysis. The interpretation of IS
measurements for PSCs is beyond the scope of this Viewpoint

that focus on the experimental setup, measurements, and
special considerations for PSCs.
IS measurements need the accomplishment of three

fundamental conditions: (i) causality; (ii) linearity; and (iii)
stability. Causality indicates that the measured response is due
exclusively to the applied stimulus. To this extent, it is
necessary to screen the sample from external perturbations; the
standard procedure is to perform the IS measurements inside of
a Faraday cage. Connection wires also need an appropriate
electrical shielding to reduce significantly the electrical noise.
Moreover, IS is based on the linearization of voltage and
current equations considering that small perturbations over the
voltage produces linear variations over the current.6 AC
perturbation has to be high enough to produce a noise-free
signal but small enough to ensure linearity. There is no
universal rule, and the accomplishment of these conditions will
depend on the sample and on the measurement conditions. A
clear example is depicted in Figure 1a. While the measurement
of a PSC at a DC bias, Vappl, of 0.2 V and AC perturbation of 50
mV can be realized with a good linear approach, the condition
of linearity is not fulfilled for Vappl = 0.8 V at the same AC
perturbations. The increase of AC perturbation produces a
higher response and consequently a better signal/noise ratio.
Figure 1b shows the impedance pattern of the cell analyzed in
Figure 1a at Vappl = 0.2 V and different AC perturbation. As
linearity is preserved in a tolerable manner even for relatively
large AC perturbation, the main effect of the increase of the AC
perturbation is the positive reduction of the electrical noise.
Conversely, the same analysis performed at Vappl = 0.8 V (see
Figure 1c) shows that the augmentation of AC perturbation
does not just reduce the noise but also alters the result of the
measurement due to loss in linearity.
Electrical noise can be especially significant at low

frequencies. Unlike in the case of other photovoltaic
technologies such as Si solar cells,25 where no physical
processes with long characteristic times (small frequencies)
are present, for PSCs it is important to obtain noise-free
measurements at low frequency as slow processes occur in
PSCs.26 In fact, this part of the spectrum is important to
determine recombination resistance8,9 or accumulation capaci-
tance.18,21 There are different ways to reduce the noise during
the IS measurements: (i) the increase of AC while linearity is
not disturbed, as we have already discussed, (ii) the increase of
the integration time, and/or (iii) the increase of the number of
integration cycles during the measurement. While the former
has the drawback of altering the linearity, the two latter increase
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the measurement time and could affect the third fundamental
condition for IS measurement, the stability. As the scope of the
IS measurement is to characterize the PSCs under stable
working conditions, we suggest decreasing the measurement
time as much as possible; consequently, the increment of
integration time or the number of integration cycles is not
advisible for low-stability samples. The use of dynamic AC

perturbation, larger at low Vappl, where noise is higher and
linearity easier to fulfill, and smaller close to the open-circuit
voltage, Voc, where the linearity condition is more demanding,
is recommended; see Figure 1.
The major current challenge of PSCs is to increase their

stability. There are multiple factors affecting the perovskite
stability such as moisture, temperature, the nature of the

Figure 1. (a) J−V curve of a PSC with CH3NH3PbI3 as the active layer. The variation of the current in terms of an modulated AC voltage of 50
mV is plotted for Vappl = 0.2 and 0.8 V. AC perturbation effect on the Nyquist plot for measurements of the same sample under 1 sun
illumination, measured for a frequency range of 1 MHz to 0.1 Hz with Vappl = (b) 0.2 and (c) 0.8 V. Details about PSCs fabrication can be
found in the Supporting Information.

Figure 2. Nyquist plot at different Vappl of the same PSC under (a) 1 sun and (b) 0.1 sun light intensity. J−V curves with forward and reverse
scans, corresponding to lower and higher apparent efficiencies, respectively, under 1 sun before and after the IS measurement at (c) 1 sun and
(d) 0.1 sun light intensity.
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selective contacts, the grain size, or light exposure.2 The
stability of PSCs has increased significantly since their origin,
and some perovskite configurations, such as as multiple
cations,23,27 inorganic perovskites,22 or 2D/3D layered perov-
skites, exhibit significant stability,28 even under illumination at
the maximum power point.29,30 However, this Viewpoint aims
to give a set of experimental procedures valid in the most
general cases of PSCs, and long IS measurement can produce
degradation of certain perovskite devices. Even if this process is
enhanced under illumination,31 it is important to carry out the
measurements of PSCs under illumination conditions as
perovskite properties change dramatically under illumina-
tion.21,32 Although IS at 1 sun illumination conditions can be
used to reconstruct the J−V curve in the standard conditions
for efficiency measurements,9,22 it is not necessary to carry out
the IS measurements under 1 sun if IS aims at doing a
comparative analysis between samples. For example, the
analysis under 0.1 sun conditions, on one hand, brings the
system to a high enough illumination to exhibit characteristic
illumination features such as low-frequency accumulation
capacitance18,21 and, on the other hand, reduces the electrical
noise (compare panels (a) and (b) in Figure 2) and increases
the device stability during measurement. The stability of the
PSC can be quickly verified by comparing the J−V curves
before and after IS measurement (see Figure 2c,d). It can be
appreciated that after IS at different applied voltages under 1
sun illumination the variation of the J−V curve is significantly
higher than that at 0.1 sun. It is important to highlight that the
J−V curve just after impedance measurement can produce a
false impression of cell degradation due to the poling
conditioning; we suggest measuring J−V after different times
to determine if the sample recovers its previous performance
value (see Figure S1), allowing confidence in IS measurement
as cell degradation is avoided.
There are several extrinsic procedures that contribute to

increase the stability during the IS measurement, such as the
use of a controlled temperature and atmosphere or
encapsulation of the devices. In addition, there are also other
intrinsic procedures for IS measurement conditions that can be
used for this purpose that always have to be properly balanced
to ensure the reliability of the measurement and the usefulness
of the obtained data. A decrease of measurement time is
beneficial in terms of stability, but it cannot be decreased by
reducing excessively the low-frequency range, which is the most
time-consuming, as important information is extracted from
this range, as discussed above. We suggest using a frequency

range starting at the highest frequency of the equipment setup
and extending at least down to 0.1 Hz. Of course, this
frequency range could depend on the exact nature of each
sample; for example, 0.1 Hz could be too high for a correct
determination of DC resistance in samples with large low-
frequency resistance or presenting negative capacitance in the
low or intermediate frequency range.7,11,22 An alternative is to
reduce the total number of frequencies for a single Vappl; see
Figures S2 and S3. In most cases, 40 frequencies distributed
logarithmically in a frequency range between 1 MHz and 0.1
Hz should be enough to obtain detailed impedance data.
Finally, it is important to avoid a practice unfortunately

extended in the literature: the comparison of IS spectra of
different samples at just a single condition, generally at Voc.
This kind of characterization does not allow a fair comparison
because the Fermi level splitting is not the same in most cases.6

The carrier density depends exponentially on the Fermi levels.
Meanwhile, important cell parameters such as the recombina-
tion rate, chemical capacitance, or conductivity depend on the
carrier density. Different samples can present a shift of energy
levels, causing, even at the same Vappl, different conditions of
Fermi level splitting to be reached. This fact is well-known in
sensitized solar cells.6 Consequently, appropriate comparison
has to be performed, sweeping the Fermi level splitting, either
by fixing the illumination and applying different Vappl (see
Figure 3a) or by using different illumination power densities,
making a single spectrum at each illumination at the
corresponding Voc (see Figure 3b). When illumination is fixed
(Figure 3a), different applied biases between the short circuit
and open circuit should be applied, while when illumination is
changed it has to be varied over several orders of magnitude
due to the exponential dependence between the Fermi level
and the illumination power density. The latter could be more
stressing from the stability point of view due to the spectra
recorded at high illumination compared with a voltage scan at
low illumination (see Figure 2) but can allow analysis of the
ideality factor in parallel to IS measurements.33

In both cases, shown in Figure 3, a set of parameters at
different Fermi level splitting can be obtained after the spectra
fitting. One must note that when we speak about IS
measurement we do not refer to obtaining a single impedance
spectrum but refer to acquiring a complete set of spectra as in
Figure 3. Depending on the experimental setup and settings, it
will take 0.5−1 h, being demanding conditions in terms of
stability for certain PSCs devices.

Figure 3. (a) Voltage scan under 0.1 sun and (b) light intensity scan at Voc, with 60 frequencies measured in the 1 MHz−0.1 Hz frequency
range in both cases.
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In summary, this Viewpoint provides some suggestions about
good practices regarding IS measurements as to avoid the
comparison of a single spectrum and compare a set of spectra at
various Fermi level splittings by changing the applied bias or
the illumination intensity. IS measurements have to ensure
causality, linearity, and stability and at the same time provide
low-noise useful data. Good shielding and performing measure-
ments in a Faraday cage will contribute to warranty causality.
Stability can be improved by controlling the measurement
atmosphere and temperature by device encapsulation and also
by reducing the measurement time. However, low-frequency
data are important for appropriate characterization of PSCs,
and as a consequence, the measurement time cannot be
reduced dramatically. To that end, illumination conditions can
be moderated and/or the number of total frequency points
reduced. The noise of the measurement can be lowered with no
further increase of measurement time by increasing the AC
perturbation. The use of a dynamic AC stimulus larger at low
applied voltage and lower at higher voltages can ensure the
linearity conditions. The stability of the devices during the
measurement has to be verified in order to be confident with
the obtained data. The stability can be followed by recording
the Voc between the measurements at various Vappl. Also
measuring the J−V curves before and after the impedance
measurements can be a good proof of stability, knowing the
recovery phenomenon that we have shown in this paper. Table
1 summarizes that careful IS measurements will allow one to
obtain a set of reliable data for accurate PSC characterization.
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