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Abstract 

 Bio-inspired synthetic backbones leading to foldamers can provide effective biopolymer mimics with 

new and improved properties in physiological environment, and in turn could serve as useful tools to 

study biology and lead to practical appplications in the areas of diagnostics or therapeutics. Remarkable 

progress has been accomplished over the past 20 years with the discovery of many potent bioactive 

foldamers originating from diverse backbones and targeting a whole spectrum of bio(macro)molecules 

such as membranes, protein surfaces & nucleic acids. These current achievements, future opportunities 

and key challenges that remain will be discussed in this chapter. 
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1 Introduction 

Foldamer chemistry has initiated a profound change in biopolymer mimicry over the last 20 years, by 

showing that isolated and stable secondary structure elements can be created from a variety of 

oligomeric backbones either close to (e.g. aliphatic β- and γ-peptides,[1] oligomers of N-alkyl glycines 

(peptoids)[2]) or beyond (e.g. m-phenylene ethynylene oligomers,[3] aromatic oligoamides[4]) natural 

biopolymers. In biopolymers, folding and function are intimately linked; this is the reason why 

sequence-based biopolymer mimicry with foldamers can provide unique and useful tools to study 

biology complementary to more conventional chemical approaches, and may lead to downstream 

applications such as novel diagnostic/ therapeutic agents. If the diversity of monomer units in 

biopolymers, i.e. amino-acids and nucleotides has been limited through evolutionary pressure, this is 

not the case in foldamer chemistry where researcher creativity allows an entirely new chemical space to 

be explored beyond Lipinski’s criteria.[5] The identification of foldamers that recognize specific 

biopolymer targets is certainly facilitated by the  control exerted over the monomer sequence and 

secondary structure in many synthetic folded oligomers as well as by the diversity of the building block 

repertoire (substitution patterns, side chains, backbone isosteres) which has considerably expanded in 

two decades. However, the task remains extremely challenging at the current level of knowledge, and 

still too few foldamer-based approaches to faithfully mimic protein secondary structural elements 

engaged in binding events are routinely available. Highly modular chemistries, synthesis of higher order 

foldamer architectures, access to structures of complexes between the target biomolecules and 

designed foldamers at atomic resolution as well as computational design approaches are needed to 

facilitate the process leading to the discovery of potent foldamer-based modulators of biomolecular 

interactions. Substantial progress has been achieved in these directions and will be covered in the 

following sections. The next frontier for foldamers in medicinal chemistry certainly lies in in vivo 

applications. The improved resistance to proteolysis demonstrated for a number of foldamer backbones 

is a significant advantage that can translate into increased duration of action. Current efforts to meet 

this challenge focus on the cellular uptake properties of foldamers and approaches to improve their cell 

permeability when designed to engage intracellular targets of therapeutical relevance, as well on their 

pharmacokinetic properties and bioavailability.  

2 Foldamers : Exploring a new chemical space to design original 

pharmaceutics 
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Today, foldamers represent a rapidly growing ensemble of molecules in terms of diversity and chemical 

complexity that is populating a new and largely empty area of chemical space highly complementary to 

small molecules and biologics. Foldamers can be classified according to the chemical nature of their 

backbone, which can be either fully aliphatic, (e.g. α-, β- or γ-peptides, peptoids, peptidomimetic 

oligoureas), based on aromatic units (e.g. oligoaryl- or heteroarylamides) or result from the combination 

of the two (Figure 1). Helices are by far the most widely found structural motif among foldamers, even 

though more and more examples of β-strands or β-sheets are now found in literature. Whereas many 

foldamer backbones exhibit robust and highly predictable conformations, others do not show strong 

conformational preference on their own but are induced to fold upon binding to their target. Mimics of 

secondary structure elements based on rigid and extended backbones represent another class of 

conceptually different molecules that do not fold like the natural secondary structure elements they 

intend to mimic, but are rather minimal scaffolds designed to project the right functional groups with 

the proper orientation to achieve molecular recognition processes. This section will briefly review 

foldamer systems developed in the context of medicinal chemistry applications with a particular focus 

on those foldamers which have been studied in aqueous solutions which is particularly relevant for most 

biological studies. 

<Figure 1 near here> 

 

2.1 Artificial helical scaffolds 

A large number of biological processes, from cellular communication to programmed cell death, involve 

interactions between proteins and another biopolymer (e.g. proteins, nucleic acids, lipids and 

carbohydrates). α-Helical domains, the largest class of secondary structural elements in proteins, play a 

major role in these interactions (roughly 62% of protein-protein complexes in the Protein Data Bank 

possess α-helical interfaces according to a recent statistical analysis[6]); hence, artificial helical scaffolds, 

intended to mimic side chain display of α-helices present at such interfaces, are of important 

pharmaceutical interest.[7]  

2.1.1 Biotic helices 
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Helically folded aliphatic oligomers containing proteinogenic side-chains are classified as biotic helices. 

They usually differ by (i) the number of methylene units and saturated/unsaturated bonds in the 

backbone, as well as by the nature of the bonds connecting each unit (amide, urea, hydrazide…) and the 

side chain substitution patterns (Figure 2). The helical conformation is generally characterized by a 

specific hydrogen-bond network, handedness and respective orientation of backbone H-bond donor and 

acceptor groups, which determine the resulting macrodipole. In proteins, helices are right-handed with 

10 or 13 atoms in hydrogen-bonded rings (310-helices or α–helices respectively).  

<Figure 2 near here> 

 

2.1.1.1 β-Peptides 

In β-peptides, the backbone of each amino acid residue is homologated by one additional methylene 

unit compared to α-peptides, with the side chain (in the case of mono-substituted β-amino acid 

residues) lying next to the carboxylate or the amine functional group (β2- or β3-peptides respectively). β-

Peptides can form 14-, 12-, 10-, 8- and 10/12-helices depending on the substitution pattern and 

stereochemistry of the side chains along the backbone, as well as on the use of cyclic or acyclic units.[1c, 8] 
[9] Among all described β-peptide helical conformations, the 14-helix has been the best studied. This 

helix is stabilized by fourteen atoms H-bonded pseudorings between the N-H (i) and C=O (i+2) with 

approximately three residues per turn.  

Following pioneering work of Seebach,[10] β3-substituted residues have been widely used due to their 

straightforward synthesis, mainly via homologation of natural α–amino acids, and their high propensity 

to form a 14-helix conformation. Concurrently, Gellman et al. have shown that the formation of the 14-

helix is even more favored when one or more constrained “ACHC” (trans-2-aminocyclohexanecarboxylic 

acid) β–residues are incorporated.[11] However if the cyclic β–residue is switched to a five-membered 

ring cycloalkane (“ACPC” or trans-2-aminocyclopentanecarboxylic acid) then the more tightly wounded 

12-helix is obtained. The use of γ-branched β3-residues has also been shown to be fully compatible with 

the formation of the 14-helix.[12] A β-peptide composed of a sequence of alternating β2– and β3-residues 

will however adopt a 10/12 helical conformation,[13] as well as β3-peptides consisting of residues of 

alternating chirality.[14] 

There are multiple reports of β-peptides with the ability to form stable helical conformations in water.[15] 

The 14-helix macrodipole having a partial negative charge at the N terminus and a partial positive charge 
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at the C terminus, this helix can be stabilized by charged residues interacting favorably with this 

macrodipole. Electrostatic interactions leading to salt bridges between oppositely charged side chains of 

the residues have also been used to drive the helix formation.[15c, 15e, 16]  Alternatively, constrained cyclic 

β-amino acid residues,[9, 15b, 15d, 15f, 17] as well as more classical side chain cross-linking approaches[18] have 

been used to increase the helix content of β-peptides in aqueous solutions. These approaches have 

been exploited in attempts to design helical β-peptides against various protein interfaces.[19]  

2.1.1.2 γ-peptides 

γ-Amino acids are residues containing three backbone carbon atoms between the amino and carbonyl 

groups. The resulting γ-peptides have been less studied that the corresponding β–peptides, one reason 

being that the additional homologation reduces the number of potential hydrogen bonds and increases 

the flexibility of the whole chain. However, it has been shown simultaneously by Seebach and Hanessian 

in 1998, that γ-peptides obtained by double homologation of natural α-amino acids adopt a helical 

conformation in solution, stabilized by a 14-membered hydrogen bond ring, which possesses the same 

screw sense and polarity than the α-helix.[20] Disubstituted γ2,4-peptides,[20a] as well as trisubstituted 

γ2,3,4-peptides,[21] have also been investigated as they could reduce the number of accessible 

conformations and more effectively stabilize a folded conformation. When the 2,4 and 2,3,4-

substituents are chosen with the appropriate relative configuration(s), a more stable 14-helix type 

conformation was formed compared to the corresponding γ4-peptides. Comparatively, pure γ-peptide 

helices have not received as much as attention as their β-peptide counterparts and relatively few studies 

have investigated their possible use in the context of biological applications.[22]  

2.1.1.3 Oligoureas 

Aliphatic N, N’-linked oligoureas are aza-analogs of γ-peptides, where the αCH2 has been substituted by a 

NH.[23] This additional nitrogen atom acts as a rigidifying element, since it allows the formation of a three 

centered H-bonding network. The oligoureas adopt a stable 2.5 helical fold, similar to the γ4-peptide 14-

helix, but with the presence of both 12- and 14- membered H-bond rings (12, 14-helix). [23c, 24] Detailed 

NMR and CD studies[25] as well as X-ray diffraction analyses[26] have been conducted Guichard et al. on 

this type of foldamers to understand their conformational behavior. Only four to five urea residues are 

needed to initiate helical folding in low polarity solvents,[27] and this helicity proved to be largely 

unaffected by the nature of the side-chains used, which makes these foldamers highly robust and 

tunable.  
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Water soluble oligoureas have also demonstrated that their ability to form a stable helix is maintained in 

aqueous solutions, even if the folding propensity is weaker.[28] Their design has been mainly inspired by 

the sequences of bioactive peptides, and these foldamers showed interesting activities as mimics of host 

defense or cell-penetrating peptides,[22, 28-29] but it remains to be seen whether homoligoureas or related 

oligourea/peptide chimeras[30] could also serve as scaffolds for the design of inhibitors of protein-protein 

interactions. 

2.1.1.4 Peptoids 

Peptoids (poly-N-substituted glycines) are analogous to α-peptides but their side chains are shifted from 

the α-carbon to the nitrogen of the amide function. The propensity of peptoids to form stable helices, 

despite the lack of hydrogen bond network, has been reported by Zuckermann et al. shortly after the 

discovery of β-peptides.[2a, 31] The absence of a chiral center at the α-carbon in peptoid backbones can be 

compensated and helicity controlled by the use of chiral branched side chains at selected positions along 

the sequence. In the absence of H-bond donor group, the folding behavior of this type of foldamer is 

largely governed by cis-trans isomerization of tertiary amides, and the resulting conformation shares 

similarities to polyproline-type-I helix. A 36-mer water-soluble oligopeptoid with the [NsceNsceNspe]12 

sequence (where Nsce is (S)-N-(1-carboxyethyl)glycine and Nspe is (S)-N-(1-phenylethyl)glycine) 

synthesized by the Zuckermann group was shown to adopt a very stable right-handed helix with cis-

amide bonds.[32] The resistance of peptoid secondary structure to solvent environment and thermal 

perturbations proved that this type of helical structure is stabilized by steric factors. 

2.1.1.5 Heterogeneous backbone: peptide-foldamer chimeras 

Heterogeneous backbone foldamers are oligomers that contain at least two different types of 

monomers. They have specific folding patterns which depend on backbone composition as well as side-

chain sequence, two variables that can be independently altered.[33] In particular, the combination of 

unnatural monomers (including abiotic ones[34]) with natural α-amino acids has proven extremely useful 

to create unnatural backbones with new folding patterns and molecular recognition properties and 

numerous examples have been reported . The introduction of unnatural-residues in the sequence brings 

an additional level of conformational control to form specific secondary structures and new ways to 

arrange side chains in space, and α-amino acid residues provide side chain diversity at low cost, thus 

limiting the number of non canonical building blocks to prepare. Two different strategies have been 

envisioned: either discrete replacements of α-amino acids along the sequence, usually following a 
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regular pattern of alterations,[33a] or the “block” strategy where distinct blocks, each of them containing 

a specific backbone, have been combined together (i.e. block co-foldamers[30a, 35]).    

α/β-Peptides with mixed α- and β-residues in various patterns are among the best studied chimeric 

oligomers. The first studies have been conducted independently by Zerbe and Reiser, and by the 

Gellman group, on 1:1 alternating α/β-peptides (i.e. αβαβαβ repeated pattern).[36] both groups have 

shown that these homochiral heterogeneous backbones can adopt helical conformations and that 

preorganized (cyclic) subunits are needed for helix stability in polar solvents. Many other patterns (e.g. 

2:1 and 1:2 α/β patterns) have since been explored and found to lead to helical structures, [33a, 37] some 

of which being quite close to α-helices.[38] The Gellman group has since demonstrated the utility of this 

approach for mimicking α-helices, extending it to biologically relevant natural sequences.[37d] α/β-

peptides containing around 25 to 33% of β-residues evenly dispersed along the backbone can provide 

effective α-helix mimics with binding affinities to protein surfaces similar to those of cognate α-peptide 

ligands, despite the additional atoms in the backbone (see section 3). Compared to a systematic 1:1 

α→β replacement, the ααβαααβ pattern causes minimal distortion to the α-helix geometry (see Figure 

3); the sequestration of all β-residues on one face of the helix allows key α–residues on the opposite 

face to be conserved for the interaction.  

<Figure 3 near here> 

 

Although less mature, other related approaches like those based on the incorporation of γ-residues of 

various types are also worth being mentioned. A number of α/γ-peptide scaffolds with the propensity to 

adopt helical structures have been reported.[39] β/γ-Peptides with alternating andβ- and γ-amino acid 

residues are also of special interest in the context of α-helix mimicry because the β/γ-dipeptide subunit 

matches the number of atoms of an α-tripeptide segment and because appropriately preorganized 

residues can promote the formation of a helical conformation with strong relationship to the α-helix.[40] 

It is interesting to note that β/γ peptide segments have been inserted in long α-helical segments forming 

coiled coils.[35c, 41] Gellman et al. have also reported α/β/γ heterogeneous sequences with an αγααβα 

pattern with propensity to form stable helices in water.[42] Surprisingly they showed that γ4-residues 

displayed actually a high helical propensity, and that the best sequence for α-helix mimicry combined 

cyclic β-residues with acyclic γ4-residues to release constraint in the backbone.  

2.1.1.6 D-Peptides 
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Nature relies on a specific stereochemistry to build proteinogenic architectures as only the L-

configuration of α-amino acids is used during protein biosynthesis. Occasionally, diastereomeric proteins 

containing discrete L→D residue replacements have been prepared to evaluate how a single D-amino 

acid insertion can affect local and global folding behavior, and in some cases this approach led to 

increased protein stability.[43] Although homochirality in these polymers is essential for proper folding 

and adoption of specific and functional shapes, mixing L- and D-residues in polypeptide sequences can 

be used to expand the scope of accessible folded patterns.[44] This is the case of Gramicidin-A, a 

hydrophobic 15-mer membrane active peptide with an alternate L,D sequence which folds into a mixed 

helix, also named β-helix because of its similarity to β-sheet type structures (pairs of φ and ψ angles lie 

in the allowed β-sheet region of the Ramachandran map for L and D residues).[45] β-Helices formed by 

D,L-peptides can be either right- or left-handed depending on parameters such as sequence, length and 

environment. Various periodicity and hence pore size have been predicted and found experimentally. β-

Helices such as gramicidin-A also exist either as single helices stabilized by parallel H-bonds or as parallel 

(or antiparallel) double helices.[46] As a proof of principle towards the development of ligands for 

biological targets, Kulp & Clark et al. engineered a hydrophilic D,L-peptide sequences that is able to fold 

into a β-helix in polar media.[47] They have shown that, upon switching solvent from aqueous buffer to 

methanol, the heterochiral peptide folds from β-hairpin-like secondary structure to a β-helical 

supersecondary structure.    

All-D-peptides do not naturally occur in nature. They however represent an interesting class of 

peptidomimetics for therapeutic applications, as they could mimic natural bioactive peptides while 

being resistant to enzymatic degradation, and less immunogenic than their corresponding L-

enantiomers. In this context, mirror image phage display (see also section 3.1.1., 3.3 and 4.4) is a 

remarkable approach to identify D-amino acid peptide and D-mini proteins sequences that specifically 

bind to a selected protein target.[48]  

2.1.1.7 Abiotic helices 

Abiotic foldamers typically contain aromatic rings in the backbone, which distinguish them from the 

aliphatic backbone of proteins and related biotic foldamers.[49] Although the folding propensity of these 

aromatic oligomers rely on non covalent interactions (π-π stacking, H-bonding), the restricted rotation 

around aromatic units and their strong geometric constraints are essenetial features that makes the 

secondary structure of these foldamers highly stable and predictable.  
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<Figure 4 near here> 

 

Hamilton et al. have originally described oligoamide aromatic foldamers obtained by combining ortho-

aminobenzoic acid (i.e. anthranilic acid, Figure 4A) and pyridine-2,6-dicarboxylic acid monomers (Figure 

4B).[4a, 50] They have demonstrated that the corresponding heteropentamer adopts a helical 

conformation, similar to that of helicenes, stabilized by intramolecular H-bonding pattern between 

nearest neighbor groups. These structures resemble to the helicates reported by Lehn, in which 

oligobipyridines undergo spontaneous self-organization into a double helical structure upon metal 

binding.[51] 

Since this early work, several oligoaryl- (such as 4,6-dimethoxy-3-amino-benzoic acid oligomers, Figure 

4C) or heteroaryl-amides (such as oligoquinolines, Figure 4D) have been described to promote a helical 

conformation, as well as oligoaromatics linked with hydrazone or urea moities. The curvature of the 

resulting helices can be modulated by several factors: the substitution pattern on the aromatic ring (i.e. 

ortho, meta or para); the introduction of hydrogen-bond donor/acceptor to rigidify the backbone; and 

the type of aromatic ring (benzene, pyridine, pyrimidine, naphthalene…).[3, 49b, 49c, 52] The handedness of 

the helix can also be controlled by the choice of a stereo-controlled monomer leading to chiral 

induction.[53] 

Making aromatic foldamers water soluble and biologically active is certainly more challenging than for 

their aliphatic counterparts, because of their inherent hydrophobicity, chemical divergence from 

biomacromolecules and synthetic challenges. Nevertheless, there are a number of examples in the 

literature. Linear aromatic oligomers with amphipathic character and exhibiting potent antimicrobial 

activities have been reported by the groups of DeGrado and Tew.[54] Huc et al. designed the first fully 

water soluble helical quinoline oligoamides by attaching several ammonium side chains along the 

backbone.[55] They actually demonstrated that the helix conformational stability of these molecules is 

enhanced in polar media compared to organic solvents.[56]  

Heterogeneous backbones have also been explored with abiotic foldamers to form hybrid scaffolds, 

which were expected to display a unique folding behavior due to the absence of common features 

between the aliphatic and aromatic building blocks. If the number of aromatic units along the sequence 

is properly controlled, then the folding properties of the abiotic part may be kept while benefiting of the 

wide diversity of side chains of commercially available amino acids. Water-soluble α-amino 
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acid/quinoline oligoamides have thus been designed in order to form a linear array of proteinogenic side 

chains on one face of the helix.[57] To perform the synthesis of such hybrid sequences, a powerful solid 

phase synthesis strategy has been developed via the in situ formation of amino acid chlorides.  

2.1.2 Helix mimetics based on non-helical scaffolds 

To interact with the specific secondary structure elements of a protein target, alternative structure-

based approaches have been developed. They require only the knowledge of the effective functional 

group arrangement at the surface of the protein and are based on well-defined pre-organized minimalist 

scaffolds which are further decorated by side chain functional groups in an appropriate spatial 

distribution, in order to interact favorably with the target (Fig. 5). In particular, it has been postulated 

that a linear array of appropriately spaced side chains on a non-helical scaffold can efficiently mimic the 

projection of native α–helix residues.[58] These topographical mimetics may be synthetically more 

accessible than conventional helices. However, to be practically useful, such peptidomimetic 

frameworks need to be chemically modular to allow appendage of proteinogenic side chains. High 

rigidity of the scaffold is only desirable if a perfect overlap with the critical functional groups of the α–

helix can be achieved; otherwise some conformational flexibility may be necessary as long as the 

relevant conformations may be sampled with accessible thermodynamic and kinetic barriers.[59] 

<Figure 5 near here> 

 

The Hamilton group designed the first true α-helix mimetics by using a terphenyl scaffold and reported 

structural and functional analogs of a defined region of a kinase α-helix.[60] Because the key side chains 

involved in biological interactions (such as protein-protein interactions or membrane disruption) are 

usually located along the same face of the α-helix, only residues i, i+3/4 and i+7 have to be considered in 

terms of functionality. Hamilton et al. found that 3,2’,2””-tris-substituted terphenyl derivatives in a 

staggered conformation allow the right arrangement of substituents to project critical functional groups 

in similar places as in the α-helix. Several potent inhibitors of protein-protein interactions have then 

been developed with functionalized terphenyl 1[61], terephthalamide 2 [62] and trispyridylamide[63] 

scaffolds. Later they designed benzoylurea oligomers (3) as an alternative to oligophenylenes to mimic 

up to eight turns of an α–helix, and to solve synthesis as well as water solubility issues when extended 

scaffolds are needed.[64] Other groups have also developed efficient non-helical mimetics of biologically 
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active α-helices, based on aromatic backbones (such as oligo-benzamides,[65] pyridazines,[66] -pyridyles[67] 

or -piperidine-piperidinones[68]). Arora et al., on the other hand, have reported the oligooxopiperazine 

scaffold as chiral nonaromatic topographical helix mimetic.[69] They have shown that  oligooxopiperazine 

derivatives could mimic the orientation of three critical binding residues of the α–helical domain at the 

interface of hypoxia-inducible factor 1α and the CH1 domain of p300 (see section 3.3.2.3). 

A next important challenge was the design of amphipathic α-helix mimetics based on non-helical 

scaffolds with both improved affinity to the target and selectivity. Toward this goal, both faces of the 

helix have to be considered, and strategies to mimic residues i and i+7 on one face, and residues i+2 and 

i+5 on the other, have been explored.[70]  

 2.1.3 β-strand and β-sheet peptidomimetics 

In comparison to helices, there is much less examples of foldamers designed to form β-sheet-type 

secondary structures; this is mainly due to the large surface of interaction needed to stabilize such 

structures and also to the fact that β-sheet structure tend to aggregate and precipitate making their 

characterization more difficult. α-Peptidic β-sheets are composed of extended β-strand regions that are 

aligned laterally and interact with one another through hydrogen bonds. Each β-strand is made from a 

linear array of α-amino acids with side chains pointing out alternately above and below the backbone 

plane. When β-strands are aligned in the same direction, they form parallel β-sheets stabilized by 12-

membered hydrogen bond rings. Conversely, anti-parallel β-sheets with 10- and 14-membered 

hydrogen bond rings are obtained when β-strands are aligned in opposite directions. Most of the β-

sheets in proteins are not flat but rather twisted in a right-handed fashion. They also tend to self-

assemble through hydrophobic interactions with other secondary structural elements to create compact 

tertiary or quaternary structures.[71] 

Early examples of de novo design of foldamers with sheet-like and hairpin-type structures in organic 

solvents have been reported for β–peptides and γ-peptides by the groups of Gellman and Seebach.[72] 

Other designs with β- and γ-peptides have been proposed[73] but very few structures have been studied 

in aqueous environment. The more top-down approach whereby α-residues in the structure of a α-

peptidic β-sheet are replaced by their β- (or γ-) residue counterparts has been explored.[74] Starting from 

a prototype water soluble hairpin sequence, Horne et al. has shown that mixed α/β–peptides (e.g. 4 and 

5) containing a single α→β mutation at cross-strand positions can adopt a two-stranded hairpin fold in 

aqueous solution (Figure 6A).[75] The main difficulties when designing heterogeneous α/β-peptide sheet 
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type structures reside in the difference of directionality of interstrand hydrogen-bonds pattern imposed 

by β-residues as well as by altered display of side-chains relative to the natural α–peptide. Later the 

Horne group has shown that alternate β–residue replacement strategies (αα → β or αα → ββ) could be 

used to maintain the folding pattern and side-chain display of the original α–peptide hairpin, but were 

associated with an energetic penalty resulting from additional backbone conformational freedom.[76] 

Martinek et al. were the first to report the effects of a systematic α– to β3–residue substitution on a 

multiple stranded water-soluble bioactive β-sheet (e.g. 6-11, Figure 6B).[77] They showed a higher 

detrimental effect on folding when the substitutions occurred in the hydrophobic core region, mainly 

due to geometrical constraints preventing good packing, rather than to the destabilization of the 

hydrogen-bonding network. Although these foldamers displayed a decreased folding propensity 

compared to their natural counterparts, they could still exhibit interesting biological properties. 

Alternatively, the introduction of constrained γ-amino acid residues (e.g. m-aminobenzoic acid and 

(1R,3S)-3-aminocyclohexanecarboxylic acid) in each strand of a protein-derived hairpin was found to be 

an effective approach to stabilize native-like hairpin folding in aqueous solution and to maintain original 

display of natural side chains.[78]  

<Figure 6 near here> 

 

Successful design of conformationally stable water-soluble β–strand and β–sheet peptidomimetics may 

also integrate additional elements that can further promote β-sheet secondary structures including non 

natural turn segments,[79] preorganized H-bonding templates[80] (e.g. Hao unit invented by Nowick),[81], 

macrocyclization[82] and combination thereof[83] (Figure 7). 

<Figure 7 near here> 

 

Alternative approaches include those based on short topographical mimetics of extended peptide 

structures, such as the oligopyrrolinones developed by Smith and Hirschmann (Figure 8A),[84] the 

pyrrolinone-pyrrolidine oligomers invented by Burgess (Figure 8B),[85] or the 2,2-disubstitued indolin-3-

ones (Figure 8C),[86] 1,3-phenyl-linked hydantoin oligomers (Figure 8D),[87] and aryl imidazolidinones[88] 

developed by Hamilton (Figure 8E). These “minimalist mimetics” have been shown to be interesting 



14 
 

non-peptidic molecular scaffolds that mimic only the desired chain functionality (i, i+2 and i+4) of a β–

strand, but water soluble examples for functional studies in aqueous media are still lacking.  

<Figure 8 near here> 

 

2.1.4 Folding upon Binding 

In Nature, numerous recognition events are triggered by conformational switches that are most of the 

time reversible, allowing alternating from an “on” to an “off” state in response to an external stimulus. 

Based on this principle, chemists have sought to design molecules able to predictably change 

conformation under specific conditions. The stimuli can be from various sources, such as light excitation, 

redox process, protonation state, ion binding or interaction with a biopolymer.[89] In the field of 

foldamers, several classes of oligomeric backbones do not show strong conformational preference when 

they stand alone in solution, but can fold into a well-defined secondary structure upon binding to a 

complementary target. Many abiotic systems have been reported in which folding and guest recognition 

(e.g. ions) are coupled processes (mainly in organic solvent). There are few cases of biologically relevant 

synthetic oligomers that express similar properties in aqueous environment, i.e. folding induced by 

recognition of a biological target.  

The pyrrole-imidazole (Py-Im) oligomers developed by Dervan are an important class of DNA-binding 

polyamides, whose design was based on the natural product Distamycin A.[90] These oligomers adopt a 

hairpin-shaped structure only when bound to the minor groove of DNA. Their sequence is encoded by 

antiparallel side-by-side pairings of heterocyclic amino acids that distinguish the edges of the four 

Watson-Crick base pairs according to the following “pairing rules” : Im (N-methylimidazole)/Py (N-

methylpyrrole) codes for G-C base pair, while Py/Im codes for C-G ; Hp (hydroxypyrrole)/Py codes for T-

A, while Py/Hp codes for A-T ; and Py/Py recognizes both T-A and A-T base pairs.[91] In the past decade, 

extensive studies have been conducted (on the turn segment, the monomers, the backbone) to improve 

these recognition properties, the specificity for the targeted DNA and binding affinities. For example, the 

introduction of flexible β-alanine residues in the aromatic backbone was found to improve binding of 

polyamides at long binding site by alleviating curvature mismatch,[92] whereas chiral substitutions of the 

γ-aminobutyric acid turn motif enhanced the properties of polyamide hairpins in terms of specificity and 

binding orientational preferences.[93] These optimized oligoamides bind DNA in a sequence-specific 
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manner with affinities in the range of transcription factors and display interesting biological activities 

(see sections 3.7 and 4.1). These oligoamides can also selectively distinguish DNA from the 

corresponding RNA sequences, mainly due to a decrease in polyamide-RNA shape complementarity and 

a reduced solvation of the wide shallow of double stranded RNA minor groove.[94] This makes them 

useful probes for DNA-mediated processes.  

Peptide nucleic acids (PNA) which have been developed by Nielsen et al. are another family of oligomers 

that fold upon hybridization to DNA [95] These mixed oligomers display a pseudopeptide backbone, 

composed of N-(2-aminoethyl)-glycine units, bearing the A, G, C and T nucleobases as side chains 

attached via a methylene carbonyl spacer. PNAs have been shown to form stable hybrid complexes, 

based on Watson-Crick base pairs with either DNA or RNA, that are more stable than the cognate 

nucleic acid-nucleic acid duplexes.[96] Binding events occur through strand invasion, where a PNA 

oligomer displaces a strand of the oligonucleotide duplex.[95, 97] Crystal structures of palindromic 6-base 

pair PNA duplex have been obtained,[98] as well as PNA complexes that formed homo-duplex and -triplex 

motifs.[99] The latter structures illustrate the conformational flexibility and the high structural 

adaptability of the PNA backbone, with the ability for a single PNA strand to adopt an extended helical 

conformation to allow nucleobase stacking and complex hydrogen-bonding network formation. Chiral 

γPNA-DNA duplexes have also been characterized leading to right-handed helices of the P-form. [100] 

These γ-substituted PNAs are already pre-organized into this characteristic helical structure, even in 

absence of hybridization, showing thus a stronger helix propensity due to the presence of the 

substitutent at the γ-position which strongly pre-organizes the backbone. The helix propagates then 

from the C- to the N-terminus in a cooperative fashion. PNA foldamers are good candidates for 

antisense gene therapy[101] as well as applications in molecular biology or diagnostics,[102] but their poor 

solubility under physiological conditions still prevent the development of PNA-based therapeutics.    

A number of foldamer backbones which are known to adopt a well-defined conformation in organic 

solvent do not necessarily fold into a single, well-characterized structure in aqueous environment. This is 

the case for 12, a β3-pentadecapeptide reported by Seebach to bind DNA duplexes (Figure 9).[103] It was 

designed assuming a 314-helical conformation by distributing positively charged side-chains (i.e. β3-Lys) 

that could mediate ionic interactions with the phosphate groups of the oligonucleotide backbone in a 

non-specific manner and β3-Asn residues that could make specific H-bond interactions into the DNA 

major groove on the recognition face of the helix. In aqueous environment, the β3-pentadecapeptide 12 

does not exhibit the typical CD signature which would indicate helical folding. However, in the presence 
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of DNA duplexes, the characteristic CD signal of a 314-helix was observed, supporting a stabilization of 

the helical conformation upon DNA binding. The same group also reported that hairpin type 

arrangement of secondary structures of β–peptides could also be initiated and/or enforced through the 

chelation with Zn2+ cation, when Cys or His side chains were introduced at appropriate positions,[104] 

similar to what is found in Zn finger domains of gene regulatory proteins. 

<Figure 9 near here> 

Altogether, these specific examples and studies conducted on other types of backbones (e.g. peptoids 

and aromatic-aliphatic oligoamides[105]) where multiple conformations might coexist support the idea 

that synthetic oligomers with conformational variability are not necessarily less important than the 

congeners adopting more stable and more-defined structures, and also have potential for applications. 

2.1.5 Higher order foldamer structures : towards more sophisticated functions ? 

A large fraction of foldamer backbones described in the previous sections are intended to mimic 

individual protein secondary structure elements such as α-helices and β-sheet type architectures. These 

foldamers and α-Helix mimetics in particular have found widespread use as scaffolds to target protein-

protein interactions (see section 3.3). Whereas some protein interfaces are relatively simple, 

accommodating individual α-helices as key recognition elements, others are much more complex, being 

broader and less defined, which suggests a potential for larger foldamer architectures comprising two or 

more secondary structure elements arranged in space.[106] The de novo design of complex unimolecular 

folds (supersecondary and tertiary structures) as well as non covalent assemblies (quaternary 

structures) constructed from foldamer backbones, with a high level of control over the final structure is 

however much more challenging. This is due (i) in part due to the difficulty to chemically synthesize long 

oligomeric sequences required to create tertiary structures, (ii) to the necessity to implement still poorly 

understood design principles for bringing secondary elements together and (iii) to the need to 

characterize assemblies at high resolution to test hypotheses.  

The helix-turn-helix (HTH) or helical hairpin motif obtained when two antiparallel α-helices are 

connected by a short turn/loop segment (typically 2-9 residues) is probably the most simple design 

beyond individual helices and appears to be a privileged scaffold for targeting large protein 

interfaces.[106-107] Principles that govern helical hairpin formation in proteins have been analyzed in 

details[108] and strategies to stabilize these structures have emerged.[107a] In recent years, there have 
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been several attempts to construct foldamer-based HTH motifs supersecondary structures at the 

exclusion of α-peptides but few studies have been conducted in aqueous solution[109]. Two β-peptide 

helical hairpins utilising D-Pro-Gly and cystine units as interhelical segments have been characterized in 

solution.[110]  Helical aromatic oligoamides and rigid diamine interhelix connectors have also been 

employed.[111] α/β-Peptide helix-loop-helix tertiary structures whereby α-residues at regular intervals 

are replaced by β3 analogues bearing the same side chain in the sequence of a biologically relevant α-

peptide have been developed to target specific protein surfaces. 

Some progress has been made towards the creation of even more complex fully artificial tertiary 

structures combining multiple secondary structure elements, but only few structures have been 

characterized at atomic resolution. Examples include compact multi-helical structures and multi-

stranded artificial β-sheets from peptoid,[112] β-peptide[113] and aromatic oligoamide[114] backbones. 

Mirror image phage display has also been applied to select fully artificial, protease resistant mini D-

protein scaffolds that target specific protein surfaces (PDB ID 5HHC, Fig. 10A and section 3.3.2.4).[48f] 

Another promising approach consists in re-designing biopolymers by mixing natural and non-natural 

backbones in a single chain (e.g. protein prosthesis).[115] Such composite foldamer proteins can be 

obtained by replacing subsets of α-residues by unnatural building blocks in the sequence of a parent 

protein [38, 116] or by swapping an entire protein secondary structure elements (such as α-helices) with its 

foldamer counterpart.[117] Protein backbone engineering, which benefits from current advances in total 

protein chemical synthesis and semisynthesis, can been used to interrogate protein folding, to address 

the role of individual folded segments, modify physicochemical properties, and to replicate or modulate 

protein function. A noteworthy example is a variant of the semisynthetic hIL-8 proteins in which the C-

terminal α-helix was replaced by a designed sequence of 14 β3-residues and which was shown to display 

an activity comparable to that of the native hIL-8. However, high resolution structural information and 

structure activity relationship studies were not reported in this study. Complementary work from the 

Gellman and Horne groups has provided details at atomic precision about the impact of β-residue 

substitutions in helical segments within discrete tertiary structures (e.g. villin headpiece subdomain,[118] 

B1 domain of protein G from Streptococcus bacteria (GB1),[119]) and quaternary structures (e.g. yeast 

transcriptional activator GCN4 derived peptides[38, 116d, 120]). In particular, the Horne group has shown 

that the GB1 tertiary fold can accommodate up to 20% unnatural backbone content (combination of D-

amino acid, Aib, N-Me-amino acid and β3-amino acid replacements) in all different secondary structure 

elements (helix, loop, sheet and turn), highlighting the remarkable plasticity of the protein backbone 

(e.g. PDB ID 4OZC in Fig. 10B). Further comparative analysis of folded structures and thermodynamics of 

http://dx.doi.org/10.2210/pdb5hhc/pdb
http://dx.doi.org/10.2210/pdb4ozc/pdb


18 
 

GB1 derivatives according to residue types in the α-helical secondary structure show several trends  : (i) 

β3 and β2 residues have similar helix folding propensity when their side chains are not involved in key 

interactions, (ii) constrained cyclic β-residues  generally lead to a modest increase in folded stability 

compared to  acyclic β-residues, and (iii) Aib residues (and their chiral counterparts) proved better than 

β-residues at stabilizing tertiary folds[119b, 121] 

Effort to assemble foldamers into quaternary structures is also a promising direction to create 

increasingly diverse foldamer higher-order structures including single strand tertiary folds after covalent 

attachement of the different elements. Macrocyclic β-sheet peptide mimics (see Fig. 7) have been 

reported to self-assemble into atomically precise nanosized structures such as fibril-like and annular 

pore-like assemblies[71] Foldamer helix bundles of various stoichiometries have been characterized in the 

crystal state, including β3-peptide octameric helix bundles (e.g. Fig. 10C), tetrameric bundles formed 

from α,β-peptide hybrid helices, and six-helix bundles formed from N,N′-linked oligoureas with 

proteinogenic side chains (e.g. Fig. 10D).[122] Alternative topologies such as superhelical channels with 

tunable diameters can also be formed by varying the proportion and distribution of hydrophilic and 

hydrophobic side chains at the helix surface.[122] Some of these assemblies (e.g. β3-peptide octameric 

helix bundles) have demonstrated useful molecular recognition properties including the ability to bind 

and differentiate biomolecules such as sugars in aqueous solution.[123] 

<Figure 10 near here> 

3  Design of bioactive foldamers 

Remarkable progress has been accomplished over the past 15 years with the discovery of many potent 

bioactive foldamers originating from diverse backbones and targeting a whole spectrum of 

bio(macro)molecules such as membranes, protein surfaces, nucleic acids. Secondary structure 

predictability, sequence programmability and modularity, compatibility with solid-phase synthesis 

methods are major determinants of success.  Structural data at high resolution and structure-guided 

design have also become increasingly important in projects aimed at designing potent inhibitors of 

protein-protein interactions.  

3.1 General considerations 
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3.1.1 Designability, Synthetic accessibility & Diversity enhancement to improve 

biopolymer mimicry 

Developing a particular foldamer scaffold (such as those discussed in the previous sections) for 

medicinal chemisty applications and transforming it into an enabling platform still requires multiple 

challenges to be met. Currently, one of the most challenging tasks resides in reproducing the spatial 

arrangement of the key side chains found at the surface of the cognate biopolymer epitope to mimic. 

Synthetic accessibility and modular chemistries are thus highly needed to introduce multiple levels of 

diversity (diversity of side chains[124] and substitution patterns,[21b, 26c, 125] backbone isosteric 

modifications[126]) and rapidly access to large series of compounds that can be screened against targets 

of interest. Compared to parent α-amino acids, β- and γ-amino acids as monomeric units are 

characterized by a much greater chemical diversity and conformational versatility. For example, β-amino 

acid units have five substitution positions compared to three for their α-counterpart and the number of 

configurational isomers increases to eight (versus two for α-amino acids).[1c] Access to this diversity is 

often needed to exert control over folding and over side chain display, and to finely tune and improve 

interactions in terms of affinity and /or specificity of a given foldamer with its target surface (e.g. 

combination of β3-amino acid and cyclic β-amino acid residues for the design of effective α-helix mimics 

with α/β-peptides[127]). Studies aimed at delineating the rules that govern folding of constituent units 

with new substitution patterns and at characterizing structures of the resulting oligomers at atomic 

resolution have been conducted systematically on many different systems (e.g. γ-amino acids, oligourea 

monomeric units, ,…). For example, shifting the side chain from one carbon to the other in 1,2-diamino 

monomer constituents of 2.5-helical oligoureas may be used to subtly vary the relative distribution of 

side chains at the surface of these peptidomimetics and possibly optimize binding to a given protein 

surface.[26c] This effort towards expansion of monomer libraries has not been limited to aliphatic units 

and in the context of abiotic aromatic oligoamides for example, a complete array of suitably designed 

monomers varying in size and shape has been employed to produce foldamer receptors with very high 

selectivity for specific monosaccharides (e.g. fructose).[128]  Mixing natural and non-peptide backbones 

to further modulate the conformational and functional behavior of natural biopolymers is a another 

promising approach that can lead to  functional mimics of bioactive α-peptide sequences (e.g.  α/β-

peptides[37d], hybrid α-helix mimetic[34c]). To have a practical impact in medicinal chemistry programs, 

the development of useful monomers librairies must be coupled to efficient and rapid oligomer 

synthesis schemes. Peptide backbone-modification strategies such as those based on β-amino acid 
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residue replacements have been readily implemented because the necessary α/β-peptides are 

accessible via effective solid-phase synthesis (SPS) procedures,[129] and many protected β-amino acids 

have been reported or are commercially available. The same holds true for peptoids for which synthetic 

methodology on solid support from appropriate (sub)monomeric precursors is extremely well 

established.[130] Efficient SPS methodologies have been developped for a growing number of less 

conventional foldamer backbones such as aliphatic oligoureas,[131] oligomers of 7- or 8-amino-2-

quinoline carboxylic acids[132], hybrid α-amino acid/quinoline oligoamides,[57] 3-O-alkylated and N-

alkylated aromatic oligobenzamide α-helix mimetics,[133] Py-Im polyamides[134] In many cases, microwave 

assistance has been employed to overcome synthetic difficulties inherent to some of these backbones 

(e.g. poor nucleophilicity of aromatic amines) or simply to accelerate the production of longer foldamer 

sequences. In few cases, optimized SPS procedures have been exploited to prepare large foldamer 

libraries for high throughput screening. Gellman used PS-macrobeads and microwave irradiation to 

generate medium size one-bead-one-stock solution combinatorial libraries via a split-and-mix approach. 

Screening the library for inhibitors of the p53-MDM2 interaction however did not permit to identify 

compounds significantly more potent than a previously reported β-peptide sequence,[19a] presumably 

because of the limited size of the library. Similarly, high quality one-bead-one-β-peptide libraries 

suitable for on-bead screening have been reported by Schepartz and used to identify inhibitors of the 

p53/MDM2 interaction with IC50 in the low µM range following simple tandem mass spectrometry 

(MS/MS) decoding method.  

Complementary to chemical methods to generate non natural oligomers and corresponding libraries, 

several biotechnological approaches are gaining increasing attention in the context of non natural 

oligomers and foldamers. Mirror image phage display[48a, 48d] is a very powerful and elegant technique to 

identify D-peptide ligands against a specific protein target.  However, mirror image phage display which 

requires the mirror image of the target to be chemically synthesized is currently limited to relatively 

small protein targets. Exciting new approaches with far-reaching development and application potential 

are currently being explored to exploit the biosynthetic machinery responsible for protein synthesis to 

incorporate non canonical backbone modified residues at one or several desired positions in a peptide 

chain.[135] Spectacular progress have been made in this direction using in vitro reconstituted translation 

system to produce short polypeptides containing diverse exotic units such as for example  D-amino 

acids,[136] N-methyl-amino acids,[136a] and β-hydroxy acids.[137] Suga and coworkers have used genetic 

code expansion and reprogramming methodologies to incorporate single and multiple β3-amino acids in 

a peptide chain.[136a, 138]  In 2016, they have shown that 13 β-amino acids are compatible with ribosomal 
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translation with  β3Gly, L-β3Ala, L-β3Gln, L- and D-β3Phg, and L-β3Met showing the highest 

incorporation.[138] Double-incorporation experiments using β-amino acids revealed that elongation of 

peptides with successive β-amino acids is prohibited but that double-incorporation of β-amino acid 

residues is possible if an α-residue is inserted between. The same year, Schepartz reported that β3-Phe 

residues can be incorporated into full length protein in vivo using E. Coli strains expressing mutant 

ribosomes.[139] 

3.1.2 Resistance to proteolysis 

One inherent limitation to the use of isolated L-α-peptides in therapeutics is their susceptibility to 

degradation by circulating enzymes, which can considerably shorten their biological lifetime and 

duration of action in vivo. In contrast, foldamers built from non α-amino acid units have a strong 

potential to resist enzymatic degradation. An increasing number of biotic and abiotic backbones have 

now been tested and all of them display remarkable in vitro stability against a variety of peptidases from 

bacterial, fungal and eukaryotic origins (e.g. leucyl aminopeptidase, proteinase K, trypsin, chymotrypsin, 

elastase, amidase, β-lactamase, 20S proteasome, pepsin, subtilisin, cathepsin, thermolysin). This is the 

case for β- and γ-peptides[140] as well as for α-peptoids,[141] b-peptoids, N,N’-linked oligoureas,[142] 

aromatic oligoamides,[55a] D-peptides,[143] and sulfono-γ-AApeptides.[144] However, only few experiments 

have been conducted with other classes of enzymes involved in drug metabolism such as cytochrome 

P450 enzymes.  

The situation is more complex for hybrid foldamers that combine unnatural monomeric units with 

proteinogenic α–amino acids. The interest for such hybrid foldamers stems from both the increased 

chemical and structural diversity brought by the combination of different types of monomeric units and 

from the possibility for such backbones to more closely mimic targeted protein binding surfaces. It is 

well documented that the insertion of a single non canonical unit (β-amino acid residue, peptide bond 

isostere) at a scissile bond can also increase stability in the proximity of the modified residue.[145] Early 

model studies by Seebach and coworkers on β-peptides containing N-terminal and internal β-amino acid 

residues have shown that the stability of hybrid α/β-peptides to degradation by pronase (a mixture of 

non-specific endo- and exo-peptidase) is highly dependent on the location of α-residues in the 

sequence.[146]  When α–amino acids are located at the N-terminus of the β-peptide, cleavage of α/α and 

some α/β-peptide bonds (depending on the α-residue) by pronase has been observed. However when 

the natural α–amino acids are embedded into β-peptide sequences (1:1 pattern) or when the N-
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terminus is capped, no hydrolysis was detected. Proteolytic stability is of course expected to increase 

with the density of unnatural units in the sequence. To better understand the extent to which the 

insertion of non canonical residues (e.g. D-amino acids, N-methylated amino acids, β3-amino acids, 

tetrasubstituted amino acids) protects adjacent positions and to gain a more comparative view between 

different types of non canonical units, Horne et al. have studied very systematically the effect on 

resistance to chymotrypsin of single or tandem α-amino acid replacements (varying by their nature and 

position) within a model peptide sequence containing a chymotrypsin-specific cleavage site. For this 

specific sequence, it was found that the inversion of the stereogenic center (D-α-residue replacement), 

or Cα tetrasubstitution (Aib type residue replacement) are the most effective modifications for 

protection against degradation whereas α → N-Me-α-residue was the least effective replacement. An 

intermediate level of protection from degradation was observed for peptides containing α → β3 

replacements. By extending this study to tandem mutants with different spacing, Horne found that 

combined replacements can be synergistic but that the correlation between the density of unnatural 

units and proteolytic stability is not necessarily simple. In his pioneering work on α-helix mimicry with 

α/β peptides, Gellman has further demonstrated that evenly spaced α → β replacements along a 

bioactive α-peptide sequence certainly represent the most efficient way to achieve maximal protection 

while keeping chemical alterations of the starting peptide sequence to a minimum. For example, α-Helix 

mimetics with ααβαααβ and αααβ patterns described in sections 2.1.1.5 (see also section 3.3 and 3.4) 

are significantly more resistant (often ≥100 fold) in the presence of proteinase K than the original 

bioactive α-peptides they intend to mimic.[37d] Results from the Wilson laboratory suggest that this 

general approach leading to reduced susceptibility to proteases can be extended to hybrid backbones 

containing other types of unnatural units such as aromatic units.[34c]  

3.2  Membrane active foldamers as antimicrobials 

There is a growing interest in the development of cationic membrane-active antimicrobial peptides 

(AMPs) as alternatives to conventional antibiotics for the treatment of bacterial infections.[147]  

Endogenous AMPs are essential components of the innate immune system of eukaryotic organisms, 

from plants to mammals, serving as a first line of defense against a broad range of micro-organisms, 

including Gram-negative and Gram-positive bacteria.[148] AMPs form a large and highly diverse family of 

molecules ranging in size from 15 to > 50 amino acid residues; they do share common physicochemical 

features though. AMPs are largely cationic and display an amphiphilic character, thus allowing them to 

interact preferentially with the negatively charged bacterial membranes. A number of issues, such as 
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susceptibility to proteolytic degradation and toxicity following systemic application, need to be 

addressed for AMPs to meet their full potential in the clinic. In addition to this, there is increasing 

evidence that pathogenic bacteria can develop resistance to endogenous AMPs through a variety of 

mechanisms often involving biophysical and biochemical changes to the bacterial cell wall.[149] One 

approach to circumvent some of these limitations consists in designing synthetic analogues that can 

recapitulate the amphiphilic character of AMPs[150] such as membrane active foldamers.[8, 151] Linking 

structure and function in foldamers is generally facilitated by the dual control over monomer sequence 

and secondary structure as well as by the diversity of the building block repertoire. A large fraction of 

foldamer AMP mimics reported to have been designed to form globally amphiphilic helices by clustering 

hydrophobic and cationic residues at the surface of the helix (Figure 11). This is the case for 

antimicrobials based on β-peptide 14-, 12- and 10,12-helices,[15d, 151-152] peptoids,[150a, 153] N,N’-linked 

aliphatic oligoureas and oligo(urea/amide) hybrids[22, 28] and more recently sulfono-γ-AApeptides.[144, 154] 

For helical scaffolds with 3 residues per helix turn such as β3-peptide and peptoids, most antimicrobial 

sequences reported are based on short triad repeats (hydrophobic-hydrophobic-cationic residues). For 

helical structures with 2.5 residues per turn (i.e. 12-helical β-peptides and N,N’-linked  oligoureas), 

cationic residues are arranged to create a polar surface that covers between two-fifths and three-fifths 

of the helix circumference. These design principles led to potent molecules with broad-spectrum activity 

against a range of multi-drug-resistant Gram-positive and Gram-negative bacterial pathogens including 

clinically relevant strains (among which Escherichia coli, Staphylococcus aureus, Pseudomonas 

aeruginosa are the most frequently tested). The reported activities for the most potent derivatives 

(minimum inhibitory constants (MIC) in the range 1-10 µg mL-1) compare favorably with those of known 

peptides such as melittin (a honeybee toxin), pexiganan (a potent synthetic analog of natural magainins) 

and omiganan (a 12-residue long peptide currently in the clinic for dermatologic applications). 

Interestingly, cationic foldamer mimics of AMPs with peptoid and oligourea backbones have been 

shown to be equally active against other Gram-positive infectious bacteria such as Mycobacterium 

tuberculoris and Bacillus anthracis (the causative agent of anthrax) respectively.[142, 155] Systematic 

structure-activity relationship studies have been conducted to improve potencies and more importantly 

reduce hemolytic activity and increase the selectivity of these compounds for bacterial membranes. 

Representative examples in these series include 314-helical β-nonapeptides containing trans-ACHC 

residues and β3-HLys residues (e.g. 13),[15d] peptoid dodecamers contanining α-chiral monomers, such as 

14,[153] the sulfono-γ-AApeptide 15,[144] the 17-mer 12-helical β-peptide 16 composed of hydrophobic 

trans-aminocyclopentane carboxylic acid (ACPC) residues and  cationic aminopyrrolidine carboxylic acid 
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(APC) residues,[15b] and the 8-mer helical oligourea (e.g. 17).[28] Surprisingly, the isosteric γ4-peptide 

analogue of 17  (e.g. 18), despite close structural similarity and similar side chain distribution was found 

to display only marginal antibacterial activity.[22] The origins of this difference between oligoureas and 

γ4-peptides are not yet fully understood but could be related to subtle differences in polarity and 

geometry between the two helical backbones. Alternatively it has recently been shown that aliphatic 

oligoureas are ideally pre-organized to interact with anionic guests in a site specific manner at the 

positive end of the helix dipole.[156] This property may suggest a complementary mechanism to account 

for the interaction properties of antimicrobial oligourea helices with model phospholipid membranes as 

well as bacterial membranes. There are other cases of unexpected and complex relationships between 

structure and function in the design of antibacterial foldamers, particularly among 14,15-helical α,β-

peptides where sequences designed to adopt globally amphiphilic helical structure led to moderately 

active compounds in contrast to the controlled scrambled sequences.[157]  

 

<Figure 11 near here> 

 

Concurrently folded backbones even far remote from natural peptides such as arylamide and arylurea 

foldamers have been explored as membrane active antibacterial agents.  Beginning with polymers 

consisting of alternating 1,3-phenylene diamine and isophthalic acid units,[54a] Tew and Degrado have 

developed a very successful program that led to the discovery of potent antimicrobials with remarkable 

activities and safety profile.[150b] These oligomers with molecular weights in the range of 600-1000 Da 

adopt a facially amphiphilic structure with cationic and hydrophobic side chains distributed on opposite 

faces of the molecule (Figure 12). The conformation of these molecules is controlled by the formation of 

intramolecular hydrogen bonds between thioether groups installed on isophthalic units and NH of 

phenylene diamine units. First generation oligomers exemplified by 19  were shown to exhibit modest 

activities against S. Aureus and E. Coli.  Replacement of the isophthalic unit in 19  by a pyrimidine unit or 

a 4,6-alkoxyisophthalic acid unit was used to reinforce the H-bond network and further stabilize the 

planar conformation of the molecules.[158] This additional rigidification of the backbone was 

accompanied by a significant gain in activity against both Gram-positive and Gram-negative bacteria as 

shown for 20 (MIC = 0.87 µM against both S. aureus and E. coli and HC50 = 145 µM; HC50 = concentration 

that causes 50% lysis of human red blood cells). Facially amphiphilic urea-linked aryl oligomers (e.g. 21) 
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were found to be equally potent but exhibited significant hemolytic activity with HC50 near their MIC.[54c]  

The introduction of terminal guanidinium groups and replacement of tert-butyl groups by 

trifluoromethyl groups led to further improvement in potency with molecules such as 22 exhibiting low 

MIC against a variety of Gram-positive and Gram-negative human clinical isolates and minimal toxicity to 

mammalian cells.[158] Detailed biophysical studies suggest that molecules like 22 destabilize anionic lipid 

membranes primarily by altering membrane electrical potential, and by creation of transient defects in 

the membrane but in a less disruptive manner than typical antimicrobial peptides.[159] 

 

<Figure 12 near here> 

 

Despite the fact that most foldamer backbones for which antibacterial activities have been reported are 

more resistant to proteolytic degradation than cognate α-peptide, relatively few reports have described 

activities in animal models. In vivo studies which include evaluation of arylamide foldamers in a S. 

aureus thigh infection model.[158] and N,N’-linked oligoureas in inhalational and cutaneous mouse 

models of B. anthracis infection are discussed in section 4. 

3.3. alpha-helix mimicry for modulating protein-protein interactions 

Protein-Protein interactions (PPIs) mediate numerous biological processes and functions in living 

organisms, and thus represent promising new targets for the development of new therapeutics. 

Although the field of PPI inhibitors/modulators has witnessed spectacular progress over the past two 

decades with the development of various approaches based on small molecules and recombinant 

proteins, the design of synthetic molecules aimed at interfering with PPIs has remained exceptionally 

challenging in part because protein-protein interfaces are exceptionally diverse in terms of sizes and 

shapes.[160] Medium size molecules such as α-Peptides can be used to mimic the secondary structure 

elements at the larger protein-protein interfaces (so called secondary-structural epitopes) and thus may 

contribute to fill the gap between small molecules and biologics for the development of novel classes of 

PPI modulators. This interest in peptides also stems from their growing contribution to the worldwide 

pharmaceutical market as witnessed by the number of peptide therapeutics in clinical trials and by the 

unprecedented number of market approvals in 2012.[161] However, as already mentioned, isolated linear 

peptides generally have some limitations such as (i) poorly defined conformations, (ii) susceptibility to 
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degradation by circulating enzymes, and (iii) with few exceptions lack of cell permeability, which possibly 

limits their use to extracellular targets. In this context, chemical approaches aimed at reinforcing or 

mimicking protein secondary structure elements to develop innovative PPI modulators have flourished. 

Because α-Helices are frequently found as recognition elements between proteins[6, 106] and perhaps 

more amenable to chemical modifications, much effort has been devoted to their stabilization and 

mimicry.[58c]  The most popular approaches developed to specifically increase the helical content of short 

α-peptides include but are not limited to :  (i) the introduction of constrained α,α-disubstituted amino 

acids,[162] side-chain to side chain macrocyclization,[163] (iii) the introduction of N-terminal templates and 

covalent hydrogen-bond surrogates covalent.[164] These methods have all been applied with some 

success to create effective modulators of α-helix-mediated PPIs.[165] Note that some of these peptide-

based inhibitors exhibit improved properties such as cell permeability expanding the range of targets 

currently considered suitable for drug development.  

Complementary approaches for α-helix mimicry and PPI modulation based on foldamers, have only 

emerged in the last 10 years but already show great promises. Essentially two strategies have developed 

in parallel:  the first one features helicity as a guiding principle focusing on artificial backbones with 

predictable helical patterns and a high degree of similarity to α-peptides whereas the second one is 

more minimalist focusing on side chain display and on rigid and extended backbones (“topographical 

mimics”[69c]) quite remote from natural peptides. Today, significant progress in α-helix mimicry for 

inhibition of PPIs have been accomplished with different classes of artificial backbones including beta-

peptides (e.g. 14-helical β-peptides as p53 mimetics[19a, 166]), heterogeneous oligoamides containing 

various combinations of α- and β-amino acid residues (e.g. mixed ααβαααβ and αααβ peptides that 

recapitulate the binding surface of known α-peptide inhibitors targeting gp41 and BCL-XL proteins, 

respectively[37d]) and extended scaffolds (e.g. terphenyl,[61a] aromatic oligoamide,[167] oligopyridine[168] 

and oligooxopiperazine[69c] derivatives as inhibitors of BCL-XL proteins and as p53 mimetics). 

3.3.1 Helices mimicking viral glycoproteins to inhibit viral fusion 

Enveloped viruses like HIV-1, influenza, respiratory syncitial virus (RSV), severe acute respiratory 

syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses, and ebolaviruses share a 

common fusion mechanism mediated by viral membrane fusion glycoproteins with high helical 

content.[169] The fusion process leading to infection of cells involves major refolding of the glycoprotein 

and the formation of a so called “trimer of hairpins” (i.e. antiparallel trimer of dimers or 6-helix bundle). 
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Following binding to cellular receptors, the glycoprotein undergoes a conformational change leading to 

exposure of a first heptad repeat (HR1) domain and insertion of a fusion peptide into the cellular 

membrane. Subsequently, in another major conformational change, a second heptad repeat (HR2) 

domain folds back on onto HR1 to form a stabilized six helix bundle structure (trimers of dimers) which 

juxtaposes the virus and cell membranes for membrane fusion.  The successful development of 

enfuvirtide (T-20, Fuzeon), a 36-mer peptide that targets the transiently exposed HR1 domain of gp41 

for the treatment of HIV-1 infection[170] has established the therapeutic value of peptide-based 

approaches aimed at inhibiting the assembly of this six-helix bundles. It is noteworthy that the strategy 

has since been adapted to other enveloped viruses such as SARS and MERS coronaviruses,[171] 

ebolavirus,[172] , measles[173] and RSV,[174] leading to the discovery of potent viral fusion inhibitors. Some 

drawbacks associated with the use of natural HR2 peptide sequences include rapid in vivo proteolysis 

(enfuvirtide has a relatively short half-life in the plasma), drug resistance and cross-reactivity with 

preexisting antibodies in patients. Various chemical approaches such as macrocylization (i.e. lactam and 

hydrocarbon stapling[165c, 174]) and backbone modifications have been explored to increase the resistance 

to proteolysis of peptide fusion inhibitors.  

Successful mimicry of helical HR2 peptides for inhibiting the post-fusion 6-helix bundle structure 

formation has been achieved by periodic replacement of α-amino acids by protease resistant β-amino 

acids in the sequence of T2635 (Fig. 13a and PDB ID : 3F4Y), an optimized analogue of T20[175]. Several 

α/β-peptide analogues with ααβαααβ pattern were designed by introducing β residues at positions that 

are not involved in contacts with HR1 trimer surface. The peptides differ in the nature of their β residues 

which can be either acyclic β3-substituted or ring-constrained (ACPC, APC). In a in a competition 

fluorescence polarization assay measuring displacement of a fluorescently labeled CHR-peptide from an 

engineered five-helix bundle protein, gp41–5, compound 23 with both constrained ACPC and β3-residues 

in its backbone was found to be much more effective  (Ki = 9 nM) than 24 which contains exclusively 

acyclic β3-residue replacements (Ki = 3800 nM), suggesting that some helix preorganization is requested. 

Remarkably, compound 23 was found to be equipotent to the parent HR2-derived α-peptide T2635 in a 

cell-cell fusion inhibition assay (IC50 = 5 nM) and in inhibiting HIV-1 infectivity (X4 and R5 strains, IC50 = 

28-110 nM) and displayed >280 fold improvement in proteolytic stability (Proteinase K assay) over 

T2635. Crystal structure of α/β-peptide 24 in complex with HR1 peptide at 2.8 Å resolution (PDB ID : 

3F50) confirmed the formation of the expected 6-helix bundles and the orientation of β-amino acid 

residues towards the solvent as predicted (Fig. 13b).[127]  

http://dx.doi.org/10.2210/pdb3f4y/pdb
http://dx.doi.org/10.2210/pdb3f50/pdb
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<Figure 13 near here> 

 

The introduction of  β3Glu/ β3Arg pairs with i,i+4 spacing within α/β-peptide helix (see compound 26) 

was subsequently found to be equally suitable to ring-constrained β residues for enhancing helical 

propensity, binding to HR1 trimer and inhibiting HIV infection in cell-based assays. However, its stability 

to proteolysis was not significantly enhanced compared to the cognate peptide 25 despite the fact that 

all site cleaved by proteinase K but one were suppressed. The substitution of three ring-constrained 

ACPC residues for β3-residues near the remaining proteinase K cleavage site in 26 (i.e. 27) resulted in 

dramatic (i.e. > 1000-fold) improvement in half-life as well as increased binding to HR1 trimer. The main 

advantages of this approach are that the conversion of a given α-helical peptide into a corresponding 

analogue with improved properties is relatively direct and that it is likely to be general (vide infra);  yet 

the number, positions, spacing (ααβαααβ) and the nature (β3- versus cyclic) of β-amino acid 

replacements certainly need fine tuning for optimal bioactivity. 

Several other foldamer-based strategies aiming at discovering viral fusion inhibitors have been 

described and are worth being mentioned although the inhibitors reported were not yet as potent as 

those mentioned above. These studies include (i) the identification of D-peptide inhibitors of HIV-1 [48b, 

176] and ebolavirus[172] using mirror image phage display technique,[48a, 48c] (ii) the de novo design of β3-

peptide analogues of the hydrophobic pocket-binding domain (628-635)[19c, 177] and (iii) the use of the 

terphenyl scaffolds bearing hydrophobic side chains intended to mimic hydrophobic repeats in HR1 and 

HR2 peptides .[178]  

3.3.2. Foldamer-based inhibitors of PPI linked to cancer 

The ability of foldamer mimics of α-helices to interact with protein surfaces with high specificity has 

been assessed on several therapeutically important protein−protein interactions linked to cancer 

including p53-MDM2, and p300-HIF1α and those involving anti-apoptotic and pro-apoptotic proteins of 

the BCL-2 family. Whereas most studies have concentrated on single helix mimetics, some recent 

developments have explored more complex foldamer architectures such as supersecondary and tertiary 

structures to target broader protein surfaces.[106, 107b, 117b]. Cellular uptake and engagement of the target 

inside the cell are additional key issues that have been addressed in some cases and that need to be 
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solved for possible application of these molecules in a cellular context, as most the targets mentioned in 

this section are intracellular. 

3.3.2.1. Targeting anti-apoptotic Bcl-2 family members 

The Bcl-2 family is a complex network of mutually interacting and structurally related proteins that 

regulate the fate of a cell by activating or inhibiting apoptosis.[179] The pro-survival members BCL-2, BCL-

XL, MCL-1,  BFL-1 and BCLW which display three to four conserved BCL-2 homology (BH1-4) domains, 

inhibit apoptosis by sequestering the α-helical death inducing BH3 domain of pro-apoptotic family 

members BAX and BAK in a hydrophobic cleft delineated by domains BH1-3. BH3-only proteins (BID, 

BIM, BAD, NOXA, PUMA, BIK) which contain just one BH3 domain exert a pro-apoptotic effect either 

indirectly by binding to pro-survival proteins and preventing BAX and BAK to be sequestered or directly 

by binding to and activating BAX or BAK to cause mitochondrial outer membrane permeabilization. 

Because pro-survival BCL-2 proteins are over-expressed in several types of cancers, and thus promote 

survival of malignant cells, their selective inhibition represent a promising approach for induction of 

apoptosis in tumour cells and several BH3 mimetics are currently at the clinical trial stage.[180] Structures 

at atomic resolution of pro-survival BCL-2 proteins (BCL-XL, MCL-1) in complex with α-helical BH3 

peptides revealed extensive contacts between a stripe of four hydrophobic residues on the BH3 α-helix 

and a hydrophobic cleft at the surface of the BCL-2 protein binding partner as well as a significant 

contribution of polar interactions (a salt bridge between an Asp side chain projecting from another side 

of the helix and a conserved Arg residue in the BH3-binding cleft).  

Various foldamer based strategies to mimic BH3 α-helices and possibly target pro-survival BCL-2 

members have been reported. The main challenges resides in the length of the bioactive BH3 helix to 

mimic as key hydrophobic residues are distributed over four consecutive helix turns, and in the need to 

mimic residues on two faces of the α-helix (hydrophobic residues on one face and polar side chains on 

another face). Early efforts from the Gellman group to reproduce the helical display of BH3 side chains 

with 12 and 14-β-peptide helices or the 11-helix and 14/15 helix of 1:1 α/β-peptides resulted in only 

very weak BCL-XL binders, illustrating the general difficulty to identify an appropriate scaffold for faithful 

α-helix mimicry. Reducing the foldamer segment to only part of the BH3 helix to generate chimeric (αβ + 

α) peptides led to significant improvement. (αβ + α) Peptide 29 combines a N-terminal segment made of 

alternating α- and cyclic β-amino acid (ACPC and APC) residues and a C-terminal α-peptide segment with 

residues from BAK(73-81) (28) exhibited tight binding to BCL-XL (Ki = 2 nM). The crystal structure of 29 in 

complex with BCL-XL (PDB ID : 3FDM) revealed that the foldamer retains the general orientation of 

http://dx.doi.org/10.2210/pdb3fdm/pdb
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natural BH3 domains and that the α/β-segment forms a 14/15-helical structure with some cyclic β-

amino acid (ACPC) residues making contacts with the protein surface (Fig. 14). The more general 

approach to α-helix mimicry whereby a smaller proportion of regularly spaced α-residues distributed in 

the target peptide sequence is replaced by the corresponding homologous β-amino acids (25-33%) to 

generate the following regular ααβ, αααβ and ααβαααβ patterns (Fig. 3)[37d] has been explored 

intensively by the Gellman group in the context of BH3 domain (PUMA and BIM) mimetics.  

 

<Figure 14 near here> 

The ααβαααβ and αααβ patterns were found to support effective α-helix mimicry with the identification 

of potent BIM-derived α/β-peptides like 31 (ααβαααβ pattern) and 32 (αααβ pattern) that largely retain 

the binding profile of the native BIM BH3 peptide 30. [181] The crystal structures of 31 and 32 in complex 

with BCL-XL (PDB ID: 4A1U and 4A1W, respectively) confirm that the two α/β-peptides are close mimics 

of the natural BIM BH3 domain although they significantly differ by their distribution of β-residues (Fig. 

14). The β-residues in 31 are aligned along one side of the helix and directed towards the solvent with 

the four key hydrophobic side chains contributed by α-residues. In contrast, the αααβ pattern in 32 

causes the β-residues to spiral around the helix axis with two β3 residues contributing key hydrophobic 

contacts with the BH3-binding cleft (e.g. β3-Ile10 and β3-Phe14).  

The substitution of cyclic constrained β-residues (ACPC, APC, sAPC (Fig. 15)) for acyclic β3 residues in 31 

and 32 almost systematically improved the binding of BH3 derived α/β peptides to BCL-XL and MCL1.  

 

<Figure 15> 

 

Interestingly, higly selective ligands (for either BCL-XL or MCL1) were obtained from 32 by introducing 

the β3 → β-cyclic residue replacement at either of the two β residue positions making contact with the 

protein (e.g. β3-Phe14 → ACPC causes a > 30-fold for MCL1). Furthermore, the global β3 → cyclic β 

residue replacement in the sequence of 31 resulted in a very potent ligand (33) for both BCL-XL and 

MCL1 with enhanced protection against the activity of proteases (half-life 120-fold greater than the 

cognate α-peptide in the presence of Proteinase K). This approach of cyclic β residue replacement was 

http://dx.doi.org/10.2210/pdb4a1u/pdb
http://dx.doi.org/10.2210/pdb4a1w/pdb
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combined with the introduction of i, i+4 hydrocarbon staples between α,α-disubstituted pentenyl–

containing amino acids to give helix mimics that exhibit remarkable resistance to protease degradation 

and recapitulate the function of the parent stapled peptide: the ability to enter different types of cells, 

to engage  anti-apoptotic protein targets and to kill U937 lymphoma cells.[18d]  

Smaller non-helical foldamers with appended side chains mimicking key hydrophobic side chains as well 

as the conserved carboxylate of BH3 peptides have been designed to target proapoptotic BCL2 family 

members.[34c, 61b, 168, 182] Molecules based on terphenyl,[61b] triazinepiperazinetriazine[182] scaffolds have 

been reported to bind BCL-XL or MCL-1 in fluorescence polarization assays, with Ki in the low µM or sub-

µM range range for the most potent compounds.  It is worth mentioning that some compounds in the 

terphenyl series show some selectivity with 100 fold lower binding to unrelated target like MDM2 

(section 3.2.2.2.). 

3.3.2.2. p53/hDM2 (MDM2) interaction 

Significant efforts towards α-helix mimicry have concentrated on the p53/hDM2 (MDM2 in mouse) 

interaction, an important target for cancer therapy.[183] The p53 tumor suppressor is a transcription 

factor that activate cell death in response to various stress conditions, such as DNA damage or hypoxia. 

The protein p53 is negatively regulated by the double minute 2 protein (DM2) which is overexpressed in 

cancer and directly contributes to tumor development and progression. Inhibiting the interaction 

between p53 and DM2 to restore wild-type p53 activity in tumors that overexpress DM2 is a validated 

strategy for cancer treatment.[183b]  X-ray crystallography of the p53/MDM2 complex revealed that upon 

binding, the p53 activation domain adopts a helical conformation with three residues on one face of the 

helix, i.e. Phe19, Trp23, and Leu26, forming a hydrophobic patch buried into the binding cavity of 

MDM2.[184] Since this early report highlighting the structural bases of the p53/MDM2 interaction, very 

different classes of MDM2/MDMX antagonists have been developed as potential anticancer agents, 

ranging from low molecular weight compounds to peptides.[183c] In a seminal paper focusing on short 

peptides encompassing residues 19-26 of p53, researchers at Novartis, have demonstrated the benefit 

of stabilizing the α-helical conformation to achieve effective inhibition of the p53/MDM2 

interaction.[165a, 185] Peptide-based approaches aimed at stabilizing the p53 helix and improving binding 

to MDM2 have since flourished such as the introduction of α,α-dialkylated residues,[186] side chain 

crosslinks,[187] and hydrogen bond surrogates[188] as well as the use of miniprotein scaffolds.[189] The 

design of artificial oligomeric scaffolds with the ability to reproduce the projection of p53 key 

hydrophobic side chains have been concurrently  developed.  
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Salt bridge-stabilized 14-helical β-peptides bearing hDM2 binding residues on one face of the helix 

(β3Leu, β3Trp or analogues and β3Phe in a i/i+3 relationship) have been investigated as possible p53 

mimics.[19a, 190] More potent β-peptides with the ability to bind both hDM2 and hDMX (a hDM2 homolog 

that also inactivates p53) in the nanomolar range were subsequently obtained using computer aided 

optimization and replacement of the central indole side chain by other aromatic moieties such as a 3-

trifluoromethylphenyl (34, Kd = 28.2 nM (hDM2), Kd =  518 nM (hDMX)) or  3,4-dichlorophenyl (Kd = 27.6 

nM (hDM2), Kd =  155 nM (hDMX)).[191].  Two approaches have been subsequently explored to improve 

the cell permeability of these MDM2 binding helical β-peptides : cationic–patch insertion and 

hydrocarbon side chain bridging. Variants of 34 in which a minimal cationic motif was embedded on one 

face (the salt-bridge face) of the β-peptide 14-helix[192] were shown to bind hDM2 equally well and to be 

taken by cells with an efficiency that equal that of (PRR)3 a control cell-penetrating peptide.[193] This 

approach could avoid the attachment of an extra (Arg rich) cell-penetrating sequence (see section 3.6) 

that would significantly increase the molecular mass of the derivatives. By analogy to stapled peptides 

that may increase cell uptake, β-Peptide analogues containing i,i+4 diether or hydrocarbon staples have 

also been prepared. β-Peptides bridged between positions 4 and 7 (e.g. 35) were found to bind MDM2 

slightly better, and most importantly to be taken-up by cells more efficiently than the corresponding 

unbridged peptides.[18c] It is worth mentioning that the foldamer approach is also compatible with other 

α-helix stabilizing technologies such as the hydrogen bond surrogate (HBS) approach. Arora and 

coworkers have designed conformationally stable p53 peptide analogue combining beta amino acid 

replacements (αααβ backbone pattern) and a HBS cap that are equally potent to the corresponding HBS 

terminated α-peptide in binding recombinant MDM2 (e.g. 36, KD = 80 ± 21 and 71 ± 16 nM, 

respectively).[194] 

 

<Figure 16 near here> 

 

High affinity (low nanomolar range), proteolytically stable, helical (left-handed) D-peptide ligands of 

MDM2 have been identified by mirror image phage display.[143, 195] High resolution structural analysis of 

one such peptide (i.e. DAsp-DTrp-DTrp-DPro-DLeu-DAla-DPhe-DGlu-DAla-DLeu-DLeu-DArg, 37 KD = 53 nM 

for MDM2)  in complex with MDM2(25-109) (PDB ID : 3IWY)[195] (Fig. 17a) suggested that the aromatic 

side chain of the DPhe7 residue was not fully filling the corresponding binding cavity on MDM2, 

http://dx.doi.org/10.2210/pdb3iwy/pdb
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suggesting a rationale to enhance binding of these peptides ligands. The introduction of substituents at 

the para position of DPhe7 in the sequence a related peptide was found to enhance binding to both 

MDM2 and MDMX with the para-trifluoromethyl substitution being the most effective (DAla-DTrp-DTyr-

DAla-DAsn-DPhe(3-CF3)-DGlu-DLys-DLeu-DLeu-DArg, 38, KD = 0.45 nM (SPR the SPR-based competitive 

binding assay)).[48e] The crystal structure of 38 in complex with MDM2(25−109) solved at 1.8 Å resolution 

(PDB ID : 3TPX) indicated that the para-trifluoromethylation of DPhe7 enlarges the total buried surface 

area of the D-peptide in the complex from 561 Å2 to 640 Å2 and also suggested further ligand 

improvement by modification of the side chain of DTrp3 (Fig. 17b). The introduction of a fluoride atom 

at position 6 of the indole ring led to the most active compound with a KD = 220 pM. One limitation of 

these D-α-peptides is their poor capacity to translocate across cell membranes and thus to engage 

MDM2 and MDMX inside the cells (no cytotoxicity was observed in HCT116 p53+/+ cell lines at up to 50 

µM of 37) would require implementation of additional strategies such as conjugation to molecular 

transporters (see section 3.6 and 4.4). 

<Figure 17 near here> 

 

A variety of inhibitors of the p53/hDM2 interaction based on extended and relatively rigid scaffolds have 

been reported (see Figure 18). Early work on the aromatic terphenyl scaffold by susbstituting the three 

ortho positions with aryl or alkyl groups for mimicking the hot-spot residues in the i, i + 4 and i + 7 

positions of the p53 helix demonstrated the ability of these topographical mimics to engage selectively 

the target in vitro (fluorescence-based assays and 1H–15N  HSQC  perturbation  shift  experiments).  

Remarkably, several compounds in this series (exemplified by 39) were shown to inhibit this PPI at 

submicromolar concentration with some selectivity over other PPIs with a similar type of binding 

interface such as Bcl-XL/Bak and Bcl-2/Bak (14 and 82 fold selectivity , respectively for 39).[61b] 

Surprisingly, the selectivity of compound 39 was reversed when substituting the 1-naphthyl moiety by a 

2-naphthyl (see section 3.2.2.1).  Remarkably, several terphenyl p53 mimetics were found to be 

membrane permeable and to induce p53 accumulation and activation in tumor cells. Further 

elaboration led to aromatic scaffolds with heteroatoms such as oligopyridylamides and oligobenzamides 

whose solubility is improved over terphenyl backbone and synthesis more modular, transferable to 

solid-phase and amenable to the creation of larger libraries.[63, 133, 196] Inhibitors of p53/hDM2 in the low 

µM range have been reported by screening focused libraries of diversely substituted 2-O- and 3-O-

http://dx.doi.org/10.2210/pdb3tpx/pdb
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alkylated,[65b, 196-197]  N-alkylated oligobenzamides (exemplified by 40),[167, 198] as well as hybrid 

oligoamides containing single or multiple proteinogenic α-amino acid replacements at selected positions 

(exemplified by 41).[34c, 196]  Again, compounds with the ability to interfere with the p53/hDM2 

interaction in cells were reported, including some potent membrane-permeable dual inhibitors (e.g. 40) 

of the p53/hDM2 and NOXA-B/Mcl-1 interactions.[167] Compounds with increased preference for hDM2 

were obtained by substituting a proteionogenic amino acid residue for the central amino benzoic acid 

unit as in 41, the resulting selectivity (i.e. hDM2 vs. Mcl-1) being influenced by the stereochemistry of 

the α-amino acid residue.[34c] In a similar fashion, aliphatic oligooxopiperazines[69a] have also been 

evaluated as possible p53 α-helix mimics. Computational design using the Rosetta software 

(https://www.rosettacommons.org/)[199] modified to enable modeling of oxopiperazines,[200] combined 

with experimental structure−activity relationship data led to the discovery of p53/MDM2 inhibitors (e.g. 

42, KD =0.3 µM).[69c] The Rosetta derived model of the complex was supported by 1H−15N HSQC NMR 

titration experiments.  

<Figure 18 near here> 

 

3.3.2.3. p300/ (HIF-1a) interaction 

Other transcription factors involving α-helical interfaces such as hypoxia inducible factor 1α (HIF-1α) 

have also been targeted with helix mimetics. HIF-1α plays a crucial role in adaptation of tumor cells to 

hypoxia. Under hypoxia, the α subunit of HIF-1 accumulates, dimerize with constitutively expressed aryl 

hydrocarbon receptor nuclear translocator (ARNT) subunit, recruit co-activators (CREB-binding 

protein/p300 (CBP/p300)) via its transactivation domain and further exerts its transcriptional role on 

hypoxia-responsive target genes that play key roles in cancer biology (angiogenesis, invasion, 

metastasis). The HIF-1α–p300 coactivator interaction represents a possible target for controlling HIF-1α 

–mediated hypoxia signaling. The solution structure of the complex (PDB IDs: 1L8C) reveals that the C-

terminal transactivation domain (C-TAD) of HIF-1α bind to the cysteine/histidine-rich 1 (CH1) domain of 

p300 via three short helical regions and an extensive network of hydrophobic and polar interactions (Fig. 

19). 

<Figure 19 near here> 

 

https://www.rosettacommons.org/
http://dx.doi.org/10.2210/pdb1l8c/pdb
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Arora and coworkers have reported oligooxopiperazine derivatives[69a] designed to mimic side chain 

display of three of the four residues in the HIF-1α third helix (816-826) that make close contact with the 

CH1 domain, namely Leu818, Leu822, and Gln824.[69b] In particular, compound 43 was found to bind the 

CH1 domain of p300 with an affinity of 533 nM, to down-regulate multiple genes implicated in 

angiogenesis, apoptosis, cell proliferation, and invasion in non-small-cell lung cancer cell line (for activity 

in vivo see section 4). Further optimization of compound 43 led to oligooxopiperazine 44 which exhibits 

a 13-fold enhancement in binding affinity and 100-fold specificity for the targeted p300-CH1 surface 

over MDM2.[69c] 

 In a similar fashion, 3-O-alkylated oligobenzamides designed to mimic HIF-1α third helix have been 

reported to inhibit the binding of a 42-residue HIF-1α labeled peptide in a fluorescence anisotropy 

competition assay with activities in the µM range (e.g. 45, IC50 = 9.2 µM).[201] These results obtained with 

short helix mimetics 43-45 are significant given that the 16-residue parent peptide encompassing the 

third helix is not active. A potentially useful extension of this approach to improve the activity of short 

topographical mimics in terms of affinity and/or target specificity is to combine the helix mimetic and 

the rest of the native peptide sequence in a single extended hybrid molecule. One example reported by 

the Wilson group is a hybrid molecule consisting of the HIF-1α second helix linked to molecule 45.[117b] 

Although the resulting compound did not show improved binding compared to the native sequence, the 

resulting molecule exhibit much increased specificity to the target compared to 45. This is an interesting 

direction that they may lead if target peptide sequences are longer to composite protein with new 

properties and that is worth continuing to explore.  

3.3.2.4. Targeting vascular endothelial growth factor (VEGF) signaling 

Vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis and vasculogenesis whose 

biological effects are mediated by two receptor tyrosine kinases (RTKs), VEGFR-1 and VEGFR-2. The 

important role of VEGF during tumor angiogenesis makes it an important therapeutic target and VEGF 

antagonists have received considerable attention in the context of cancer therapy. Bevacizumab, a 

recombinant humanized monoclonal antibody that blocks angiogenesis by inhibiting interactions with 

cell surface receptors and Aflibercept, a recombinant fusion protein consisting of extracellular domains 

of human VEGF receptors are approved drugs to treat cancer or macular degeneration. Phage display 

methods have been employed to identify disulfide constrained peptides a as well as mini proteins (e.g. 

derived from the three helix 58-residue Z-domain scaffold[202]) that bind to the receptor-binding domain 

(residues 8-109) of VEGF and antagonize binding of VEGF to its receptors.[203] Haase et al. have 
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investigated α→β replacements in the 19-mer cyclic VEGF binding peptide with the dual aim to increase 

resistance to proteolysis and to maintain the affinity for VEGF.[204] Regular patterns of α→β 

replacements (such as ααβαααβ and αααβ) resulted in compounds with low binding profile probably 

due to the absence of a well defined and regular helical conformation in the parent peptide. 

Nevertheless, several α/β hybrids containing from three to six β-replacements were found to retain 

significant affinity for VEGF (albeit 4-77 fold lower affinity relative the parent peptide) and to display 

increased (up to 190-fold) resistance. In another study, Checco et al. started from the three helix Z-

domain scaffold VEGF ligand (Z-VEGF) which they simplified by removing one helical segment and 

constrained by introducing a disulfide crosslink at the other end of the loop. The resulting dimer which 

binds VEGF with the same affinity as Z-VEGF served as a starting point to implement α→β replacements 

within the helical segments. The introduction of six β-residues at sites that do not contact the target 

protein or interfere with tertiary packing led to α/β peptides that can structurally and functionally mimic 

the binding surface of the parent peptide (affinities in the same range or slightly improved) while 

exhibiting significantly increased resistance to proteolysis (up to 3300 fold relative to the cognate a-

peptide in a proteinase K assay). The crystal structure of the tightest VEGF-binding α/β-peptide, 46 in 

complex with VEGF8–109 (PDB ID 4WPB)  confirmed that 46 binds to the same surface of VEGF8-109 as 

Z-VEGF (PDB ID 3S1K[203b]) with the anticipated helix-loop-helix conformation (see Figure 20).[107b] In 

addition, 46 was found to attenuate VEGF-induced proliferation of human umbilical vein endothelial 

cells (HUVECs). It is noteworthy that the α→β replacement approach was also successfully extended[107b]   

to produce effective mimics of Z-domain-derived peptides that bind to other target proteins, such as 

tumor necrosis factor-α (TNF-α), a proinflammatory cytokine involved in several inflammatory diseases, 
[205] and the Fc portion of human IgG1.[206]  

<Figure 20 near here> 

Mirror image phage display was used by Kent and collaborators to engineer high affinity mini D-protein 

ligands of VEGF (L- form) that can block binding of VEGF to its cognate receptor VEGF-R1. They used the 56 

residue B1 domain of streptococcal protein G (GB1) as a scaffold to display a designed diversity library of 

mutants which was screened against synthetic D-VEGF, followed by a round of affinity maturation. The high 

resolution X-ray structure of the heterochiral L-VEGF / D-protein antagonist complexes were determined by 

racemic protein crystallography (PDB ID 4GLN and 5HHC).[48f, 207] Detailed analysis of the interaction 

between the D-protein antagonist and VEGF-A revealed a binding interface of ≈ 800 Å2 localized in the 

region of VEGF that interact with VEGFR1. Plasma stability, pharmacokinetics, and immunogenicity of this 

http://dx.doi.org/10.2210/pdb4wpb/pdb
http://dx.doi.org/10.2210/pdb3s1k/pdb
http://dx.doi.org/10.2210/pdb4gln/pdb
http://dx.doi.org/10.2210/pdb5hhc/pdb
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mini D-protein were studied in detail to further evaluate the potential of D-proteins as therapeutic agents 

(see section 4.5).[48f]  

3.4. Ligands of G protein-coupled receptors (GPCRs): Hormone like analogues 

Some approaches discussed in the previous sections (3.3.1 and 3.3.2) have been recently extended to 

create analogues of peptide hormones such as ligands of class B G-protein coupled receptors 

(GPCRs)[208]) which include secretin, glucagon, glucagon-like-peptide (GLP-1), glucose-dependent 

insulinotropic polypeptide (GIP), vasoactive intestinal peptide (VIP), corticotrophin-releasing factor 

(CRF), parathyroid hormone (PTH), and growth hormone releasing factor (GRF), pituitary adenylate 

cyclase-activating peptide (PACAP) and calcitonin. Although generally unfolded in aqueous solution, the 

C-terminus of natural ligands of class B GPCRs adopt an α-helical structure upon binding to their cognate 

receptor. Endogenous peptide ligands for Class B (Secretin receptor Family) GPCRs and their synthetic 

derivatives have attracted considerable interest as candidates for the treatment of several human 

pathologies and several of these are now marketed drugs (e.g. liraglutide, teriparatide).[209] Significant 

insight into the mechanism of class B GPCRs activation has been provided by structural analyses of 

extracellular domains (ECDs) of several of these receptors (including CRFR1, CRFR2, GLP-1, PACAP, GIP 

receptors) in complex with bound peptide ligands (natural ligands or analogues)[208] and by the first 

structures of membrane-spanning domains of some of these GPCRs.[210] In the structures of ECD with 

bound peptide ligands, the peptide adopts an amphipathic α-helical conformation with hydrophobic 

side chains buried into a groove at the surface of the ECD; the C-terminal residues contacting the ECD 

and the N-terminal end protruding out of the ECD. This crystallographic data set suggests a two-step 

mechanism whereby the interaction between the ECD and the C-terminus of the peptide hormone 

exposes the N-terminal part to the transmembrane domain of the receptor. Extensive efforts have been 

made over the last decades to stabilize the α-helical conformation and the lifetime in biological fluids of 

these peptide hormones and generate potent agonists and antagonists.[209] Chemical approaches based 

on the introduction of α,α-dialkylated amino acids and side chain crosslinks have been largely 

employed,[211].  

More recently, Gellman has shown that carefully designed α/β-peptides can also produce effective 

mimics of class-B GPCR ligands with increased resistance to proteolytic degradation and possibly the 

ability to modulate receptor signaling. In a first study, they examined six analogues of PTH(1-34), a full 

agonist of human PTH receptor 1 (hPTHR1) and the active ingredient of the osteoporosis drug 
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teriparatide.[212] Analogues contained between five and seven α→β3 replacements extending from the 

C-terminus with the αααβ pattern. All six α/β-peptides proved to be full agonists (by monitoring cAMP 

production in HEK293 cells that stably express hPTHR1). Remarkably, 47 which contains seven α→β3 

replacements is indistinguishable from PTH(1-34) in terms of PTHR1 affinities and agonist potency and 

this compound display in vivo activity (see also section 4.3). Similar periodic α→β3 replacements in the 

sequence of the related [DTrp12]PTH(7-34) were found to retain the antagonist and inverse agonist 

activities of this α-peptide and to increase resistance to proteolytic degradation.[213]  In sharp contrast, 

even fewer α→β3 replacements in the sequence of the glucagon like peptide-1 (GLP-1) (7−37)-NH2, 

which displays full activity at GLP-1 receptor (GLP1R) resulted in considerable loss of activity as 

measured by cAMP production (EC50 > 100 nM compared to EC50 = 1.6 nM for GLP-1(7-37)NH2)). The 

agonistic activity at the receptor was restored by introducing ring-constrained β-amino acids such as 

ACPC or APC.[214] Compound 48 which contains five α→β replacements proved to be a full agonist of 

GLP-1R, with native GLP-1-like potency. GLP-1(7-37)NH2 has a very short plasma half-life (1-2 mins). It is 

rapidly degraded in by proteases such as dipeptidyl peptidase-4 (DPP4) which specifically cleaves after 

Ala8 and neprilysin (NEP 24.11), which cleaves after Asp15, Ser18, Tyr19, Glu27, Phe28, and Trp31. 

Although α→β replacements in 48 were expected to suppress the action of NEP 24.11 to a large extent, 

attempts to extend α→β modifications towards the N-terminus to provide further stabilization were 

found to be detrimental to the activity. Compound 49, an analogue of 48 with two Aib residues at 

position 8 and 16 was found to be a full agonist of GLP-1R and to be highly resistant in vitro to 

degradation by DPP4. α/β-peptide 38 was found to promote glucose stimulated insulin secretion from 

freshly isolated mouse islets in a dose-dependent manner similar to GLP-1 and to be active in vivo in 

glucose tolerance tests (see section 4.3).  

<Figure 21 near here> 

The α → β replacement strategy was also applied to the vasoactive intestinal peptide (VIP) to improve 

its resistance to proteolysis. VIP elicits immune-based neuroprotection but its short half-life hampers 

possible therapeutic applications. Furthermore, VIP activates two broadly distributed receptors, VIPR1 

and VIPR2 and there is an interest for analogs which would display receptor selectivity. Two 

metabolically stable VIPR1 and VIPR2 agonists were developed. For example, compound 50 which 

contains nine α → β substitutions  (either native side chains or constrained residues) is a potent agonist 

of VIPR2, highly selective for VIPR2 versus VIPR1 which exhibit strong resistance to proteinase activities 

(pepsin, proteinase K, chimotrypsin). The two peptides were investigated for their abilities to protect 
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mice against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration used to 

model Parkinson’s disease (PD)(see section 4.3).  

3.5. Inhibitors of Amyloid protein aggregation and fibril-like oligomer assembly 

formation 

Misfolding and aggregation of amyloid proteins is implicated in the pathology of a range of diseases such 

as Alzheimer’s disease, type 2 diabetes and Parkinson’s disease. Foldamer approaches based both on β-

sheet and helix mimics have been employed to antagonize the aggregation of various amyloid proteins, 

and potentially reduce the toxicity of amyloid aggregates. Nowick and coworkers have focused on 

amyloid β-sheet mimics (ABSMs) that can display amyloid β-strands from different amyloid proteins 

including amyloid-β (Aβ) peptide (associated with Alzheimer’s disease), Tau, human and yeast  prion 

proteins, human β2-microglobulin (hβ2M), human α-synuclein  (associated with Parkinson’s disease) 

and human islet amyloid polypeptide (IAPP, associated with type 2 diabetes).[83, 215] In particular, they 

have designed 54-membered ring macrocyclic β-sheets (Figure 22) comprising a recognition amyloid 

heptapeptide fragment (upper strand) which could bind to parent amyloid protein, one Hao unit which 

serves as a tripeptide β-strand mimic in the lower strand with two flanking dipeptides to promote 

intramolecular H-bonding and two δ-linked ornithine (δOrn) residues for connecting the two strands. The 

Hao unit plays the additional role of preventing ABSMs to aggregate in solution and form an infinite 

network of b-sheets by minimizing exposed H-bonding groups in the lower strands. [82b] Remarkably, 

ABSMs with Aβ17-41 in the upper strand were found to delay the aggregation of Aβ (monitored by 

thioflavin T fluorescence assays and TEM) at sub-stoichiometric concentrations (as low as 1µM) and to 

reduce the toxicity of Aβ40 and Aβ42 in PC-12 cells. [83] The current model is that ABSMs thus binds early 

β-stuctured oligomers and not the monomer and block Aβ nucleation. 

<Figure 22 near here> 

 

Short length aromatic foldamers consisting of an aromatic salicylamide (Sal) or 3-amino benzoic acid 

(Benz) backbone and containing basic arginine (Arg), lysine (Lys) or citrulline (Cit) side chains have also 

been reported to prevent spontaneous and seeded Aβ fibrillization.[216] 
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Miranker and coworkers have focused on inhibition of membrane-bound oligomeric intermediates of 

the amyloidogenic IAPP, a 37-residue hormonal peptide, which are hypothesized to contribute to β cell 

pathology in type 2 diabetes (Figure 2). They identified oligopyridine α-helix mimetics[217] and 

oligoquinoline helical foldamers[218] that stabilize a pre-amyloid α-helical conformation of IAPP and 

inhibit lipid-catalyzed IAPP aggregation. Oligoquinoline 51 which is water soluble and cross biological 

membranes was found to rescue β-cells from IAPP-induced toxicity upon co-addition with IAPP but also 

more remarkably when a time delay (up to 24h) was introduced between the addition of IAPP and its 

addition to cells. 

 

<Figure 23 near here> 

 

3.6. Cell penetrating foldamers: intracellular drug delivery and membrane 

disruption 

Much effort has been devoted to the discovery of molecular transporters that when conjugated to a 

molecule of interest (e.g. a drug, a peptide, a protein, or DNA) might facilitate its entry into cells. 

Cationic peptides such as those derived from HIV-1 Tat, Drosophila Antennapedia and many other 

proteins, translocate the cell membranes and mediate delivery of cargo molecules into targeted 

cells.[219] This knowledge of cell-penetrating sequences has stimulated the design of a wide range of cell-

penetrating peptides (CPPs), of which a large fraction is arginine rich, the guanidinium headgroups 

playing a crucial role in the cell entry process.[220] Concurrently, approaches based on non natural 

oligomeric backbones including foldamers may provide new classes of molecular transporters (i.e. cell-

penetrating foldamers, CPFs) with improved stability in biological fluids. For example,  Oligomers of D-

Arg (e.g. 8-mer and 9-mer)[221] as well as mixed L/ D-octaarginine[222] display cell-penetrating properties 

comparable or even greater than the control Tat(49-57) peptide together with increased enzymatic and 

metabolic resistance. Similarly, guanidine rich peptoids,[221] α-peptide/β-peptoid chimeras[223], 

oligocarbamates and oligomers of α-aminoxy acids[224] have been shown to be equally and even more 

potent in entering cells than the corresponding L-peptides. These molecules which do not adopt a 

regular structure in solution provide evidence that a defined conformation is not strictly required for α-

peptides and peptoids to translocate across cell membranes. Similarly, short polycationic β-peptides 
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including β3-HArg/β3-HLys oligomers [225] can rapidly enter the cytoplasm and nucleus of a human cells 

from the extracellular medium by endocytosis. Although these β3-peptides do not show strong 

conformational preference in aqueous environment they are however largely helical in MeOH solution 

and in the presence of lipid micelles. Subsequent studies have shown that the conformational stability of 

the β-peptide and the geometry of guanidinium group display directly affect entry into live cells.[226] For 

example, the ACHC-containing β-Peptide 52 which forms a stable 314-helix in aqueous solution was 

found to enter HeLa cells to a greater extent than the cognate β3-peptide 53 with lower helix forming 

propensity[226a] A similar trend was observed with α/β-peptide analogues of Tat(47–57).[227] The 

introduction of a cyclic β-amino acid bearing a side-chain guanidinium group led to a CPF with 

substantial helicity in methanol (54) that enters HeLa cells much more readily than does the 

corresponding Tat α-peptide and β3-Arg containing α/β-peptide. The introduction of a minimal cationic 

motif on one face of a bioactive helical β-peptide (e.g. a PPI inhibitor) is yet another approach to 

increase cellular entry while avoiding conjugation to an extra CPP or CPF. 

 

 <Figure 24 near here> 

 

Bioreducible helical CPFs with high capacity to assemble with plasmide DNA and to deliver nucleic acids 

into the cell have been obtained by thiol-mediated dimerization of short (8-mer) amphipathic helical 

oligourea bearing His and Arg side chains.[29] Compound 55 was found to compare favorably in terms of 

transfection efficiency with LAH4, a His-rich peptide CPP with high transfection ability.[228]  

As mentioned in the previous section (3.5),[218b] aromatic oligoamide foldamers may also display unique 

cell penetrating properties. Huc et al. have shown that helically folded aromatic oligoamides with 

peripheral cationic side-chains are able to efficiently cross cell membranes.[55] They report that cell entry 

is (i) dependent on the length and the number of positive charges of these aromatic foldamers , with 

octamer 56 proving to be the most active CPF for all three tested cell lines and (ii) mediated by 

endocytosis, like CPPs.  

3.7. Nucleic Acid Recognition 



42 
 

Synthetic oligoamides have attracted considerable attention as nucleic acid analogues (PNAs and 

analogues) and B-DNA minor groove binders (hairpin Py-Im polyamides) and represent interesting 

candidates for applications in biology and as therapeutic agents (see section 2.1.4). PNAs have been 

used extensively as tools for specific modulation of gene expression by targeting translation or 

transcription processes but their development as drugs suffers from low cellular uptake and limited 

water solubility although some techniques may be used to overcome these drawbacks (e.g. CPPs…). Py-

Im polyamides bind defined DNA sequences with affinities and specificities comparable to those of DNA-

binding proteins and may induce allosteric changes in the DNA helix that can interfere with DNA binding 

of transcription factors (e.g. hypoxia inducible factor 1 alpha (HIF-1α),[229], nuclear factor kappa B (NF-

κB),[230]…).  Py-Im polyamides such as 57 (Fig. 25) have been used as molecular probes in cell culture to 

alter gene expression profiles and more recent studies have turned to animal models as Py-Im 

polyamides show toxicity against a variety of cancer cell lines (see section 4).  

Although the literature on nucleic acid recognition by artificial oligomers is by far dominated by PNAs 

(and their numerous analogues) and Py-Im polyamides, new folded backbones such as helical aromatic 

amide foldamers have been reported to bind other DNA targets such as G-quadruplex DNA. Helical 

oligoamides based on 8-aminoquinoline-2-carboxylic acid and bearing cationic side chains, such as 

tetramer 58, selectively interact with DNA G-quadruplexes in solution, including the human telomeric G-

quadruplex (H-telo) and quadruplex sequences of several gene promoters (e.g., c-kit1, c-kit2, c-myc, k-

ras, and bcl2).  This specificity of interactions was supported by the fact that a directed DNA evolution 

study against a related but longer helical cationic oligoamide identified G-quadruplexes as preferred 

targets.[231] Whereas most known G-quadruplex ligands have flat aromatic structures and stack on top of 

G-tetrads, the helical shape of quinoline-based oligoamides makes a similar mode of interaction unlikely 

and the recent co-crystal structure of 58 with an antiparallel hairpin dimeric DNA G-quadruplex (G4T4G4)2 

supports a binding mode driven by ammonium–phosphate electrostatic interactions between the 

foldamer cationic side chains and the DNA backbone loops (Fig. 25). The resolution of more selective 

foldamer G-quadruplex interactions will likely guide the rational design of more potent aromatic helical 

foldamer-based ligands for DNA G-quadruplex. 

<Figure 25 near here> 

 

4. In vivo studies of bioactive foldamers 
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Synthetic foldamers made of unnatural backbones intrinsically differ (chemically and structurally) from 

the natural α-peptides or biopolymer they intend to mimic. These differences are generally assessed in 

vitro in terms of interaction with the biological target, resistance to proteolysis, membrane permeability 

and cellular activity (see previous sections) but relatively few studies have focused on activities of 

foldamers in vivo. In the context of developing possible therapeutic applications, there is increasing 

interest to know more about the properties of foldamers in vivo (efficacy in animal models, duration of 

action, pharmacokinetics, toxicity, immunogenicity). 

4.1. Pharmacokinetics and tissue distribution  

Along with increased resistance to proteolytic degradation (see section 3.1.2), foldamer mimics of 

natural peptides are likely to manifest different pharmacokinetics and as a result different activities in 

vivo. Only a limited number of studies have examined the pharmacokinetic (PK) properties and tissue 

distribution of bioactive foldamers. To a large extent these investigations have focused on cationic 

amphiphilic helices (8-12 residue long) for which antibacterial activities were known, namely 

antibacterial β3-nonapeptide H-(β3Ala-β3Lys-β3Phe)3-OH, [232] peptoid analogues of 14[233] and the N,N’-

linked oligourea 17[142] as well as on (β3Arg)9 a cationic CPF.[234] PK studies of the doubly 14C-labeled H-

(β3Ala-β3Lys-β3Phe)3-OH derivative in rats[232] revealed that following i.v. administration of 5 mg/kg : i) 

the concentration of β-peptide in blood and plasma decreases rapidly and the radioactivity is distributed 

in organs and tissues ii) after 7 days, residual radioactivity in organs and tissues represented ≈50% of the 

i.v. dose with high levels in the kidney, lymph nodes and liver iii) the β-peptide is highly stable against 

metabolic degradation in vivo. Negligeable absorption took place after p.o. administration, and the 

administered dose was completely excreted via the feces within 96h.[232] The same trend was observed 

following i.v. administration of the 14C-labeled (β3Arg)9 derivative but excretion from the body was even 

slower (2% of the dose in 7 days).[234] A major fraction of the radioactivity ended up in the liver (ca. 30% 

of the dose was still found in the liver at 168 h post-dosing). 

The 12-mer peptoid analogue of 14 conjugate was assayed  in vivo as its 64Cu-labeled DOTA by both 

biodistribution studies and small animal positron emission tomography (PET).[233] After i.v. 

administration, biodistribution studies of 64Cu-labeled peptoid demonstrated prominent uptake in the 

liver with a slow elimination from the liver region observed by PET images.  

The PK profile and the tissue distribution of a 3H-labeled analogue of 17 were investigated by beta-radio 

imager whole-body mapping in mice.[142] Following intranasal administration, a large amount of 
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radioactivity was sequestered but transiently within the lung and upper airways. Low excretion and 

recovery of the oligourea in the kidney, following i.v. injection, were found to be consistent with high 

stability in vivo. Overall, these observations i.e. in vivo stability and high tissue uptake are consistent 

with the two studies conducted on β-peptides[232, 234] and peptoids[233]  and are likely to reflect specific 

features of these compounds : protease resistance and membrane permeability of cationic foldamers. It 

remains to see whether the pharmacokinetic and biodistribution properties reported for these specific 

foldamers can be modulated upon sequence variation and whether similar trends would be observed 

for other folded backbones. 

Much information has also been gained about the pharmacokinetics and toxicity of Py-Im polyamides in 

rodents.[235] Py-Im polyamides are cell permeable molecules and depending on their architecture, they 

can circulate several hours after i.v. administration and up to 48h in some cases. A number of studies 

have documented activities in vivo without evidence of systemic toxicity.[236] For example polyamide 57 

which was designed to target the consensus androgen and glucocorticoid response elements 5′-

WGGWWW-3′ (W = A or T) is capable of trafficking to the tumor site following subcutaneous injection 

and modulates transcription of select genes in vivo. An FITC-labeled version of this polyamide was 

detected in tumor-derived cells by confocal microscopy. This compound has demonstrated efficacy in 

vivo against prostate cancer xenografts in mice with limited toxicity.[236b, 236c] 

4.2. Activities of Host defense peptide mimetics 

In few cases, foldamers mimicking host defense peptides (see section 3.2) have been evaluated in 

mouse models of bacterial infection. For example, arylamide foldamers such as 22 developed by 

DeGrado was found to exhibit significant activity in a S. aureus thigh infection model (the thigh muscle 

of neutropenic mice is inoculated with bacteria followed by iv administration of the foldamer) when 

administered at doses of 2 mg/kg (i.e. 105 reduction in viable CFU of S. aureus ATCC 13709).[158] Today, 

this family of foldamers is probably the most advanced of all in terms of clinical development. Brilacidin 

(59), a close ananlogue of 22 originally developed by PolyMedix as a new class of antibiotics and since 

2013 by Cellceutix  (http://cellceutix.com) has recently completed a Phase 2b clinical trial for the 

treatment for Acute Bacterial Skin and Skin Structure Infections (ABSSSI) caused by S. aureus, including 

MRSA. In the trial, brilacidin demonstrated high clinical response rates comparable to those of 

daptomycin (the active control), and was shown to be safe and generally well-tolerated.  

 

http://cellceutix.com/
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<Figure 26 - Formula Brilacidin (59) near here> 

 

A longer 12-mer analogue of peptoid 14 was recently tested in vivo using a murine model of invasive S. 

aureus bacterial challenge.[237] At a concentration of 4 mg/kg, this compound apparently caused no 

medium-term toxicity and treatment at this concentration resulted in an average twolog order 

reduction in bacterial counts in the peritonium. Moreover, mortality was reduced by 75% in the peptoid 

-treated group compared to saline-treated controls. In another study, N,N’-linked oligourea 17 which is 

active in vitro against bacterial forms of B. anthracis encountered in vivo (i.e. germinating spores, 

encapsulated and non encapsulated bacilli) was evaluated in cutaneous and inhalational models of 

infection with B. anthracis.[142] This model of infection is highly informative because the infectious 

process can develop through natural routes in normocompetent mice, without any immune 

manipulation.[238] Compound 17 was found to exert a protective activity in vivo in the cutaneous model 

of infection; a limited local treatment increased time of survival and led to partial protection. A similar 

delay in time to death was also observed following inhalational infection. 

4.3    α/β peptide analogues of class B GPCR agonists  

Several studies have reported in vivo activities of α/β-peptide ligands of class B GPCR receptors (GLP-1R, 

hPTHR1, VIPR1 or VIPR2) mentioned in section 3.4. The GLP-1R agonist 49 was tested in a glucose 

tolerance test (GTT) for its ability to normalize circulating glucose levels following the administration of a 

bolus of glucose. Mice injected α/β-peptide 49 and GLP-1(7-37)-NH2 at 1 mg/kg were equally effective in 

suppressing the rise of blood glucose concentration relative to vehicle-treated mice during the GTT. 

Furthermore, when the GTT was repeated 5h after agonist administration, the glucose-lowering effect 

of 49 was maintained but not that of GLP-1(7−37)-NH2.[214] Overall these results possibly reflect the 

higher resistance of the α/β-peptide to proteolysis and show that the α→ β replacement strategy is 

effective to generate potent B-family GPCR agonists which can recapitulate hormone function in vivo 

and which could find useful biomedical applications. This is further supported by in vivo studies of 

PTHR1 agonists. Subcutaneous injection of PTHR1 α/β-peptide agonist 47 induced a long-lasting 

calcaemic response in mice than that caused by PTH(1-34) which correlates well with its affinity for a 

particular functional state of the receptor (i.e. R0 state which forms independent of GαS, a heterotrimeric 

G-protein responsible for activating adenylate cyclase upon receptor activation). The calcemic effect 

duration of 47 is likely facilitated by the substantially prolonged bloodstream bioavailability of this 
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derivative compared with PTH(1–34). The development of long-acting PTH analogues may find practical 

use for treating hypoparathyroidism, for which agents that can normalize blood calcium levels for 

extended periods, if not continuously, are needed.   

VIPR1 or VIPR2 α/β -peptide agonists such as 50 were tested for their abilities to protect mice against 

MPTP-induced neurodegeneration used to model PD.[239] The metabolically stable VIPR2-specific agonist 

50 displayed an improved in vivo PK profile (t1⁄2 = 24.33 min) in comparison to that previously reported 

for VIP (t1⁄2  < 1 min) and was found to be an effective immunomodulatory agent in a disease-relevant 

PD model. Treatment of MPTP-intoxicated mice with 50 significantly spared dopaminergic neuronal cell 

bodies, decreased the amount of reactive microgliosis, downregulated proinflammatory cytokine 

production, and modulated T-cell phenotypes with treatment. In contrast, treatment with the stable, 

VIPR1-selective agonist yielded only lesser neuroprotective responses. These results support the use of 

VIPR2-selective agonists as neuroprotective agents for PD treatment. 

Overall these three studies demonstrated that the α/β-peptide approach is particularly well suited to 

mimic long peptide helices and increase biological life time of natural peptide hormones. It remains to 

be seen whether other types of foldamer backbones could be equally useful to design ligands of class B 

GPCRs. 

4.4. Foldamers that target intracellular PPIs 

Examples of foldamers designed to modulate/inhibit intracellular PPIs that actually display intrinsic 

capacity to cross the cell membrane to reach the appropriate location inside the cells and engage their 

target proteins are relatively few and are dominated by topographical mimics.[69c, 167, 240] Oligo-

oxopiperazine 43 designed to mimic HIF-1α and to target the transcriptional co-actovator p300 is one 

such example. This compound was shown to be active in a mouse model of tumor xenograft. Injection of 

43 (15 mg/kg) to mice bearing xenografts derived from the triple-negative breast cancer cell line MDA-

MB-231 reduced the median tumor volume by roughly 50% compared with the untreated group, 

without showing measurable changes in animal body weight.[69b] Folded aliphatic backbones such as D-

peptides, aliphatic β- and α/β-peptide helices may be endowed with cell penetrating properties  through 

sequence variation,[192] side-chain crosslinking,[18c] and conjugation to molecular transporters.[18d] This is 

the case of the D-peptide ligand of MDM2 37 which despite biostability and effective binding to MDM2, 

fail to actively penetrate cells. In this particular case, conjugation to a cell-penetrating sequence  ((D-

Arg)9) via its C-terminus did not lead to the expected activity but resulted in necrosis of both HCT116-
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p53+/+ and HCT116-p53−/− cell lines in a p53 independent manner.[195] However, these D-peptide ligands 

of MDMD2 (either in the free form or palmitylated) were shown to kill human glioblastoma cells in a p53 

dependent manner and to exert p53-dependent antitumor activity in nude mouse xenograft models 

when encapsulated in liposomes functionalized with an integrin-targeting cyclic-RGD peptide, thus 

providing proof of principle for efficient D-peptide loading and delivery.[195, 241] 

4.5. Antigenicity and Immunogenicity of bioactive foldamers 

Characterizing the possible interaction of biologically relevant foldamers with the immune system and 

make sure that they do not induce unwanted immune response from the host are important issues that 

certainly need to be carefully addressed if therapeutic applications are thought. To date, there is still 

little information available on the possible immunogenicity of foldamers and their recognition by the 

specialized molecules of the immune system, i.e. antibodies, MHC molecules and T-cell receptors. Early 

work reporting immune responses against non natural peptide backbones (e.g. D-peptides) was often 

the result of efforts to make effective immunogens after conjugation to a carrier protein and/or 

association with adjuvants.[242] Other studies have investigated the role of the peptide backbone in T cell 

recognition, by scanning the backbone of antigenic peptides with pseudopeptide bonds (or single α → β 

replacements) and measuring the capacity of such pseudopeptides to bind their cognate MHC molecule 

and subsequently to engage the T cell receptor (TCR).[145c, 242b, 242c, 243] With a completely different 

objective (i.e. avoiding immune response), Gellman and coworkers have investigated how bioactive α/β-

peptide (e.g. Bim BH3-derived) with high β residue content and regular patterns (e.g. αααβ and 

ααβαααβ) are recognized by the immune systems and compare with cognate α-peptides.[244] It turns out 

that recognition by antibodies raised against the prototype α-peptide is suppressed by periodic α → β 

replacements and that antibodies raised against α/β-peptides fail to recognize prototype α-peptides 

displaying identical side chain repertoires. Finally, periodic α → β replacements in CD8(+) T-cell viral 

epitope suppress the formation of a productive MHC I / peptide / TCR ternary complexes that would 

activate cytotoxic T-lymphocytes, due in part to disruption of MHC binding. Although further studies are 

needed to determine whether the lack of cross-reactivity between homologous α-peptides and 

foldamers is a general feature, these data are supported by the recent analysis of a small D-protein 

scaffold selected to bind to VEGF-A that is completely resistant to proteolysis in mouse, monkey, and 

human plasma; had a longer in vivo half-life than the cognate L-protein when injected i.v. and a 

complete lack of immunogenicity, even when dosed in combination with a strong adjuvant.[48f] 
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5. Conclusion and Trends 

Advances in foldamer chemistry together with the finding that non natural oligomeric backbones may 

retain folding in water and exhibit diminished susceptibility to degradation by proteases gave impetus 

for the use of synthetic folded oligomers in many different biologically and therapeutically relevant 

contexts, from structural mimics of AMPs, inhibitors of PPIs, to peptide hormone mimics, and DNA 

ligands. Remarkable progress has been made in the field since the seminal discovery that short β-

peptides may adopt well-defined helical secondary structures akin to those found in proteins. Sequence-

based biopolymer mimicry still has a greater role to play as a pharmacological tool and possibly towards 

the development of innovative medium-size therapeutic agents. The use of foldamers as protein 

secondary structure mimics for modulating biological interactions is currently dominated by aliphatic 

oligomers such as α/β-peptides for which robust and general design principles have been proposed, but 

many new backbones (both biotic and abiotic) are currently available for further evaluation, expanding 

the scope of possible approaches to address a particular biological question. Structural characterization 

at high resolution of foldamer/biopolymer interactions and molecular modeling tools are becoming 

increasingly important to learn more precisely how foldamers are interacting with biological surfaces, to 

mimic the information encoded by biopolymers and guide the design of more potent bioactive 

foldamers. Studies reporting activities of foldamers in vivo and pharmacokinetic properties of foldamers 

in animal models are still rare but this is a direction which will surely develop in the future, contributing 

to address important issues (PK, tissue distribution, toxicity, immunogenicity) for the practical 

development of this unique and fascinating class of molecules.  
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Figure Legends 

Figure 1. Molecular recognition and structural diversity of foldamers. 

Figure 2. Examples of biotic helical foldamer structures and their helical wheel representations. 

Figure 2. α/β-Peptides with αβ, αααβ, and ααβαααβ backbone patterns and helical wheel diagram 

showing the distribution of β-residues (blue disk) around the helix surface for each of these patterns. 

Figure 4. Examples of aromatic oligomer structures and their intramolecular hydrogen bond network. 

Figure 5. (A) Schematic representation of an α–helix (spheres represent positions i, i+4 and i+7 of the 

side chains). (B) Examples of helix mimetics based on non helical scaffolds. 

Figure 6. (A) Sequence of α/β-peptide analogues of a hairpin model α-peptide; Design of 4 involves 

(αα→β3)-substitution while design of 5 involves (αα→β2,3)-residue substitution. (B) The three-stranded 

alignment of the anginex peptide with a systematic α- to β3-residue substitution in-registry (6-11) in the 

sheet forming regions (blue frame). 

Figure 7. Crystal structure of a macrocyclic peptide designed by Nowick and mimicking amyloid β-sheets 

(PDB ID: 3Q9H). The magenta and green structures correspond respectively to the parallel and 

antiparallel β–sheet dimers. The top view and side view show packing of the two dimers (spheres 

emphasize hydrophobic contacts between them). 

Figure 8. Examples of topographical mimetics of extended peptide structures. 

Figure 9. (A) Structure of a β3-pentadecapeptide 12 designed to bind duplex DNA. (B) Schematic 

representation of the 314-helix and a CPK Model of a DNA double helix (PDB ID: 1D98). 

Figure 10. Examples of higher order foldamer architectures mimicking natural proteins. (A) Crystal 

structure of a protease resistant mini D-protein scaffold; (B) X-ray structure of a GB1 tertiary fold 

analogue accommodating six β-amino acid residues in its helical and adjacent loop segments; (C) X-ray 

structure of a β3-peptide octameric helix bundle and (D) X-ray structure of an oligourea six-helix bundle. 

Figure 11. Design of representative amphiphilic helical cationic antimicrobial foldamers assuming 

idealized helical structures. 

Figure 12. Membrane active facially amphiphilic arylamide and arylurea foldamers. 

http://dx.doi.org/10.2210/pdb3q9h/pdb
http://dx.doi.org/10.2210/pdb1d98/pdb
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Figure 13. (top) Sequences of α-peptides T2635 and 25 derived from the second heptad repeat domain 

of GP41 and corresponding designed α/β peptides 23, 24 and 26, 27. β3 and cyclic β-amino acid residues 

are shown in blue disks/circles respectively. (bottom) Crystal structures of T2635 (a) and α/β peptide 24 

(b) bound to HR1 trimer surface in a 6-helix bundle. Carbon atoms of β-residues in 24 are colored in 

slate blue. 

Figure 14. Sequences of BH3-derived α-peptides 28 and 30 and corresponding α/β peptides 29, 31-

33.The four key hydrophobic residues making contacts with propapototic proteins are underlined and 

the conserved side chain carboxylate forming a salt bridge with one residue of the protein is marked 

with a star. β-amino acid residues are shown in slate blue. Crystal structures of α/β peptides 19 (a) and 

20 (b) bound to BCL-XL. Carbon atoms of β-residues are colored in slate blue. 

Figure 15. Formula of sAPC residue. 

Figure 16. Examples of β-peptide (34, 35) and α/β-peptide (36) p53 mimics with various degree of 

backbone preorganization (salt-bridge, side chain crosslink, HBS). 

Figure 17. Crystal structures of helical D-peptide ligands of MDM2 identified by mirror image phage 

display 37 (a) and 38 (b) bound to MDM2(25-109). Key hydrophobic side chains are colored in green. 

Figure 18. Inhibitors of the p53/hDM2 interaction based on extended and rigid α-helix mimietic 

scaffolds. 

Figure 19. (Left) Solution structure of the complex between the C-terminal transactivation domain of 

HIF1α and the CH1 domain of p300. (Right) oligooxopiperazine and 3-O-alkylated oligobenzamide 

derivatives designed to mimic the HIF-1α third helix. 

Figure 20. Crystal structures of the three helix Z-domain scaffold VEGF ligand (Z-VEGF) (a), and α/β-

peptide 46 (b) in complex with VEGF8-109. Carbon atoms of β-residues in 46 are colored in slate blue. 

Figure 21. α/β-peptide analogues 47-50 of peptide hormones PTH(1-34), GLP-1(7-37) and VIP. β3- and 

cyclic β-amino acid residues are shown in blue disks/circles respectively. Aib residues are shown as 

orange disks. 

Figure 22. (left) Representation of an amyloid β-sheet mimic recognizing and blocking amyloid 

aggregation through β-sheet interactions; (right) sequence of a prototypical 54-membered ring 
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macrocyclic amyloid β-sheet mimic. Reprinted by permission from Macmillan Publishers Ltd: [Nat. 

Chem.] ([83]), copyright (2012) 

Figure 23. Approach based on the use of oligoquinoline helical foldamers (e.g. 51) to inhibit lipid-

catalyzed IAPP aggregation. Reprinted by permission from Macmillan Publishers Ltd: [Nat. Comm.], 

([218b]), copyright (2016) 

Figure 24. Examples of biotic and abiotic cationic  foldamers 52-56 designed to translocate into cells. 

Figure 25. Aromatic oligoamides for nucleic acid recognition : Py-Im polyamide (57) and helical 

oligoamides based on 8-aminoquinoline-2-carboxylic acid (58) 

Figure 26. Formula of Brilacidin (59). 
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Ac β3 T W E β3 W D β3 A I A β3 Y A β3 R I E β3 L I β‘c A A Q β3 Q Q β‘c K N E β3 A L β‘c E L NH2

Ac β3 T W E βc W D β’c A I A β3 Y A βc R I E βc L I β’c A A Q β3 Q Q β3 K N E βc A L β’c E L NH2

Ac T T W E A W D R A I A E Y A A R I E A L I R A A Q E Q Q E K N E A A L R E L NH2

Ac β3 T W E β3 W D β3 A I A β3 Y A β3 R I E β3 L I β3 A A Q β3 Q Q β3 K N E β3 A L β3 E L NH2

T-2635

22

23

β3 βc= Corresponding β3-
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27 Ac Gln Val Gly Arg Gln Leu Ala Ile Ile Gly Asp* Asp Ile Asn Arg NH2

28 Ac APC Ala ACPC Arg ACPC Leu ACPC Lys β3HLeu Gly Asp* Ala Phe Asn Arg NH2

29 Ac Ile Trp Ile3 Ala Gln Glu Leu7 Arg Arg Ile10 Gly Asp* Glu Phe14 Asn Ala Tyr Tyr NH2
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H- H Aib E G T F T S D Aib S βc Y L E βc Q A A βc E F I βc W L V β‘c G R G -NH2

H- H A E G T F T S D V S βc Y L E βc Q A A βc E F I βc W L V β‘c G R G -NH2

GLP-1(7-37)

X βc= Corresponding β3-
homo residue

= ACPC β‘c = APC

H- S V S E I Q L M H N L G K H L N S M E R V E W L R K K L Q D V H N F -NH2PTH (1-34)

46 H- S V S E I Q L M H N L G K W L N S M E R V E W L R K K L Q D V H N F -NH2

H- H A E G T F T S D V S S Y L E G Q A A K E F I A W L V K G R G -NH2

47

48

VIP

49

Aib

Ac- H βc D A βc F T E βc Y T K L R K Q L A A β‘c K Y βc N D L K K G G T -NH2

= α-methylalanine
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