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ABSTRACT  

We report a versatile and simple approach to produce cylindrical micelles by the direct 

dissolution of polymers in water. The developed strategy relies on a RAFT agent functionalized 

by a bisurea sticker that allowed to synthesize a series of α-bisurea functionalized poly(N,N-

dimethylacrylamide) (PDMAc), poly(acrylic acid) (PAA), polyacrylamide (PAM) and poly(2-

(N,N-dimethylamino)ethyl acrylate) (PDMAEA) with number-average degrees of 

polymerization (DPn) varying from about 10 to 50. Their spontaneous self-assembly in water 

was studied by electron microscopy (cryo-TEM), neutron scattering (SANS) and calorimetry 

(ITC) analyses that showed that long cylindrical micelles are spontaneously formed in water. 

The crucial role of the bisurea sticker end-groups was established by comparison with the 

corresponding bisurea-free model polymers that only formed spherical micelles. Finally, we 

have shown that it is possible to trigger reversibly the assembly/disassembly of the nanofibers 

by pH changes.  

 

Introduction 

One-dimensional nano-assemblies driven by supramolecular interactions are ubiquitous in 

Nature and show a rich variety of functions. In the past decade, the preparation of cylindrical 

objects by spontaneous self-assembly of synthetic building blocks in water has therefore been 

a major objective. Such assemblies have indeed a huge potential for various applications in 

material science, ranging from biomedical applications1 to reinforcement of water-based acrylic 

coatings2, and their use as templates for catalysis3 or as stabilizer of Pickering emulsions.4 

Inspired by natural systems, directional supramolecular interactions have been used to drive the 
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assembly of synthetic macromolecules5 in water into cylindrical nanostructures. In that respect, 

the introduction of π-π interacting aromatic functional units and/or hydrogen-bonding (H-

bonding) units within water-soluble macromolecules has become an efficient strategy.5,6 In the 

latter case, it is well-known that water competes with H-bonding, and that a hydrophobic 

environment is consequently needed to protect the interactions and to achieve robust 

supramolecular structures in water.6  

One efficient chemistry to assemble water-soluble polymers into cylindrical structures - via 

directional H-bonding - are bisurea stickers.7–11 For instance, Sijbesma and co-workers reported 

the formation of well-defined rod-like micelles in water through the spontaneous self-assembly 

of poly(ethylene glycol) (PEG) bolamphiphiles possessing an aliphatic bisurea sticker in their 

center.7–9 Shortly after, Boué and co-workers designed aromatic bisurea functionalized PEG 

which self-assemble in a wide range of solvents into long rigid cylinders, which are in dynamic 

equilibrium with their unimers.10 Beyond these examples, numerous other supramolecular 

motifs, such as ureido-pyrimidinone,12 peptides,13–15 cyclodextrins16 or 

benzenetricarboxamide17,18 have been used to direct the assembly of synthetic water-soluble 

macromolecules into cylindrical structures. In most of the studies, low molar mass polymers 

were used, in particular oligo(ethylene glycol)s, and their functionalization by the sticker units 

was achieved by post-polymerization strategies.19–22 Considering the time-consuming 

processes necessary to prepare these polymers and purify them from unmodified counterparts, 

more straightforward and versatile synthetic strategies are highly desirable. 

Reversible-deactivation radical polymerization (RDRP),23 formerly called controlled radical 

polymerization, enables the synthesis of a wide range of well-defined polymeric 

architectures.24,25 The reversible addition-fragmentation chain transfer (RAFT)26 

polymerization is nowadays recognized to be the most popular and versatile polymerization 

technique for the synthesis of complex and functional polymers. In particular, the reversible 
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chain transfer agent, called RAFT agent, can be functionalized by supramolecularly interacting 

units, such as H-bonding moieties,27–32 π-π stacking moieties,33 metal-ligand coordinating 

sites34,35 or proteins36 to synthesize functionalized polymers without demanding post-

functionalization and separation processes to remove non-functional polymer. To the best of 

our knowledge, there is only one example that combines polymer functionalization through 

RAFT polymerization and directional supramolecular interactions in order to control the 

assembly of water-soluble polymers in water into cylindrical structures. In this recent study, 

Ghosh and coworkers designed a RAFT agent functionalized by a trialkoxybenzamide-linked 

naphthalene diimide (NDI) supramolecular structure directing unit (SSDU) which was used to 

synthesize a series of NDI-functionalized hydrophilic polymers (in part obtained through post-

polymerization modifications). Freshly prepared aqueous polymer solutions contained mainly 

spherical micelles, which reorganized with time into cylindrical micelles.37,38 Even if not 

formed spontaneously, the results clearly demonstrate that the cylindrical micelles were 

obtained thanks to directional stacking interactions of the NDI units overruling the packing 

parameter law.39–41  

In the present work, we propose a new RAFT-polymerization based versatile synthesis strategy 

to access cylindrical nanostructures through spontaneous polymer dissolution in water. For this 

purpose, based on a known chemistry8,42 we designed a simple bisurea-functionalized RAFT 

agent to be used as a platform to synthesize water-soluble polymers end-functionalized by a 

single SSDU, that drives their assembly in water through H-bonding interactions into 

cylindrical structures. To prove this concept and its versatility, we prepared a series of bisurea-

end-functionalized polymers by RAFT polymerization and studied their self-assembly into 

cylindrical micelles in water. Finally, we tested also the possibility to control the micellar 

assembly and disassembly, or even to induce reversibly an inter-cylinder aggregation.  
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Experimental Section 

Materials. 2,2’-azobis(2-amidinopropane) dihydrochloride (V-50, ≥ 97%, Aldrich), 2,2’-

azobis(N,N-dimethyleneisobutyramidine) dihydrochloride (VA-044, 98%, Aldrich), 2,2′-

azobis(isobutyronitrile) (AIBN, ≥ 98%, Aldrich), 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC.HCl, ≥ 98%, TCI), 4-

(dimethylamino)pyridine (DMAP, > 99%, Fluka), hydrogen chloride (ca. 4 mol L-1 in dioxane, 

TCI Europe), hexylamine (≥ 99%, Aldrich), hexamethylenediisocyanate (≥ 98%, Aldrich), 

triethylamine (≥ 99%, Aldrich), 1,4-dioxane (≥ 99%, Acros Organics) N,N-dimethylformamide 

(DMF, VWR, Normapur), acrylic acid (AA, ≥ 99%, Aldrich), acrylamide (AM, ≥ 99%, 

Aldrich)  and 1,3,5-trioxane ( ≥ 99%, Aldrich) were used as received. 6-(Boc-amino)-1-hexanol 

(≥ 98%, Aldrich) and 1-octadecanol (99%, Aldrich) were dried by three successive azeotropic 

distillations with dry toluene before use. N,N-Dimethylacrylamide (DMAc, > 99%, Aldrich), 

and 2-(N,N-dimethylamino)ethyl acrylate (DMAEA, ≥ 99%, Abcr ) were distilled under 

vacuum prior to polymerization. All aqueous solutions were prepared with deionized water. All 

syntheses and polymerizations were conducted under an argon atmosphere. CH2Cl2 (DCM) and 

toluene were dried by a solvent purification system (MBraun). 

Analytical Techniques. The purity of RAFT agents was determined by 1H NMR and 13C NMR. 

Spectra were recorded at 298 K, with a Bruker 300 or 400 MHz spectrometer in 5-mm diameter 

tubes. Monomer conversions were determined by 1H NMR spectroscopy in CDCl3 or DMSO 

d6 by the relative integration of the internal reference (1,3,5-trioxane) peak at 5.1 ppm and the 

vinylic monomer proton peaks. The number-average molar mass (Mn), the weight-average 

molar mass (Mw) and the dispersity (Ð = Mw/Mn) were determined by size exclusion 

chromatography (SEC) in DMF (+ LiBr, 1 g L-1) at 60 °C and at a flow rate of 0.8 mL min-1, 

using two PSS GRAM 1000 Å columns (8 × 300 mm; separation limits: 1 to 1000 kg mol-1) 

and one PSS GRAM 30 Å (8 × 300 mm; separation limits: 0.1 to 10 kg mol-1) coupled to a 

differential refractive index (RI) detector and a UV detector. Polymers containing AA units 
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have been modified by methylation of the carboxylic acidic groups using 

trimethylsilyldiazomethane before SEC analysis.43 Cryogenic transmission electron 

microscopy (cryo-TEM) was used to determine the particle morphologies. The samples were 

dissolved in water to 1 wt% ~24 h before analysis (unless indicated differently below the 

figure). According to protocols reported elsewhere44–46 thin liquid films of particle dispersions 

were prepared at room temperature by depositing 4 µL of the diluted sample and successive 

blotting. They were flash frozen in liquid ethane and observed at -180 °C on a JEOL JEM-2100 

LaB6 microscope operating at 200 kV under low-dose conditions (10 electrons Å-2 s-1). Digital 

images were recorded on a Gatan Ultrascan 1000 CCD camera. Isothermal titration calorimetry 

(ITC) measurements were performed at 25 °C using an ITC200 microcalorimeter. Solutions of 

PDMAc-U2 and PDMAc-C18 (see SI) were freshly prepared in water at 0.88 mM, at room 

temperature the day of the experiment. According to procedures previously described,47 the 

sample cell (202.7 µL) was filled with distilled water. Then an aqueous solution of PDMAc-U2 

(0.88 mM) placed in a continuously stirred (750 rpm) syringe (39 µL) was injected by aliquots 

(2 µL) every 180 s until the syringe was empty. The subsequent heat flow resulting from each 

injection was simultaneously measured.  

Small-angle neutron scattering (SANS) measurements were made at the LLB (Saclay, France) 

on the PA20 SANS instrument, at three sample to detector distances 1.5, 8 and 18.5 m and fixed 

wavelength equal to 6 Å to cover the 2.5 10-3 to 0.44 Å-1 q-range, where the scattering vector q 

is defined as usual, assuming elastic scattering (q = (4π/λ)sin(θ/2), where θ is the angle between 

incident and scattered beam). Data were corrected for the empty cell signal, the solute and 

solvent incoherent background. A light water standard was used to correct from the detector in 

homogeneities and to normalize the scattered intensities to cm-1 units. The data was fitted with 

the DANSE software SasView.48 The simplest model that allowed to fit all data was the sum of 

the form factor of an infinitely long core-shell cylinder with a circular cross-section and a short 

core-shell cylinder with the same contrast and cross-section dimension. The scattering length 
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densities for D2O (6.37 10-6 Å-2) and for the core (0.70 10-6 Å-2) were calculated from the atomic 

bound coherent scattering lengths. The scattering length densities for the shell were adjusted 

during the simultaneous fit of all the data. The common value that allowed to fit all the systems 

was 4.68 10-6 Å-2. 

 

Synthesis of the bisurea-functional and octadecyl-endcapped model polymers 

Polymerizations of DMAc, AA, AM and DMAEA in DMF were initiated by AIBN at 70 °C, 

in the presence of RAFT agent TTC-U2 or TTC-C18 (see Scheme S1 and S2). In a typical 

experiment (D3, Table 1), TTC-U2 (0.115 g, 0.18 mmol) was placed in a 5 mL round bottomed 

flask. 1,3,5-Trioxane (0.0215 g, 0.23 mmol) was then added as an internal reference for the 

determination of the monomer consumption by 1H NMR in CDCl3. A solution of AIBN (9.7 

mg) in 16.8 g of DMF was prepared. 2.51 g of this solution (8.64 µmol of AIBN) was then 

added in the flask containing the RAFT agent. Then distilled DMAc (0.78 mL, 7.57 mmol) was 

added. After deoxygenation by bubbling with argon for 30 min in an ice bath, the septum-sealed 

flask containing the reaction mixture was heated at 70 °C in a thermostated oil bath. The 

polymerization was quenched after 75 min by immersion of the flask in iced water. The 

polymers were recovered by precipitation in diethyl ether (Et2O) (in chloroform for the PAM), 

dried under reduced pressure and characterized by 1H NMR in DMSO d6 and SEC in DMF (+ 

LiBr, 1 g L-1). 
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Results & Discussion 

Synthesis of the bisurea-functional RAFT agent (TTC-U2) and the model RAFT agent 

(TTC-C18) 

The bisurea functional trithiocarbonate (TTC) RAFT agent (TTC-U2, Scheme 1) was 

synthesized in four steps according to the strategy displayed in Scheme S1, starting from a 

carboxylic acid functional RAFT agent49,50 (TTC-0, Scheme S1). Briefly, the first two steps 

consist in the synthesis of an amino-functional RAFT agent TTC-2 obtained by esterification 

of TTC-0 with 6-(tert-butoxycarbonylamino)-1-hexanol followed by the deprotection of the 

Boc group.51 In parallel, 1-hexyl-3-(6-isocyanato-hexyl)-urea (U1-NCO) was synthesized by 

reaction of n-hexylamine with hexamethylene diisocyanate according to a previously 

established protocol.52 The targeted TTC-U2 was finally obtained by reacting a small excess of 

the amino-functional RAFT agent TTC-2 with U1-NCO. In view of the preparation of model 

polymers, in which the functional bisurea group is replaced by a hydrophobic octadecyl chain, 

an octadecyl RAFT agent TTC-C18 (Scheme 1) was also synthesized by esterification of TTC-

0 with n-octadecanol in the presence of EDC.HCl (Scheme S2). As reported in the Supporting 

Information (SI), the analytical data for both RAFT agents were consistent with the proposed 

structures (Figure S4 and S5). 
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Scheme 1. (A) Structures of the RAFT agents TTC-U2 and TTC-C18. (B) Synthesis of 

bisurea-functional polymers through RAFT-mediated polymerization in DMF à 70 °C 
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Synthesis of bisurea-functional polymers  

The bisurea-functional RAFT agent TTC-U2 was used for the synthesis of bisurea-functional 

hydrophilic polymers (Scheme 1), namely poly(N,N-dimethylacrylamide) (PDMAc), 

poly(acrylic acid) (PAA), polyacrylamide (PAM), poly(2-(N,N-dimethylamino)ethyl acrylate) 

(PDMAEA). N,N-Dimethylformamide (DMF) – a good solvent for TTC-U2 - was selected as 

a solvent for all polymerizations. According to previously established protocols,53 all 

polymerizations were conducted at 70 °C using AIBN as an initiator. The polymerizations were 

generally quenched at conversions below 70% to limit the proportion of dead chains. For all 

polymer types a number-average degree of polymerization, DPn, close to 20 was initially 

targeted (compare DPn,conv. D2, AA2, AM2, DE3 in Table 1). In addition, a series of bisurea-

functional PDMAc (PDMAc-U2) was synthesized (D series: D1, D2, D3 and D4) for which the 

targeted DPn was systematically varied between approximately 10 and 40. The polymerization 

of DMAc progressed rapidly (70% monomer conversion was generally reached in 1 to 2h), but 

was slower in the case of AM, AA and DMAEA. 1H-NMR analyses of the purified polymers 

in DMSO-d6 showed well-defined signals characteristic of the bisurea functions (see for 

example spectrum of D1 in Figure S6). The signals corresponding to the functional RAFT agent 

were compared to the integration of the protons of the polymer backbone to calculate the 

number-average molar mass (Mn) of the polymers (Table 1). Generally, the calculated Mn 

matched well the theoretical values indicating a high end-group functionalization. As 

summarized in Table 1, molar mass dispersities determined by size exclusion chromatography 

(SEC) analyses were below 1.2 for the PDMAc-U2 series and PAA-U2, and remained acceptable 

for PAM-U2 and PDMAEA-U2. Generally, during polymerizations molar masses increased 

linearly with monomer conversion (see for example data for D4bis, Figure S7), which is an 

additional sign for the control over polymerization. It should also be mentioned that the PDMAc 

series could successfully be reproduced demonstrating the robustness of the polymerization 
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conditions. The replica were named D1bis, D2bis, D3bis and D4bis (see data in the SI, Table 

S1 and Figure S8). For comparison, three bisurea-free PDMAc functionalized by a hydrophobic 

octadecyl alkyl chain were also synthesized using TTC-C18 (Scheme 1) as a RAFT agent. The 

results summarized in Table S2 show that the polymerizations were well controlled with 

dispersities close to 1.1 and the molar masses determined by 1H-NMR were in good agreement 

with the theoretical values. Overall, no significant impact of the presence of the bisurea function 

on the polymerization control was observed. It can thus be concluded that the bisurea-functional 

RAFT agent TTC-U2 allows the controlled synthesis of well-defined bisurea-functionalized 

polymers. 
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Table 1. Experimental conditions and results for the homopolymerizations of DMAc, AA, AM and DMAEA at 70 °C in DMF, in the presence of 

TTC-U2 and AIBN as an initiator  

Note: Polymerizations are named X#, where X indicates the polymer and # the DPn, conv of the polymer divided by 10.  

Expt. Monomer 
[Mono]0 / 

[TTC]0 

[Mono]0  

(M) 

[TTC]0/ 

[AIBN]0 

conv
 a) 

(%) 

(time in min) 
DP

n,conv
 a) 

M
n,th

b)
 

(kg mol-1) 
DP

n,NMR

c)
 

M
n,NMR

c)
 

(kg mol-1) 

M
n,SEC

d)
 

(kg mol-1) 
Ð

d)
 

morpho 
cryo-TEM e) 

dn (C) g) 

(nm) 

D1 DMAc 14 2.0 20.3 69 (120) 10 1.6 11 1.7 1.7 1.18 C 6±1 

D2 DMAc 29 2.0 19.9 67 (120) 19 2.6 20 2.6 2.3 1.13 C 8±1 

D3 DMAc 43 2.2 20.4 68 (75) 29 3.6 35 4.1 3.2 1.17 S (C) 10±2 

D4 DMAc 57 2.0 20.2 63 (375) 36 4.2 46 5.2 4.3 1.19 S (C) 13±4 

AA2 AA 22 2.0 13.2 68 (270) 15 1.7 20 2.1 2.4f) 1.15 C 5±1 

AM1 AM 14 1.0 10.0 61 (200) 9 1.3 9 1.3 1.3 1.15 C 6±1 

AM2 AM 28 2.0 10.1 76 (175) 22 2.2 24 2.4 0.7 1.39 S / 

DE3 DMAEA 50 3.2 5.5 57 (390) 29 4.8 32 5.2 3.7 1.66 C (S) 8±2 
 

a) Monomer conversion determined by 1H NMR, used to calculate the theoretical DPn,conv; b) Theoretical number-average molar mass Mn at the experimentally determined conversion; 
c) Number-average degree of polymerization, DPn and number-average molar mass, Mn determined by 1H NMR; d) Number-average molar mass, Mn and dispersity, Ð, determined 

by size exclusion chromatography in DMF (+ LiBr, 1g L-1) using poly(methyl methacrylate) standards; e) Morphology observed by cryo-TEM after spontaneous dissolution in water 

at 1 wt% (without pH adjustment) S: spherical micelles, C: cylindrical micelles, the minority morphology is indicated in brackets; f) Mn of the methylated polymer (cf. experimental 

section); g) dn (C) = number-average diameter of the cylinders determined by 40 measurements on cryo-TEM images. 

 



13 
 

Self-assembly of bisurea-functional poly(N,N-dimethylacrylamide) (PDMAc-U2) 

The aim of the study was the spontaneous formation of cylindrical polymer assemblies in water 

driven by directional supramolecular interaction of H-bonds present in the bisurea moiety at the 

end of the polymer chains. The water-solubility of the PDMAc-U2 was therefore tested simply 

by adding water to the polymer powder. Whatever the molar mass, the polymers readily 

dissolved in water, at least in the tested range of concentration, up to 6 wt%. 1H NMR of D1bis 

(Table S1) in D2O showed the characteristic signals of the polymer, however the characteristics 

signals of the bisurea sticker, in particular the methyl end group were not detected (Figure S9), 

indicating the assembly of the polymer by interactions of the sticker. Then, the assembly of the 

polymers was studied by cryo-TEM on 1 wt% aqueous polymer solution. The cryo-TEM 

images of PDMAc-U2 D1 and D2 with the lowest Mn undoubtedly showed the formation of 

cylindrical micelles (Figure 1A and 1B). These objects were observed after simple dissolution 

of the powder, without any heat or ultrasound treatment and no particular time evolution was 

noticed (between 75 minutes (Figure S10, D1bis, Table S1) and 24h (Figure 1A, D1, Table 1)). 

This shows that the self-assembly of PDMAc-U2 is a spontaneous and fast process. This feature 

indicating a possibly dynamic assembly was later confirmed by ITC dilution experiments (cf. 

infra). By analogy with other amphiphiles that contain bisurea units,7,8,10,54 we expect 

directional H-bonding between bisurea moieties to be responsible for the observed one-

dimensional assembly into cylindrical nanoobjects. Actually, the same bisurea-motif had been 

previously incorporated in the center of short oligo(ethylene glycol) chains (Mn = 350 g mol-1). 

Strongly aggregated rod-like micelles were formed that could be dispersed by ultrasound 

treatment.7 In this former study, the corresponding bisurea-free amphiphilic counterpart 

however assembled into cylindrical micelles as well (albeit longer and well-separated).7 We 

therefore also analyzed aqueous solutions of the bisurea-free octadecyl-capped model polymers 

(M1 and M2, Table S2) by cryo-TEM. In this case, only spherical objects could be detected 
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(Figure 1E, 1F) confirming that in our study the bisurea is clearly responsible for the observed 

assembly into long cylindrical micelles. 

 

Figure 1. Representative cryo-TEM images of bisurea- and octadecyl-functional PDMAc 

assemblies (prepared at 1 wt% in water): (A) PDMAc11-U2 (D1), (B) PDMAc20-U2 (D2), (C) 

PDMAc35-U2 (D3), (D) PDMAc46-U2 (D4), (E) PDMAc10-C18 (M1), and (F) PDMAc19-C18 

(M2). The dark spots are contaminations stemming from water crystals on the sample surface. 

 

When the DPn of PDMAc-U2 was increased to 35 or 46, cylindrical micelles were still observed 

(polymers D3 and D4, Figure 1C and 1D), but spherical micelles were also present and for the 

longest PDMAc only few cylindrical micelles – seemingly larger in diameter and shorter in 

length – were observed (see dn (C) in Table 1). Thus, beyond a certain degree of polymerization, 

the directional supramolecular interactions seem to be overruled by steric effects of the PDMAc 

shell limiting the formation of cylindrical morphologies.55  
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To get more insights in the structure of the assemblies, small-angle neutron scattering (SANS) 

experiments were performed in deuterated water (D2O) at 1 wt%, i.e. at the same concentration 

as the cryo-TEM analyses. Figure 2 shows the scattering patterns (intensity I (cm-1) versus 

scattering vector q) obtained for the series of PDMAc-U2 solutions after subtraction of the 

solvent scattering contribution. In the case of D1 a q-1 dependence of the scattered intensity is 

clearly observed, which is characteristic for long and rigid objects. After normalization by the 

concentration, the data at 0.5 and 1 wt% were identical (Figure S11 shows the concentration-

dependent scattering pattern for all PDMAc-U2). This shows that interactions between 

scatterers can be neglected in this concentration range. Therefore, a fit of the data was attempted 

with the form factor of a core-shell cylinder with a circular cross-section.48 A good fit was 

obtained for a core radius of 2.6 nm and a shell thickness of 1.7 nm (Table 2, see Experimental 

Section for more details). These values correspond reasonably well to the dimensions of the 

hydrophobic and solvated hydrophilic parts, respectively. The length of the cylinders could not 

be determined with precision due to the limited q-range available, but they can be considered 

to be at least 100 nm. 

 

 

Figure 2. SANS intensity (I (cm-1)) versus scattering vector (q) for PDMAc-U2 (D1, D2, D3 

and D4) solution in D2O at 10 g L-1 and 20 °C. The plain curves are fits according to a model 

for core-shell cylinder with a circular cross-section (characteristic dimensions in Table 2)  
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Table 2. Dimensions of the cylindrical micelles, deduced from the fit of SANS data 

 

PDMAc-U2 

Core 

radius 

(nm) 

Shell 

thickness 

(nm) 

Volume fraction 

of short cylinders 

()a) 

Length of 

short cylinders 

 (nm) 

dn 

(cryoTEM) 

(nm)b) 

D1 2.6 1.7 0 - 6±1 

D2 2.6 2.0 0.55 12 8±1 

D3 2.6 2.5 0.85 7 10±2 

a) The volume fraction of long cylinders is 1-; b) dn = number-average diameter determined by cryoTEM 

(cf. Table 1)

 

Analysis of PDMAc20-U2 (D2) and PDMAc35-U2 (D3) solutions in deuterated water clearly 

showed that the increase in molar mass results in a decrease of the scattered intensity that is 

most significant at low q (below 0.02 Å-1) and also at high q (above 0.04 Å-1). The latter effect 

is unambiguously due to an increase of the radius of the cross-section, and the former effect is 

most likely due to a decrease in the length of the cylinders. Fitting of the data with the form 

factor of a core-shell cylinder with a circular cross-section and a finite length does not yield a 

satisfactory fit, even with a large dispersity in the length. Since the microscopy experiments 

showed the presence of both long fibers and much shorter objects, we attempted to fit the data 

by a combination of long and short cylinders (see for example details of the fitting method for 

D3 in Figure S12). The radius of the core was kept constant for the long and short cylinders of 

both polymers and identical to the one of PDMAc11-TTC-U2 (D1) (2.6 nm), since the three 

polymers share the same hydrophobic core. Figure 2 shows that a good fit is obtained by 

adjusting only three parameters for each polymer: the proportion of the (infinitely) long 

cylinders, the shell thickness (identical for both long and short cylinders) and the length of the 

short cylinders. The results of the calculation indicate (i) an increase in the proportion of short 

cylinders, (ii) a decrease in their length and (iii) an increase in the shell thickness, when the 

hydrophilic block length is increased (Table 2). All these trends are in agreement with the 

anticipated effect of increasing the steric repulsion.12  For the PDMAc-U2 with the highest DPn 

(D4), the scattering features are qualitatively consistent with the previous tendency, but a low 
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q upturn indicates the presence of aggregates with a larger cross-section. Therefore, a 

quantitative fit was not attempted. In conclusion, the combined results of cryo-TEM and SANS 

show that the introduction of a bisurea sticker allows forcing the self-assembly of PDMAc by 

direct dissolution in water toward cylindrical micelles, but that the proportion of longer 

cylindrical micelles decreases with increasing length of the PDMAc segment.  

To investigate the dynamics and driving forces of the assemblies, isothermal titration 

calorimetry (ITC) dilution studies at room temperature were performed. Therefore, aliquots of 

a solution of PDMAc-U2 at 0.88 mM were injected into pure water present in the calorimetric 

cell, and the heat flow induced by the partial dissociation of the assemblies was measured at 

each injection. The results for D1bis displayed in Figure 3 show that the disassembly of D1bis 

in water leads to a positive signal (Figure 3A) corresponding to an endothermic process. 

Consequently, the assembly of D1bis in water is exothermic (ΔHass. < 0), i.e. enthalpy driven, 

which shows that H-bonding is involved in the association process.10 Moreover, the ITC 

dilution experiment proves that the self-assembly of D1bis is dynamic. Indeed, after each 

injection the signal (Figure 3A) reaches the baseline within two minutes, showing the fast 

dissociation of the assemblies in water. We can therefore also suppose that the aggregate 

formation by direct dissolution of PDMAc-U2 in water is at or close to equilibrium. By 

integrating each peak, the corresponding enthalpogram was established and the critical 

aggregation concentration (CAC) of D1bis was determined to be 0.05 mM (Figure 3B). For 

concentrations below the CAC, a significant heat exchange was observed revealing the 

disassembly of the cylindrical micelles. Above this concentration, the measured heat exchange 

was negligible revealing that the micelles are stable.  
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Figure 3. ITC aqueous dilution experiment of a solution of PDMAc11-U2 (D1bis, Table S1) at 

25°C: (A) Heat effect produced by injecting aliquots of solution of D1bis (0.88 mM) in water, 

(B) the corresponding enthalpogram resulting from the integration of the raw signal and the   

determination of the CAC for D1bis 

 

ITC dilution experiments for longer polymers with DPn 20 to 40 revealed again an endothermic 

dissociation mechanism, with similar kinetics. The comparison of the enthalpograms of D1bis, 

D2bis, D3bis and D4bis (Figure S13) indicates that the increase in molar mass results in a 

decrease of the stability of the assemblies. 
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Self-assembly of other bisurea-functional polymers in water 

In order to test the versatility of our chemical platform, we studied the assembly of the other 

bisurea-functional polymers, namely poly(acrylic acid) (PAA) AA2, polyacrylamide (PAM) 

AM2 and poly(2-(N,N-dimethylamino)ethyl acrylate) (PDMAEA) DE3 (Table 1), with 

comparable DPn (compare DPn,NMR, Table 1), i.e. a DPn for which a majority of cylindrical 

micelles were obtained with PDMAc. Cryo-TEM analyses of 1 wt% aqueous solutions of 

PAA20-U2 (AA2) and PDMAEA32-U2 (DE3) unambiguously showed the formation of 

cylindrical micelles, while for PAM24-U2 (AM2) - despite the comparable DPn - only spherical 

morphologies were observed (Figure 4A, 4B and 4C). However, decreasing the DPn of PAM 

to approximately 10 (PAM9-U2, AM1), allowed again the formation of cylindrical micelles as 

shown in Figure 4D. PAM is actually a highly hydrated polymer possessing a high density of 

sites available for hydrogen bonding. Diluting the structure-directing bisurea moiety in a long 

PAM seems thus to weaken the supramolecular interactions between the bisurea moieties 

inhibiting the assembly into long cylindrical structures. In other words, increasing the DPn 

disfavors the filamentous morphology as previously observed and discussed for PDMAc. The 

critical DPn for which long cylinders become negligible depends on the chemistry of the 

polymer and is markedly lower for PAM compared to PDMAc, for which a majority of long 

cylindrical micelles was observed at DPn = 20 (and are still present - albeit in minority - at DPn 

= 35). 
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Figure 4. Representative cryo-TEM images of aqueous solutions of (A) PAA20-U2 AA2, (B) 

PDMAEA32-U2 DE3, (C) PAM24-U2 AM2, (D) PAM9-U2 AM1 of prepared at 1 wt% by direct 

dissolution in water (natural pH(AA2)aq = 3.9, pH(DE3)aq = 9.5). The dark spots are 

contaminations stemming from water crystals on the sample surface.  

 

The results show that the structure directing bisurea-moiety is not only a valuable structure 

directing unit for assembling PDMAc polymers into cylindrical micelles, but is also compatible 

with other hydrophilic polymers such as highly H-bond competing PAM or PAA.  

 

pH-responsive assembly and disassembly of cylindrical micelles  

In the previous studies, the morphology of the assemblies was studied after spontaneous 

dissolution of the bisurea-functional polymer in water, without adjusting the pH. Interestingly, 

the formation of well-defined and long cylindrical micelles was also observed for the bisurea-

functional polyelectrolyte PAA-U2 AA2 (Figure 5B, Table 1). In this case, the natural pH of 

the solution was measured to be 3.9. In order to assess the impact of the pH on the PAA-U2 
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assembly, the pH was changed after its dissolution in water, either diminished to 2.7 or 

increased to pH 7.8 (the apparent pKa value of the PAA (ionization degree of 50%) is 5.856).  

 

Figure 5. Representative cryo-TEM images of PAA-U2 (AA2) nano-objects prepared at room 

temperature at 1 wt% in water at different pH: (A) pH = 2.7, (B) pH = 3.9 and (C) pH = 7.8. 

The dark spots are contaminations stemming from water crystals on the sample surface. 

 

Firstly, the solution was observed with naked eye: it remained clear from 3.9 to 7.8 but turned 

turbid when decreasing the pH to 2.7, indicating the formation of large aggregates. The cryo-

TEM image in Figure 5A showed that decreasing the pH to 2.7, triggered the aggregation of 

the cylindrical micelles. On the other hand, increasing the pH to 7.8 led to their disassembly: 

only a few cylindrical micelles and some spherical micelles could be detected by cryo-TEM. 

Increasing the pH indeed increases the ionization degree of the AA units57, and the observed 

disassembly may thus be explained by electrostatic repulsions in the PAA brush that overrule 

directional supramolecular interaction of the bisurea moieties. On the other hand, decreasing 

the pH decreases the ionization degree of PAA and interaction between carboxylic acid groups 

become possible through H-bonding leading to a pH-controlled aggregation of the filaments. 

It should be mentioned that Gosh group has recently reported the formation of cylindrical 

micelles driven by the supramolecular interaction of the naphthalene diimide functionality.38 

They actually studied the pH dependent assembly of a poly(N-methacryloyl-4-aminobutanoic 
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acid) obtained by post-polymerization functionalization of a parent amine-reactive functional 

polymer. In water (without pH adjustment) spherical micelles spontaneously formed that 

transformed upon aging – at least partially - into cylindrical micelles. At pH = 10 however 

bundles of cylinders were observed that did not alter upon aging. This behavior is clearly 

different from our observations and might be attributed to the difference in chemistry of the 

supramolecular sticker or the polymer.  

 

Conclusion 

In summary, we designed a RAFT agent functionalized by a bisurea sticker (U2) allowing the 

straightforward synthesis of polymers possessing a single supramolecular structure-directing 

unit (SSDU) which drives the spontaneous assembly of the polymers in water towards long 

cylindrical micelles. By using the RAFT technology, various well-defined polymers are directly 

accessible in one step - without post-polymerization modification steps, which generally 

include laborious separation of functional from unfunctional polymer. Cryo-TEM and SANS 

analyses of a series of bisurea functionalized PDMAc (PDMAc-U2) solutions revealed the 

formation of cylindrical micelles, whose length and abundance decreased with increasing Mn 

of the polymer. For the longest polymers steric effects clearly overrule the directed sticker 

interactions. Moreover, blank experiments with a bisurea-free octadecyl-capped model PDMAc 

proved that directional H-bonding (originating from the bisurea sticker) is clearly responsible 

for the one-dimensional self-assembly into cylindrical micelles. ITC dilution experiment 

confirmed that the association is dynamic and enthalpy-driven, thus proving the role of H-

bonding interactions. It was further shown that the spontaneous supramolecular assembly into 

cylindrical micelles via a bisurea sticker was not restricted to PDMAc but could also be 

extended to polyacrylamide and other ionic polyacrylates, such as poly(2-(N,N-

dimethylamino)ethyl acrylate) or poly(acrylic acid). Interestingly with the latter, the 
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assembly/disassembly of the cylindrical micelle was pH-responsive and thus the aggregation 

could be controlled by tuning the pH. On the basis of these results, we believe that combining 

polymer functionalization through RAFT polymerization and directional supramolecular 

interactions is a strong and versatile strategy to achieve a wide range of filamentous micelles 

for various applications. 
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