Michel Batteux
email: michel.batteux@irt-systemx.fr

Tatiana Prosvirnova
email: tatiana.prosvirnova@onera.fr

Antoine Rauzy
email: antoine.rauzy@ntnu.no

Modeling patterns for the assessment of maintenance policies with AltaRica 3.0

Keywords: Assessment of maintenance policies, AltaRica 3.0, modeling patterns

Modeling patterns for the assessment of maintenance

policies with AltaRica 3.0

Introduction

AltaRica 3.0 is an object-oriented modeling language dedicated to probabilistic risk and safety analyses of complex technical systems [START_REF] Batteux | Altarica 3.0 in 10 modeling patterns[END_REF]. It is of primary importance, in order to make the modeling process efficient (in AltaRica 3.0 as with any other modeling formalism), to reuse as much as possible modeling components. In AltaRica 3.0, reuse is mostly achieved by the design of modeling patterns, i.e. examples of models representing remarkable features of the system under study. Once identified, patterns can be duplicated and adjusted for specific needs. Patterns are actually pervasive in engineering, see e.g. [START_REF] Maier | The art of systems architecting[END_REF][START_REF] Gamma | Design Patterns -Elements of Reusable Object-Oriented Software[END_REF]. Patterns are not only a mean to organize and to document models, but also and more fundamentally a way to reason about systems under study.

In this article we present modeling patterns to represent and to assess maintenance policies with AltaRica 3.0. We focus actually on corrective maintenance policies (components are repaired only when they are failed) taking into account that resources required to perform them (such as the number of repairmen or spare parts) may be limited. We show different modeling approaches, involving advanced features of AltaRica 3.0, such as the synchronization of events or the aggregation of prototypes.

The contribution of this article is thus twofold: first, it provides effective modeling patterns for the assessment of maintenance policies; second, it demonstrates the interest of AltaRica 3.0 advanced modeling constructs.

The remainder of this article is organized as follows. Section 2 introduces a case study that we use throughout the article to illustrate the presentation. Section 3 makes a brief description of the AltaRica 3.0 modeling language. Section 4 presents the maintenance policy modeling, according to three different modeling patterns. Section 5 provides some results on the three corresponding models. Finally, section 6 concludes the article and discusses future works.

Illustrative example

Fig. 1 shows a system made of two subsystems: an equipment under control and a control system.We focus our study on the latter. This system is made of three sensors, a controller and two actuators. The controller is made of three data acquisition units (one per sensor) and a voter, also called a logic solver, which works according to a 2-out-of-3 logic. Each actuator is made of two components. All the components may fail in operation and be repaired. Failure rates (h -1) are respectively 10 -5 for sensors, 10 -6 for data acquisition units, 10 -8 for the logic solver and 10 -6 for actuators. A maintenance operation is launched when the system as a whole is failed, i.e. if either two or more sensors are failed or two or more data acquisition modules are failed or the voter is failed or the two actuators are failed. All failed components are repaired during the maintenance operation and can be considered as good as new after. Failed components are repaired one by one. Mean times to repair components are one shift, i.e. 8 hours for actuators, 4 hours for sensors, data acquisition units and the logic solver. To accelerate maintenance operations, two repairers are involved (and can thus repair components in parallel).

The objective of this study is to calculate, for example, the system operational availability during its mission time, taking into account maintenance policies of the components.

3 AltaRica 3.0 modeling 3.1 The AltaRica 3.0 modeling language AltaRica 3.0 is an event-based and object-oriented modeling language dedicated to probabilistic risk and safety analyses of complex technical systems [START_REF] Prosvirnova | The altarica 3.0 project for model-based safety assessment[END_REF]. This language is the combination of two parts: the mathematical framework GTS, for Guarded Transition Systems ([10]- [START_REF] Batteux | Altarica 3.0 assertions: the why and the wherefore[END_REF]) to describe the behavior of the system under study; the structuring paradigm S2ML, for System Structure Modeling Language ([START_REF] Batteux | From models of structures to structures of models[END_REF]), to organize the model.

The execution of an AltaRica 3.0 model, done by the mathematical framework GTS, is quite similar to other event-based formalisms. It means that when a transition is enabled, it is scheduled and will be potentially fired after its associated delay ([6]- [START_REF] Zimmermann | Stochastic Discrete Event Systems[END_REF]). These delays can be deterministic or stochastic. For stochastic delays, AltaRica 3.0 provides usual probability distributions: exponential, Weibull, uniform or user defined ones.

To structure an AltaRica 3.0 model, S2ML provides the appropriate primitives. S2ML unifies the two main structuring paradigms for modeling languages: object-oriented and prototype-oriented. With S2ML, one can design the model in two ways. The 'top-down' approach: the system is considered at its highest level and modeling patterns are mainly used; it is the realm of prototype-oriented. The "bottom-up' approach: the system is considered at its lowest level (the components) and libraries of components are mainly used: it is the realm of object-oriented.

Two main structural constructs can be used in AltaRica 3.0: a 'block' and a 'class'. A class is an "on-the-shelf", reusable modeling component. It is defined and then can be instanced in a model, or inherited by another class or block. A block is a modeling component with a unique instance, as opposed to a class which can have several instances. The definition of a block is also its (unique) instance. More information can be found in [START_REF] Batteux | From models of structures to structures of models[END_REF].

Modeling with AltaRica 3.0

To design the AltaRica 3.0 model of the system depicted Fig. 1, we start by modeling the main part. We only consider that this main part contains a set of hierarchically ordered components, without thinking about how these components are internally designed.

Main part of the AltaRica 3.0 model The main part is given Fig. 2. It is defined with the block System, which contains two parts: one with the declaration of the different structural elements, the other defining the behavior.

The main part represents the hierarchy of declared components and the links between them (the behavioral part). It is composed of: -A block Control, which is a sub-block of the main block System. This block declares three instances DA1, DA2 and DA3 of the class DataAcquisition.

It declares an internal block LogicSolver, which inherits from the class RComponent. We assume that the class RComponent represents reparable components and contains two parameters lambda and mu that we overload with the values 10 -8 and 4. This inheritance means that the block LogicSolver is a reparable component: it takes the features of the class RComponent. Furthermore, the block LogicSolver declares four flow variables in1, in2, in3 and out. These variables are used in the second part defining the behavior of the LogicSolver: the assertion defines the external behavior according to the internal behavior, i.e. the update of the variable out according to the other variables in1, in2, in3 and a state variable vs (an internal variable) coming from the inherited class RComponent. Finally the block Control specifies the external behavior of its sub-parts in the assertion. -A block Actuator declaring a sub-block Line1. Line1 represents the first line of actuators. It is composed of two instances A1 and A2 of the class Actuator.

These actuators are linked thanks to the assertion. The sub-block Line1 is cloned: a copy of Line1 is made and named Line2. One can notice that these two blocks Line1 and Line2 will independently live their own lives: changes into one block (e.g. the update of a variable, or the firing of a transition) has no impact on the other. -Finally, a Boolean observer TE (Top Event) is declared. This observer observes if the two flow variables out, coming from the two actuators A2 of the two lines, are false.

After the first declarative part, the main block System defines the assertion, which describes how the sub-parts (the sensors, the control and the actuators) are linked together and with the environment. We assume here that the equipment under control cannot fail and the sensors always receive a correct value as input (i.e. the value true because we consider Boolean variables).

Library of components

The main part of the AltaRica 3.0 model contains different components, which are instances of classes. These classes are defined in a dedicated library and are depicted Fig.

Modeling pattern for maintenance

The (part of the) AltaRica 3.0 model, presented previously, does not integrate the behavioral description of a reparable component, as well as the maintenance policy according to the limited number of repairers. We start with the definition of two AltaRica 3.0 elements in Fig. 4

Maintenance policies

According to the European standard NF EN 13306 X 60-319, there are two main kinds of maintenance. The first one is the corrective maintenance, which is carried out after failure detection and is aimed at restoring an asset to a condition in which it can perform its intended function. This kind of maintenance implies an unavailability either of the overall or of a part of the system. The second one is the preventive maintenance, which aims at performing an intervention before the occurrence of a failure. Different kinds of preventive maintenance also exist. Planned maintenance is realized according to a specific bound reached by the system (e.g. date, time of running, distance travelled, etc.). Conditionbased maintenance is realized according to a monitoring of the system. Finally, predictive maintenance uses sensor data to monitor a system, then continuously evaluates it against historical trends to predict failure before it occurs. AltaRica 3.0 is a flexible and versatile tool. Maintenance policies can be taken into account with AltaRica 3.0, of course by realizing some kinds of abstraction. For example, [START_REF] Zhang | A modelling methodology for the assessment of preventive maintenance on a compressor drive system[END_REF] presents a modelling methodology for the assessment of preventive maintenance on a compressor drive system. In the following, we focus on the corrective maintenance policy at the component level. We introduce some condition at system level, to realize maintenance actions, i.e. when a sufficient number of components are failed: at least two sensors are failed, or two data acquisition units or the logic solver unit or one actuator per lines. Furthermore we consider only two repairers to repair failed components.

In The two events maintenanceReq and maintenance are defined with an instantaneous delay, represented by the distribution Dirac(0.0). It means that the transitions, labelled by these instantaneous events, are fired as soon as they are enabled. In the following, we will associate the transition and its label, if there is no ambiguity.

The transition maintenanceReq specifies the maintenance policy in the guard, by using the operator IsNotFailed with the states of the components: at least two sensors are failed. This transition is hidden (the attribute hidden of the labelling event is set to true), meaning it will never be fired alone, it must be synchronized with other transitions. Furthermore, no action is associated to this transition: the instruction skip. By defining the two events, and their associated transitions, maintenanceReq and maintenance, we totally separate the definition of the maintenance policy (in the guard of the transition maintenanceReq) and the action of maintenance (in the transition maintenance).

The transition maintenance synchronizes the transition maintenanceReq and all the transitions maintenance of the components. The symbol ! means that the transition maintenanceReq is mandatory: to fire this transition maintenance, the guard of the transition maintenanceReq must be true. Conversely, the symbol ? means that the transitions maintenance of the components are optional: the transition can be fired if its guard is true, but it is not required. When the transition maintenance of a component is fired, it changes its state from FAILED to WAITING REPAIR: it has to wait the availability of a repairer.

The behavior of a reparable component RComponent is described according the state machine depicted Fig. 6. Nodes represent the different states of the component, which are from the domain SDomain. Edges represent transitions between states. It is a generic behavior which will be adapted according to the considered modeling pattern. In the following we present how to model the availability of a repairer to repair a component, with three different patterns: by propagation of flow variables, by synchronizing events, or by using the virtual aggregation.

Repair by propagation of flow variables

Fig. 7 represents the reparable component for the pattern propagation of flow variables. The component is initialized to the state WORKING: the attribute init of the state variable vs is set to WORKING. The event maintenance is synchronized at system level: its attribute hidden is set to true. Two flow variables are defined. rUsed indicates that a repairer repairs the component. rAvailable takes the value of the availability of a repairer, and is used in the guard of the transition repairStart, i.e. to launch the repair of the component. Fig. 8 shows the additions to the main part of the AltaRica 3.0 model, which are needed for the pattern by propagation of flow variables. The parameter repairer defines the number of repairers (i.e. 2). The flow variable rUsed provides the number of used repairers to repair components. This variable is updated in the assertion by adding all flow variables rUsed of the components. Finally the flow variable rAvailable provides the information that a repairer is available. It is updated according to the value of rUsed and repairer. Then, it is used to update all the variables rAvailable of the components. Fig. 10 represents the additions to the main part of the AltaRica 3.0 model used for the pattern by synchronizing events. A new block Repairer is added. It defines the behavior of the repairer crew according to dedicated events. It is basic: it defines the start and stop of a repair if one of the two repairers is available. Then two new events repairStartC and repairEndC are defined for all components C. These events are used in the transition part to synchronize the own events repairStart and repairEnd of the component C, with the events repairStart and repairEnd of the block Repairer.

Repair by virtual aggregation

For the pattern with the virtual aggregation, the class defining the component is represented Fig. 11. This class is the same as the one defined in Fig. 9. In addition, it virtually aggregates a new element of type T, which is used in the class with the alias t. This virtually aggregated element is used in the class within the two transitions repairStart and repairEnd, by synchronizing them with two events of t. When the class is instantiated (i.e. when an object with this class as type is declared), this aggregation is resolved by indicating a real object (an instance of a class or a block to be used instead of T). This object must be compatible according to the use of it in the declared class.

Fig. 12 represents the additions to the main part of the AltaRica 3.0 model used for the pattern by virtual aggregation. A new block Repairer is defined. It is the same as for the previous pattern by synchronizing events. This block is used when all classes are instantiated, inheriting from the class RComponent, to resolve the virtually aggregated element. The resolution of the virtual aggregation is done by the attribute (virtual T = main.Repairer). It means that the virtual element T, used in the class with the alias t, is equal to the block Repairer. The keyword main, preceding the word Repairer with a dot between them, indicates block System // Declaration of elements ... block Repairer parameter Integer repairer = 2; Integer rAvailable (init = repairer); event repairStart, evRepairEnd (delay = Dirac(0.0), hidden = true); transition repairStart: rAvailable > 0 -> rAvailable := rAvailable -1;

repairEnd: true -> rAvailable := rAvailable + 1; end event repairStartS1 (delay = Dirac(0.0)); event repairEndS1 (delay=exponential(S1.mu)); event repairStartS2 (delay = Dirac(0.0)); event repairEndS2 (delay=exponential(S2.mu));

... // For all components, two new events 'repairStart' and 'repairEnd' // Definition of the behavior

Experiments

Table 1 shows different quantitative features of the models for these three patterns: the model Mf for the pattern propagation of flow variables, the model Me for the pattern synchronizing events, and the model Mv for the pattern virtual aggregation. The first two features are done for the designed models, whereas the others are done for the compiled models. The difference between models Mf and Me concerns the number of flow variables and their updates in the assertion: more important in the model Mf. Nevertheless, this result hides the additional events, per components, defined in Me; which is not indicated in this table but can be found thanks to the number of lines. Furthermore models Me and Mv seem to be equal when compiled. More precisely, they are equal and it is totally normal because the virtual aggregation pattern considers synchronization of events, but from a generic way: by including it directly into the class. The main difference is thus according to the size of the designed models. In the following, especially with the assessment tools, these two models are used equally. Finally it is recommended to use the pattern by virtual aggregation. On the one hand, fewer errors are made at the design phase. On the other hand, it defines fewer flow variables, than the pattern by propagation of flow variables, which has a cost when the model is evaluated by the assessment tools: these variables are updated in the assertion and there is a computational cost for that at runtime. Some experiments are also realized in order to evaluate the Boolean observer TE. This observer indicates when the values of the two flow variables out, of the two actuators A2 of the two lines, are false. It means that the system is failed. We used the AltaRica 3.0 stochastic simulator of the OpenAltaRica platform ([START_REF] Aupetit | Improving performance of the AltaRica 3.0 stochastic simulator[END_REF]) to perform the experiments.

Table 2 shows the means of fired transitions for the following number of generated histories: 10 5 , 10 6 and 10 7 , for a mission time equal to 20 years (175200 units of time). The execution time, to generate these histories, has not been taken into account. On the one hand, it is quick: 1-2 minutes for 10 7 histories on a personal laptop. On the other hand, our interest does not focus on performance analysis of the tool. Elements can be found in [START_REF] Aupetit | Vers la définition d'un kit d'évaluation pour les simulateurs stochastiques[END_REF] or [START_REF] Aupetit | Improving performance of the AltaRica 3.0 stochastic simulator[END_REF]. Table 3 shows statistics provided by the stochastic simulator, on the observer TE, for 10 7 generated histories. The considered mission time was 20 years and we also considered different time instants: 5, 10 and 15 years. We focused on the two following statistics. 'had-value' (denoted h-v) is equal to 1 if the observer took the value true for a non-null period at least once from time 0 to time d (with d equals to 5, 10, 15 or 20 years), and 0 otherwise. 'number-of-occurrences' (denoted n-o) is equal to the number of dates the observer started taking the value true over the time period [0, d] (with d equals to 5, 10, 15 or 20 years). The obtained results are quite similar.

Conclusion

In this article, we presented three different modeling patterns with the AltaRica 3.0 modeling language to represent a corrective maintenance policy on a set of components, with a limited number of repairers. A main modeling part of the system has first been proposed. This part is common to the three modeling patterns and was realized with a 'top-down' approach. Behaviors of the components were not directly defined. Furthermore we included the maintenance policy into this main part.

Regarding the limited number of repairers, meaning their assignment to failed components according to their availability, the three different patterns were presented. The first one uses the propagation of flow variables. This pattern is not difficult but error prone. In addition it could be less efficient during execution. In fact it duplicates the number of flow variables, thus the number of elements to update in the assertion. The second and third patterns use the synchronization of events. The second one defines these synchronizations by hand, for all the components. The third one uses the virtual aggregation to integrate these synchronizations into a generic class. This third pattern is more easy to design models, and thus less error prone.

These modeling patterns for maintenance policies with AltaRica 3.0 open the way to new opportunities. On the one hand, modeling patterns allow engineers to model simply and efficiently classical safety features: e.g. periodically tested component, (warm) redundancies, shared resources, common cause failures, etc. Some of these patterns are defined in libraries. For the others, it is possible, in an easy way, to design tools helping engineers to create models with such patterns. On the other hand, it is possible to extend the use of AltaRica 3.0 modeling language to study other performance indicators than those for safety, e.g. scheduling maintenance policies.

Fig. 1 .

 1 Fig. 1. An equipment under control and its control part.

Fig. 4 .

 4 Fig. 4. AltaRica 3.0 code for the domain and operator.

Fig. 5 ,Fig. 5 .

 55 Fig. 5. Main part of the AltaRica 3.0 model with the maintenance policy.

Fig. 6 .

 6 Fig. 6. State machine of a reparable component.

Fig. 9 .

 9 Fig. 9. AltaRica 3.0 code of the reparable component for the pattern by synchronizing events.

Fig. 10 .Fig. 11 .

 1011 Fig. 10. Main part of the AltaRica 3.0 model with the pattern by synchronizing events. class RComponent embeds virtual T as t; SDomain vs (init = WORKING); parameter Real lambda = 1.0e-5; parameter Real mu = 2.0; event failure (delay = exponential(lambda)); event maintenance (delay = Dirac(0.0), hidden = true); event repairStart (delay = Dirac(0.0)); event repairEnd (delay = Dirac(mu)); transition failure: vs == WORKING -> vs := FAILED; maintenance: vs == FAILED -> vs := WAITING_REPAIR; repairStart: !t.repairStart & vs == WAITING_REPAIR -> vs := REPAIR; repairEnd: !t.repairEnd & vs == REPAIR -> vs := WORKING;

Fig. 12 .

 12 Fig. 12. Main part of the AltaRica 3.0 model with the pattern by virtual aggregation.

-

 Three instances S1, S2 and S3, of the class Sensor. We only assume that this class Sensor contains two flow variables in and out (we can see them in the second part defining the behavior).

	block System
	// Declaration of elements
	Sensor S1, S2, S3;
	block Control
	DataAcquisition DA1, DA2, DA3;
	block LogicSolver
	extends RComponent (lambda = 1.0e-8, mu = 4);
	Boolean in1, in2, in3, out (reset = false);
	assertion
	out := if vs == WORKING
	then (in1 and in2) or (in1 and in3) or (in2 and in3)
	else false;
	end
	assertion
	LogicSolver.in1 := DA1.out;
	LogicSolver.in2 := DA2.out;
	LogicSolver.in3 := DA3.out;
	end
	block Actuators
	block Line1
	Actuator A1, A2;
	assertion
	A2.in := A1.out;
	end
	clones Line1 as Line2;
	end
	observer Boolean TE = (Actuators.Line1.A2.out == false) and
	(Actuators.Line2.A2.out == false);
	// Definition of the behavior
	assertion
	S1.in := true; S2.in := true; S3.in := true;
	Control.DA1.in := S1.out;
	Control.DA2.in := S2.out;
	Control.DA3.in := S3.out;
	Actuators.Line1.A1.

in := Control.LogicSolver.out; Actuators.Line2.A1.in := Control.LogicSolver.out; end Fig. 2. AltaRica 3.0 code for the main part.

 : a domain and an operator. The domain SDomain defines four values, WORKING, FAILED, WAITING REPAIR and REPAIR, which will be used after to define types of elements (e.g. variables, parameters or observers). The operator IsNotFailed returns an integer value (1 or 0) according to the value of the argument aState, of type SDomain.

	class RComponentIO
	extends RComponent;
	Boolean in, out (reset= false);
	assertion
	out := vs == WORKING and in;
	end
	class Sensor
	extends RComponentIO (lambda = 1.0e-5, mu = 4);
	end
	class DataAcquisition
	extends RComponentIO (lambda = 1.0e-6, mu = 4);
	end
	class Actuator
	extends RComponentIO (lambda = 1.0e-6, mu = 8);
	end
	Fig. 3. AltaRica 3.0 library of components.

domain SDomain {WORKING, FAILED, WAITING_REPAIR, REPAIR} operator Integer IsNotFailed(SDomain aState) if (aState != FAILED) then 1 else 0 end

 that the object Repairer is declared at the main hierarchical level of the model, i.e. the block System.

	block System
	// Declaration of elements
	block Repairer
	parameter Integer repairer = 2;
	Integer available (init = repairer);
	event repairStart (delay = Dirac(0.0), hidden=true);
	event repairEnd (delay = Dirac(0.0), hidden=true);
	transition
	repairStart: available > 0 -> available := available -1;
	repairEnd: true -> available := available + 1;
	end
	Sensor S1, S2, S3 (virtual T = main.Repairer);
	block Control
	DataAcquisition DA1, DA2, DA3 (virtual T = main.Repairer);
	block LogicSolver
	extends RComponent (lambda = 1.0e-8, mu = 4.0,
	virtual T = main.Repairer);
	...
	end
	...
	end
	block Actuator
	block Line1
	Actuator A1, A2 (virtual T = main.Repairer);
	...
	end
	...

Table 1 .

 1 Quantitative features for the three patterns.

	Features	Mf Me Mv
	Number of lines, at design	143 177 130
	Number of lines of the main block (System), at design 84 124 66
	Number of state variables	11 12 12
	Number of flow variables	48 24 24
	Number of events	34 34 34
	Number of lines of the assertion	48 24 24

Table 2 .

 2 Means of fired transitions.

	Number of histories 10 5	10 6	10 7
	Mv	22.9015 22.9089 22.9002
	Mf	22.9133 22.8936 22.8997

Table 3 .

 3 Statistics on the observer. Mv 5 years h-v 0.315882 0.315438 n-o 0.343274 0.343362 10 years h-v 0.646718 0.646189 n-o 0.848165 0.849419 15 years h-v 0.830037 0.829901 n-o 1.35688 1.3594 20 years h-v 0.919748 0.920068 n-o 1.86367 1.86752

	Mf

Repair by synchronizing events

Fig. 9 represents the reparable component used for the pattern by synchronizing events. The three events maintenance, repairStart and repairEnd have their attributes hidden set to true in order to synchronize them at the system level.