
HAL Id: hal-02357383
https://hal.science/hal-02357383

Submitted on 10 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling patterns for the assessment of maintenance
policies with AltaRica 3.0

Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy

To cite this version:
Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy. Modeling patterns for the assessment of main-
tenance policies with AltaRica 3.0. International Symposium on Model Based Safety Assessment,
IMBSA 2019, Oct 2019, Thessaloniki, Greece. �10.1007/978-3-030-32872-6_3�. �hal-02357383�

https://hal.science/hal-02357383
https://hal.archives-ouvertes.fr


Modeling patterns for the assessment of
maintenance policies with AltaRica 3.0

Michel Batteux1, Tatiana Prosvirnova2,3, and Antoine Rauzy4

1 IRT SystemX, Palaiseau, France
michel.batteux@irt-systemx.fr

2 Laboratoire Genie Industriel, CentraleSupélec, Gif-sur-Yvette, France
3 ONERA/DTIS, UFTMiP, Toulouse, France

tatiana.prosvirnova@onera.fr
4 Norwegian University of Science and Technology, Trondheim, Norway

antoine.rauzy@ntnu.no

Abstract. In this article, we present modeling patterns dedicated to the
assessment of maintenance policies with AltaRica 3.0. From the analyst’s
perspective, these modeling patterns make models easier to design, to
understand by stakeholders and to maintain. From a technical point of
view, their design involves advanced features of AltaRica 3.0 that are
worth presenting.

Keywords: Assessment of maintenance policies · AltaRica 3.0 · model-
ing patterns

1 Introduction

AltaRica 3.0 is an object-oriented modeling language dedicated to probabilis-
tic risk and safety analyses of complex technical systems [5]. It is of primary
importance, in order to make the modeling process efficient (in AltaRica 3.0
as with any other modeling formalism), to reuse as much as possible modeling
components. In AltaRica 3.0, reuse is mostly achieved by the design of mod-
eling patterns, i.e. examples of models representing remarkable features of the
system under study. Once identified, patterns can be duplicated and adjusted
for specific needs. Patterns are actually pervasive in engineering, see e.g. [8, 7].
Patterns are not only a mean to organize and to document models, but also and
more fundamentally a way to reason about systems under study.

In this article we present modeling patterns to represent and to assess main-
tenance policies with AltaRica 3.0. We focus actually on corrective maintenance
policies (components are repaired only when they are failed) taking into account
that resources required to perform them (such as the number of repairmen or
spare parts) may be limited. We show different modeling approaches, involving
advanced features of AltaRica 3.0, such as the synchronization of events or the
aggregation of prototypes.

The contribution of this article is thus twofold: first, it provides effective
modeling patterns for the assessment of maintenance policies; second, it demon-
strates the interest of AltaRica 3.0 advanced modeling constructs.



2 M. Batteux et al.

The remainder of this article is organized as follows. Section 2 introduces
a case study that we use throughout the article to illustrate the presentation.
Section 3 makes a brief description of the AltaRica 3.0 modeling language. Sec-
tion 4 presents the maintenance policy modeling, according to three different
modeling patterns. Section 5 provides some results on the three corresponding
models. Finally, section 6 concludes the article and discusses future works.

2 Illustrative example

Fig. 1 shows a system made of two subsystems: an equipment under control and
a control system.We focus our study on the latter. This system is made of three
sensors, a controller and two actuators. The controller is made of three data
acquisition units (one per sensor) and a voter, also called a logic solver, which
works according to a 2-out-of-3 logic. Each actuator is made of two components.

Fig. 1. An equipment under control and its control part.

All the components may fail in operation and be repaired. Failure rates (h−1)
are respectively 10−5 for sensors, 10−6 for data acquisition units, 10−8 for the
logic solver and 10−6 for actuators. A maintenance operation is launched when
the system as a whole is failed, i.e. if either two or more sensors are failed or
two or more data acquisition modules are failed or the voter is failed or the two
actuators are failed. All failed components are repaired during the maintenance
operation and can be considered as good as new after. Failed components are
repaired one by one. Mean times to repair components are one shift, i.e. 8 hours
for actuators, 4 hours for sensors, data acquisition units and the logic solver.
To accelerate maintenance operations, two repairers are involved (and can thus
repair components in parallel).

The objective of this study is to calculate, for example, the system operational
availability during its mission time, taking into account maintenance policies of
the components.



Modeling patterns for maintenance 3

3 AltaRica 3.0 modeling

3.1 The AltaRica 3.0 modeling language

AltaRica 3.0 is an event-based and object-oriented modeling language dedicated
to probabilistic risk and safety analyses of complex technical systems [9]. This
language is the combination of two parts: the mathematical framework GTS,
for Guarded Transition Systems ([10]-[4]) to describe the behavior of the system
under study; the structuring paradigm S2ML, for System Structure Modeling
Language ([3]), to organize the model.

The execution of an AltaRica 3.0 model, done by the mathematical frame-
work GTS, is quite similar to other event-based formalisms. It means that when
a transition is enabled, it is scheduled and will be potentially fired after its as-
sociated delay ([6]-[12]). These delays can be deterministic or stochastic. For
stochastic delays, AltaRica 3.0 provides usual probability distributions: expo-
nential, Weibull, uniform or user defined ones.

To structure an AltaRica 3.0 model, S2ML provides the appropriate primi-
tives. S2ML unifies the two main structuring paradigms for modeling languages:
object-oriented and prototype-oriented. With S2ML, one can design the model in
two ways. The ‘top-down’ approach: the system is considered at its highest level
and modeling patterns are mainly used; it is the realm of prototype-oriented.
The “bottom-up’ approach: the system is considered at its lowest level (the
components) and libraries of components are mainly used: it is the realm of
object-oriented.

Two main structural constructs can be used in AltaRica 3.0: a ‘block’ and a
‘class’. A class is an ”on-the-shelf”, reusable modeling component. It is defined
and then can be instanced in a model, or inherited by another class or block.
A block is a modeling component with a unique instance, as opposed to a class
which can have several instances. The definition of a block is also its (unique)
instance. More information can be found in [3].

3.2 Modeling with AltaRica 3.0

To design the AltaRica 3.0 model of the system depicted Fig. 1, we start by
modeling the main part. We only consider that this main part contains a set of
hierarchically ordered components, without thinking about how these compo-
nents are internally designed.

Main part of the AltaRica 3.0 model The main part is given Fig. 2. It is
defined with the block System, which contains two parts: one with the declaration
of the different structural elements, the other defining the behavior.

The main part represents the hierarchy of declared components and the links
between them (the behavioral part). It is composed of:

– Three instances S1, S2 and S3, of the class Sensor. We only assume that
this class Sensor contains two flow variables in and out (we can see them
in the second part defining the behavior).



4 M. Batteux et al.

block System
// Declaration of elements
Sensor S1, S2, S3;
block Control
DataAcquisition DA1, DA2, DA3;
block LogicSolver
extends RComponent (lambda = 1.0e-8, mu = 4);
Boolean in1, in2, in3, out (reset = false);
assertion

out := if vs == WORKING
then (in1 and in2) or (in1 and in3) or (in2 and in3)
else false;

end

assertion

LogicSolver.in1 := DA1.out;
LogicSolver.in2 := DA2.out;
LogicSolver.in3 := DA3.out;

end

block Actuators
block Line1
Actuator A1, A2;
assertion

A2.in := A1.out;
end

clones Line1 as Line2;
end

observer Boolean TE = (Actuators.Line1.A2.out == false) and

(Actuators.Line2.A2.out == false);
// Definition of the behavior
assertion

S1.in := true; S2.in := true; S3.in := true;
Control.DA1.in := S1.out;
Control.DA2.in := S2.out;
Control.DA3.in := S3.out;
Actuators.Line1.A1.in := Control.LogicSolver.out;
Actuators.Line2.A1.in := Control.LogicSolver.out;

end

Fig. 2. AltaRica 3.0 code for the main part.

– A block Control, which is a sub-block of the main block System. This block
declares three instances DA1, DA2 and DA3 of the class DataAcquisition.
It declares an internal block LogicSolver, which inherits from the class
RComponent. We assume that the class RComponent represents reparable
components and contains two parameters lambda and mu that we over-
load with the values 10−8 and 4. This inheritance means that the block
LogicSolver is a reparable component: it takes the features of the class
RComponent. Furthermore, the block LogicSolver declares four flow vari-
ables in1, in2, in3 and out. These variables are used in the second part
defining the behavior of the LogicSolver: the assertion defines the external
behavior according to the internal behavior, i.e. the update of the variable



Modeling patterns for maintenance 5

out according to the other variables in1, in2, in3 and a state variable vs

(an internal variable) coming from the inherited class RComponent. Finally
the block Control specifies the external behavior of its sub-parts in the
assertion.

– A block Actuator declaring a sub-block Line1. Line1 represents the first line
of actuators. It is composed of two instances A1 and A2 of the class Actuator.
These actuators are linked thanks to the assertion. The sub-block Line1 is
cloned: a copy of Line1 is made and named Line2. One can notice that these
two blocks Line1 and Line2 will independently live their own lives: changes
into one block (e.g. the update of a variable, or the firing of a transition) has
no impact on the other.

– Finally, a Boolean observer TE (Top Event) is declared. This observer ob-
serves if the two flow variables out, coming from the two actuators A2 of the
two lines, are false.

After the first declarative part, the main block System defines the assertion,
which describes how the sub-parts (the sensors, the control and the actuators) are
linked together and with the environment. We assume here that the equipment
under control cannot fail and the sensors always receive a correct value as input
(i.e. the value true because we consider Boolean variables).

Library of components The main part of the AltaRica 3.0 model contains
different components, which are instances of classes. These classes are defined
in a dedicated library and are depicted Fig. 3. The class RComponentIO imple-
ments a generic reparable component with one input and one output. It inherits
from another class RComponent, the same as the one inherited by the component
LogicSolver of the block Control. This inheritance means that RComponentIO
takes the features of RComponent. RComponentIO declares two flow variables in

and out, which are used in the second part: the assertion defining the exter-
nal behavior by updating the variable out, according to the variable in and
the state (internal) variable vs, coming from the inherited class RComponent. Fi-
nally, the classes corresponding to the components Sensor, DataAcquistion and
Actuator are defined. They inherit from the class RComponentIO and overload
the values of the parameters lambda and mu.

4 Modeling pattern for maintenance

The (part of the) AltaRica 3.0 model, presented previously, does not integrate
the behavioral description of a reparable component, as well as the maintenance
policy according to the limited number of repairers. We start with the definition
of two AltaRica 3.0 elements in Fig. 4: a domain and an operator. The domain
SDomain defines four values, WORKING, FAILED, WAITING REPAIR and REPAIR,
which will be used after to define types of elements (e.g. variables, parameters or
observers). The operator IsNotFailed returns an integer value (1 or 0) according
to the value of the argument aState, of type SDomain.



6 M. Batteux et al.

class RComponentIO
extends RComponent;
Boolean in, out (reset= false);
assertion

out := vs == WORKING and in;
end

class Sensor
extends RComponentIO (lambda = 1.0e-5, mu = 4);

end

class DataAcquisition
extends RComponentIO (lambda = 1.0e-6, mu = 4);

end

class Actuator
extends RComponentIO (lambda = 1.0e-6, mu = 8);

end

Fig. 3. AltaRica 3.0 library of components.

domain SDomain {WORKING, FAILED, WAITING_REPAIR, REPAIR}

operator Integer IsNotFailed(SDomain aState)
if (aState != FAILED) then 1 else 0

end

Fig. 4. AltaRica 3.0 code for the domain and operator.

4.1 Maintenance policies

According to the European standard NF EN 13306 X 60-319, there are two
main kinds of maintenance. The first one is the corrective maintenance, which is
carried out after failure detection and is aimed at restoring an asset to a condition
in which it can perform its intended function. This kind of maintenance implies
an unavailability either of the overall or of a part of the system. The second
one is the preventive maintenance, which aims at performing an intervention
before the occurrence of a failure. Different kinds of preventive maintenance also
exist. Planned maintenance is realized according to a specific bound reached
by the system (e.g. date, time of running, distance travelled, etc.). Condition-
based maintenance is realized according to a monitoring of the system. Finally,
predictive maintenance uses sensor data to monitor a system, then continuously
evaluates it against historical trends to predict failure before it occurs.

AltaRica 3.0 is a flexible and versatile tool. Maintenance policies can be taken
into account with AltaRica 3.0, of course by realizing some kinds of abstraction.
For example, [11] presents a modelling methodology for the assessment of pre-
ventive maintenance on a compressor drive system. In the following, we focus on
the corrective maintenance policy at the component level. We introduce some
condition at system level, to realize maintenance actions, i.e. when a sufficient



Modeling patterns for maintenance 7

number of components are failed: at least two sensors are failed, or two data
acquisition units or the logic solver unit or one actuator per lines. Furthermore
we consider only two repairers to repair failed components.

In Fig. 5, two transitions representing the maintenance policy are added to
the main part of the AltaRica 3.0 model.

block System
// Declaration of elements
...
event maintenanceReq (delay = Dirac(0.0), hidden = true);
event maintenance (delay = Dirac(0.0));
// Definition of the behavior
transition

maintenanceReq: (IsNotFailed(S1.vs) + IsNotFailed(S2.vs)
+ IsNotFailed (S3.vs)) <= 1

or ...
// The maintenance policy involving all components
-> skip;

maintenance: !maintenanceReq
& ?S1.maintenance & ?S2.maintenance & ? ...
// All transitions maintenance of all components

assertion

...
end

Fig. 5. Main part of the AltaRica 3.0 model with the maintenance policy.

The two events maintenanceReq and maintenance are defined with an in-
stantaneous delay, represented by the distribution Dirac(0.0). It means that
the transitions, labelled by these instantaneous events, are fired as soon as they
are enabled. In the following, we will associate the transition and its label, if
there is no ambiguity.

The transition maintenanceReq specifies the maintenance policy in the guard,
by using the operator IsNotFailed with the states of the components: at least
two sensors are failed. This transition is hidden (the attribute hidden of the
labelling event is set to true), meaning it will never be fired alone, it must be
synchronized with other transitions. Furthermore, no action is associated to this
transition: the instruction skip. By defining the two events, and their associated
transitions, maintenanceReq and maintenance, we totally separate the defini-
tion of the maintenance policy (in the guard of the transition maintenanceReq)
and the action of maintenance (in the transition maintenance).

The transition maintenance synchronizes the transition maintenanceReq

and all the transitions maintenance of the components. The symbol ! means that
the transition maintenanceReq is mandatory: to fire this transition maintenance,
the guard of the transition maintenanceReq must be true. Conversely, the sym-
bol ? means that the transitions maintenance of the components are optional:
the transition can be fired if its guard is true, but it is not required. When the



8 M. Batteux et al.

transition maintenance of a component is fired, it changes its state from FAILED

to WAITING REPAIR: it has to wait the availability of a repairer.

The behavior of a reparable component RComponent is described according
the state machine depicted Fig. 6. Nodes represent the different states of the
component, which are from the domain SDomain. Edges represent transitions
between states. It is a generic behavior which will be adapted according to the
considered modeling pattern.

Fig. 6. State machine of a reparable component.

In the following we present how to model the availability of a repairer to repair
a component, with three different patterns: by propagation of flow variables, by
synchronizing events, or by using the virtual aggregation.

4.2 Repair by propagation of flow variables

Fig. 7 represents the reparable component used for the pattern propagation of
flow variables. The component is initialized to the state WORKING: the attribute
init of the state variable vs is set to WORKING. The event maintenance is syn-
chronized at system level: its attribute hidden is set to true. Two flow variables
are defined. rUsed indicates that a repairer repairs the component. rAvailable
takes the value of the availability of a repairer, and is used in the guard of the
transition repairStart, i.e. to launch the repair of the component.

Fig. 8 shows the additions to the main part of the AltaRica 3.0 model, which
are needed for the pattern by propagation of flow variables. The parameter
repairer defines the number of repairers (i.e. 2). The flow variable rUsed pro-
vides the number of used repairers to repair components. This variable is updated
in the assertion by adding all flow variables rUsed of the components. Finally the
flow variable rAvailable provides the information that a repairer is available.
It is updated according to the value of rUsed and repairer. Then, it is used to
update all the variables rAvailable of the components.



Modeling patterns for maintenance 9

class RComponent
SDomain vs (init = WORKING);
Integer rUsed (reset = 0);
Boolean rAvailable (reset = false);
parameter Real lambda = 1.0e-5;
parameter Real mu = 2.0;
event failure (delay = exponential(lambda));
event maintenance (delay = Dirac(0.0), hidden = true);
event repairStart (delay = Dirac(0.0));
event repairEnd (delay = Dirac(mu));
transition

failure: vs == WORKING -> vs := FAILED;
maintenance: vs == FAILED -> vs := WAITING_REPAIR;
repairStart: vs == WAITING_REPAIR and rAvailable -> vs := REPAIR;
repairEnd: vs == REPAIR -> vs := WORKING;

assertion

rUsed := if vs == REPAIR then 1 else 0;
end

Fig. 7. AltaRica 3.0 code of the reparable component for the pattern by propagation
of flow variables.

block System
// Declaration of elements
...
parameter Integer repairer = 2;
Integer rUsed (reset = 0);
Boolean rAvailable (reset = false);
// Definition of the behavior
transition

...
assertion

...
rUsed := S1.rUsed + S2.rUsed + S3.rUsed + Control.DA1.rUsed + ...
// All flow variables rUsed of components
rAvailable := rUsed < repairer;
S1.rAvailable := rAvailable;
S2.rAvailable := rAvailable;
S3.rAvailable := rAvailable;
Control.DA1.rAvailable := rAvailable;
...
// All flow variables rAvailable of all components
// take the value of the variable rAvailable

end

Fig. 8. Main part of the AltaRica 3.0 model with the pattern by propagation of flow
variables.

4.3 Repair by synchronizing events

Fig. 9 represents the reparable component used for the pattern by synchronizing
events. The three events maintenance, repairStart and repairEnd have their
attributes hidden set to true in order to synchronize them at the system level.



10 M. Batteux et al.

class RComponent
SDomain vs (init = WORKING);
parameter Real lambda = 1.0e-5;
parameter Real mu = 2.0;
event failure (delay = exponential(lambda));
event maintenance (delay = Dirac(0.0), hidden = true);
event repairStart (delay = Dirac(0.0), hidden = true);
event repairEnd (delay = Dirac(mu), hidden = true);
transition

failure: vs == WORKING -> vs := FAILED;
maintenance: vs == FAILED -> vs := WAITING_REPAIR;
repairStart: vs == WAITING_REPAIR -> vs := REPAIR;
repairEnd: vs == REPAIR -> vs := WORKING;

end

Fig. 9. AltaRica 3.0 code of the reparable component for the pattern by synchronizing
events.

Fig. 10 represents the additions to the main part of the AltaRica 3.0 model
used for the pattern by synchronizing events. A new block Repairer is added.
It defines the behavior of the repairer crew according to dedicated events. It
is basic: it defines the start and stop of a repair if one of the two repairers is
available. Then two new events repairStartC and repairEndC are defined for
all components C. These events are used in the transition part to synchronize the
own events repairStart and repairEnd of the component C, with the events
repairStart and repairEnd of the block Repairer.

4.4 Repair by virtual aggregation

For the pattern with the virtual aggregation, the class defining the component
is represented Fig. 11. This class is the same as the one defined in Fig. 9. In
addition, it virtually aggregates a new element of type T, which is used in the
class with the alias t. This virtually aggregated element is used in the class
within the two transitions repairStart and repairEnd, by synchronizing them
with two events of t. When the class is instantiated (i.e. when an object with
this class as type is declared), this aggregation is resolved by indicating a real
object (an instance of a class or a block to be used instead of T). This object
must be compatible according to the use of it in the declared class.

Fig. 12 represents the additions to the main part of the AltaRica 3.0 model
used for the pattern by virtual aggregation. A new block Repairer is defined. It
is the same as for the previous pattern by synchronizing events. This block is used
when all classes are instantiated, inheriting from the class RComponent, to resolve
the virtually aggregated element. The resolution of the virtual aggregation is
done by the attribute (virtual T = main.Repairer). It means that the virtual
element T, used in the class with the alias t, is equal to the block Repairer. The
keyword main, preceding the word Repairer with a dot between them, indicates



Modeling patterns for maintenance 11

block System
// Declaration of elements
...
block Repairer
parameter Integer repairer = 2;
Integer rAvailable (init = repairer);
event repairStart, evRepairEnd (delay = Dirac(0.0), hidden = true);
transition

repairStart: rAvailable > 0 -> rAvailable := rAvailable - 1;
repairEnd: true -> rAvailable := rAvailable + 1;

end

event repairStartS1 (delay = Dirac(0.0));
event repairEndS1 (delay=exponential(S1.mu));
event repairStartS2 (delay = Dirac(0.0));
event repairEndS2 (delay=exponential(S2.mu));
...
// For all components, two new events ‘repairStart’ and ‘repairEnd’
// Definition of the behavior
transition

...
repairStartS1: !S1.repairStart & !Repairer.repairStart;
repairEndS1: !S1.repairEnd & !Repairer.repairEnd;
repairStartS2: !S2.repairStart & !Repairer.repairStart;
repairEndS2: !S2.repairEnd & !Repairer.repairEnd;
...
// All events previously defined are used to synchronize the events
// of the considered component with the events of the block Repairer

assertion

...
end

Fig. 10. Main part of the AltaRica 3.0 model with the pattern by synchronizing events.

class RComponent
embeds virtual T as t;
SDomain vs (init = WORKING);
parameter Real lambda = 1.0e-5;
parameter Real mu = 2.0;
event failure (delay = exponential(lambda));
event maintenance (delay = Dirac(0.0), hidden = true);
event repairStart (delay = Dirac(0.0));
event repairEnd (delay = Dirac(mu));
transition

failure: vs == WORKING -> vs := FAILED;
maintenance: vs == FAILED -> vs := WAITING_REPAIR;
repairStart: !t.repairStart & vs == WAITING_REPAIR -> vs := REPAIR;
repairEnd: !t.repairEnd & vs == REPAIR -> vs := WORKING;

end

Fig. 11. AltaRica 3.0 code of the reparable component for the pattern by virtual
aggregation.



12 M. Batteux et al.

that the object Repairer is declared at the main hierarchical level of the model,
i.e. the block System.

block System
// Declaration of elements
block Repairer
parameter Integer repairer = 2;
Integer available (init = repairer);
event repairStart (delay = Dirac(0.0), hidden=true);
event repairEnd (delay = Dirac(0.0), hidden=true);
transition

repairStart: available > 0 -> available := available - 1;
repairEnd: true -> available := available + 1;

end

Sensor S1, S2, S3 (virtual T = main.Repairer);
block Control
DataAcquisition DA1, DA2, DA3 (virtual T = main.Repairer);
block LogicSolver
extends RComponent (lambda = 1.0e-8, mu = 4.0,

virtual T = main.Repairer);
...

end

...
end

block Actuator
block Line1
Actuator A1, A2 (virtual T = main.Repairer);
...

end

...
end

...
// Definition of the behavior
...

end

Fig. 12. Main part of the AltaRica 3.0 model with the pattern by virtual aggregation.

5 Experiments

Table 1 shows different quantitative features of the models for these three pat-
terns: the model Mf for the pattern propagation of flow variables, the model Me
for the pattern synchronizing events, and the model Mv for the pattern virtual
aggregation. The first two features are done for the designed models, whereas
the others are done for the compiled models. The difference between models Mf

and Me concerns the number of flow variables and their updates in the assertion:
more important in the model Mf. Nevertheless, this result hides the additional
events, per components, defined in Me; which is not indicated in this table but



Modeling patterns for maintenance 13

can be found thanks to the number of lines. Furthermore models Me and Mv seem
to be equal when compiled. More precisely, they are equal and it is totally nor-
mal because the virtual aggregation pattern considers synchronization of events,
but from a generic way: by including it directly into the class. The main dif-
ference is thus according to the size of the designed models. In the following,
especially with the assessment tools, these two models are used equally. Finally
it is recommended to use the pattern by virtual aggregation. On the one hand,
fewer errors are made at the design phase. On the other hand, it defines fewer
flow variables, than the pattern by propagation of flow variables, which has a
cost when the model is evaluated by the assessment tools: these variables are
updated in the assertion and there is a computational cost for that at runtime.

Table 1. Quantitative features for the three patterns.

Features Mf Me Mv

Number of lines, at design 143 177 130

Number of lines of the main block (System), at design 84 124 66

Number of state variables 11 12 12

Number of flow variables 48 24 24

Number of events 34 34 34

Number of lines of the assertion 48 24 24

Some experiments are also realized in order to evaluate the Boolean observer
TE. This observer indicates when the values of the two flow variables out, of the
two actuators A2 of the two lines, are false. It means that the system is failed.
We used the AltaRica 3.0 stochastic simulator of the OpenAltaRica platform
([1]) to perform the experiments.

Table 2 shows the means of fired transitions for the following number of gener-
ated histories: 105, 106 and 107, for a mission time equal to 20 years (175200 units
of time). The execution time, to generate these histories, has not been taken into
account. On the one hand, it is quick: 1-2 minutes for 107 histories on a personal
laptop. On the other hand, our interest does not focus on performance analysis
of the tool. Elements can be found in [2] or [1].

Table 2. Means of fired transitions.

Number of histories 105 106 107

Mv 22.9015 22.9089 22.9002

Mf 22.9133 22.8936 22.8997

Table 3 shows statistics provided by the stochastic simulator, on the observer
TE, for 107 generated histories. The considered mission time was 20 years and we



14 M. Batteux et al.

also considered different time instants: 5, 10 and 15 years. We focused on the two
following statistics. ‘had-value’ (denoted h-v) is equal to 1 if the observer took
the value true for a non-null period at least once from time 0 to time d (with
d equals to 5, 10, 15 or 20 years), and 0 otherwise. ‘number-of-occurrences’
(denoted n-o) is equal to the number of dates the observer started taking the
value true over the time period [0, d] (with d equals to 5, 10, 15 or 20 years).
The obtained results are quite similar.

Table 3. Statistics on the observer.

Mf Mv

5 years h-v 0.315882 0.315438
n-o 0.343274 0.343362

10 years h-v 0.646718 0.646189
n-o 0.848165 0.849419

15 years h-v 0.830037 0.829901
n-o 1.35688 1.3594

20 years h-v 0.919748 0.920068
n-o 1.86367 1.86752

6 Conclusion

In this article, we presented three different modeling patterns with the AltaR-
ica 3.0 modeling language to represent a corrective maintenance policy on a set
of components, with a limited number of repairers. A main modeling part of the
system has first been proposed. This part is common to the three modeling pat-
terns and was realized with a ‘top-down’ approach. Behaviors of the components
were not directly defined. Furthermore we included the maintenance policy into
this main part.

Regarding the limited number of repairers, meaning their assignment to failed
components according to their availability, the three different patterns were pre-
sented. The first one uses the propagation of flow variables. This pattern is not
difficult but error prone. In addition it could be less efficient during execution.
In fact it duplicates the number of flow variables, thus the number of elements
to update in the assertion. The second and third patterns use the synchroniza-
tion of events. The second one defines these synchronizations by hand, for all
the components. The third one uses the virtual aggregation to integrate these
synchronizations into a generic class. This third pattern is more easy to design
models, and thus less error prone.

These modeling patterns for maintenance policies with AltaRica 3.0 open the
way to new opportunities. On the one hand, modeling patterns allow engineers
to model simply and efficiently classical safety features: e.g. periodically tested
component, (warm) redundancies, shared resources, common cause failures, etc.



Modeling patterns for maintenance 15

Some of these patterns are defined in libraries. For the others, it is possible,
in an easy way, to design tools helping engineers to create models with such
patterns. On the other hand, it is possible to extend the use of AltaRica 3.0
modeling language to study other performance indicators than those for safety,
e.g. scheduling maintenance policies.

References

1. Aupetit, B., Batteux, M., Rauzy, A., Roussel, J.M.: Improving performance of
the AltaRica 3.0 stochastic simulator. In: Podofillini, L., Sudret, B., Stojadinovic,
B., Zio, E., Kröger, W. (eds.) Proceedings of Safety and Reliability of Complex
Engineered Systems: ESREL 2015. pp. 1815–1824. CRC Press (September 2015)

2. Aupetit, B., Batteux, M., Rauzy, A., Roussel, J.M.: Vers la définition d’un kit
d’évaluation pour les simulateurs stochastiques. In: Actes du Congrès Lambda-Mu
20 (actes électroniques). Institut pour la Mâıtrise des Risques (IMdR), Saint-Malo,
France (2016). https://doi.org/10.4267/2042/61811

3. Batteux, M., Prosvirnova, T., A.Rauzy: From models of structures to structures
of models. In: 4th IEEE International Symposium on Systems Engineering, ISSE
2018. Rome, Italy (October 2018)

4. Batteux, M., Prosvirnova, T., Rauzy, A.: Altarica 3.0 assertions: the why and the
wherefore. Journal of Risk and Reliability (2017), article accepted

5. Batteux, M., Prosvirnova, T., Rauzy, A.: Altarica 3.0 in 10 modeling patterns.
International Journal of Critical Computer-Based Systems 9(1–2), 133–165 (2018).
https://doi.org/10.1504/IJCCBS.2019.098809

6. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer,
New-York, NY, USA (2008)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley professional computing series,
Addison-Wesley, Boston, MA 02116, USA (October 1994)

8. Maier, M.W.: The art of systems architecting (2009)
9. Prosvirnova, T., Batteux, M., Brameret, P.A., Cherfi, A., Friedlhuber, T., Roussel,

J.M., Rauzy, A.: The altarica 3.0 project for model-based safety assessment. In:
Proceedings of 4th IFAC Workshop on Dependable Control of Discrete Systems,
DCDS’2013. pp. 127–132. International Federation of Automatic Control, York,
Great Britain (September 2013)

10. Rauzy, A.: Guarded transition systems: a new states/events formalism for
reliability studies. Journal of Risk and Reliability 222(4), 495–505 (2008).
https://doi.org/10.1243/1748006XJRR177

11. Zhang, Y., Barros, A., Rauzy, A., Lunde, E.: A modelling methodology for the
assessment of preventive maintenance on a compressor drive system. In: Haugen,
S., Barros, A., van Gulijk, C., Kongsvik, T., Vinnem, J.E. (eds.) Safe Societies
in a Changing World, Proceedings of European Safety and Reliability Conference
(ESREL 2018). pp. 915–922. CRC Press, Trondheim, Norway (June 2018)

12. Zimmermann, A.: Stochastic Discrete Event Systems. Springer, Berlin, Heidelberg,
Germany (2008)


