Michel Batteux
email: michel.batteux@irt-systemx.fr

Jean-Yves Choley
email: jean-yves.choley@supmeca.fr

Faïda Mhenni
email: faida.mhenni@supmeca.fr

Tatiana Prosvirnova
email: tatiana.prosvirnova@onera.fr

Antoine Rauzy
email: antoine.rauzy@ntnu.no

Synchronization of System Architecture and Safety Models: a Proof of Concept

Keywords: Model synchronization, model structuring, SysML, AltaRica, S2ML

To face the increasing complexity of technical systems, engineers are designing models. The integration of models coming from various engineering disciplines, such as system architecture, multi-physics simulation, automatic code generation as well as safety and performance analyses, is one of today's industrial challenges.

In this article we present model synchronization -a framework to ensure consistency between models coming from different engineering domains, based on S2ML (System Structure Modeling Language). We illustrate our purpose using an Electro-Mechanical Actuator (EMA) of an aileron for a small aircraft. We show how the introduced framework can be used to handle consistency between system architecture models (represented in SysML) and safety models (represented in AltaRica 3.0) with several architecture variants.

I. INTRODUCTION

Technical systems are getting more and more complex. To face the increasing complexity of systems, engineers are designing models. These models have different maturity, are designed at different abstraction levels and for different purposes. The integration of models coming from various engineering disciplines, such as system architecture, control, multiphysics simulation, automatic code generation, safety and performances analyses, is one of today's industrial challenges.

Collaborative data bases (PDM/PLM) and tools to set up traceability links between models provide a support to manage models in version and configuration, but not to ensure consistency between them. Model transformation techniques [START_REF] David | Reliability study of complex physical systems using sysml[END_REF], [START_REF] Mauborgne | Operational and system hazard analysis in a safe systems requirement engineering process application to automotive industry[END_REF], [START_REF] Yakymets | Sophia framework for model-based safety analysis[END_REF] assume a master/slaves organization of models, which is not realistic in practice.

In this article we present model synchronization -a framework to ensure consistency between models coming from different engineering domains.

This framework is based on the thesis that systems engineering modeling formalisms are made of two parts:

• An underlying mathematical framework, which aims at capturing some aspects of the system behavior, e.g. differential equations for Modelica [START_REF] Fritzson | Principles of ObjectOriented Modeling and Simulation with Modelica 3.3: A CyberPhysical Approach[END_REF] and Matlab-Simulink [START_REF] Klee | Simulation of Dynamic Systems with MATLAB and Simulink[END_REF], Data-Flow equations for Lustre [START_REF] Halbwachs | The synchronous dataflow programming language lustre[END_REF], Guarded Transition Systems for AltaRica 3.0; • A structuring paradigm that makes it possible to build and organize models by assembling parts into hierarchical descriptions.

Behavioral descriptions are specific to each engineering domain and the choice of the appropriate mathematical framework for a model depends on the characteristics of the system one wants to study. On the contrary, the structures of models reflect to some extent the structure of the system under study. Therefore, our framework focuses on structural comparisons and is based on S2ML (System Structure Modeling Language) [START_REF] Batteux | From models of structures to structures of models[END_REF]. Models from different engineering domains cannot be compared directly. First, they are abstracted into a pivot language (S2ML). Second, their abstractions are compared. To support model synchronization we develop the SmartSync platform, which is used to compare S2ML abstractions of heterogeneous models.

To illustrate our proposal we use a case study -an Electro-Mechanical Actuator (EMA) of an aileron for a small aircraft. We show how the introduced framework can be used to handle consistency between system architecture models (designed in SysML [START_REF] Friedenthal | A Practical Guide to SysML: The Systems Modeling Language[END_REF]) and safety models (designed in AltaRica 3.0 [START_REF] Batteux | Altarica 3.0 in 10 modeling patterns[END_REF]) with several alternative system architectures.

This work continues the work on model synchronization presented in [START_REF] Prosvirnova | Handling consistency between safety and system models[END_REF] and [START_REF] Legendre | Toward Model Synchronization Between Safety Analysis and System Architecture Design in Industrial Contexts[END_REF]. An interesting study [START_REF] Missaoui | Verification and validation of the consistency between multi-domain system models[END_REF] uses model synchronization techniques with hierarchical graphs.

The remainder of this article is organized as follows. Section II introduces the EMA case study. Section III describes the model synchronization framework used to ensure consistency between heterogeneous models. Section IV presents the results. Finally, section V concludes this article and discusses future works.

II. CASE STUDY

The considered case-study is an Electro-Mechanical Actuator (EMA) for a general aviation small aircraft. The EMA is intended to actuate the aileron, replacing the usual rod, cables and lever mechanisms. The proposed actuator is driven by the aircraft electrical networks, controlled by the on-board FCC (Flight Control Computers) with a set point consistent with the pilot instructions, taking into account the aileron feedback position and the EMA feedback (Fig. 1). There are different relevant kinematic architectures such as a 4-bars with a crank and rod mechanism, a 3-bars with an electric cylinder or a direct drive with a motor and a gearbox mounted on the axis of the revolute joint between the wing and the aileron. In this work, we will focus on the 3-bars architecture.

This architecture is illustrated in Fig. 2. Linked to the wing and the aileron with two spherical joints, the EMA is made up of a housing that encapsulates all the components, a DC motor controlled by a Micro Controller Unit (MCU) (not represented), a gearbox and a screw and nut assembly to transform the gearbox output rotation into a translation of a rod that will in turn push or pull the aileron.

III. MODEL SYNCHRONIZATION

A. Principle

Integration of engineering models can be achieved by model synchronization process, i.e. the process by which one can ensure that two possibly heterogeneous models are "speaking" about the same system. Two models, written into two different languages, can generally not be directly compared. The idea is thus to abstract them into a pivot language and to compare their abstractions (see Fig. 3). The synchronization of models goes in three steps. The first step is the abstraction, i.e. the extraction of the common part that can be compared from the models. The second step is the comparison of the abstractions. The third step, the so-called concretization, consists in possible adjustment of the initial models (in case of detected inconsistencies). B. S2ML as a pivot language S2ML (System Structure Modeling Language) [START_REF] Batteux | From models of structures to structures of models[END_REF] aims at providing a structuring paradigm of systems engineering modeling languages. It unifies concepts coming from objectoriented [START_REF] Abadi | A Theory of Objects[END_REF] and prototype-oriented [START_REF] Noble | Prototype-Based Programming: Concepts, Languages and Applications[END_REF] programming languages. As heterogeneous models can be essentially compared by their structure, S2ML is a perfect candidate as a pivot language for the abstraction.

1) Basic concepts: S2ML is made of the following basic elements: ports, connections, blocks and attributes. Ports are basic objects of models (e.g. variables, events, parameters). Connections are used to describe relations between ports (e.g. equations, transitions, assertions). Blocks are containers composed of ports, connections and other blocks. Attributes are couples (name = value) used to associate information to ports, connections and blocks. Example: Consider a non repairable component (NRComponent) in AltaRica 3.0 having a Boolean state variable vsWorking and a failure event evFailure. Its S2ML abstraction would be as illustrated in Fig. 4.

class NRComponent port vsWorking(kind="variable", type="Boolean", init="true"); port pLambda(kind="parameter", type="Real", value="1.0e-5"); port evFailure(kind="event", delay="exponential(pLambda)"); connection [evFailure, vsWorking](type="transition", guard="vsWorking", action="vsWorking := false"); end The class NRComponent contains three ports vsWorking, evFailure and pLambda having different attributes, and a connection, which represents the transition labeled by the event evFailure. In S2ML, ports, connections and blocks are interpreted by themselves. But a particular modeling language, implementing S2ML as its structuring paradigm, can give a concrete interpretation to ports, connections and blocks. For example, in AltaRica 3.0 variables, parameters, events and observers are interpreted by ports; transitions and assertions are interpreted by connections, blocks and classes are interpreted by blocks and classes.

2) Relations: S2ML introduces several structural relations to build and organize models. a) Composition: The simplest structural relation is the composition: a system composes a component means that the component "is part of" the system. In S2ML, the composition is represented by adding different components within the code of the system as shown in the example below. Example: In the example given in Fig. 5, the block EMASystem 2 contains the blocks ElectricPower, Line1 and Line2 and also different ports and connections not represented here.

b) Inheritance: Inheritance makes it possible to an element (block or class) to acquire all the properties of another element without explicitly duplicating them. Inheritance implements the "is a" relation between modeling elements. In S2ML, the inheritance is represented by the keyword "extends". Example: In the AltaRica 3.0 model of the EMA system, all the components extend the class NRComponent (see Fig. 4) as they may fail in operation. In the example given in Fig. 5, the block ElectricPower extends the class NRComponent defined previously. It contains all the ports and connections of the class NRComponent and adds a port vfToMCU and a connection assertion. c) Prototype/Cloning: A block is a container for ports, connections and other blocks. Each block is a prototype, i.e. it has a unique occurrence in the model. A system may contain similar components or subsystems. To avoid duplicating the description of a block, it is possible to clone an already existing one. In S2ML, the cloning of a block is obtained by the keyword "clones". Example: In the example given in Fig. 5, the block EMASystem 2 contains two identical blocks Line1 and Line2, composed of a Motor and a MCU each. In order not to duplicate the code, the block Line1 is cloned to obtain the block Line2. d) Class/Instance: A second way to avoid duplicating the description of a block consists in declaring a model of the duplicated block in a separate modeling entity, the socalled class, and then in instantiating this class wherever we need to use it again. Obviously, the class is referred to by the keyword "class" in S2ML. Each instance of the class is obtained by writing the name of the class followed by names of the created instances. Example: In the example given in Fig. 5 two classes Motor and MCU are defined. They are instantiated inside the block Line1 of the block EMASystem 2. e) Aggregation: Aggregation is a "uses" relation between modeling components. It makes it possible to represent components which are not a part of the subsystem and may be shared by several subsystems. The clause "embeds" in S2ML refers to an aggregation. Example: In the example given in Fig. 5, the component ElectricPower is used by the Line1 and the Line2. It is aggregated by both subsystems via the clause "embeds".

3) Unfolded model: Any hierarchical model is semantically equivalent to an unfolded (also called instantiated) one. An unfolded S2ML model is a model made of a hierarchy of nested or aggregated blocks, connections and ports. This model is obtained by applying recursively rewriting rules, the so-called unfolding rules. These rules resolve inheritance, classes instantiation, blocks cloning and paths of aggregated elements.

An unfolded (or instantiated) model is used in the comparison step of model synchronization.

Example: Consider the S2ML model given in Fig. 5. The equivalent unfolded block for EMASystem 2 is presented in Fig. 6.

C. SmartSync platform

The proposed platform for model synchronization Smart-Sync is illustrated in Fig. 7. The first step of the model synchronization is the abstraction, which consists in translating models into S2ML. This step is still done manually for the moment but it can be automated. In the next step, the abstractions of the different models are compared two by two and a report of these comparisons is generated. This report is then analyzed by the members of the different teams that built the initial models. Together, they produce a matching block EMASystem_2 // ports block ElectricPower port vsWorking (kind = "variable", type="Boolean", init = "true"); port pLambda (kind ="parameter", type = "Real", value = "1.0e-5"); port evFailure (kind = "event", delay = "exponential(pLambda)"); port vfToMCU (type = "Boolean", reset = "false"); connection transition[evFailure, vsWorking]; connection assertion[vfToMCU, vsWorking]; end block Line1 embeds main.ElectricPower as EP; block MCU1 port vsWorking(kind="variable", type="Boolean", init="true"); port pLambda(kind="parameter", type="Real", value="1.0e-5"); port evFailure(kind="event", delay="exponential(pLambda)"); port vfFromElectricPower (type="Boolean", reset="false"); port vfFromInstructions (type="Boolean", reset="false"

); port vfFromIncidenceSensor (type="Boolean", reset="false"); port vfToMotor (type = "Boolean", reset = "false"); connection assertion[vfToMotor, vsWorking, vfFromElectricPower, vfFromInstructions, vfFromIncidenceSensor]; connection transition[evFailure, vsWorking]; end block Motor1 port vsWorking (kind="variable", type="Boolean", init="true"); port pLambda (kind="parameter", type="Real", value="1.0e-5"); port evFailure (kind="event", delay="exponential(pLambda)"); port vfFromMCU (type="Boolean", reset="false"); port vfToGearbox (type="Boolean", reset="false"); file that matches the same elements in the two models. When there is no correspondence the keyword "forget" is used. The next step of the comparison process consists in comparing the initial models using the matching file. Another report is then generated that contains a list of inconsistencies. This report is analyzed again by the members of both teams. The matching file is updated with new corresponding elements. The updated matching file is used again in the comparison of the model abstractions and so on. The process iterates until all the inconsistencies have been resolved. At each iteration, if an inconsistency is detected, one or both models should be updated.

The outcome of the model synchronization is twofold. First, it allows to detect model inconsistencies in which case models need to be updated. Second, it allows to validate the model consistency. Models can then be used to produce performance indicators and so on.

1) Comparison: Different types of comparators (see [START_REF] Stephan | A survey of model comparison approaches and applications[END_REF] for an interesting survey on model comparison techniques) for S2ML models can be defined, for instance:

• Dictionary, which consists in matching the names of different elements (ports, nested/aggregated blocks and connections); • Structural, which consists in matching the names of different elements and the structure of the model; • Topological, which consists in matching the names of different elements, the structure of the model and the connections between ports.

Note that the choice of abstractors and comparators depends on the system under development and the level of maturity of the project.

The comparison of S2ML models is done as follows. First, S2ML models are unfolded/instantiated, i.e. transformed into a hierarchy of nested/aggregated blocks, ports and connections as described in Section III-B3. Second, the unfolded S2ML models are compared using the matching file. Matching blocks and ports is quite similar. For each block/port of the first model (and vice-versa):

• if there is a correspondence in the matching file (which is different from "forget") then if the corresponding block/port exists in the second model (and vice-versa) then the consistency is checked; otherwise an inconsistency is detected;

• if the correspondence is "forget" then there is nothing to do; • otherwise, an inconsistency is detected.

IV. EMA SYSTEM: MODEL SYNCHRONIZATION

In this section we apply model synchronization to the case study presented in Section II. We present a collaborative design of the EMA system. The collaboration is between two teams: system architecture and safety analysis. Each team performs different activities. The first activity is modeling which is performed separately by members of each team using different modeling languages and tools. The second activity is model synchronization, i.e. the verification of consistency between models that ensures that both models are describing the same system. This activity is performed by the members of both teams and involves the SmartSync platform.

Finally, the validated safety model is analyzed, and as the initial architecture is not robust enough, the safety team proposes two alternative architectures to the design team. A. EMA system variant 1 1) Modeling: a) System architecture: System architecture models are created using SysML [START_REF] Friedenthal | A Practical Guide to SysML: The Systems Modeling Language[END_REF] with a particular focus on system physical architecture part.

The internal block diagram representing the first variant (without redundancies) of the EMA physical architecture is given Fig. 8. It has been done using SysML plugin of MagicDraw modeling tool. The safety model is created using AltaRica 3.0 modeling language [START_REF] Batteux | Altarica 3.0 in 10 modeling patterns[END_REF] and the OpenAltaRica platform 1 . AltaRica 3.0 is a high level formal modeling language dedicated to safety analyses. It is a textual language but graphical representations can be associated to textual models. Fig. 9 shows the graphical representation of the AltaRica 3.0 model of the first variant of the EMA system. This model is an extended reliability block diagram, where blocks represent system components and their failures and connections between blocks represent the propagation of failures. The block Observer models the failure condition.

2) Synchronization:

1 https://www.openaltarica.fr/ a) Abstraction: First, both models are abstracted, i.e. transformed into S2ML.

For AltaRica 3.0 the transformation is straightforward, as the language uses S2ML as its structural paradigm. State and flow variables, events and parameters are abstracted to S2ML ports; transitions and assertions are transformed into connections; different structural constructs like inheritance, cloning, instantiation, etc. are transformed into their equivalents in S2ML. As an example, an S2ML abstraction of a non repairable component is given Fig. 4.

For SysML internal block diagrams the transformation is also quite simple: parts are transformed into S2ML blocks, ports into S2ML ports and connections between ports are transformed into S2ML connections between corresponding S2ML ports.

b) Comparison: In the next step, the abstractions are compared and a report is generated. This report is analyzed by members of both teams. The following differences are detected: system architecture model (e.g. state variables, failure events, parameters, etc. have no equivalent in the system architecture model). All the differences are listed in the matching file, which makes it possible to establish the correspondence between the two models. Table I shows an extract of a matching file. The first column is the element type (port, block, aggregated block or connection). The second column is the name of the element of the first model, the third column is the name of the corresponding element in the second model. When there is no correspondence, the keyword forget is used. It is possible to add a fourth column with comments to justify matching decisions. As we can see in Table I, the block Observer of the safety model has no correspondence in the system architecture equivalent in the architecture model. In the system architecture model this block is not represented as it belongs to the system environment, whilst the safety analyst decided to represent it in his model because the failure of the electric power causes the occurrence of the failure condition.

The produced matching file is used to compare the abstractions of system architecture and safety models. In the next step of the comparison, new differences are detected. They are analyzed again and the matching file is populated with new matching information summarized in Table II. Models are then compared again. Finally, no more differences are detected. The consistency between system architecture and safety models is verified. The matching file establishes the correspondence between the two models and elements which do not have any correspondence but it is validated by the teams. • two blocks for redundant MCUs (MCU1 and MCU2),

• two blocks for redundant Motors (Motor1 and Motor2),

• two blocks to represent incidence sensors (IncidenceSen-sor1 and IncidenceSensor2) and • a new block Gearbox with two inputs (vfFromMotor1 and vfFromMotor2). 2) Synchronization: First, both SysML and AltaRica 3.0 models are transformed into S2ML as described previously. Then, the matching file produced for the first variant of the architecture is used directly to compare S2ML models of the second variant. The report produced by the tool contains only the differences between the two variants. The matching file is populated with the new matching information from the Table III. It is used to compare again the abstractions. No more differences are detected. The consistency between system and safety models of the second variant of the EMA system is verified. As we can see, the reuse of matching file of the first variant of the architecture greatly simplifies the consistency verification for the second variant of the architecture.

3) Analysis:

The validated safety model is analyzed by generation of a Fault Tree and calculation of minimal cut sets, which are listed below. This architecture is more robust. Single point failures remain only on the mechanical and joint-attach part of the system. But another variant of the architecture also needs to be evaluated. Then, the matching file produced for the first variant of the architecture is used directly to compare S2ML models of the third variant. System architect and safety analyst only need to match the differences between the two variants.

After the first iteration, the results of matching activity are given in Table IV. The block DoubleWindingMotor.MotorShaft does not have any correspondence in the safety model. In this case, an inconsistency is detected in the safety model: failure of the motor shaft should be taken into account. The safety model needs to be updated.

D. Summary

The conducted experience shows that models produced by different systems engineering disciplines are different but it is possible to establish a correspondence between them. The correspondence is saved in the so-called matching file, which is populated iteratively. It can also be reused for model synchronization of new variants of the system architecture which greatly simplifies the consistency verification. As we can see, model synchronization makes it possible not only to check consistency between models but also to detect inconsistencies.

V. CONCLUSION AND PERSPECTIVES

In this article, we presented experiments on the synchronization of system architecture and safety models of an electromechanical actuator for an aileron of a small aircraft. We showed that model synchronization can be used to ensure the consistency of heterogeneous models, designed within different formalisms and different modeling environments.

To support model synchronization, we developed the Smart-Sync platform, which relies on S2ML as pivot language. With SmartSync, we studied several alternative architectures of the EMA system. We checked consistency between architecture and safety models for the first and second variants and detect an inconsistency in the safety model of the third variant of architecture.

The process of making models consistent is iterative and involves representatives of the engineering disciplines at stake. The SmartSync platform helps not only to check the consistency between models, but also to detect inconsistencies within models and to support the dialog between stakeholders.

As future works, we plan to improve SmartSync, notably by developing new comparison algorithms and abstraction methods.

Fig. 1 .

 1 Fig. 1. EMA on-board context.

Fig. 2 .

 2 Fig. 2. EMA 3-bars architecture.

Fig. 3 .

 3 Fig. 3. Model synchronization.

Fig. 4 .

 4 Fig. 4. S2ML code for the block NRComponent.

Fig. 5 .

 5 Fig. 5. S2ML abstraction of the AltaRica 3.0 model of the EMA system with duplicated MCUs and Motors.

 connection transition[evFailure, vsWorking]; connection assertion [vfToGearbox, vsWorking, vfFromMCU]; end connection assertion[main.ElectricPower.vfToMCU, MCU1.vfFromElectricPower]; end block Line2 // the body of the block Line2 (copy of the block Line1) end // the remainder of the block EMASystem_2 end

Fig. 6 .

 6 Fig. 6. Unfolded S2ML model of the EMASystem 2.

Fig. 7 .

 7 Fig. 7. Models synchronization process.

Fig. 8 .

 8 Fig. 8. EMA system physical architecture (variant 1).

Fig. 9 .

 9 Fig. 9. Graphical representation of the AltaRica 3.0 model of the EMA system (variant 1).

•

 Different names of blocks (e.g. the block BallscrewAnd-NutAssembly in the SysML model corresponds to the block BallsCrewNutAssembly in the AltaRica 3.0 model); • Different names of ports (e.g. the port Motor.RegulatedElectricPower in the SysML model corresponds to the port Motor.vfFromMCU in the AltaRica 3.0 model); • Elements of system architecture model not represented in the safety model (e.g. Motor.MechanicalActionHM has no correspondence in the safety model); • Elements of the safety model not represented in the

Fig. 10 .

 10 Fig. 10. EMA system physical architecture (variant 2). a) System architecture: Fig. 10 shows the internal block diagram representing the physical architecture of the second variant of the EMA system. Compared to the first variant of the architecture, it contains two redundant motors (Motor and RedundantMotor), two redundant MCUs (MCU and RedundantMCU) and an epicyclic gearbox with two inputs (MechRotPower and MechRotPower2). b) Safety: The graphical representation of the corresponding safety model is given in Fig. 11. Compared to the previous AltaRica 3.0 model, it contains:

Fig. 11 .

 11 Fig. 11. Graphical representation of the AltaRica 3.0 model of the EMA system (variant 2).

 architecture: Fig.12shows the internal block diagram representing the physical architecture of the third variant of the EMA system. Compared to the first variant of the architecture, it contains two redundant MCUs (MCU and RedundantMCU) and a double winding motor (DoubleWind-ingMotor) composed of two motor windings (MotorWinding1 and MotorWinding2) and a motor shaft (MotorShaft).

Fig. 12 .

 12 Fig. 12. EMA system physical architecture (variant 3). b) Safety: Graphical representation of the corresponding safety model is given in Fig. 13. Compared to the AltaRica 3.0 model of the first variant, it contains: • two blocks for redundant MCUs (MCU1 and MCU2), and • a new block Motor with two inputs (vfFromMCU1 and vfFromMCU2) composed of two blocks representing windings and their failures (Winding1 and Winding2). 2) Synchronization: First, both SysML and AltaRica 3.0 models are transformed into S2ML as explained previously.Then, the matching file produced for the first variant of the architecture is used directly to compare S2ML models of the third variant. System architect and safety analyst only need to match the differences between the two variants.After the first iteration, the results of matching activity are given in TableIV. The block DoubleWindingMotor.MotorShaft

Fig. 13 .

 13 Fig. 13. Graphical representation of the AltaRica 3.0 model of the EMA system (variant 3).

TABLE I EMA

 I SYSTEM ARCHITECTURE AND SAFETY MODELS MATCHING (VARIANT 1), ITERATION 1.

	Type	Model1 (SysML)	Model2 (AltaRica 3.0)
	block EMASystem 1	EMASystem 1
	port	AileronMechanicalAction	forget
	port	ElectricalPower	ElectricPower.vfToMCU
	port	InstructionAndFeedback	Instructions.vfToMCU
	port	WingMechanicalAction	forget
	block forget	Observer
	block BallScrewAndNutAssembly	BallScrewNutAssembly
	block EMAAileronJoint	EMAAileronJoint
	port	AileronMechanicalAction	vfOut
	port	MechanicalTransmissionPower forget
	port	forget	evFailure
	port	forget	pLambda
	port	forget	vsWorking
	block EMAWingJoint	EMAWingJoint
	port	MechanicalActionHW	forget
	port	WingMechanicalAction	vfOut
	port	forget	evFailure
	port	forget	pLambda
	port	forget	vsWorking
	block Gearbox	Gearbox

model because it represents safety related information (i.e. the failure condition to study). The port ElectricalPower in the SysML model corresponds to the port vfToMCU of the block ElectricPower in the AltaRica 3.0. It is important to note that the block ElectricPower of the safety model has no

 The validated safety model is analyzed by generation of a Fault Tree and calculation of minimal cut sets, which are listed below. As expected, single failures of components lead to the occurrence of the failure condition. The safety team proposes two alternative architectures with redundancies:V2: two redundant MCUs and two redundant motors; V3: two redundant MCUs and a double winding motor. Their models and analyses are presented below.

	TABLE II EMA SYSTEM ARCHITECTURE AND SAFETY MODELS MATCHING (VARIANT 1), ITERATION 2. Type Model1 (SysML) Model2 (AltaRica 3.0) block main.EMASystem 1 main.EMASystem 1 block BallScrewAndNutAssembly BallScrewNutAssembly port AdaptedMechanicalRotPower vfFromGearbox port MechanicalTransmissionPower vfToEMAAileronJoint port forget evFailure port forget pLambda port forget vsWorking 3) Analysis: Minimal Cut Sets (MCS) 1 ElectricPower.evFailure 2 IncidenceSensor.evFailure 3 Instructions.evFailure 4 MCU.evFailure 5 Motor.evFailure 6 Gearbox.evFailure 7 BallScrewNutAssembly.evFailure 8 EMAAileronJoint.evFailure 9 EMAWingJoint.evFailure 10 Housing.evFailure B. EMA system variant 2 1) Modeling:

TABLE III EMA

 III SYSTEM ARCHITECTURE AND SAFETY MODELS MATCHING (VARIANT 2).

	Type	Model1 (SysML)	Model2 (AltaRica 3.0)
	block	EMASystem 2	EMASystem 2
	block	Gearbox	Gearbox
	port	MechanicalRotPower	vfFromMotor1
	port	MechanicalRotPower2	vfFromMotor2
	block	MCU1	MCU1
	port	ElectricalPower	vfFromElectricPower
	port	InstructionAndFeedback	vfFromInstructions
	port	MotorPosition	vfFromIncidenceSensor
	port	RegulatedElectricalPower vfToMotor
	port	forget	evFailure
	port	forget	pLambda
	port	forget	vsWorking
	block	MCU2	MCU2

	block	Motor1	Motor1
	port	MechanicalAction	forget
	port	MechanicalRotPower	vfToGearbox
	port	MotorPosition	IncidenceSensor1.vfToMCU
	port	RegulatedElectricalPower vfFromMCU
	port	forget	evFailure
	port	forget	pLambda
	port	forget	vsWorking
	block	Motor2	Motor2

TABLE IV EMA

 IV SYSTEM ARCHITECTURE AND SAFETY MODELS MATCHING (VARIANT 3).

	Type	Model1 (SysML)	Model2 (AltaRica 3.0)
	block	EMASystem 3	EMASystem 3
	block	DoubleWindingMotor	Motor
	port	MechanicalAction	forget
	port	MechanicalRotPower	vfToGearbox
	port	MotorPosition	IncidenceSensor.vfToMCU
	port	RegulatedElectricalPower1 vfFromMCU1
	port	RegulatedElectricalPower2 vfFromMCU2
	block	MotorShaft	
	block	MotorWinding1	Winding1
	block	MotorWinding2	Winding2