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Abstract: Remote sensing is a promising tool for detecting invasive alien 

plant species. Mapping and monitoring those species requires accurate 

detection. So far, most studies relied on models that are locally 

calibrated and validated against available field data. Consequently, 

detecting invasive alien species at new study areas requires the 

acquisition of additional field data which can be expensive and time-

consuming. Model transfer might thus provide a viable alternative. Here, 

we mapped the distribution of the invasive alien bryophyte Campylopus 

introflexus to i) assess the feasibility of spatially transferring 

locally calibrated models for species detection between four different 

heathland areas in Germany and Belgium and ii) test the potential of 

combining calibration data from different sites in one species 

distribution model (SDM). 

In a first step, four different SDMs were locally calibrated and 

validated by combining field data and airborne imaging spectroscopy data 

with a spatial resolution ranging from 1.8 m to 4 m and a spectral 

resolution of about 10 nm (244 bands). A one-class classifier, Maxent, 

which is based on the comparison of probability densities, was used to 

generate all SDMs. In a second step, each model was transferred to the 

three other study areas and the performance of the models for predicting 

C. introflexus occurrences was assessed. Finally, models combining 

calibration data from three study areas were built and tested on the 

remaining fourth site. In this step, different combinations of Maxent 

modelling parameters were tested. 

For the local models, the area under the curve for a test dataset (test 

AUC) was between 0.57-0.78, while the test AUC for the single transfer 

models ranged between 0.45-0.89. For the combined models the test AUC was 

between 0.54-0.9. The success of transferring models calibrated in one 

site to another site highly depended on the respective study site; the 

combined models provided higher test AUC values than the locally 

calibrated models for three out of four study sites. Furthermore, we also 

demonstrated the importance of optimizing the Maxent modelling 



parameters. Overall, our results indicate the potential of a combined 

model to map C. introflexus without the need for new calibration data. 

 

 

Opposed Reviewers:  

 

 



Dear Sir or Madam, 

 

We revised our manuscript entitled “Transferability of species distribution models for the 

detection of an invasive alien bryophyte using imaging spectroscopy data” according to the 

reviewers suggestions. 

 

We hope that our manuscript meets the requirements of the International Journal of Applied 

Earth Observation and Geoinformation and look forward to hearing from you. 

 

Yours sincerely, 

 

 

Sandra Skowronek  

(on behalf of all coauthors) 

 

*Cover Letter



Reviewer 1 

 

This manuscript presents a study on the transferability of models that predict the occurrence 

probability of an alien moss species in four different sites in Belgium and Germany. The authors 

present a rare dataset of having four hyperspectral datasets for four the test sites and similar ground 

truthing campaigns. The aim of the study was to test whether models created for one site would be 

yield better or similar results for another site, which was partly the case. I believe that this study is a 

good example for what is possible if multiple datasets are available, but they also did not really 

convince me that it makes sense to train a model at a very different site and then apply this model 

somewhere else (called simple transfer models). More interesting are the combined optimized results 

presented which show that in most of the cases the results were better than the original model, but 

also only marginally. Nevertheless, this study is an important step towards the idea of 

applying a well trained model to multiple sites in order to minimize costs and errors. 

  

The manuscript is in general well written, the english was improved a native speaker (I guess? see 

the acknowledgements) and the content is sound. Hence I vote for minor revisions. 

 

Reviewers comments Answers Changes in the manuscript 

In table 1, why do you use 

less plots for calibration 

then for validation? At least 

for Sylt and Averbode you 

have a Cal/Val ratio of 1/3. 

Usually people apply an 

80/20 or 60/40 ratio for the 

Cal/Val data. Ah - I just saw 

that you the Val-Data do 

consist of p and a 

plots...okay. but still the 

ratio is not standard. Please 

explain. 

We tried to apply a sampling scheme 
that is as efficient as possible. In a 
former publication we could show 
that reducing the number of 
calibration plots from 57 presence 
plots to about 22 presence plots for 
the Sylt study area did not 
significantly change the results. A 
similar finding was made in another 
study with spectral data. A relatively 
low number of calibration plots was 
thus found to be sufficient, if it covers 
the variety present in the study area. 
For validation plots, on the other 
side, the more the better. The more 
we have, the easier it is to 
understand how good the model 
really is and where it fails. We thus 
sampled as many validation plots as 
we could within a reasonable time 
frame of one or two weeks of field 
work (1 person). Also, for my 
dissertation I compared about 20 
previous studies on mapping invasive 
species using hyperspectral remote 
sensing data, and did not really see 
any consistent ratio of cal/val plots 
that all studies used. Some used less 
cal than val plots, some the same 
amount, and some less val than cal 
plots. 

Added sentence: While a 
relatively low number of 
calibration plots was found to 
be sufficient (see Skowronek 
et al. 2017), we used as 
many plots as we could 
gather within a reasonable 
timeframe for validation.  
 
 
 

Another question related to 

table 1. You have sampled 

"absence" plots, however 

Maxent generates absence 

data itself, right? These are 

Yes, Maxent can generate 
background data itself, but this is not 
the same as absence data. Maxent 
generates random points, which are 
only used to calibrate the model. But 
to validate the model, we need real 

Added sentence: In all four 
study areas, we collected 
presence data to calibrate 
the model and 
presence/absence data to 
validate the prediction.  

*Response to Reviewers



called "background", which 

you also mention in L168 

(3000 random points). Why 

do you need your absence 

plots if the algorithm will not 

use them? 

absences. We added a sentence to 
make this clearer. 
 
 

 L192-194 "assessed the 

amount of spectral variance 

in the different study sites 

by calculating the standard 

deviation across the whole 

spectrum for the 

background and calibration 

datasets" why did you do 

this? please explain to the 

reader, it might not be 

obvious to everybody. I also 

do not understand how you 

did this technically. Does 

this mean you calculated 

the sd in a window of 3x3? 

was the variability in the 

spectral range measured or 

spatially for each band? 

what for? Is little variation 

good or not so good for you 

aim? 

The spectral variance was calculated 
to have an estimate of the amount of 
variation/heterogeneity in both the 
background and calibration samples 
as this is known to have an effect on 
model transferability. It was obtained 
by calculating for every band the 
standard deviation over all 
background and calibration points, 
respectively. Please see paragraph 3 
of section 4.1 for more information on 
the effect of spectral variation on 
model transferability. 

We added  “for each band 
and“ on line 203 to clarify 
how this spectral variation 
was calculated 

One more question on the 

background points. In line 

204 you state that you use 

the default (10.000 points) 

but later on L212 and 213 

you talk about 9.000 and 

3.000 points. I find this 

pretty confusing. Could you 

try to make this part more 

clear? 

We used the default settings, so the 
10,000 background points for Steps I 
and II. For step III however, we are 
combining the data and thus also the 
background points. We tried using 
the full set of 3x10,000=30,000 
background points, but this has led to 
excessive computing time, so we 
reduced it by using a random subset 
of 3,000 points from each dataset, so 
that we have 3x3,000= 9,000 points.  
Indeed one sentence in the 
manuscript was wrong, stating that 
we always used 3,000 points. We 
corrected this sentence.We also 
moved the relevant sentence up in 
the paragraph to make it less 
confusing and added another 
sentence. 

We added the following 
explanations:  
 
“The background sample for 
each study site consisted of 
a large number of random 
points located within the 
biotope types of each study 
area” 
 
 
“For each of these models 
(192 in total) we used a 
selection of 9,000 
background points obtained 
by combining a randomly 
selected subset of 3,000 
background points per 
site.The lower number of 
background points was used 
due to limits in computing 
time.” 

L 215: "For Step I, we also 

derived the confusion 

matrices using kappa 

Yes, something got mixed up in that 
sentence. We did use kappa as a 
threshold to derive the presence-

“For Step I, we also derived 
the presence / absence map 
from the probability maps 



statistic as threshold to 

derive presence-absence 

maps from the probability 

maps." Here is also 

something wrong. You did 

not derive the confusion 

matrix using kappa, but of 

course the info correctly 

classified P/As. Did you 

optimize kappa for creating 

the probability maps? 

absence map (there are multiple 
thresholds in the “evaluate” function 
of the dismo package and kappa 
worked best). The sentence was 
revised. 

using kappa as threshold. 
We then also derived the 
confusion matrices and 
compared the overall 
accuracies (OA).” 

I also do not get the 

meaning of the spectral 

variability plots in Figure 4 

or better to say the 

relevance. for the 

calibration points, these are 

then locations at which the 

moss was present? Is the 

spectral variability 

The spectral variability plots were 
calculated to assess the range of 
conditions which appeared in the 
different study areas as it is known 
that this can have an effect on the 
performance when transferring 
models. Please see paragraph 3 of 
4.1 for an interpretation on the effect 
of this spectral variability.  

 

In Line 423 you mention 

that choosing an 

independent validation 

dataset is important. 

Independent in which 

sense? Validation data is 

always not the the same 

data as the calibration data, 

so the word "independent" 

is, to me at last, confusing. 

Do you mean spatially 

independent? please 

explain.  

With independent we mean that a 
different sampling scheme is applied. 
While it is necessary to use 
preferential sampling for the 
calibration dataset in order to sample 
all possible variations of the species 
occurrence, for the validation data, a 
random sampling approach should 
be the goal. In many studies, 
however, this is not the case, that’s 
why we point it out.  

Changed to 
“separate independent” 
 
 

L217 OAC -> OA (I never 

saw OAC before anywhere) 

please correct throughout 

the manuscript 

Yes, indeed. Done 



Fig.3 and all other maps. 

Your legend looks strange 

and they all differ between 

the maps, making them 

effectively not really 

comparable. I suggest 

having a unified legend for 

all maps and turn the 1.3 e-

12 simply into a zero. You 

should also better state in 

the caption that predictions 

are in percentage of 

occurrence probability of 

c.introflexus 

We agree that a common legend will 
make the comparison easier - we 
had first stretched it to make the 
differences within one prediction 
more visible, but indeed a unified 
legend is better for comparison. We 
modified the maps accordingly and 
revised the figure caption. 

Done, see new Figure 4 and 
Maps in Supplement 
 

L243: remove blank space 

after "details)" 

Ok Done 

L277: "calibration AUC 

values (between 0.94 and 

0.96)" maybe you should 

state that these values can 

be found in the appendix? 

This seems  
to be a misunderstanding, as there is 
no figure in the appendix that  
contains the calibration AUC values. 

 

L290: write four instead of 4 Ok  Done 

L291: were combined 

instead of was combined? 

Ok  Done 

L374: if these are 

lower...lower then what? 

please explain 

There is no fixed value we can give  
here as it depends on the target 
species as well as the other 
vegetation present in the pixel. 

Changed “lower” to “low” 

L396: please write out lq 

and lqhp - it is not clear 

here what these mean. 

Ok  Done, “mainly lq (linear and 
quadratic) and lqhp (linear, 
quadratic, hinge and 
product)”  

L418: One should always 

prevent/test for sampling 

bias. <- talking of sampling 

bias - this was not 

mentioned in the discussion 

at all. As you state here that 

this is an important issue, 

shouldn´t you include the 

sampling bias in your 

discussion as well (in 4.1 

and 4.2)? and also decide 

on whether to use prevent 

or test, prevent/test looks 

awkward. 

Indeed. Prevent for sampling bias 
makes more sense, so we deleted 
“/test for”. The sampling bias (spatial 
sorting bias, Hijmans et al. 2012) was 
calculated and the values are given 
in chapter 3. We also added a 
sentence to the discussion in chapter 
4.4. We think it fits better here than in 
chapters 4.1 and 4.2, as it is a factor 
contributing to uncertainty, even if it 
was found to be very low for this 
study. 

Changed to 
“mitigate sampling bias”. 
 
Added sentence: 
And while there was no 
sampling bias (spatial sorting 
bias, see chapter 2.3) for 
Sylt and Liereman, there 
was a relatively small bias 
for Kalmthout and Averbode. 

 



 

  

 

Reviewer 2 

 

This well-written manuscript deserves publication in the JAG journal. The objective was to evaluate 

the transferability of Maxent classification models for detecting one invasive species using 

hyperspectral APEX data. The manuscript adds to the previous publications by the authors in other 

journals related to the topic. 

  

In terms of revision, some important methodological aspects related to atmospheric correction and 

airborne data acquisition are missing, as detailed in my comments. The advantages of the Maxent 

classification over other conventional classification techniques require also clarification. In order to 

support the discussion of results, it is important to add reflectance spectra of the invasive species and 

of the background to inspect for spectral differences across sites. Finally, please, insert a Conclusions 

section. 

  

I added my comments sequentially with page numbering. However, it was just at the end of reading 

that I found out solutions and responses in the supplementary material for comments 6 and 11. 

Therefore, I suggest that the authors migrate some reflectance spectra (species and background) 

from the supplementary material (Last two figures; insert unit for wavelength) into Results, and 

discuss the spectra in the new proposed section (see comments 6 on the Results section). 

 

 

1. Abstract: It should be 

continuous (without 

paragraphs). 

Ok  Done 

2. Lines 141 to 148: In the 

discussion of Table 1, 

please, highlight the gaps 

between the flight campaigns 

and fieldwork activities (up to 

two years for the Kalmthout 

site) as well as the 

differences in spatial 

resolution between the 

campaigns. Add a line with 

the time of image acquisition 

(GMT) since significant 

differences in solar zenith 

angle can affect the 

reflectance across sites of 

the invasive species and of 

the background. Justify in the 

text why you think that such 

problems in the experimental 

design do not influence on 

your investigation. Are there 

any differences in 

phenological stages for the 

invasive species considering 

Ok, we added the time of the image 
acquisition in table 1 and highlighted 
the differences in spatial resolution 
and gaps between field work and flight 
campaigns in the accompanying 
paragraph. 
 
We did not observe a significant 
phenological difference between the 
dates when the image data was 
acquired. C. introflexus is a bryophyte 
that does not usually undergo major 
phenological changes between July 
and September, when our image data 
was acquired. We only observed 
changes later in the year after major 
rainfalls. 
 
Nevertheless, the time gap between 
image acquisition and field campaign 
could lead to a slight over or 
underestimation, especially on low 
cover plots. However, we expect the 
changes from one year to the next to 
be relatively small at the current stage 
of invasion. 
 

Added text 
The spatial resolution was 
highest for Sylt and lowest for 
Kalmthout. While for Sylt and 
Averbode, the calibration data 
was collected less than one 
month before or after the flight 
campaigns took place, the 
calibration data for Liereman 
was collected about one year 
after the flight, and the data for 
Kalmthout only two years after 
the flight. 
  
Sentence added to section 4.4: 
We did not observe a significant 
phenological difference between 
the dates when the image data 
was acquired. 
 
and 
 
And the time gap between 
image acquisition and field 
campaigns of about one year for 
Liereman and two years for 
Kalmthout may have led to a 



the dates of image 

acquisition? Please, clarify in 

the text. 

We thus estimate that neither the time 
gap between field campaign and 
image acquisition nor nor the timing of 
the image acquisition have a negative 
impact on our analysis. As for the 
effect of the spatial differences, please 
see discussion in section 4.1. 

slight over or underestimation of 
the abundance of C. introflexus 
on single plots. 

3. Line 143: In a study of 

imaging spectroscopy, it is 

important to mention the 

spectral resolution 

(bandwidth) of the APEX in 

the VNIR and SWIR spectral 

intervals. There was just a 

general mention about that in 

Abstract. 

We agree and modified the descriptive 
paragraph accordingly. 

Airborne imaging spectroscopy 
data, acquired by the Airborne 
Prism EXperiment (APEX) 
spectrometer was used within 
this study.  APEX is an airborne 
imaging spectrometer which 
collects information between 
380nm and 2500nm with a Full 
Width at Half Maximum 
(FWHM) ranging from 3 nm to 
12 nm (after spectral binning) in 
the visible and near-infrared 
spectral region, and from 9 nm 
to 12 nm in the SWIR region. 
Apex data were acquired  

4. Line 144: Please, add a 

few lines to clarify how the 

atmospheric correction was 

performed over the APEX 

data. For instance, what was 

the APEX band used for 

water vapor determination 

(940 nm or 1140 nm)? What 

was the selected atmosphere 

and aerosol models? How 

was the visibility determined? 

Is the standard APEX 

processing based on 

MODTRAN4? In short, 

provide more details on this 

important methodological 

step. 

We added the following description: 
 
 

The data were geometrically 

and atmospherically corrected 

using the standard processing 

applied to APEX (Sterckx et al., 

2016; Vreys et al., 2016)  at 

VITO’s Central Data Processing 

Center. The processing chain is 

based on the MODTRAN4 

software, in which the model 

atmosphere was set to “mid-

latitude summer” and the 

employed aerosol type was 

“rural”. The main atmospheric 

parameters (water vapor 

content and visibility) were 

derived from ground-based 

measurements using a 

Microtops sunphotometer and 

spectral ground control points, 

measured by means of an ASD 

spectrometer, were used as 

reference spectra. Where 

Microtops and/or ASD 

measurements were not 

available, all parameters were 

iteratively tuned to ensure a 

minimum spectral distortion in 

the water vapor absorption 

bands jointly with a high 

consistency between APEX 

spectra and reference spectra 



from available spectral libraries. 

After atmospheric correction,  

5. Lines 159-165: Please, 

mention the advantages of 

Maxent compared to others 

conventional classifiers that 

can work also as a one-class 

classifier (e.g., SAM, MTMF 

etc.). What are the main 

differences between them to 

justify Maxent selection? For 

instance, the concept of 

background is also used in 

the MTMF. 

A general advantage of Maxent is that 
it is well known to most ecologists, 
and easy to manipulate using the 
freely available standalone software. 
A specific advantage to SAM is that 
we only need to sample presences 
and absences of the target species, 
and do not need a lot of data for each 
endmember class present in the study 
area.  
As far as we know, MTMF is only 
readily available through ENVI, which 
is an expensive commercial software, 
which is usually not available to 
people working in nature 
conservation.  
In Skowronek et al. 2017 (Ecological 
Informatics) we also compared the 
performance of Maxent to SVM and 
BRT and found no major differences. 

Sentences added: 
General advantages of Maxent 
are that it is relatively easy to 
use and freely available, either 
through R or through its 
standalone software. Moreover, 
as a one-class classifier, it only 
requires presence data to be 
collected in the field for model 
calibration, which greatly 
reduces the amount of field 
work necessary. In Skowronek 
et al. 2017 we compared the 
performance of Maxent, Support 
Vector Machine and Boosted 
Regression Trees and found 
that all three classifiers allowed 
for the detection of the two 
target species with similar 
success rates. 
 
 

6. Line 228: To strength the 

manuscript and facilitate 

comprehension of the 

results, I suggest that the 

authors add a new short 

section (e.g., 3.1. Spectral 

reflectance of the invasive 

species and background 

across sites) to show, for 

each site, average APEX 

reflectance spectra of the 

plots having the invasive 

species and average curves 

of the background. I think this 

important to highlight the 

major spectral features of the 

invasive species detected by 

the sensor; the eventual 

spectral differences across 

sites due to phenology and 

gaps in data acquisition; and 

the eventual differences 

across sites between the 

backgrounds. These factors 

should be considered in the 

Discussion section. 

We agree that this would enhance 
readability and thus added a new 
section. 3.1 Spectral reflectance of the 
invasive species and background 
across sites and created a new figure 
3 which is a combination of former 
figure 4 and one of the supplement 
figures. 
 
Furthermore, spectral differences 
across sites due to phenology and 
gaps in data acquisition are now 
discussed in the uncertainties section 
(4.4) in greater detail. Please see 
answers to comment 13. 
 
For differences between backgrounds 
we also added more information, 
please see answers to comment 11. 
 
Additionally we also remade the figure 
in the supplement by inserted units for 
the wavelength and adding a legend. 
 
 

Text added to section 3.1  
 
Figure 3 shows the mean 
reflectance and the spectral 
variability for all four study sites 
for the calibration as well as the 
background data.  It is important 
to point out that the calibration 
spectra are averages of all 
calibration plots, which may 
contain very high or very low 
amounts of the target species. 
For the background data, it is 
important to note that this data 
may eventually also contain a 
few single data point where the 
target species is present, as this 
data is randomly selected. 
Overall, Sylt had higher mean 
reflectance values in the 
VIS/NIR, both for the calibration 
and background points. 
Averbode had the highest mean 
reflectance in the SWIR. 
Kalmthout on the other hand 
had consistently lower 
reflectance values.  The 
spectral variability within the 
calibration datasets was overall 
highest for Liereman. For Sylt 
and Averbode, we observed 
relatively high variability in the 
VIS/NIR and in the SWIR, 



respectively (Fig. 3). For the 
background points, Sylt showed 
the highest variability, followed 
by Liereman in the NIR and by 
Averbode in the SWIR. The 
Kalmthout calibration and 
background spectra contained 
only little spectral variation. 
 

7. Line 237: In Figure 3, 

please, insert the North 

arrow inside the figure. Add 

geographical coordinates. 

Ok Done, see Figure 4 

8. Line 240: Please, define 

the abbreviations and 

acronyms when they first 

appear in the text. After that, 

just use the abbreviations to 

save space in the text (for 

instance, SWIR). 

Ok Done 
 

9. Line 251: In Figure 4, what 

represents the three shaded 

portions of the figure? 

Interestingly, the bands with 

the largest values of 

importance are coincident 

with spectral intervals close 

to strong water vapor 

absorptions. Maybe you can 

use the shade to show 

spectral regions excluded 

from the analysis due to 

atmospheric absorption and 

noise. 

The shaded part is just a graphical 
feature to make the figure more 
readable. We changed it according to 
your suggestion. 
 
 

Done, see Figure 5 

10. Line 289: Figure 7 was 

misplaced in the text just 

after Figure 4. Please, 

correct. 

Oh yes indeed, will be corrected. Figures were placed in correct 
order. 

11. Line 301: In the true 

color composites of Figure 6 

and in the description 

between lines 169 and 170, it 

seems that the background 

composition (e.g., sand 

dunes, grasslands) for 

Maxent classification is not 

the same across the sites. If 

it is correct, please, add a 

Indeed the background composition is 
not identical for all four study sites - 
would be strange if it was. We added 
a paragraph to the methods section 
on the most frequently occurring 
background vegetation. However, as 
there is much more than one 
vegetation type in each background, 
we do not want to add a line to Table 
1, as this would be too much of a 
simplification of the real situation to 
reduce each area to one predominant 

 
Regarding the background 
vegetation, the following 
paragraph was added: 
 
While the most abundant 
vegetation types on Sylt include 
Empetrum nigrum dominated 
heathland making up about ⅔ of 
the study area, other important 
vegetation types include grey 
dunes vegetation, Erica-tetralix 



new line in Table 1 to clarify 

the predominant background 

for the Maxent classification 

on each site. Are the authors 

modelling the same invasive 

species over very different 

reflective backgrounds or are 

they mixed on each scene? 

How the reflectance of the 

predominant background 

affects classification results? 

Please, clarify these aspects 

in the text. 

background type (especially for the 
Belgian study sites, there are always 
several vegetation types making up 
nearly similar amounts of the 
background area, which cannot be 
easily summed up in one line). Also 
different classification schemes were 
used for the vegetation mapping in the 
different study sites, which further 
complicates the comparison - anyone 
interested in the details needs to 
consult the original biotope maps and 
classification schemes (references are 
given). How the different background 
affects the results is being discussed 
in section 4.1. 

and Ammophilia arenaria 
dominated areas. For the 
Belgian study sites, the most 
abundant biotope types sites 
include vegetation types 
dominated by Caluna vulgaris, 
Molinia caeruela and Erica 
tetralix. 
 
One Figure was moved frome 
the supplementary material to 
the new section 3.1 and 
explanations were added, see 
answer to comment 6. 
 

12. Line 301: In Figure 6, 

there is space to 

accommodate the legend at 

the upper left side of the 

figure without obliterating the 

results. 

Ok Done 

13. Line 425, discussion of 

uncertainties: In addition to 

the listed uncertainties, 

clarify if the differences in 

spatial resolution between 

the campaigns affected the 

results. Do the same for the 

time of image acquisition (it 

should mentioned in Table 1; 

GMT) and for possible 

differences in phenological 

stages of the species across 

sites. 

Spatial resolution: this point is 
discussed in section 4.1, but we 
added an additional sentence to 
section 4.4 (uncertainties) pointing to 
that section. 
 
Difference for time of image 
acquisition: We added a line in Table 
1 with the time in GMT and added a 
sentence to section 4.4 
 
Possible differences in phenological 
stages: The invasive bryophyte C. 
introflexus did not undergo any major 
phenological change across time, 
neither was there a pronounced 
difference across sites. We added a 
sentence to section 4.4. 

added sentences: 
We did not observe a significant 
phenological difference between 
the dates when the image data 
was acquired or between the 
different study sites. All imagery 
was acquired around noon local 
time (see table 1). We thus 
estimate that the timing of the 
image acquisition did not have 
any major impact on the results. 
A factor that did affect the 
results in a significant way was 
the different spatial resolution 
(see section 4.1 for details).   

14. Line 458: Define EnMAP, 

if not done before. 

Ok Done, “EnMAP (Environmental 
Mapping and Analysis 
Program)” 

15. Please, it is very 

important to add a 

Conclusions section. 

We added a conclusions section. Added section: 
 
5 Conclusions 
In this study we successfully 
transferred species distribution 
models for Campylopus 
introflexus which were 
calibrated at different sites using 
airborne imaging spectroscopy 
as explanatory variables. Our 
results demonstrate that model 



transfer success was 
determined by a combination of 
i) the spectral heterogeneity of 
the calibration dataset and how 
adequately it represents the 
spectral heterogeneity of the 
target dataset, ii) the spatial 
resolution of the calibration 
dataset as well as the iii) 
parametrization and complexity 
of the used model. As more 
remote sensing datasets 
become available, those 
techniques can improve model 
results or be used to avoid 
additional time-consuming field 
work. This is especially relevant 
for a time- and cost-efficient 
repetitive monitoring of invasive 
plant species, as it is impossible 
to frequently map invasive 
species over large scales using 
traditional field mapping 
techniques. However, we do 
need this type of information to 
be able to assess the spread of 
invasive species and manage 
them accordingly. This study 
therefore explores challenges 
related to model transfer and 
gives practical 
recommendations regarding 
data collection, data analysis 
and evaluation of the results. 

16. References: Please, 

revise them for missing 

information. Some 

conference papers could be 

replaced by journal papers 

from the same authors. This 

is the case of the study by 

Müllerová et al. (2016) from 

the ISPRS conference, which 

was published in the JAG 

journal: 

Müllerová et al. (2013). 

Remote sensing as a tool for 

monitoring plant invasions: 

Testing the effects....... Int. J. 

Applied Earth Observation 

and Geoinformation, 25: 55-

65. 

  

There are other references 

related to the topic in the 

Thanks for those suggestions! The 
references were revised for missing 
information. 
 
We integrated Robinson et al. 2016 
and Fernandes et al. 2014. Müllerova 
et al. 2013 does not support our 
statement, we decided to cite 
Müllerova et al. 2017 instead as it fits 
best. 

Sentence added to the 
discussion: 
However, a similar 
transferability approach could 
be applied to multispectral 
satellite data such as worldview-
2 or 3, which are readily 
available for larger areas, and 
have proven to be useful for 
mapping certain invasive plant 
species (e.g. Robinson et al. 
2016, Fernandes et al. 2014). 
 



JAG journal that you can 

eventually consider in the 

literature review or 

discussion of results: 

- Robinson et al. (2016). 

Testing the discrimination 

and detection limits of 

WorldView-2 imagery on a 

challenging invasive plant 

target.  Int. J. Applied Earth 

Observation and 

Geoinformation, 44: 23-30. 

- Fernandes et al. (2014). 

Optimal attributes for the 

object based detection of 

giant reed in riparian 

habitats: A comparative 

study between Airborne High 

Spatial Resolution and 

WorldView-2 imagery. Int. J. 

Applied Earth Observation 

and Geoinformation, 32: 79-

91. 

- Dorigo et al. (2012). 

Mapping invasive Fallopia 

japonica by combined 

spectral, spatial, and 

temporal analysis of digital 

orthophotos. Int. J. Applied 

Earth Observation and 

Geoinformation, 19: 185-195. 

  

Please, verify if these 

references are adequate or 

just ignore them, if the case. 

 

 

 



Highlights 

- An invasive alien bryophyte was mapped on four sites using hyperspectral data. 

- Transferred species distribution models sometimes outperformed local models. 

- High potential of combining field data to create a more general model. 

- Optimizing model parameters is very important for a successful transfer. 
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Abstract 20 

Remote sensing is a promising tool for detecting invasive alien plant species. Mapping and monitoring those 21 

species requires accurate detection. So far, most studies relied on models that are locally calibrated and 22 

validated against available field data. Consequently, detecting invasive alien species at new study areas 23 

requires the acquisition of additional field data which can be expensive and time-consuming. Model transfer 24 

might thus provide a viable alternative. Here, we mapped the distribution of the invasive alien bryophyte 25 

Campylopus introflexus to i) assess the feasibility of spatially transferring locally calibrated models for species 26 

detection between four different heathland areas in Germany and Belgium and ii) test the potential of 27 

combining calibration data from different sites in one species distribution model (SDM). In a first step, four 28 

different SDMs were locally calibrated and validated by combining field data and airborne imaging 29 

spectroscopy data with a spatial resolution ranging from 1.8 m to 4 m and a spectral resolution of about 10 30 

nm (244 bands). A one-class classifier, Maxent, which is based on the comparison of probability densities, 31 

was used to generate all SDMs. In a second step, each model was transferred to the three other study areas 32 

and the performance of the models for predicting C. introflexus occurrences was assessed. Finally, models 33 

combining calibration data from three study areas were built and tested on the remaining fourth site. In this 34 

step, different combinations of Maxent modelling parameters were tested. For the local models, the area 35 

under the curve for a test dataset (test AUC) was between 0.57-0.78, while the test AUC for the single 36 
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transfer models ranged between 0.45-0.89. For the combined models the test AUC was between 0.54-0.9. 37 

The success of transferring models calibrated in one site to another site highly depended on the respective 38 

study site; the combined models provided higher test AUC values than the locally calibrated models for three 39 

out of four study sites. Furthermore, we also demonstrated the importance of optimizing the Maxent 40 

modelling parameters. Overall, our results indicate the potential of a combined model to map C. introflexus 41 

without the need for new calibration data. 42 
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1 Introduction 57 

Remote sensing is a promising tool for the detection and monitoring of invasive alien plant species (Bradley, 58 

2013). Invasive alien plants can be identified from different remote sensing platforms like unmanned aerial 59 

vehicles (UAVs) (e.g. Michez et al., 2016; Müllerová et al., 2017), airborne platforms (e.g. Cheng, 2007; Mirik 60 

et al., 2013; Skowronek et al., 2017a, 2017b) or from satellites (e.g. Proctor et al., 2012; Somers and Asner, 61 

2013). In particular, imaging spectroscopy data hold a high potential due to their high spectral resolution, 62 

which allows differentiating characteristic species from the surrounding vegetation (He et al., 2011; Huang 63 

and Asner, 2009). 64 

The large majority of studies on mapping the distribution of invasive alien plant species have relied on 65 

models that are calibrated (trained) and validated (tested) using field data specific to a particular location 66 

(referred to hereafter as site-specific models). The spatial transfer of species distribution models might be a 67 

useful tool for mapping the distribution of invasive alien species in the following two situations: when limited 68 

resources are available to carry out field work and remote sensing data are available for a larger area and 69 

when the detection of recently invaded sites is of interest, but manual search of the area to calibrate a site-70 

specific model is not feasible. The transferability of species distribution models has been investigated in 71 

several recent studies which mainly evaluated the performance of different algorithms (Duque-Lazo et al., 72 

2016; Heikkinen et al., 2012; Wenger and Olden, 2012), or focused on the tuning of model settings (e.g. 73 

Moreno-Amat et al., 2015; Muscarella et al., 2014). While most of these studies relied on climatic, 74 

topographic, soil, or similar data as predictor variables, few studies have examined the success of model 75 

transfer using spectral data (with the exception of Tuanmu et al., 2011, for example). However, He et al. 76 

(2015) highlighted the potential of airborne hyperspectral remote sensing data in species distribution 77 

modelling due to its high spectral and relatively high spatial resolution as well as a high spatial coverage. 78 

One main challenge for model transferability is that individual models may be limited by site-specific 79 

information, causing the model to be overfit to a certain location (Anderson and Gonzalez, 2011; Moreno-80 

Amat et al., 2015). Jiménez-Valverde et al. (2011) suggest combining data from several locations to calibrate 81 

an overall species distribution model for invasive alien species to predict on a new area. One of the most 82 

frequently used algorithms for species distribution modelling is Maxent (Merow et al., 2013). Two important 83 

parameters govern the functionality of Maxent: the regularization multiplier (ß), and the number of 84 

considered feature classes to construct the model (fc) (Elith et al., 2011; Merow et al., 2013; Radosavljevic 85 

and Anderson, 2014). To reduce over-fitting and to generate a simpler and potentially more transferable 86 

model, we can increase ß and limit fc. Elith et al. (2011) mention that Maxent is relatively stable when 87 

dealing with correlated input variables compared with other methods (for example stepwise regression). 88 

Consequently, there is less of a need for pre-selection of predictor variables when using Maxent. However, 89 

the selection of model metaparameters is important for Maxent to perform optimally. Warren and Seifert 90 

(2010) proposed to use information criteria for model selection in order to avoid selecting overly complex 91 

models. 92 

In this study, we evaluated the transferability of Maxent models based on airborne imaging spectroscopy for 93 

detecting the invasive alien bryophyte Campylopus introflexus. This species was classified to be one of the 94 

100 worst invaders in Europe (DAISIE, 2015). As a relatively small and inconspicuous species lacking 95 

characteristic features like colourful flowers, it was chosen to show whether remote sensing is a useful tool 96 
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to detect such a species. Also, bryophytes constitute a largely understudied group of species among the 97 

invasive alien plants (Essl et al., 2014; Mateo et al., 2015). 98 

We use four different study sites located in Germany and Belgium where we collected independent 99 

calibration and validation datasets. This study builds further on the work of (Skowronek et al., 2017b) which 100 

used Maxent modelling (using default settings) to map the distribution of C. introflexus based on airborne 101 

imaging spectroscopy on the island of Sylt, Germany. Our research questions are: (1) How well can we 102 

transfer models from one site to another? (2) Does combining data from multiple study sites improve the 103 

prediction? (3) How do parameter settings affect model performance?  104 
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2 Materials and Methods 105 

2.1 Study areas and study species 106 

We used three sites from Belgium in this study: the dune areas within Kalmthoutse Heide (Ka; 51°24’00” N, 107 

4°26’00” E), Landschap de Liereman (Li; 51°20’00” N, 5°01’00” E), and Averbode Bos & Heide (Av; 51°02’30” 108 

N, 4°58’00” E). A fourth site, the dune areas of the island of Sylt (Sy; 54°55’00” N, 8°20’00” E), was located in 109 

north-western Germany. All study sites have a temperate climate. The study sites in Belgium are located 30-110 

60 km from one another, and have a distance of about 450-500 km to the island of Sylt. All four study sites 111 

are shown in Figure 1. 112 

 113 

 Figure 1: Study areas (a) Averbode Bos & Heide (Av); (b) Landschap de Liereman (Li); (c) Kalmthoutse Heide 114 

(Ka) and (d) Sylt (Sy). A true colour composite derived from the APEX data is used as background  115 

Within each study site, we limited our area of interest, using the available biotope maps (Instituut voor 116 

Natuurbehoud, 2016; LEGUAN, 2012; Natuurpunt, 2012) to identify areas where our target species 117 

C. introflexus might be present – mainly dune areas and a few grassland areas. The dunes on the island of 118 

Sylt are mainly coastal dunes, Kalmthout consists of inland dunes, and the majority of Averbode and 119 

Liereman was recently converted into heathland by cutting down planted pine forests. While the most 120 
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abundant vegetation types on Sylt include Empetrum nigrum dominated heathland making up about ⅔ of the 121 

study area, other important vegetation types include grey dunes vegetation, Erica-tetralix and Ammophilia 122 

arenaria dominated areas. For the Belgian study sites, the most abundant biotope types sites include 123 

vegetation types dominated by Caluna vulgaris, Molinia caeruela and Erica tetralix. Sylt covers an area of 124 

24.2 km2 and the Kalmthout study site covers 8.0 km2. The two other sites, Liereman and Averbode, are 125 

significantly smaller and cover 1.4 km2 and 1.2 km2, respectively. 126 

All study sites show high degrees of invasion by the heath star moss, C. introflexus. First introduced to Europe 127 

in 1941 (Richards, 1963), C. introflexus is known to mainly invade coastal and inland dunes and reduce the 128 

diversity of the native dune communities and potentially change succession rates (Biermann and Daniels, 129 

1997; Ketner-Oostra and Sýkora, 2004). Campylopus introflexus prefers acidic soils and benefits from 130 

nitrogen deposition. A promising management approach is to cover C. introflexus with sand through the re-131 

activation of dunes (Boxel et al., 1997; Ketner-Oostra and Sykora, 2000), but to date, almost no attempts 132 

have been made to manage C. introflexus occurrences within our study areas. 133 

 134 

2.2 Data acquisition 135 

Field and remote sensing data were acquired between 2013 and 2015 (Table 1). In each of the study areas, a 136 

stratified sampling approach was used to lay out a set of 3 m x 3 m calibration (presence) plots, while a 137 

random sampling approach was used for laying out validation plots (Fig. 1, Table 1). In all four study areas, 138 

we collected presence data to calibrate the model and presence/absence data to validate the prediction. 139 

While a relatively low number of calibration plots was found to be sufficient (see Skowronek et al. 2017), we 140 

used as many plots as we could gather within a reasonable timeframe for validation. For all plots, the cover 141 

of C. introflexus was recorded by dividing the plot in four equal parts and visually estimating and summing up 142 

the cover of C. introflexus on each of the subplots. For Liereman and Kalmthout, a differential GPS (Trimble 143 

GeoExplorer 6000) was used to determine the plot position and a differential correction was applied after 144 

data collection, while for Kalmthout and Averbode, no differential correction could be performed, as the 145 

device (Ashtech mobile mapper 10) did not allow for this feature. All positions are averages of at least 100 146 

measurements. 147 

 148 

Airborne imaging spectroscopy data, acquired by the Airborne Prism EXperiment (APEX) spectrometer were 149 

used within this study.  APEX is an airborne imaging spectrometer which collects information between 150 

380nm and 2500nm with a Full Width at Half Maximum (FWHM) ranging from 3 nm to 12 nm (after spectral 151 

binning) in the visible and near-infrared spectral region, and from 9 nm to 12 nm in the SWIR region. Apex 152 

data were acquired by the Flemish Institute of Technology (VITO, Mol, Belgium) with different spatial 153 

resolution ranging between 1.8 m x 1.8 m and 4 m x 4 m, depending on the study site (Table 1). The spatial 154 

resolution was highest for Sylt and lowest for Kalmthout. While for Sylt and Averbode, the calibration data 155 

was collected less than one month before or after the flights campaigns took place, the calibration data for 156 

Liereman was collected about one year after the flight, and the data for Kalmthout only two years after the 157 

flight.  158 
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The data were geometrically and atmospherically corrected using the standard processing applied to APEX 159 

(Sterckx et al., 2016; Vreys et al., 2016) at VITO’s Central Data Processing Center. The processing chain is 160 

based on the MODTRAN4 software (Berk et al., 1999) in which the model atmosphere was set to “mid-161 

latitude summer” and the employed aerosol type was “rural”. The main atmospheric parameters (water 162 

vapor content and visibility) were derived from ground-based measurements using a Microtops 163 

sunphotometer and spectral ground control points, measured by means of an ASD spectrometer, were used 164 

as reference spectra. Where Microtops and/or ASD measurements were not available, all parameters were 165 

iteratively tuned to ensure a minimum spectral distortion in the water vapor absorption bands jointly with a 166 

high consistency between APEX spectra and reference spectra from available spectral libraries. After 167 

atmospheric correction, bands from both ends of the spectra and bands disturbed by water absorption were 168 

removed (bands between 1320-1447 nm and 1762-1988 nm: selected based on visual interpretation, i.e. 169 

noisy profile). Thus, a total of 244 spectral bands (between 426 nm and 2425 nm) were used in the 170 

subsequent analyses. 171 

Table 1: Characteristics of the field data and the remote sensing data for each study site, p – presence plots, 172 

a – absence plot 173 

 174 

Data Sylt Averbode Liereman Kalmthout 

Flight dates Jul-14 Sep-14 Sep-14 Jul-13 

Fieldwork dates Jul/Aug-14 Aug-14 & May-15 Sep-15 Aug-15 

Number of calibration 

plots (presence plots) 

57 27 49 50 

Number of validation plots 

(presence and absence 

plots) 

150 

(48 p, 102 a) 

93 

(66 p, 27 a) 

51 

(28 p, 23 a) 

50 

(35 p, 15 abs) 

GPS device Trimble/ 

Mobile 

mapper 

Ashtech Mobile 

mapper 

Trimble, post-

processed 

Trimble, post-

processed 

Flight time (GMT) 11:21-12:13 12:48-13:12 12:21-12:39 11:05-11:18 

Pixel size APEX data 1.8 m x 1.8 

m 

2.8 m x 2.8 m 2.8 m x 2.8 m 4 m x 4 m 

Plot size 3 m x 3 m 

 175 

2.3 Data analysis 176 
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All species distribution models were built with Maxent (Phillips et al., 2004), a one-class classifier, which 177 

differentiates the target species from a background sample based on the comparison of probability densities. 178 

Maxent makes an estimate of the ratio between the conditional density of the predictors at the presence 179 

sites and the unconditional density of the predictors across the study area, where the distance between 180 

those densities is minimized. The logistic output of the model represents an estimate of the probability that 181 

the species is present in a certain location. For detailed information on the model, see Phillips et al. (2006) 182 

and Elith et al. (2011). General advantages of Maxent are that it is relatively easy to use and freely available, 183 

either through R or through its standalone software. Moreover, as a one-class classifier, it only requires 184 

presence data to be collected in the field for model calibration which greatly reduces the amount of field 185 

work necessary. In Skowronek et al. (2017a) we compared the performance of Maxent, Support Vector 186 

Machine and Boosted Regression trees and found that all three classifiers allowed for the detection of the 187 

two target species with similar success rates. 188 

Thus, for calibrating the Maxent models we used presence-only data (calibration dataset collected in the 189 

field) and a random background sample with the 244 spectral bands serving as predictor variables. The 190 

background sample for each study site consisted of a large number of random points located within the 191 

biotope types of each study area, where the target species was potentially present (mostly dune areas and 192 

natural grasslands). To delineate this area, we used existing biotope maps (INBO, 2016; LEGUAN, 2012; 193 

Natuurpunt, 2012). To evaluate model performance, we used the independent validation dataset, containing 194 

both presence and absence plots. The number of calibration and validation plots for each study site is given 195 

in Table 1. The value of each calibration and validation plot is a weighted mean of the pixel values located 196 

within the boundaries of each 3 m x 3 m field plot. 197 

Within Maxent, there are two important modelling parameters. The first parameter is the regularization 198 

multiplier (ß), which may reduce over-fitting as it ensures that the empirical constraints are not being fit too 199 

rigorously and by penalizing the model proportionally to the coefficients magnitude (Merow et al. 2013). The 200 

other parameter is the feature class (fc), of which Maxent currently has six: linear (l), product (p), quadratic 201 

(q), hinge (h), threshold (t) and categorical. For more information on the feature classes please see Phillips et 202 

al. (2006) and Elith et al. (2011). When using the default settings, ß is 1 and the number of allowed feature 203 

classes (fc) depends on the number of calibration plots. 204 

Prior to starting the analysis, we tested the calibration and validation data for spatial sorting bias. It is 205 

defined as the “difference between the geographic distance from testing-presence to training-presence sites 206 

and the geographic distance from testing-absence (or testing-background) to training-presence sites” 207 

(Hijmans, 2012). This spatial sorting bias can have a large impact on model performance (Hijmans, 2012; 208 

Syfert et al., 2013). Consequently, we followed Hijmans and Elith (2015) by calculating an indicator for spatial 209 

sorting bias. If the indicator is 1, it means there is no bias, whereas an indicator of 0 means that a strong bias 210 

exists. 211 

Next, three different types of models were constructed, as outlined in Figure 2. In Step I, we calibrated and 212 

tested a separate model for each study site using the calibration and validation datasets for that particular 213 

site (simple modelling, Fig. 2). In this step, we also compared the relative importance of the different bands 214 

(predictor variables) in the resulting model and assessed the amount of spectral variance in the different 215 

study sites by calculating the standard deviation for each band and across the whole spectrum for the 216 
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background and calibration datasets. Subsequently, in Step II, for each study site we predicted the 217 

distribution of our target species using the models of the three other study areas generated in Step I, 218 

respectively. We evaluated the predictions by comparing them with the independent validation data sets 219 

(simple transfer, Fig. 2). This resulted in a total of 12 different validations, three for each study site, as each 220 

Step I model was applied on the three other areas. Finally, in Step III, we combined the calibration data and 221 

the background points of three different study sites and used these to build a single global model, which was 222 

then projected on the remaining fourth study site (combined transfer, Fig. 2), for each combination of sites. 223 

 224 

 225 

Figure 2: Workflow for each study area using one study site (Sylt) as an example  226 

We made use of the default settings for Maxent (ß=1, fc=default, 10,000 background points) for Step I and II 227 

(simple modelling and simple transfer), whereas in Step III (combined transfer) we also tested the effect of 228 

varying the model parameters fc and ß, as our results using the default settings indicated a highly complex 229 

and possibly overfit model (see section 3.3). We tested ß values between 0.5 and 4 at 0.5 intervals, as values 230 

above the default have been found to produce better results (Radosavljevic and Anderson, 2014; Warren et 231 

al., 2014) as well as different combination of the feature classes linear (l), quadratic (q), hinge (h), product 232 

(p), and threshold (t), the model being restricted to the following feature classes: lq; lqp; h; qh; qhp; qhpt. 233 

For each of these models (192 in total) we used a selection of 9,000 background points obtained by 234 

combining a randomly selected subset of 3,000 background points per site. The lower number of background 235 

points was used due to limits in computing time. The Akaike information criterion (AIC) was used to select 236 

the best model (Warren and Seifert, 2010).  237 

To evaluate model performance, we calculated the area under the curve for the independent validation data 238 

(test AUC) for all models. Additionally, for Step I, we also derived the presence / absence map from the 239 

probability maps using kappa as threshold. We then also derived the confusion matrices using the 240 

independent validation dataset and compared the overall accuracies (OA), sensitivity and specificity. For 241 

Steps II and III, we calculated a transferability index TrAUC (Heikkinen et al., 2012) from the obtained test 242 
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AUCs, which is a simple ratio between the test AUC for the transferred model (from Step II or III) and the test 243 

AUC for the non-transferred simple model (from Step I) for each study site. 244 

TrA C  
testA CSite1 Site2

testA CSite2 Site2
      (1) 245 

When TrAUC is >1, the transferred model performs better than the original model for that site, when it is <1, 246 

the transferred model shows lower performance. Moreover, we compared the resulting probability maps 247 

visually in order to evaluate the model performance. 248 

All analysis were carried out using R Statistical Software 3.3.1 (R Development Core Team, 2016), QGIS 2.16 249 

(QGIS Development Team, 2016) and pktools (Kempeneers, 2016). We mainly used the r-packages dismo 250 

(Hijmans et al., 2016), raster (Hijmans, 2016) and rgdal (Bivand et al., 2016).  251 
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3 Results 252 

3.1 Spectral reflectance of the calibration and background plots across sites 253 
 254 
Figure 3 shows the mean reflectance and the spectral variability for all four study sites for the calibration 255 

plots as well as the background plots. It is important to point out that the calibration spectra are averages of 256 

all calibration plots, which may contain very high or very low amounts of the target species. For the 257 

background data, it is important to note that this data may eventually also contain a few single data point 258 

where the target species is present, as this data is randomly selected. 259 

Overall, Sylt had higher mean reflectance values in the VIS/NIR, both for the calibration and background 260 

points. Averbode showed the highest mean reflectance in the SWIR while Kalmthout on the other hand had 261 

consistently lower reflectance values.  The spectral variability within the calibration datasets was overall 262 

highest for Liereman. For Sylt and Averbode, we observed relatively high variability in the VIS/NIR and in the 263 

SWIR, respectively (Fig. 3). For the background points, Sylt showed the highest variability, followed by 264 

Liereman in the NIR and by Averbode in the SWIR. The Kalmthout calibration and background spectra 265 

contained only little spectral variation. 266 

 267 

 268 
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Figure 3: Mean reflectance and spectral variability of the calibration and the background data (measured as 269 

the standard deviation per band for all plots) in a spectral range of 380 – 2500 nm. 270 

3.2 Simple modelling and band importance  271 

Site-specific models for mapping C. introflexus (Step I) resulted in OA values between 0.59 and 0.82 and test 272 

AUC values between 0.57 and 0.85 (Table 2), with the range of AUC values 0.6-0.7, 0.7-0.8, 0.8-0.9 and 0.9-1 273 

meaning poor, fair, good, and excellent model accuracy, respectively. Note that AUC values below 0.5 means 274 

predictions are opposite to expectations. OA values were highest for the larger study sites, Sylt and 275 

Kalmthout, and lower for Liereman and Averbode (Table 2). The value indicating spatial sorting bias was 1 for 276 

Sylt and Liereman, meaning that there was no spatial sorting bias, and 0.88 for Kalmthout and 0.87 for 277 

Averbode, indicating a relatively small bias. Calibration AUC values were between 0.87 and 0.93. An example 278 

of this simple modelling for Averbode can be found in Fig. 4. 279 

 280 

Figure 4: Predictions of the simple modelling (Step I) for Averbode showing the occurrence probability of 281 

Campylopus introflexus; see Supplement 1 for all predictions for Steps I, II and III.    282 

For three study sites (Liereman, Sylt, Kalmthout), the most important spectral band for modelling the 283 

distribution of C. introflexus was located in the short wave infrared (SWIR, between 1500 and 2500 nm) at 284 

1988 nm (Fig. 5). Plots with high covers of C. introflexus have higher reflectance values in the SWIR, 285 

indicating a lower water content of those plots compared to the surrounding vegetation (see Skowronek et 286 
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al. 2017b for details). For Averbode, most important bands were located in the near infrared (NIR, between 287 

700 and 1400 nm). High variable importance was also indicated for a few bands in the visible (VIS, between 288 

400 and 700 nm), but the importance of this region was generally lower. 289 

 290 

Figure 5: Relative band importance for the simple modelling (Step I) for each study site. Gray shaded areas 291 

indicate bands that were removed from the data set prior to the analyses. 292 

 293 

3.3 Simple transfer 294 

When evaluating the model calibrated on one study site and applied on the validation dataset of a different 295 

site (Step II, simple transfer), test AUC ranged between 0.45 and 0.85 (Table 2). For a total of six transfers, 296 

the resulting transferability index TrAUC was larger than one, indicating that the transfer model was more 297 

successful than the original model, while it was below one for a total of five transfers, indicating a less 298 

successful transfer (Fig. 6). The models calibrated for Sylt and Liereman showed slightly higher test AUC 299 

values when transferred to most other study sites, while results for the Kalmthout model were mixed. 300 

Transferring the Averbode model to the other study areas always resulted in lower test AUCs. 301 

The visual evaluation confirmed that models with a TrAUC around or above one displayed similar patterns and 302 

that maximum probabilities were within the same range as the respective original model for each area. The 303 

predictions of models calibrated for Sylt and Liereman were generally very similar compared to the 304 

predictions of the original model (Fig. 7 and Supplement 1). On the other hand, models with a lower TrAUC 305 
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tended to have different patterns and lower maximum probabilities. Predictions resulting from the Averbode 306 

model showed the least similar pattern when transferred. In general, all transferred models showed 307 

smoother transitions than the original predictions. The full predictions for all study areas are provided in 308 

Supplement 1.  309 

Table 2: Test AUC values for all 3 steps. For Step III – optimized, the test AUC values correspond to the test 310 

AUC values of those models with the lowest AIC value. For Step I, OA as well as sensitivity and specificity are 311 

displayed. 312 

Step  Model  Applied on 

    Averbode Kalmthout Liereman Sylt 

Step I  

 

(single-site 

model) 

 AUC 

OA 

Sensitivity 

Specificity 

 0.61  

0.63 

0.62 

0.67 

0.85 

0.82 

0.86 

0.73 

0.57  

0.59 

0.50 

0.70 

0.78  

0.76 

0.69 

0.79 

Step II  

(simple 

transfer) 

 AUC Averbode  - 0.79 0.45 0.77 

 AUC Kalmthout  0.58 - 0.57 0.82 

 AUC Liereman  0.67 0.89 - 0.80 

 AUC Sylt  0.72 0.84 0.62 - 

Step III 

(transfer of 

multi-site 

models) 

 AUC Default  0.65 0.78 0.56 0.71 

 AUC Optimized  0.70 0.90 0.54 0.83 

 313 

3.4 Combined transfer 314 

For models based on calibration data from three different study sites (Step III, combined transfer), using the 315 

default settings resulted in very high calibration AUC values (between 0.94 and 0.96), while test AUC values 316 

were between 0.56 and 0.78 (Table 2). As those models were calibrated with a higher total number of 317 

presence plots, more feature classes were allowed for by the Maxent default settings (compared to the 318 

models in Step I and II). TrAUC values ranged between 0.91 and 1.07 (Fig.6). 319 

Varying ß and fc, we observed the tendencies demonstrated in Figure 8. We found that ß values above the 320 

default of 1 mostly resulted in higher test AUC values, while the trends in fc were less obvious. Based on the 321 

AIC, we selected the combined model with optimized parameter settings for each of the study sites, which 322 
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resulted in test AUC values ranging between 0.54 and 0.9. The resulting TrAUC ranged between 0.95 and 1.15, 323 

and thus had a higher median than any of the simple transfer or than the combined transfer using the 324 

default settings, as shown in Figure 7.                                                           325 

A visual evaluation of the resulting probability maps (see complete predictions in Supplement 1 and subsets 326 

in Figure 7) showed that the combined models with an optimized parameter setting tended to show 327 

smoother, more gradual transitions than the combined model with the default parameter settings. 328 

Generally, they also predicted larger areas with presence of C. introflexus. Especially for Sylt, the optimized 329 

prediction very much resembled the original prediction generated in Step I. 330 

 331 

Figure 6: The transferability index (TrAUC) for the four different models for each study site applied on the 332 

respective three other study sites (STEP II) as well as the combined model (STEP III) using the default settings 333 

(combined default), and the combined model using the optimized parameter settings (combined optimized) 334 

applied on the respective study site that was not included in calibrating the model. The transferability index 335 

is a ratio between the test AUC values of the transferred model and the local model (see section 2.3 for 336 

details). A value of TrAUC > 1 indicates a better model than the model from Step I (simple modelling). 337 

 338 
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 339 

Figure 7: Model results for the four different study areas using three different approaches (Step I, II and III). 340 

The number in the right corner of each subset indicates the rank according to test AUC values, 1 being the 341 

highest and 6 the lowest rank. The test AUC indicates how well the model performs, while the probability 342 
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shown in the maps indicates how much C. introflexus is present within each subset according to the different 343 

model predictions. 344 

3.5 Comparison of simple modelling, simple transfer and combined transfer 345 

The simple transfer of models calibrated in one study site and validated on one another (Step II, simple 346 

transfer) showed that for all study areas at least one of the transferred models outperformed the original 347 

models (Step I, simple modelling). For the simple transfer, visual interpretations confirmed that especially 348 

the Sylt and Liereman models showed good performances when transferred to other sites; the Averbode 349 

model showed very low performances at all other study sites, and Kalmthout models performed better than 350 

the local model for one area. The combined transfer models with optimized parameter settings (Step III, 351 

combined transfer) outperformed the large majority of the simple transfer models as well as the combined 352 

transfer using the default settings for three study areas (Fig. 6). Moreover, three optimized combined models 353 

all had a transferability index >1, indicating that they performed similar or better than the original model 354 

calibrated in the same area. 355 

 356 

Figure 8: Effect of changing the Maxent parameter ß and feature class (fc) on the observed test AUC values 357 

for the combined models (Step III) created to map the invasive bryophyte C. introflexus in a dune habitat in 358 

four different study sites. Data from three study sites were combined to generate the model and testing 359 

model performance on the respective fourth site. 360 

4 Discussion 361 

4.1 How successful is the model transfer and how do the characteristics of the input data affect model 362 

performances? 363 
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Projecting species distribution models to new areas – testing their transferability in space – is an important 364 

topic in species distribution modelling (Heikkinen et al., 2012; Randin et al., 2006), which could be used for a 365 

time- and cost-efficient large scale mapping of invasive alien plant species. Several factors can influence the 366 

transferability of models using imaging spectroscopy data as predictor variables. First, model transferability is 367 

likely to be affected by the amount of spectral variation in the model, which depends on the complexity and 368 

heterogeneity of the vegetation in the respective target site. Several studies have discussed how the choice 369 

of the background influences the prediction for Maxent (Merow et al., 2013). As a result, model 370 

transferability greatly depends on the area selected for background sampling, the embedded heterogeneity 371 

in the spectral signals of the co-occurring vegetation, as well as the phenological stage of the vegetation. The 372 

latter plays a role as the reflectance signal of vegetation is largely determined by biochemical and biophysical 373 

properties of the canopy. As these properties are subject to change with the phenological development of 374 

the vegetation over the course of the year, spectral differences between the target species and the 375 

background vegetation vary. This is especially true for some invasive alien plant species, where the 376 

phenology differs substantially from that of the surrounding vegetation (Bradley, 2013). Transfer of a model 377 

to a new site should thus consider the phenological stages of the vegetation at the time of data acquisition. 378 

This could partly explain the generally lower test AUC values for Averbode and Liereman site, where the 379 

remote sensing data was collected Mid-September, while the remote sensing data for Sylt and Kalmthout 380 

was collected Mid-July. 381 

Andrew and Ustin (2008) showed that the detectability of invasive alien species is highly dependent on the 382 

specific environment of the study site. Hence, it is important to note that Maxent models and other 383 

modelling techniques used in species distribution modelling are statistical or correlative-based models that 384 

can only be transferred within the range of the calibration data (cf. interpolation). Predicting to areas outside 385 

of the range of the calibration data (cf. extrapolation), on the other hand, will potentially lead to a number of 386 

issues, which require a rigorous assessment (Elith and Leathwick, 2009; Jiménez-Valverde et al., 2011). In this 387 

study, we found that at least one of the transferred models (simple transfer) outperformed the local model 388 

(simple modelling). Furthermore, the more generalized model (combined transfer with optimized parameter 389 

settings) outperformed most of the simple transfers. These findings may seem rather surprising at first 390 

glance, as most previous studies on the potential model transferability indicate that models have a weaker 391 

performance when they are applied to a new area (e.g. Barbosa et al., 2009; Heikkinen et al., 2012; Randin et 392 

al., 2006). 393 

However, as shown in Figure 3 and the additional figure in Supplement 2, the range of conditions covered by 394 

the models with good transferability for the simple transfer are larger than the range of conditions available 395 

in the new area where those models are transferred and thus perform better than the original models of the 396 

focal area. Hence, most of the successful transfers are typical cases of interpolations and thus consistent with 397 

our findings. On the other hand, if the presence plots do not adequately represent the variability of the 398 

spectral signal of the target species, a clear distinction might be difficult. This could partly explain the poor 399 

performance of the Averbode model when applied to other sites (Step II) and its completely different use of 400 

spectral bands: Averbode shows the most monotonic vegetation and a more sparse vegetation cover than 401 

the other study sites. The transfer of the Averbode model is thus a good example of extrapolating beyond 402 

the range of conditions for which it was calibrated. The relatively higher performance of the Sylt and 403 

Liereman models, however, could be explained by the higher spectral variability which was embedded in the 404 



19 

    

 

 

calibration and background dataset used to calibrate the Maxent model (Fig. 3). It might also explain the 405 

success of the combined model, which automatically covers a more comprehensive set of conditions than 406 

any single model, thus increasing the probability of model interpolation at the expense of model 407 

extrapolation. 408 

Another point is that the spectral and spatial resolution as well as the quality of the remote sensing data 409 

could influence the results (He et al., 2011). If these are low, the signal of the target species might be less 410 

pronounced. While the spectral resolution was similar for all study sites, the spatial resolution varied. The 411 

relatively lower performance of the Kalmthout model and the higher performance of the Sylt model could 412 

also be explained by a relatively low/high spatial resolution: 4 m x 4 m and 1.8 m x 1.8 m respectively. 413 

Those findings suggest that for the simple transfer, models based on remote sensing data with a higher 414 

spatial resolution, which were calibrated in spectrally more heterogeneous areas and which correctly 415 

identified the spectral band areas that are important for the species, are likely to perform well when 416 

transferred to new areas. On the other hand, one has to be careful when transferring datasets that contain 417 

less spectral heterogeneity, and have a lower spatial resolution, as these may not correctly identify the 418 

reflectance signal that represents the target species. It also suggests that combining data from different 419 

study sites may improve the overall model performance and limit the cases of model extrapolation and thus 420 

should be considered if data from multiple sites are available. 421 

4.2 How do different model parameters affect models’ performance? 422 

Our results show that the parameter settings for Maxent highly affect the model performance in a combined 423 

modelling approach, and that models with an optimized parameter combination (based on minimizing the 424 

AIC values) outperform models using the default settings (except for Liereman). Generally, using a ß-value 425 

higher than the default and varying fc produced models with a high transferability. We found that the choice 426 

of fc was a very important factor in determining the model performance. The same effect was shown by 427 

Moreno-Amat et al. (2015), while Syfert et al. (2013) concluded that the variation of fc only has a minor 428 

effect on the model performance. Using only linear features did not produce the best results, as also shown 429 

by Anderson and Gonzalez (2011), who compared models using only linear features with models using linear 430 

and quadratic features. Based on the AIC values, a restriction to hinge features produced the best models, 431 

while the highest test AUC values were found for different feature classes; mainly lq (linear and quadratic) 432 

and lqhp (linear, quadratic, hinge and product) depending on the model, as shown in Figure 6. Other studies 433 

found that using less feature classes generally produces simpler models (Merow et al., 2013), which do not 434 

necessarily perform less well. For example, Elith et al. (2011) found similar performance for using only hinge 435 

features compared to using all possible feature classes. 436 

Our finding that larger ß-values mostly lead to a higher model performance agrees with existing literature. 437 

Most authors recommend using ß-values between 1 and 5 (Merow et al., 2013; Moreno-Amat et al., 2015; 438 

Radosavljevic and Anderson, 2014). Warren et al. (2014), however, used a range of 0 to 15, and stated that a 439 

wide range of different ß-values was used for the optimal models selected using AIC. Shcheglovitova and 440 

Anderson (2013) found that for small sample sizes, it is best to couple complex features (allow for more 441 

feature classes) with higher regularization (higher ß). The findings highlight the importance of understanding 442 

the critical role of parameter tuning and model selection, which can drastically alter the resulting predictions. 443 
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4.3 Recommendations 444 

Summarizing our findings in section 4.1 and 4.2 and the results of previous studies, we recommend 445 

implementing the following strategies for transferring species distribution models which are based on 446 

imaging spectroscopy data: 447 

Concerning the input data: 448 

i) The calibration data should adequately represent the spectral heterogeneity of the target species 449 
and the surrounding vegetation. If available, data from different sites should be combined. 450 

ii) Transfer should be made using data with the same or a slightly higher spatial resolution than the 451 
target data set, and should be collected within the timeframe when the vegetation is in a similar 452 
phenological stage. 453 

iii) One should always mitigate sampling bias. 454 

Concerning analysis:  455 

iv) The effect of variable selection/reduction of the dimensionality of the input data should be tested. 456 

v) Model parameters should be optimized (for Maxent by varying ß and testing different fc). 457 

Concerning output evaluation: 458 

vi) The evaluation of the prediction with a separate independent validation dataset should always be 459 
accompanied by a careful and sceptical visual examination by (local) experts. 460 

4.4 Uncertainties, future research needs and potential applications 461 

The impact of reducing the number of predictor variables was not investigated in this study, as Maxent has 462 

shown to be less affected by collinearity issues than some other classifiers (Elith et al., 2011). However, 463 

Warren et al. (2014) found that the variable selection had a larger effect than changing the regularization 464 

parameter and recent remote sensing studies suggest that reducing the number of input variables by using 465 

spectral indices (Tuanmu et al., 2011) or using reflectance-derived information on plant traits instead of 466 

reflectance spectra is likely to improve model performance (Feilhauer et al., 2017). As those approaches 467 

require complex additional processing steps, which are not in line with the scope of this study, which aims at 468 

a simple, reproducible approach, we did not test the effect within this study. However, we acknowledge that 469 

this question should be addressed in future research. 470 

For all areas, there was a time lag of a few weeks to several months between the remote sensing acquisition 471 

and the fieldwork campaign, which may cause a slight under or overestimation in the species cover.  This is 472 

especially true for Liereman and Kalmthout. However, we did not observe a significant phenological 473 

difference between the dates when the image data was acquired or between the different study sites. All 474 

imagery was acquired around noon local time (see table 1). We thus estimate that the timing of the image 475 

acquisition did not have any major impact on the results. A factor that did affect the results in a significant 476 

way was the different spatial resolution (see section 4.1 for details).  477 
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 478 

Additional uncertainties may occur due to the different GPS devices that were used. While we used devices 479 

with differential correction for data collection in Liereman and Kalmthout, the devices used in Averbode and 480 

Kalmthout did not have this option, which may led to larger position uncertainties on those study sites in 481 

addition to the position uncertainties in the remote sensing data. Furthermore, our validation datasets, 482 

particularly for Kalmthout and Liereman, were relatively small. We chose to still work with these datasets as 483 

having to deal with a small amount of occurrences represents a real-world scenario for the (early) detection 484 

of invasive alien plant species, where informed decisions have to be made with a limited amount of data. 485 

However, collecting larger field datasets for validation might further enhance our understanding of the 486 

model performances and transferability success (Bean et al., 2012). Another important factor influencing the 487 

model are the soil reflectances, as some of the plots contain quite a high amount of bare soil. We did not 488 

separately assess the influence of the soil reflectance due to a lack of adequate data, but doing so could 489 

enhance the understanding of the different model performances. Finally, while there was no sampling bias 490 

(spatial sorting bias, see chapter 2.3) for Sylt and Liereman, there was a relatively small bias for Kalmthout 491 

and Averbode. 492 

A simple transfer approach can be useful in the context of an early detection of invasive alien plant species. 493 

In case remote sensing data with a similar resolution is available for an area, applying a model that was 494 

formerly created for another dataset with similar vegetation composition might enable us to detect recently 495 

invaded spots without having to manually search the whole area first in order to find enough spots to 496 

calibrate a model for that area. For widely distributed species, such a model transfer might give us a good 497 

first overview of the general distribution patterns and may guide following research or management 498 

activities. 499 

While we currently may not have very many situations where multiple imaging spectroscopy datasets are 500 

available for the same study species in different regions to build a combined model, this might change in the 501 

near future with the launch of hyperspectral satellite missions, such as EnMAP (Environmental Mapping and 502 

Analysis Program), where imaging spectroscopy data with a 30 m x 30 m resolution will be available 503 

worldwide. While this spatial resolution is certainly too coarse for mapping C. introflexus, it might be 504 

interesting for mapping larger species or vegetation types. However, a similar transferability approach could 505 

be applied to multispectral satellite data such as WorldView-2 or 3, which are readily available for larger 506 

areas, and have proven to be useful for mapping certain invasive plant species (e.g. Fernandes et al., 2014; 507 

Robinson et al., 2016). 508 

For a large scale mapping of C. introflexus, more research should be conducted on the usefulness of such 509 

multispectral satellite data that might provide the necessary spatial and spectral resolution at lower costs 510 

than the airborne hyperspectral data used in this study. For a cost-efficient mapping of C. introflexus at 511 

smaller scales, the feasibility of mapping the species using multispectral data collected with unmanned aerial 512 

vehicles (UAV) should be tested. Furthermore, a similar transferability approach could be applied for a large 513 

remote sensing dataset where field data is only available within a few smaller subsets of the area. Our study 514 

indicates a good model transferability using imaging spectroscopy data, but more research is necessary to 515 

test model transferability for different species, different biotope types and different available spectral data 516 

types. 517 
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5 Conclusion 518 

In this study we successfully transferred species distribution models for Campylopus introflexus which were 519 

calibrated at different sites using airborne imaging spectroscopy as explanatory variables. Our results 520 

demonstrate that model transfer success was determined by a combination of i) the spectral heterogeneity 521 

of the calibration dataset and how adequately it represents the spectral heterogeneity of the target dataset, 522 

ii) the spatial resolution of the calibration dataset as well as the iii) parametrization and complexity of the 523 

used model. As more remote sensing datasets become available, those techniques can improve model 524 

results or be used to avoid additional time-consuming field work. This is especially relevant for a time- and 525 

cost-efficient repetitive monitoring of invasive plant species, as it is impossible to frequently map invasive 526 

species over large scales using traditional field mapping techniques. However, we do need this type of 527 

information to be able to assess the spread of invasive species and manage them accordingly. This study 528 

therefore explores challenges related to model transfer and gives practical recommendations regarding data 529 

collection, data analysis and evaluation of the results. 530 

 531 
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Supplement 1 

Occurrence probability of Campylopus introflexus 
according to the model predictions made in Step I 
(simple modelling), Step II (simple transfer) and 
Step III (combined transfer) 
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Supplement 2 

Reflectances of the calibration and background 
plots for all four study sites: A – Averbode, B – 
Kalmthout, C – Liereman and D – Sylt. The yellow 
line shows the mean reflectance of the calibration 
plots for each site. 

Supplementary Material 2
Click here to download Supplementary Material: Supplement_2.pdf

http://ees.elsevier.com/jag/download.aspx?id=170379&guid=48d1d71a-181c-45de-b2c6-02dbd8ffd6ee&scheme=1


0.0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000 2500
Wavelength [nm]

R
ef

le
ct

an
ce

AverbodeA

0.0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000 2500
Wavelength [nm]

R
ef

le
ct

an
ce

KalmthoutB

0.0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000 2500
Wavelength [nm]

R
ef

le
ct

an
ce

LieremanC

0.0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000 2500
Wavelength [nm]

R
ef

le
ct

an
ce

SyltD

Background
Calibration

Background
Calibration

Background
Calibration

Background
Calibration


