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Imaging spectroscopy is a powerful tool for mapping chemical leaf traits
at the canopy level. However, covariance with structural canopy properties
is hampering the ability to predict leaf biochemical traits in structurally het-
erogeneous forests. Here, we used imaging spectroscopy data to map canopy
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level leaf nitrogen (Nmass) and phosphorus concentrations (Pmass) of a tem-
perate mixed forest. By integrating predictor variables derived from airborne
laser scanning (LiDAR), capturing the biophysical complexity of the canopy,
we aimed at improving predictions of Nmass and Pmass. We used partial
least squared regression (PLSR) models to link community weighted means
of both leaf constituents with 245 hyperspectral bands (450 - 2450 nm) and
38 LiDAR-derived variables. LiDAR-derived variables improved the model’s
explained variances for Nmass (R2

cv 0.31 vs. 0.41, % RMSEcv 3.3 vs. 3.0)
and Pmass (R2

cv 0.45 vs. 0.63, % RMSEcv 15.3 vs. 12.5). The predictive
performances of Nmass models using hyperspectral bands only, decreased
with increasing structural heterogeneity included in the calibration dataset.
To test the independent contribution of canopy structure we additionally fit
the models using only LiDAR-derived variables as predictors. Resulting R2

cv

values ranged from 0.26 for Nmass to 0.54 for Pmass indicating considerable
covariation between these biochemical traits and forest structural properties.
Nmass was negatively related to the spatial heterogeneity of canopy density,
whereas Pmass was negatively related to canopy height and to the total cover
of tree canopies. In the specific setting of this study, the importance of
structural variables can be attributed to the presence of two tree species,
featuring structural and biochemical properties different from co-occurring
species. Still, existing functional linkages between structure and biochem-
istry at the leaf and canopy level suggest that canopy structure, used as
proxy, can in general support the mapping of leaf biochemistry over broad
spatial extents.

1 Introduction
Plant traits are important indicators of ecosystem functioning and are widely used in
ecological research to detect responses to environmental change (Chapin, 2003; Garnier
et al., 2007; Kimberley et al., 2014) or to quantify ecosystem services (Lamarque et al.,
2014; Lavorel et al., 2011). Biochemical traits like leaf nitrogen and phosphorus content
respond to changing environmental conditions, such as soil nutrients or climate (Di Palo
and Fornara, 2015; Sardans et al., 2015) and are key factors related to important ecolog-
ical processes including net primary production and litter deiosition (Melillo et al., 1982;
Ollinger et al., 2002; Reich, 2012). Temporal trends, like increasing N:P ratios caused
by nitrogen deposition can serve as indicators for ecosystem health and sustainability
(Jonard et al., 2015; Talkner et al., 2015). Using leaf traits to answer questions related
to ecosystem functioning often requires scaling from the leaf to the plant community or
ecosystem level (Masek et al., 2015; Suding et al., 2008). Due to the fact that certain leaf
biochemical traits are closely linked to the reflectance signature of leaves (Kokaly et al.,
2009) the use of imaging spectroscopy has proved to be an efficient method for scaling
and the prediction of these traits across large spatial scales (Homolová et al., 2013). By
far, most studies relating foliage biochemistry to airborne imaging spectroscopy data
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focused on leaf nitrogen (e.g. Dahlin et al., 2013; Huber et al., 2008; Martin and Aber,
1997; Wang et al., 2016). But also other biochemical leaf ingredients like chlorophyll,
cellulose and lignin (Curran et al., 1997; Schlerf et al., 2010; Serrano et al., 2002) and
even micronutrients like iron and copper (Asner et al., 2015; Pullanagari et al., 2016)
have been successfully related to imaging spectroscopy data. Compared to leaf nitrogen,
mapping of leaf phosphorus concentrations received less attention (but see Asner et al.,
2015; Porder et al., 2005; Pullanagari et al., 2016).
The link between leaf biochemistry and reflectance established in optical remote sens-

ing applications strongly depends on the observational level. At the leaf level, nitrogen
concentrations, for example, are directly expressed in the spectral signal. For dried and
ground samples, characteristic absorption features can be found in the shortwave in-
frared (SWIR) region of the electromagnetic spectrum. The absorption of radiation in
the SWIR can be attributed to nitrogen bonds in organic compounds primarily of leaf
proteins (Kokaly et al., 2009). In fresh leaves the nitrogen concentration is addition-
ally strongly related to absorption in the visible part of the spectrum (VIS) (Asner and
Martin, 2008), which can be attributed to the correlation between chlorophyll and leaf
nitrogen (Homolová et al., 2013; Ollinger, 2011). At the canopy level, spectral reflectance
is strongly influenced by canopy structure (Asner, 1998; Gerard and North, 1997; Rauti-
ainen et al., 2004). Thus, the estimation of leaf traits from canopy reflectance is more
complex due to the confounding effects of structural properties like crown morphology,
leaf area index (LAI), leaf clumping or stand height (Ali et al., 2016; Simic et al., 2011;
Xiao et al., 2014). Consequently, variability in canopy structure can strongly influence
the accuracy of nitrogen estimations from remote sensing (Asner and Martin, 2008). On
the other hand, canopy structure has been found to explain part of the relation between
reflectance and canopy nitrogen. This relation is revealed by a strong importance of
reflectance in the near infrared (NIR) for mapping canopy nitrogen reported by previ-
ous studies (Martin et al., 2008; Ollinger et al., 2008). Reflection in the NIR region is
dominated by multiple scattering between leaves of the canopy, and thus very sensitive
to variation in canopy structure (Knyazikhin et al., 2013; Ollinger, 2011). Covariation
between canopy structure and nitrogen was found across different types of forest ecosys-
tems and hence points at the existence of a functional link between canopy structure
and biochemical composition. However, the foundation of this functional link has not
been fully understood.
In this study, we aim at scaling leaf level measurements of mass based leaf nitrogen

(Nmass) and phosphorus content (Pmass) to the canopy scale for a temperate mixed for-
est. To capture the forest’s diversity in terms of tree species, age distribution and canopy
structure we propose to explicitly integrate information on forest structure derived from
airborne laser scanning (Light Detection And Ranging, LiDAR) into the empirical mod-
els. Airborne LiDAR data can depict the 3D structure of the vegetation and has been
successfully used to map forest attributes like the leaf area index and standing biomass
(Fassnacht et al., 2014; Korhonen et al., 2011; Zolkos et al., 2013). The benefit of LiDAR-
derived information on forest structure for mapping of canopy biochemistry has not been
assessed yet. We argue that the integration of structural properties allows for a better
acquisition of leaf chemical traits in heterogeneous forests canopies. We furthermore
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expect that LiDAR data can help to understand expected covariation between canopy
structural properties and biochemical leaf traits. Specifically, we aim at: (1.) improving
predictions of Nmass and Pmass using imaging spectroscopy through the integration of
LiDAR-derived information on forest structure and (2.) finding out which structural
canopy properties correlate with Nmass and Pmass in canopies of mixed forests.

2 Materials and Methods
2.1 Study area
The study area is the forest of Compiègne (northern France, 49.370◦ N, 2.886◦ E), cov-
ering an area of 144.2 km2. This lowland forest is located in the humid temperate
climate zone with a mean annual temperature of 10.3◦Cand mean annual precipitation
of 677mm. The soils cover a range from acidic nutrient-poor sandy soils to basic and
hydromorphic soils (Closset-Kopp et al., 2010). The forest mainly consists of even-aged
managed stands of beech (Fagus sylvatica), oaks (Quercus robur, Quercus petraea) and
pine (Pinus sylvestris) growing in mono-culture as well as in mixed stands, frequently
intermingled with European hornbeam (Carpinus betulus) and ash (Fraxinius excelsior)
(Chabrerie et al., 2008). Stands are covering a range from early pioneer stages to more
than 200-year-old mature forests. As a result of thinning activities and windthrow the
forest is characterized by frequent canopy gaps which are often filled by the American
black cherry (Prunus serotina), an alien invasive tree species in central Europe. Prunus
serotina is in some parts also highly abundant in the upper canopy of earlier pioneer
stages.

2.2 Field data
Field data were acquired from 50 north-facing field plots (25m × 25m) established in
July 2014. Of those plots, 44 plots were randomly selected from an initial set of 64
field plots established in 2004 during a previous field study by Chabrerie et al. (2008).
Six additional plots were selected to include stands in earlier stages of forest succession,
aiming to cover the entire range of structural canopy complexity. The plots covered
all main forest stand types including mixed tree species stands in different age classes
(supplementary material, Tab. S1). In each plot we recorded the diameter at breast
height for all trees and shrubs higher than 2m.
In July 2015, we sampled leaves from the most abundant tree species making up at

least 80% of the basal area in one plot. This resulted in up to five sampled species per
plot. For each species in each plot, we took three independent samples, if possible from
different individuals. Taller trees were sampled by shooting branches using shotguns
(Marlin Model 55 Goose, Marlin Firearms Co, Madison, USA and Winchester Select
Sporting II 12M,Winchester, Morgan, USA) with Buckshot 27 ammunition (27 × 6.2mm
pellets), aiming at single branches (Aerts et al., 2017). Samples from smaller trees were
taken using a pole clipper. In both cases leaves from the upper part of the crown were
preferably chosen. Trees growing in canopy gaps were sampled in the center of these
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gaps, in order to collect the most sunlit leaves from these individuals. For broadleaved
trees, each sample consisted of 10 to 15 undamaged leaves, depending on leaf size. The
samples of the only coniferous tree species P. sylvestris consisted of at least 20 needles
from both the current and the last growing season. In total, we collected 328 leaf samples
from nine different tree species. Leaves were put in sealed plastic bags and stored in
cooling boxes. At the end of each field day samples were weighed, and then dried at
80◦C for 48 hours.
Back from the field, leaves were milled prior to the analysis. Nmass was measured

applying the Dumas method using a vario MACRO element analyzer (Elementar Anal-
ysensysteme, Hanau, Germany). Pmass was measured using an inductively coupled
plasma-optical emission spectrometer (ICP-OES) (Varian 725ES, Varian Inc., Palo Alto,
CA, USA). For each field plot, we calculated community weighted mean values for Nmass

and Pmass, taking the basal area of each species in the corresponding plot as the weight.
The relative basal area is a good approximation for relative canopy cover of the tree
species co-occurring in a forest stand (Cade, 1997; Gill et al., 2000). The relative canopy
cover corresponds to the contribution of each species to the reflectance signal of a mixed
forest canopy. Although field samples were collected one year after the acquisition of
remote sensing data, we consider our field data set as a solid basis for the prediction of
Nmass and Pmass. Previous studies indicate that in temperate tree species there are no
remarkable differences in leaf chemical contents between two consecutive years (Reich
et al., 1991; Smith et al., 2003). Furthermore, Nmass in deciduous broadleaved species
typically shows only little variation during the mid-growing season (McKown et al.,
2013; Niinemets, 2016; Reich et al., 1991) and remains stable under drought conditions
(Grassi et al., 2005; Wilson et al., 2000). The latter point is noteworthy, because the
early summer of 2015 was dryer compared to the year 2014.

2.3 Remote sensing data
We used airborne imaging spectroscopy data (284 bands, 380 nm – 2500 nm) acquired
by the Airborne Prism Experiment (APEX) spectrometer with a spatial resolution of
3m × 3m, and airborne discrete return LiDAR data with an average point density of 23
points per m2, both covering the entire study area. APEX data were acquired on July
24, 2014 (9:56 – 11:25 UTC + 2h) at a flight height of 5400m by the Flemish Institute of
Technology (VITO, Mol, Belgium). The data, consisting of 12 flight lines, were delivered
geometrically and atmospherically corrected using the standard processing chain applied
to APEX recorded images (Sterckx et al., 2016; Vreys et al., 2016). Bands from both ends
of the spectra and bands disturbed by water absorption were deleted prior to the analysis.
In total, we included 245 spectral bands between 426 nm and 2425 nm for subsequent
analyses. We applied a Normalized Differenced Vegetation Index (NDVI) mask in order
to exclude values from pixels with bare soil and ground vegetation (Asner et al., 2015).
For this purpose, we calculated NDVI values for each pixel and excluded pixels with
a NDVI below 0.75. For all remaining pixels we applied a brightness normalization to
reduce the influence of canopy shades on the spectral signal (Feilhauer et al., 2010).
LiDAR points were recorded in February 2014 at leaf-off conditions by Aerodata (Lille,
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France) using a Riegl LMS-680i with a maximum scan angle of 30◦and a lateral overlap
of neighboring flight lines of 65%. Average flight height during LiDAR data acquisition
was 530m resulting in a beam diameter of about 0.265m. The LiDAR data were de-
livered including a classification of ground and vegetation returns and a digital terrain
model (DTM). Height values of LiDAR points were normalized, by subtracting values of
the underlying DTM. Vegetation returns were then aggregated into a grid with a cell size
of 3m × 3m, taking the grid matrix of the imaging spectroscopy data as reference. For
each pixel we calculated 19 different LiDAR-derived variables based on point statistics
resulting in 19 raster layers. Calculated LiDAR-derived variables included basic sum-
mary statistics (e.g. maximum height) based on the height values of LiDAR points in
each grid cell and inverse penetration ratios representing the fractional vegetation cover
within given height thresholds (Tab. 1) (Ewald et al., 2014). Penetration ratios were
calculated using the following formula:

vch12 = (nh2 − nh1)/nh2 (1)

where vch12 is representing the vegetation cover within the height thresholds h1 and h2
(h1 < h2) within one grid cell. nh1 and nh2 represent the sum of all LiDAR points below
the given height thresholds h1 and h2, respectively.

Table 1 Variables calculated from LiDAR point clouds in 3m × 3m resolution. For the use in partial
least squares regression models, variables were aggregated into a grid with a cell size of 24m × 24m,
by calculating mean and standard deviation.

LiDAR Metric Abbreviation Description
Minimum min_h_mean; min_h_sd Basic statistics
Maximum max_h_mean; max_h_sd based on the
Mean mean_h_mean; mean_h_sd height values of
Standard deviation sd_h_mean; sd_h_sd vegetation LiDAR
Variance var_h_mean; var_h_sd points
Coefficient of variation cov_h_mean; cov_h_sd
10th percentile perc10_h_mean; perc10_h_sd
25th percentile perc25_h_mean; perc25_h_sd
50th percentile perc50_h_mean; perc50_h_sd
75th percentile perc75_h_mean; perc75_h_sd
90th percentile perc90_h_mean; perc90_h_sd
Fractional cover 0.5m – 2m fcover_05_2_mean; fcover_05_2_sd Inverse penetration
Fractional cover 0.5m – 60m fcover_05_60_mean; fcover_05_60_sd ratios representing
Fractional cover 2m – 6m fcover_2_6_mean; fcover_2_6_sd an estimate for
Fractional cover 2m – 60m fcover_2_60_mean; fcover_2_60_sd fractional cover of
Fractional cover 6m – 10m fcover_6_10_mean; fcover_6_10_sd the vegetation
Fractional cover 6m – 60m fcover_6_60_mean; fcover_6_60_sd within given height
Fractional cover 10m – 20m fcover_10_20_mean; fcover_10_20_sd thresholds
Fractional cover 20m – 60m fcover_20_60_mean; fcover_20_60_sd

From both imaging spectroscopy and LiDAR raster layers, we extracted values from
all pixels overlapping with the 50 field plots to be used as input to the statistical models.
For each plot, we calculated the weighted mean values of 245 hyperspectral bands and
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19 LiDAR-variables (Tab. 1) from the extracted cell values, using the percent overlap
of each cell with the plot area as weight. Similarly, we calculated the weighted standard
deviation for LiDAR-derived variables which represent a measure of spatial heterogeneity
of these variables.
For prediction we aggregated the pixels of the imaging spectroscopy and LiDAR raster

layers to a grid with a pixel size of 24m × 24m, calculating the mean and the standard
deviation (for LiDAR-derived variables only) of all aggregated cells. This finally resulted
in a dataset containing 245 spectral bands and 38 LiDAR-derived variables (mean and
standard deviation).

2.4 Model calibration and validation
For both response variables, Nmass and Pmass, we built predictive models using the
extracted values from the raster layers at plot locations as predictors. We calculated
partial least squares regression (PLSR) models with a step-wise backward model selection
procedure implemented in the R package autopls (R Core Team, 2016; Schmidtlein et al.,
2012). The number of latent variables was chosen based on the lowest root mean squared
error (RMSE) in leave-one-out cross-validation. Before model calibration predictors were
normalized, dividing each predictor variable by its standard deviation.
To test the benefit of LiDAR-derived data for the prediction of community weighted

means of Nmass and Pmass at the canopy level we fit two sets of models for each re-
sponse variable, one incorporating the hyperspectral bands only and a second one using
a combination of hyperspectral bands and LiDAR-derived variables as predictors. To
test the independent contribution of LiDAR data on the predictions, we additionally fit
a third set of models for both Nmass and Pmass including only LiDAR-derived variables
as predictors. Nmass values were natural log transformed prior to the model calculations.

The model calculations and predictions were embedded in a resampling procedure
with 200 permutations, in order to reduce the bias in model predictions, yielding to a
better comparison between the three sets of models. In each permutation, a subsample
of 40 out of the 50 field plots was randomly drawn without replacement and used for
model calibration and validation. Each model was used to generate a prediction map
with a grid size of 24m × 24m, resulting in 200 prediction maps for each response
variable and each of the three predictor combinations used, respectively. From these
maps we calculated a median prediction map and the associated coefficient of variation
(CV), representing the spatial uncertainty of model predictions (Singh et al., 2015).
For the assessment of the predictive performance of the models, we calculated the

mean Pearson r-squared as well as the absolute and normalized root mean squared error
(RMSE) between predicted and observed values of each data subset. The same perfor-
mance measures were calculated for each data subset in leave-one-out cross-validation
data. For Nmass, r-squared values and RMSE were calculated based on the log-transformed
dataset. The normalized RMSE was calculated by dividing the RMSE by the mean value
in the response dataset. r-squared and RMSE values were used to compare the perfor-
mances of models using only hyperspectral bands or a combination of hyperspectral
bands and LiDAR-derived variables as predictors, for Nmass and Pmass respectively.
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Model performance is affected by the number of variables included, in the case of a
PLSR the number of latent variables. To check for such an effect we grouped the cor-
responding models according to the number of latent variables included and compared
the r-squared values for each group separately (supplementary material, Fig. S1).

3 Results
Field plots were located in forest stands with heights ranging from 3 to 40m and LAI
values ranging from 1.7 to 5.9 (supplementary material, Tab. S2). Plot-wise community
weighted mean values for Nmass and Pmass ranged from 13.8 to 25.4 g·kg−1 and from
0.82 to 1.93 g·kg−1, respectively. Nmass of P. serotina and P. sylvestris were significantly
different from all other species (supplementary material, Fig. S2 and, Tab. S3). Con-
trary, we observed no differences in measured Nmass between. F. sylvatica, Q. robur and
C. betulus. Pmass differed significantly between all species except between C. betulus and
Q. robur (supplementary material, Fig. S2). Models combining structural vegetation
attributes, derived from airborne LiDAR, with imaging spectroscopy improved predic-
tions of community weighted mean values for Nmass and Pmass compared to models
using imaging spectroscopy data solely (Tab. 2, Fig. 2). In the combined Nmass models,
hyperspectral bands had a significantly higher contribution (p < 0.001) to the variance
explained, compared to LiDAR-derived variables (Fig. 1). By contrast, in Pmass models,
LiDAR-derived variables showed a significantly higher contribution (p < 0.001). With
respect to the selected spectral bands we observed only marginal differences between
models including LiDAR-derived variables and models not including them (Figs. 3, 4,
5, 6).

Table 2 Results of PLSR models for Nmass and Pmass from 200 bootstraps. Predictors: used
predictor variables being either, hyperspectral bands (HS) or LiDAR-derived variables; # LV: mean
number of latent variables; # Var: mean number of selected predictor variables; R2

cal: mean coefficient
of determination in calibration; R2

cv: mean coefficient of determination in validation; RMSEcal:
average root mean squared error in calibration; RMSEcv: average root mean squared error in
leave-one-out cross-validation

Response Predictors #LV #Var R2
cal R2

cv RMSEcal RMSEcv RMSEcal RMSEcv
[%] [%]

Nmass∗ HS 5.8 98 0.47 0.31 0.09 0.09 2.9 3.3
± 0.10 ± 0.14 ± 0.01 ± 0.01

HS & LiDAR 5.7 43 0.55 0.41 0.08 0.09 2.7 3.0
± 0.12 ± 0.16 ± 0.01 ± 0.01

LiDAR 3.5 8 0.39 0.26 0.09 0.10 3.1 3.4
± 0.08 ± 0.09 ± 0.01 ± 0.01

Pmass HS 6.3 42 0.59 0.45 0.15 0.18 13.1 15.3
± 0.15 ± 0.16 ± 0.02 ± 0.02

HS & LiDAR 6.9 38 0.73 0.63 0.13 0.14 10.8 12.5
± 0.08 ± 0.10 ± 0.02 ± 0.02

LiDAR 3.7 9 0.62 0.54 0.15 0.17 12.6 14.0
± 0.08 ± 0.10 ± 0.01 ± 0.01

∗natural log-transformed
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Figure 1 Relative contribution of hyperspectral bands (HS) and LiDAR variables to the variance
explained in PLSR models for Nmass and Pmass expressed as proportion of the total VIP (Variable
Importance in Projection) score.

For Nmass the average R2
cv values resulting from leave-one-out cross-validation for each

bootstrap model increased from 0.31 to 0.41 whereas the mean relative RSME decreased
only moderately (see Tab. 2) when adding LiDAR-derived variables. Models fitted
by LiDAR-derived predictors solely resulted in a mean R2

val value of 0.25. The most
important LiDAR-derived variables in the models predicting of Nmass were, according
to VIP values, related to the horizontal variation of canopy cover (fcover_05_60_sd,
fcover_2_6_sd, fcover_6_10_sd, fcover_6_60_sd) (Figs. 7, 8). The most important
spectral bands were located in the VIS and the SWIR between 2000 and 2400 nm, irre-
spective of whether only imaging spectroscopy or a combination of imaging spectroscopy
and LiDAR data was used (Fig. 3).
For Pmass, average R2

cv values resulting from leave-one-out cross-validation for each
bootstrap model increased from 0.45 to 0.63 and the mean relative RSME decreased
from 15.3 to 12.5 (see Tab. 2), when LiDAR-derived predictors were included. Models
fitted by LiDAR-derived predictors solely resulted in a mean R2

cv value of 0.54. Re-
gression coefficients for the most important LiDAR-derived predictors, according to the
relative VIP, indicated a negative relation between Pmass and the fractional cover of trees
larger than 6m (fcover_6_60_mean) (Figs. 7, 8). Moreover, important LiDAR-derived
variables indicated a negative relation of Pmass to the stand height (max_h_mean,
perc90_h_mean, mean_h_mean) (Figs. 7, 8). Additionally, fcover_2_6_mean, related
to the cover of shrubs, was the most important variable in Pmass models using LiDAR-
derived variables solely (Fig. 8). Important hyperspectral bands were distributed across
the whole spectrum with a pronounced peak around 730 nm (Fig. 4). The permutation
of the calibration data according to the main forest types revealed that the success of
Nmass and Pmass models was strongly dependent on two forest types being included (Fig.
9). Nmass models showed poor predictive performances when P. sylvestris stands were
not included in the calibration dataset. Similarly, the absence of P. serotina dominated
stands resulted in poor predictive performance of Pmass models. This observation was
consistent regardless of whether hyperspectral or LiDAR data were used as predictors.
Additionally, model performances were strongly influenced by the variance in canopy
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predictions. The figures show results from models using hyperspectral bands (HS, top), LiDAR-derived
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highlights different forest types represented by dominant tree species.

height and gap fraction of field plots included in each data permutation (Fig. 10).
Pmass models performed better with increasing variance in both structural properties.
This contrasted with Nmass where the performance of imaging spectroscopy models de-
creased with increasing variation in canopy height and gap fraction. The performance of
Nmass models was less affected by structural variation, when including LiDAR-derived
variables (Fig. 10).
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Figure 3 Mean VIP (Variable Importance in Projection) values of hyperspectral bands and
LiDAR-derived variables resulting from 200 PLSR models for the prediction of Nmass. The top panel is
showing the results from models using hyperspectral bands only, bottom panels display results from
models using a combination of hyperspectral bands and LiDAR-derived predictors. Gray areas indicate
the range between the 10th and the 90th percentiles. The bottom right panel is displaying mean VIP
values of used LIDAR variables. For simplification LIDAR variables were grouped into four classes
representing the vegetation cover (Fractional cover), the horizontal variability of vegetation cover
(Fractional cover SD), LiDAR height metrics (Height), and the horizontal variability of LiDAR height
metrics (Height SD).

M
ea

n 
V

IP
 (
H

S
)

M
ea

n 
V

IP
 (
H

S
 &

 L
iD

A
R

)

500 1000 1500 2000 2500

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

Wavelength [nm]

Pmass
LiDAR variable group

●

●

●

●

Fractional cover

Fractional cover SD

Height

Height SD

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

LiDAR variables

Figure 4 Mean VIP (Variable Importance in Projection) values of hyperspectral bands and
LiDAR-derived variables resulting from 200 PLSR models for the prediction of Pmass. The top panel is
showing the results from models using hyperspectral bands only, bottom panels display results from
models using a combination of hyperspectral bands and LiDAR-derived predictors. Gray areas indicate
the range between the 10th and the 90th percentiles. The bottom right panel is displaying mean VIP
values of used LIDAR variables. For simplification LIDAR-derived variables were grouped into four
classes representing the vegetation cover (Fractional cover), the horizontal variability of vegetation
cover (Fractional cover SD), LiDAR height metrics (Height), and the horizontal variability of LiDAR
height metrics (Height SD).
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model calculations for predicting Nmass. The top panel is showing the results from models using
hyperspectral bands only, bottom panels display results from models using a combination of
hyperspectral bands and LiDAR-derived variables. Gray areas indicate the range between the 10th and
the 90th percentile. The bottom right panel is displaying mean PLSR coefficients of used
LiDAR-derived variables. For simplification LiDAR-derived variables were grouped into four classes
representing the vegetation cover (Fractional cover), the horizontal variability of vegetation cover
(Fractional cover SD), LiDAR height metrics (Height), and the horizontal variability of LiDAR height
metrics (Height SD). LiDAR variables are displayed in ascending order by variable importance.
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Figure 6 Mean PLSR Coefficients of hyperspectral bands and LiDAR-derived variables resulting
from 200 model calculations for predicting Pmass. The top panel is showing the results from models
using hyperspectral bands only, bottom panels display the results from models using a combination of
hyperspectral bands and LiDAR-derived variables. Gray areas indicate the range between the 10 th
and the 90 th percentile. The bottom right panel is displaying mean PLSR Coefficients of used
LiDAR-derived variables. For simplification LiDAR-derived variables were grouped into four classes
representing the vegetation cover (Fractional cover), the horizontal variability of vegetation cover
(Fractional cover SD), LiDAR height metrics (Height), and the horizontal variability of LiDAR height
metrics (Height SD). LiDAR variables are displayed in ascending order by variable importance.

12



●

●

●

●

●

●

●

●

●

●perc50_h_sd

mean_h_sd

perc90_h_sd

max_h_sd

fcover_10_20_sd

fcover_2_60_sd

fcover_05_60_sd

fcover_2_6_sd

fcover_6_60_sd

fcover_6_10_sd

0.0 0.5 1.0 1.5 2.0

Mean VIP

Nmass

●

●

●

●

●

●

●

●

●

●

−0.05 −0.04 −0.03 −0.02 −0.01 0.00

Mean PLSR Coefficient

Nmass

●

●

●

●

●

●

●

●

●

●fcover_05_60_mean

fcover_2_60_mean

perc10_h_mean

perc25_h_mean

perc75_h_mean

perc50_h_mean

mean_h_mean

perc90_h_mean

max_h_mean

fcover_6_60_mean

0.0 0.5 1.0 1.5 2.0

Mean VIP

Pmass

●

●

●

●

●

●

●

●

●

●

−0.100 −0.075 −0.050 −0.025

Mean PLSR Coefficient

Pmass
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Error bars indicate the range between the 10th and 90th percentile.

4 Discussion
In this study we showed that LiDAR-derived information on canopy structure improved
predictions of Nmass and Pmass based imaging spectroscopy instructurally heterogeneous
forest stands. This finding is in accordance with previous studies using optical remote
sensing data, which report a strong contribution of NIR reflectance for the prediction of
Nmass in forest canopies (e.g. Martin et al., 2008; Ollinger et al., 2008; Wang et al., 2016)),
that can be attributed to canopy structural properties (Knyazikhin et al., 2013; Ollinger,
2011). Similarly, Badgley et al. (2017) found gross primary production on a global level
to be strongly related to structure-sensitive NIR reflectance. These results point at the
existence of functional links between the biochemical and structural composition of forest
canopies.
An ecological explanation of such linkages follows from the economic theory (Bloom

et al., 1985). The economic theory states that investments in the photosynthetic ma-
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Figure 8 Mean VIP values (left) and mean PLSR coefficients (right) resulting from 200 PLSR models
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variables in models using LiDAR-derived predictors only. Error bars indicate the range between the
10th and 90th percentiles.

chinery of plants will be realized only when the benefit of these investments exceeds
the anticipated costs. As a result, plant traits with small cost-to-benefit relationship
are favored under resource limitation, leading to a functional convergence of structural
and physiological traits. At the leaf level, for example, the negative correlation between
leaf mass per area and leaf nitrogen or phosphorus concentration can be attributed to
functional convergence (Díaz et al., 2016; Shipley et al., 2006; Wright et al., 2004). Eco-
logical theory suggests that, similar to the leaf level, functional convergence can also
be expected at the canopy level (Field, 1991) leading to linkages between structural
and biochemical canopy properties. In temperate and boreal forest ecosystems, links
between structure and biochemistry are expressed at both the leaf and the canopy level.
For example, broadleaved and coniferous trees show notable structural differences at the
canopy level which are expressed in different crown geometry, branching architecture
and leaf angle distribution (Ollinger, 2011). Both, leaf and canopy structural prop-
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Figure 10 Predictive performances of Nmass and Pmass models depending on the variance of canopy
gap fraction and canopy height included in the calibration dataset, Points represent the results from
200 model repetitions using permuted calibration data. Lines and values in each panel represent results
from univariate linear regression between displayed variables. Top panels are showing the results from
models using imaging spectroscopy data (HS) only, bottom panels the results from models using a
combination of imaging spectroscopy and LiDAR data.

erties have shown to influence spectral reflectance in similar ways, resulting in higher
reflectance of broadleaved canopies (Knyazikhin et al., 2013; Ollinger, 2011). At the
same time, broadleaved trees are characterized by higher Nmass compared to conifer-
ous tree species (Güsewell, 2004; Han et al., 2005; McNeil et al., 2008; Serbin et al.,
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Figure 11 Map sections showing forest types represented by their dominant tree species, a canopy
height model (both in the middle) and median predictions of canopy level Nmass (top) and Pmass

(bottom) from models using hyperspectral bands (HS), LiDAR-derived predictors (LiDAR) or a
combination of both (HS+LiDAR).

2014). Furthermore, case studies show that forest canopy Nmass or Pmass can be also
related to other structural properties, such as stand density, above ground biomass or
crown-closure (Craven et al., 2015; Gökkaya et al., 2015; Sardans and Peñuelas, 2015;
Vilà-Cabrera et al., 2015).
In the specific context of this study, the success of Nmass and Pmass predictions was

strongly dependent on the presence of two forest types that exhibited biochemical and
structural differences compared to the co-occuring forest types. Nmass predictions de-
pended on the presence of P. sylvestris stands in the calibration dataset. Pinus sylvestris
was the only coniferous species in our study and was characterized by significantly lower
Nmass than all other species. In contrast, Pmass predictions were mainly driven by P.
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serotina, which was the species characterized by the highest Pmass concentrations in
our study area. Structural differences between P. serotina and the other tree species in
our study area mainly arise from its growth strategy and habitat preferences. Prunus
serotina is an early successional tree species with significantly smaller growth heights
compared to other tree species predominant in our study area. Prunus serotina is often a
dominant species in young stands and often occurs in mature stands with sparse canopies
or in canopy gaps. Our results suggest that species differences in structural and/or opti-
cal properties can serve as a surrogate to predict canopy chemistry using remote sensing,
at least across small study extents, where differences in leaf nutrient concentrations can
often be explained by differences between species (Craven et al., 2015; McNeil et al.,
2008). For larger environmental gradients, differences between species are often super-
imposed by the high intra-specific variability of leaf biochemicals (Asner et al., 2012;
Mellert and Göttlein, 2012; Vilà-Cabrera et al., 2015), which respond to strong vari-
ation in climate and soil properties (Sardans et al., 2015; Sun et al., 2015). The fact
that our results were strongly dependent on the occurrence of two species is limiting
the transferability of our findings to other study areas or broader spatial extents. How-
ever, functional differences (e.g. between broadleaved and coniferous species or between
early and late successional species) that are manifested in structural and biochemical
properties (Craven et al., 2015; Kusumoto et al., 2015; Sardans and Peñuelas, 2015;
Vilà-Cabrera et al., 2015) suggest that canopy structure can serve as a surrogate for
predicting biochemical properties also in different study contexts.

Mapping Nmass

Predicting forest canopy Nmass using imaging spectroscopy has a long history. Com-
pared to previous studies, which often report good (e.g. Smith et al., 2003; Townsend
et al., 2003; Wang et al., 2016) or even excellent (e.g. Martin et al., 2008; Singh et al.,
2015) predictive performances, our models performed poorly. We attribute this mainly
to the high structural diversity of the forest stands used for model calibration. This high
structural diversity was, for example, expressed by strong variation of LAI values even
within stands of the same forest type (i.e. ranging from 1.8 to 6.1 for F. sylvatica stands).
Canopy structure strongly affects reflectance (Gerard and North, 1997; Rautiainen et al.,
2004) and a high variability in LAI has been found to hamper predictions of leaf biochem-
istry at the canopy level (Asner and Martin, 2008). Furthermore, we included stands of
different age classes, with canopy heights ranging between 2 and 40 meters, which also
increases variation in canopy reflectance, especially in the VIS (Roberts et al., 2004).
Our results suggest, that including LiDAR data can help to diminish these effects of
structural heterogeneity, when mapping Nmass (see Fig. 10).
In part, the weak predictive performance of our Nmass models can be attributed to

the relatively low data range of Nmass in our study area (cf. Asner et al., 2015; Huber
et al., 2008; Martin et al., 2008; Singh et al., 2015; Smith et al., 2003; Wang et al., 2016).
The range was especially low for all broadleaved species, with no significant differences
between the two main species (F. sylvatica, Q. robur), which were predominant in 36 of
50 field plots (including mixed broadleaf). Furthermore, the weak model performance
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can, presumably, also be attributed to the usage of mass related nitrogen measures,
because spectral reflectance is more closely linked to leaf biochemistry on an area basis
(Grossman et al., 1996; Roelofsen et al., 2014).
Furthermore, the performance of the Nmass models may also be explained by the fact

that image acquisition and leaf sampling were from different years. Although previous
studies suggest, that there is only low variation of Nmass in temperate forest species
between two consecutive years and during one growing season (McKown et al., 2013;
Niinemets, 2016; Reich et al., 1991; Smith et al., 2003), we cannot be 100% sure that
relative differences between the species in our study area were stable between the years.
Fajardo and Siefert (2016) found different patterns in Nmass between coniferous and
broad leaf species in the course of one growing season. However, they also found that
overall species rankings concerning Nmass were stable throughout a growing season.
The most important spectral bands selected in our Nmass models were situated in the

visible part of the spectrum. A high contribution of the VIS region for Nmass prediction,
using imaging spectroscopy, was also observed by Asner et al. (2015) and Singh et al.
(2015). In our study the importance of bands in the VIS can be attributed to differences
in reflectance between coniferous and broadleaved forest stands in this spectral region.
(see supplementary material Fig. S4). These differences may arise from light absorption
of chlorophyll but may also be due to other leaf pigments, like carotenoids and antho-
cyanins, that also have absorption characteristics in the VIS (Ollinger, 2011; Ustin et al.,
2009). Moreover, structural canopy properties such as LAI or leaf angle distribution also
influence reflectance in the VIS, albeit to a lower extent than leaf pigments (Jacquemoud
et al., 2009). This is in accordance to previous studies that report the importance of the
VIS region to discriminate between species (Fassnacht et al., 2016; Roberts et al., 2004).
VIP values indicated only a minor contribution of spectral bands located in the NIR

and SWIR, which is contrary to results of previous studies using image spectroscopy
(Homolová et al., 2013). According to Ollinger (2011) NIR reflectance is especially
important in datasets with only little variance in the VIS reflectance. The high variance
in the VIS reflectance (see supplementary material Fig. S3) observed in this study may
thus be an explanation for the minor contribution of NIR and SWIR bands. Additionally,
any signal in the infrared reflectance may be strongly disturbed, by the high variability
of canopy gaps in the field plots used for this study (Ollinger, 2011).
For mapping Nmass, important LiDAR-derived variables were mainly connected to the

horizontal variation of canopy cover (fcover_6_10_sd, fcover_6_60_sd, fcover_2_6_sd).
These three variables represent the variation of the fractional vegetation cover between
different height thresholds, in one 24m × 24m pixel. They can thus be interpreted as
indicators for spatial heterogeneity of the canopy. The most important LiDAR-derived
variable for predicting canopy level Nmass was the spatial variation of fractional veg-
etation cover between 6 and 10m height (fcover_6_10_sd), which is related to the
occurrence of shrubs or small trees in the understory. Low values either indicate little
vegetation present between 6 and 10m height, as it can be observed in mature forest
stands with closed canopies, or very dense homogeneous vegetation, as it can be observed
in earlier successional stages. High values indicate heterogeneous, typically old-grown
forest stands with gaps that are filled by young trees. Similarly, fcover_6_60_sd is
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related to the horizontal heterogeneity of the tree canopy cover, that was highest in P.
sylvestris stands (supplementary material, Fig. S5). Moreover fcover_2_6 also was high-
est in P. sylvestris stands, indicating that LiDAR-derived variables helped to accentuate
differences in Nmass between P. sylvestris and broadleaved species.

In summary, Nmass predictions were strongly dependent on the presence of the only
coniferous tree species, P. sylvestris. Stands of P. sylvestris were characterized by lower
Nmass and higher spatial variation of canopy cover compared to broadleaved forest
stands. These structural differences could be well captured by LiDAR data (supple-
mentary material, Fig. S5). Hence, integrating LiDAR-derived information improved
models based on imaging spectroscopy data solely. The poor performance of models,
using hyperspectral data solely, can be attributed to the high structural heterogeneity
in the study area, in terms of LAI and stand ages. Our results suggest, that LiDAR
data can help to diminish the effect of canopy heterogeneity when mapping forest Nmass

using imaging spectroscopy.

Mapping Pmass

Mapping leaf phosphorus with remote sensing has received much less attention compared
to Nmass. Earlier mapping attempts were based on hyperspectral indices (Mirik et al.,
2005), radiative transfer models (Porder et al., 2005) and empirical models (Asner et al.,
2015; Gökkaya et al., 2015). Gökkaya et al. (2015) achieved excellent predictive perfor-
mances mapping Pmass in a boreal mixed forest using Hyperion imaging spectroscopy
data. Asner et al. (2015) successfully mapped Pmass along a broad environmental gra-
dient using airborne hyperspectral data and partial least squares regression. Contrary
to Nmass, Pmass has no characteristic absorption features in the used wavelength range
and thus the success of mapping Pmass can be rather attributed to correlations to other
canopy properties. For many plant species, Pmass is positively correlated with Nmass

(Elser et al., 2010; Güsewell, 2004) or leaf mass per area (Wright et al., 2004). For
temperate tree species, Sardans et al. (2015) found a negative correlation between above
ground biomass and leaf N:P ratio, due to higher P retention with increasing age.
Important bands for the prediction of Pmass were located throughout the whole range

of the spectra. Asner et al. (2015) and Gökkaya et al. (2015) found similar results with
important bands located in the VIS, SWIR and NIR regions. The most important se-
lected LiDAR-derived variables were related to the cover of shrubs and the cover of trees
(fcover_2_6_mean, fcover_6_60_mean). While the shrub cover was positively related
to Pmass, tree canopy cover had an negative relationship, both indicating higher Pmass in
very young and very open stands. We furthermore observed a negative relation between
Pmass and LiDAR-derived variables related to vegetation height (e.g. max_h_mean,
perc90_h_mean, mean_h_mean). These variables are correlated to the mean height of
all LiDAR vegetation points and indicate that taller stands are related to lower Pmass.
The observation of higher Pmass in younger stands reflects the observation that earlier
successional stages are often characterized by higher Pmass (Chai et al., 2015; Eichenberg
et al., 2015). Relations between important LiDAR-derived variables and Pmass can also
be well explained by species-specific differences within the study area. Prunus serotina,

19



for which we observed highest Pmass values, is a characteristic species of young and early-
succesional stands in the forest of Compiègne. The observed negative relation between
canopy cover and Pmass can also be explained by species -specific differences, particu-
larly between P. serotina, P. sylvestris and F. sylvatica (see supplementary material,
Fig. S5). Fagus sylvatica, for which we observed smallest Pmass, is forming most dense
canopies in Mid-Europe, while P. sylvestris, characterized by higher Pmass than most of
the native broadleaved species, is forming very sparse canopies. Prunus serotina most
frequently occurred in forest stands with sparse canopy cover and good light conditions
(Starfinger et al., 2003).
In summary, Pmass predictions were driven by one tree species occurring in young or

open forest stands. Existing covariation between canopy structure and Pmass was better
captured by LiDAR data than by imaging spectroscopy. The relative importance of
structural properties for mapping Pmass is not surprising, as phosphorus is not expected
to be directly represented in the spectral signal of plant canopies.

5 Conclusion
In this study we used a combination of imaging spectroscopy and airborne LiDAR data
for mapping canopy Nmass and Pmass in a forest characterized by a high structural
heterogeneity. For both, Nmass and Pmass, LiDAR-derived variables improved predic-
tions based on imaging spectroscopy solely. This highlights the importance of structural
properties for remote sensing of biochemical variation in forest canopies. For Nmass the
poor performance of hyperspectral data alone can be attributed to the high structural
heterogeneity in the study area, in terms of LAI and stand ages. LiDAR data helped
to capture this heterogeneity and hence improve model performances. Both, Nmass and
Pmass results were strongly influenced by the presence of only two tree species featuring
structural and biochemical properties different from their co-occurring tree species. This
limits the transferability of identified linkages between canopy structure and biochem-
istry to other study settings. However, in the case of Nmass, the known covariation with
structural properties existing at the leaf and canopy level suggests that canopy struc-
ture used as proxy, can support the mapping of Nmass also for different study settings.
Information on canopy structure derived from airborne LiDAR can help to understand
existing functional links.
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