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Abstract
Aim: We investigate whether (1) environmental predictors allow to delineate the distri-
bution of discrete community types at the continental scale and (2) how data complete-
ness influences model generalization in relation to the compositional variation of the 
modelled entities.
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1  | INTRODUC TION

Understanding the spatial variation of vegetation across broad geo-
graphical extents is a major challenge in conservation biogeography 
(Prentice et al., 1992; Venevsky & Veneskaia, 2003). Although con-
servation initiatives need accurate information on broadscale vege-
tation patterns to evaluate the extent of occurrence and the area of 
occupancy of habitat types and related ecosystems (Janssen et al., 
2016; Keith, Elith, & Simpson, 2014), detailed vegetation maps are 
generally not available for large areas, or they are based on expert 
interpretation at coarse spatial resolution (Bohn & Neuhäusl, 2003). 
This challenge can be addressed by modelling the relationships 
between vegetation and environment under functional or species- 
compositional approaches (Noss, 1990; Whittaker et al., 2005). The 
functional approach has been widely used for modelling the distri-
bution of plant functional types across biomes (Box, 1981; Greve, 
Lykke, Blach- Overgaard, & Svenning, 2011; Prentice et al., 1992) but 

it reflects vegetation structure rather than species composition. In 
contrast, the compositional approach provides information about 
the constituent species of vegetation (Ferrier & Guisan, 2006) and 
it represents a promising tool for characterizing spatial patterns of 
vegetation diversity.

Under the species- compositional approach, broadscale vegeta-
tion patterns can be studied using community distribution models 
(CDMs), which comprise methods for modelling the occurrence of 
plant communities in relation to abiotic factors (Chapman & Purse, 
2011; Potts, Hedderson, Franklin, & Cowling, 2013). Ferrier and 
Guisan (2006) suggested that modelling pre- defined plant commu-
nity types (classifying species assemblages first and then predict-
ing the distribution of the resulting groups) is a straightforward 
approach to achieve congruence with vegetation classifications. 
This emphasizes the Clementsian view of communities as discrete 
entities (Clements, 1936), providing a practical perspective for map-
ping community types at broad scales. This view of CDMs has been 
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Main conclusions: Correlative approaches typically used for modelling the distribu-
tion of individual species are also useful for delineating the potential area of occu-
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mainly applied for modelling the distribution of vegetation types 
across small geographical extents, for example landscapes or regions 
(Table 1). However, modern vegetation classification uses compre-
hensive datasets collected across larger spatial extents (De Cáceres 
et al., 2015; Jennings, Faber- Langendoen, Loucks, Peet, & Roberts, 
2009; Mucina et al., 2016), opening new possibilities for developing 
broadscale vegetation mapping products requested by conservation 
agencies (Álvarez- Martínez et al., 2017; Keith et al., 2014).

Community distribution models need to consider analogous as-
sumptions to those employed in species distribution models (SDMs), 
especially equilibrium in time and space and stability of biotic inter-
actions (Wiens, 2011), with the main difference that the response 
variable is a community type rather than a species (Franklin, 2013). 
A first question that arises is how to model the occurrence of com-
munity types as discrete entities (Mücher, Hennekens, Bunce, 
Schaminée, & Schaepman, 2009). This is related to taxonomic bias 
(i.e. inconsistent use of species’ concepts across the data) but at 
the community level this can be less problematic because commu-
nity types are usually defined by many co- existing species. Another 

issue is how discrete community types are defined (Ferrier & Guisan, 
2006), and how consistent these definitions are at broad scales (De 
Cáceres et al., 2015). Uncertainties related to subjective judgement 
or ambiguity can occur when a community type is not consistently 
identified, that is when the entity to be modelled is not homoge-
neously described across its distribution range (Regan, Colyvan, & 
Burgman, 2008). This problem affects the classification of any bio-
logical entity (Keith et al., 2015) but it may be particularly problem-
atic in CDMs.

In addition, geographical sampling bias (i.e. uneven sampling den-
sities across the study area) is particularly relevant when it leads to re-
duced representation of environmental variability, which limits model 
generalization (Thuiller, Brotons, Araújo, & Lavorel, 2004). A crucial 
issue is whether predictions can be generalized to new geographical 
areas, considering spatial interpolation (applying predictions to data- 
deficient parts of the study area), transferability (applying predictions 
to areas not spatially overlapping with the calibration dataset, but 
with a similar range of predictor values) and extrapolation (applying 
predictions to new areas and different range of predictor values; 

TABLE  1 A selection of studies using community distribution models (CDMs) to assess the distribution of community types, vegetation 
types or ecosystems previously identified by plant species composition. The studies were selected to cover as much as possible the variation 
in modelled entities, geographical area, grid size, statistical methods and predictor variables

Modelled entity Geographical area Grid size Modelling method Predictor variables

Brzeziecki, Kienast and 
Wildi (1995)

Forest community 
types

Switzerland 1 km BM Topography, climate, 
soil

Lechmere- Oertel and 
Cowling (1999)

Fynbos and karoo 
community types

Western Cape (South 
Africa)

1.8 km GLM Topography, climate, 
soil

Cairns (2001) Treeline vegetation 
types

Glacier national Park 
(USA)

30 m GLM, ANN, CT Topography, 
geomorphology

Miller and Franklin (2002) Vegetation alliances Mojave desert (USA) 30 m GLM, GAM, CT Climate, topography, 
geomorphology

Vogiatzakis and Griffiths 
(2006)

Grassland commu-
nity types

Lefka Ori, Crete 
(Greece)

10 m CT Topography, 
geomorphology

Marage and Gégout  
(2009)

Forest community 
types

France 50 m LR Climate, soil

Dlamini (2011) Forest classes Swaziland 0.7 km EM Climate, topography, 
soil

Essl et al. (2011) Mire community 
types/habitats

Austria 250 m Ensemble of 
methods

Present and future 
climate, topography, 
soil

Potts et al. (2013) Thicket vegetation 
subtypes

Albany coast (South 
Africa)

~4 km Ensemble of 
methods

Present and future 
climate

Keith et al. (2014) Mire ecosystem South- eastern 
Australia

250 m BRT Climate, topography, 
soil

Stenzel, Feilhauer, Mack, 
Metz and Schmidtlein 
(2014)

Natura 2000 habitat 
types

Munich region 
(Germany)

30 m Maxent RapidEye satellite 
imagery

Zhou et al. (2016) Alpine vegetation 
groups

Qilian mountains (NW 
China)

30 m DT, MLC, RF Satellite images, 
climate

Janská et al. (2017) Vegetation types Siberia (Russia) ~4 km Maxent Climate, soil

ANN, artificial neural network; BM, Bayesian model; BRT, boosted regression tree; CT, classification tree; DT, decision tree; EM, expectation- 
maximization algorithm; GAM, generalized additive model; GLM, generalized linear model; LG, logistic regression; MLC, maximum- likelihood classifica-
tion; RF, random forest.
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Peterson et al., 2011). Sampling bias affects model transferability 
and extrapolation in SDMs (Heikkinen, Marmion, & Luoto, 2012; 
Wenger & Olden, 2012). In the special case of CDMs, model general-
ization can be influenced by the compositional variation of the target 
communities across different regions, assuming the Gleasonian per-
spective that not all species may respond equally to environmental 
changes (Gleason, 1926). Therefore, a new question related to CDMs 
is how to assess the spatial complexity of species assemblages within 
the target vegetation. This question can be addressed by methods 
such as generalized dissimilarity modelling (GDM) for analysing the 
relative influence of geographical and environmental gradients on 
compositional variation (Ferrier, Manion, Elith, & Richardson, 2007). 
Generalized dissimilarity modelling might be useful for understand-
ing the influence of sampling bias at broad scales, detecting to what 
extent the compositional variation of target communities is linked to 
environmental gradients (Brown, Cameron, Yoder, & Vences, 2014). 
Since GDM allows to project compositional variation into spatially 
explicit maps, they also can help in predicting vegetation variation 
within the extent of occurrence predicted by CDMs.

Here, we combine CDMs and GDM for modelling both the dis-
tribution and the compositional variation of community types at 
the continental scale. We hypothesized that, given a community 
type encompassing certain compositional consistency at the con-
tinental scale, environmental predictors will predict its occurrence 
under similar assumptions as in SDMs. We also hypothesized that 
geographical sampling bias influences model generalization (trans-
ferability and extrapolation) in relation to the internal compositional 
variation of the modelled entity across geographical and environ-
mental gradients. We selected as study cases two plant community 
types that characterize acidophilous beech forests and base- rich 
fens, representing habitats of conservation concern which have 
been sampled comprehensively in Europe. We further discuss how 
both CDMs and GDM reveal spatial vegetation patterns to serve na-
ture conservation at the continental scale.

2  | METHODS

2.1 | Plant community data

We used data stored in the European Vegetation Archive (EVA), 
a repository of vegetation- plot data containing full records of 
species co- occurring in relatively small areas (usually <1,000 m2; 
Chytrý et al., 2016). Although some vegetation plots were as-
signed to vegetation types by the original authors, this classifi-
cation is not consistent across the EVA database and many plots 
are unclassified. Therefore, the EVA database is currently being 
used to perform comprehensive classifications of major vegeta-
tion types at the level of phytosociological alliances (see www.
euroveg.org/eva-database-eva-publications). Alliances are useful 
units in practical applications, because they are transferable to 
the European habitat classifications, which is one of the main uses 
of EVA for assisting nature conservation in Europe (Chytrý et al., 
2016; Janssen et al., 2016).

We selected two vegetation datasets representing well- sampled 
communities in Europe. Our first dataset consists of vegetation 
plots interpreted as European acidophilous beech forests (here-
after, beech forests) in a classification project using compositional 
data (Willner et al., 2017). These data include 2,827 vegetation 
plots (Figure 1) sampled across surface areas of 100–500 m2 and 
assigned to the alliance Luzulo-Fagion sylvaticae, which is character-
ized by oligotrophic and acidophilous species (Barbati, Piermaria, & 
Marchetti, 2007). This community type defines the habitat of con-
servation concern “9110 Luzulo-Fagetum beech forests” (Thauront 
& Stallegger, 2008), which is protected by the European Habitat 
Directive 92/43/ECC, and corresponds to the habitat “G1.6 Fagus 
woodland” of EUNIS classification (www.eunis.org).

The second dataset consists of 1,510 vegetation plots (Figure 1) 
sampled in areas from 1 to 100 m2 assigned to mountain base- rich 
fens (hereafter, rich fens) in a pan- European classification (Jiménez- 
Alfaro et al., 2014). This study found this range of plot sizes appro-
priate for describing the alliance Caricion davallianae (Peterka et al., 
2017), which is mainly associated with base- rich and waterlogged 
soils in cool areas with high precipitation (Essl, Dullinger, Moser, 
Rabitsch, & Kleinbauer, 2011; Jiménez- Alfaro et al., 2014). This veg-
etation characterizes the European protected habitat “7230 Alkaline 
fens” and the EUNIS type “D4.1—Rich fens, including eutrophic tall- 
herb fens and calcareous flushes and soaks” (Šefferová Stanová, 
Seffer, & Janák, 2008). The most frequent species of the two com-
munity types are presented in Appendix S1.

2.2 | Environmental data

We compiled the 18 bioclimatic variables of WorldClim (Hijmans, 
Cameron, Parra, Jones, & Jarvis, 2005) at the grid size of 2.5 arc min-
utes (c. 4.2 km). This grid resolution matches the geographical uncer-
tainty estimated for the occurrence data, ranging in most cases from 
a few hundred metres to a few kilometres. In addition, we used the 
solar radiation toolset in ArcGIS 10.4 (ESRI, Redlands, California, USA) 
to model potential annual mean irradiation – reflecting the amount 
of energy incident on the earth surface for each grid cell); and ob-
tained an estimate of potential evapotranspiration (PET) from the 
Global- PET Database (www.cgiar-csi.org) – reflecting the capacity for 
transpiration flow and primary production when water is not limiting 
(Fisher, Whittaker, & Malhi, 2011). PET is based on the temperature- 
radiation equation of Hargreaves, recommended for broadscale stud-
ies (Zomer, Trabucco, Straaten, & Bossio, 2006). We finally included a 
predictor estimating topsoil pH(H2O) as provided by the ISRIC World 
Soil Information (http://www.isric.org/). This variable is useful for 
comparing the regional dominance of calcareous and non- calcareous 
bedrock. Other soil variables from the same source (e.g. fraction of silt 
and clay) were also explored, but they did not provide any contribu-
tion to the models and, consequently, they were not used.

We managed all spatial data with ArcGIS using the European 
ETRS89 (LAEA) projection system to minimize geographical distor-
tion. Solar radiation, PET and pH were obtained at 1 km grid resolu-
tion and then aggregated to 4.2 km as the spatial resolution of the 

http://www.euroveg.org/eva-database-eva-publications
http://www.euroveg.org/eva-database-eva-publications
http://www.eunis.org
http://www.cgiar-csi.org
http://www.isric.org/
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study. Collinearity between pairs of variables was tested using the 
Pearson correlation coefficient r. Highly correlated predictors (r > .7) 
were excluded from each pair, choosing the variable with stronger 
ecological meaning for modelling plant diversity in temperate re-
gions (e.g. Franklin et al., 2013). We finally kept eight predictors to 
reflect major environmental gradients that are supposed to influ-
ence the distribution and composition of the studied communities: 
temperature seasonality, mean temperature of the wettest quarter, 
annual precipitation, precipitation seasonality, precipitation of the 
warmest quarter, solar radiation, potential evapotranspiration and 
topsoil pH.

2.3 | Community distribution models

We used Maxent V.3.3.3k, a package implementing a presence- 
background method that combines machine- learning and statistical 
inference (Elith et al., 2011), to model the occurrence of community 
types. Maxent provides good performance in transferability to new 
climatic scenarios (Hijmans & Graham, 2006) and geographical re-
gions (Heikkinen et al., 2012) and with low sample sizes when com-
pared with presence- only or presence–absence methods (Elith et al., 
2006; Gibson, Barrett, & Burbidge, 2007). Maxent is recommended 
for distribution data gathered from records sampled without a 

F IGURE  1 Occurrence data and habitat suitability predicted with community distribution models (CDMs) for (a) acidophilous beech 
forests and (b) base- rich fens in Europe. The study area was defined according to the known distribution range of the two community types 
and partitioned in four regional subsets based on geographical quadrants (R1–R4). Regions zoomed out from suitability maps show the 
distribution of localities used for external validation. [Colour figure can be viewed at wileyonlinelibrary.com]

R1
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Low
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Low
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unique sampling protocol that contain no reliable information about 
species absences (Phillips et al., 2009). Indeed, our data also rely on 
the compilation of regional and national datasets collected under 
different, usually subjective sampling schemes. Moreover, the spa-
tial accuracy of the sampling units (up to a few kilometres) makes 
impossible to infer absences in a grid cell where another type has 
been recorded, since many community types occur within the same 
grid cell because of local habitat variation.

We first calibrated a “baseline model” using the default param-
eters of Maxent and 10,000 background points randomly selected 
within the area that has been sampled for each community type 
(Figure 1). We consider this model as one scenario with non- biased 
data and high data completeness. Model outputs were mapped using 
a minimum threshold of suitability based on the equate entropy in 
Maxent, because it provides an intermediate threshold between the 
most conservative (minimum predicted area) and the least conser-
vative (equal sensitivity and specificity) options (Morán- Ordóñez, 
Suárez- Seoane, Elith, Calvo, & de Luis, 2012). Model discrimination 
was assessed with the area under the receiver- operating character-
istic (ROC) curve (AUC), using the fraction of the study area pre-
dicted as suitable to calculate the commission error (1 – specificity) 
as implemented in Maxent. AUC was averaged from (1) model in-
terpolation using a random fourfold cross- validation with 10 repli-
cates (each replicate using 75% of occurrences for training and 25% 
for validation) and (2) external evaluation using a dataset provided 
by the Italian National Vegetation Database (BVN/ISPRA; Casella, 
Bianco, Angelini, & Morroni, 2012). These data consisted of plots 
sampled in beech forests from the Italian Alps (n = 255) and rich fens 

from the Apennines (n = 16) that were identified by the database as 
the same alliances analysed here.

We tested for geographical transferability by simulating scenarios 
in which the available dataset is sampled in ¾ of the study area, par-
titioning the data into subsets based on four geographical quadrants 
(Figure 1). The regions defined by these quadrants showed a clear 
climatic differentiation for the two vegetation types, as reflected by 
discriminant analyses computed with the environmental predictors 
(Appendix S2). We performed four regionally biased models using 
the occurrences of 3 of 4 geographical regions for calibration and 
the remaining one for evaluation, that is using a “geographical four-
fold cross- validation” (Radosavljevic & Anderson, 2014). We also 
tested for extrapolation by simulating a more challenging scenario 
in which calibration data are taken from one region only. Since these 
models differ largely in the number of occurrences and regional fea-
tures, we compared their performance with interpolation models 
computed for each region using the same calibration data. A random 
selection of 75% of occurrences from each region was used for cali-
bration (R175, R275, R375 and R475) and the remaining 25% were kept 
for evaluation. Thus, a model calibrated with R175 was tested first 
for interpolation within the region R1 using R125 as evaluation data 
and, secondly, predictions were extrapolated separately to the other 
geographical regions (R2, R3 and R4). To deal with the sampling bias 
of calibration data, background points were masked in all models to 
the extent of the region/s used as data sources.

We quantified model overfitting for all model scenar-
ios as the difference between training and testing AUC 
(AUCDIFF = AUCtraining−AUCtesting), where higher values indicate 

TABLE  2 Averaged model performance (mean ± SD) of n- fold cross- validations performed for predicting the occurrence of beech forests 
and base- rich fens in Europe. Interpolation was based on random fourfold CV in the whole study area (cf. baseline models). Geographical 
transferability was computed with occurrences from three regions (3R) in the remaining one (R′). Geographical interpolation shows the 
predictive value of 75% of occurrences within one focal region (1R75) to the remaining 25% of the same region (1R25). Geographical 
extrapolation reflects the predictive value of 75% of occurrences within one focal region (1R75) to the whole occurrences of the other three 
regions separately (3R’). AUCdiff reflects AUC for training data minus AUC for testing data

Cross- validation

Interpolation baseline 
model (all study area)

Geographical transferability 
(3R to 1R′)

Geographical interpolation 
(1R75 to 1R25)

Geographical extrapola-
tion (1R75 to 3R′)

Fourfold Fourfold Fourfold 12- fold

Acidophilous beech forests

AUC 0.856 ± 0.013 0.697 ± 0.131 0.908 ± 0.030 0.616 ± 0.230

AUCdiff 0.018 ± 0.015 0.175 ± 0.127 0.007 ± 0.013 0.309 ± 0.230

Omission rate 
(min)

0.001 ± 0.002 0.002 ± 0.005 0.003 ± 0.006 0.178 ± 0.192

Omission rate 
(10th)

0.134 ± 0.037 0.494 ± 0.257 0.151 ± 0.043 0.693 ± 0.329

Base- rich fens

AUC 0.907 ± 0.008 0.725 ± 0.208 0.781 ± 0.277 0.603 ± 0.214

AUCdiff 0.013 ± 0.009 0.189 ± 0.196 0.078 ± 0.125 0.256 ± 0.152

Omission rate 
(min)

0.004 ± 0.005 0.020 ± 0.040 0.073 ± 0.086 0.280 ± 0.258

Omission rate 
(10th)

0.117 ± 0.041 0.536 ± 0.443 0.145 ± 0.054 0.564 ± 0.354
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loss of performance (Warren & Seifert, 2011). To obtain a direct 
estimate of model performance using presence- only data, we 
also evaluated omission rates, which reflect the number of false- 
negative predictions based on a threshold of habitat suitability de-
fined by the training data. We selected the minimum omission rate 
(minimum value of habitat suitability of training data) and the 10th 
percentile (minimum threshold for the 90% of occurrences with 
the highest suitability values) provided by Maxent. Omission rates 
range from 0 to 1, low values indicating good model performance 
and thus low overfitting. Spatial predictions of habitat suitability 
achieved for all modelling scenarios, including the baseline model, 
were compared with the Pearson correlation coefficient based on 
a random selection of 8,000 points. We also assessed potential 
differences in the contribution of ecological drivers to different 
models using the Jackknife evaluation method in Maxent.

2.4 | Generalized distribution modelling

We used generalized distribution modelling (GDM) as a method 
to predict spatial patterns of turnover in species composition 
(Ferrier et al., 2007) using the gdm package in R (Manion et al., 
2017). Generalized distribution modelling uses a nonlinear ma-
trix regression technique for analysing spatial patterns in com-
positional dissimilarity, providing fitted I- splines to describe the 
relationships between a dissimilarity metric (beta diversity) and 
predictors, then estimating the partial deviance explained by each 
predictor (Fitzpatrick et al., 2013). For each community type, we 
created a presence–absence matrix with the full species com-
position of each plot and generated site pairs described by their 
compositional (Bray–Curtis) distance, geographical coordinates 
and environmental variables. After running the GDM analysis, we 
quantified the importance of geographical distance and environ-
mental predictors and computed predictions for the whole study 
area to visualize patterns of compositional dissimilarity. We cre-
ated a series of maps to show the spatial variation for the first 
three axes of a principal component analysis (PCA) separately; 
and for the three PCA axes combined into a unique RGB (red- 
green- blue) layer.

3  | RESULTS

3.1 | Baseline model

The baseline models calibrated with the whole dataset of beech for-
ests showed the highest habitat suitability in Central Europe, with a 
wide distribution range between Southern Scandinavia and the mar-
gins of the southernmost temperate mountains (Figure 1). The equate 
entropy threshold defined as non- suitable those areas with habitat 
suitability <0.18, distributed through the Mediterranean and Atlantic 
regions, as well as the easternmost regions of the study area. The most 
important predictors estimated from the Jackknife evaluation method 
were temperature seasonality (42% of total contribution), summer pre-
cipitation (21%), potential evapotranspiration (19%) and soil pH (10%) 

(Figure 2). For rich fens, the highest habitat suitability was predicted 
for the Central European mountain systems, especially for the Alps and 
the Carpathians, but also for the Pyrenees and Bulgarian mountains 
(Figure 1). The equate entropy threshold was 0.13, identifying as non- 
suitable the areas far from inland European mountains and continental 
islands. The main predictors were summer precipitation (74%), solar ra-
diation (12%), potential evapotranspiration (5%) and temperature sea-
sonality (4%) (Figure 2). Appendix S3 shows the variable contributions 
and response curves for both community types.

External validation suggested good model performance for the 
two vegetation types (Figure 1). In the beech forests, 100% of the 
occurrence data were predicted as suitable for the minimum training 
presence threshold and 70% for the 10th training presence threshold, 
indicating omission rates of 0 and 0.3, respectively. Mean habitat suit-
ability was 0.38 (SD ± 0.13), AUC was 0.743, and AUCdiff was 0.120. 
For rich fens, 100% of the data were predicted as suitable using the 
minimum training presence threshold and 99% for the 10th training 
presence threshold. Mean habitat suitability was 0.22 (SD ± 0.05), AUC 
was 0.812, and AUCdiff was 0.099.

3.2 | Interpolation, transferability and extrapolation

Model interpolation of the baseline model showed better per-
formance (higher average AUC, lower AUCdiff and lower omis-
sion rates) than models testing geographical transferability from 
three regions to one (Table 2). Nevertheless, many of the latter 
models showed fair performance (e.g. AUC ~ 0.7 or higher). We 
also found strong correlations between the spatial predictions 
computed with the baseline models and the subsets used for geo-
graphical transferability (Pearson’s r, n = 4; mean ± SD; 0.92 ± 0.04 
in forests; 0.96 ± 0.03 in fens). In the two community types, par-
tial contribution of variables in transferability was very similar to 
that contributing in the baseline models (Figure 2). In contrast, ex-
trapolation from a unique region to the others provided poor per-
formance reflected by AUC (~0.6 or lower), high overfitting and 
high omission rates (Table 2). These results were worse than those 
achieved from the interpolation within each region. The correla-
tions between models derived from extrapolation and the baseline 
model were significant, but the coefficients were lower than those 
from transferability models (0.52 ± 0.16 in forests; 0.56 ± 0.37 in 
fens). In the two community types, the importance of environmen-
tal variables differed strongly between the subsets and the base-
line model computed for all regions (Figure 2).

3.3 | Compositional variation

The total deviance explained by GDM was 19% and 15% for beech 
forests and rich fens, respectively. In both cases, variable contribu-
tion was higher for geographical distance than for environmental 
distances (Table 3). In beech forests, the most important predictors 
(after geographical distance) were continental variation in solar ra-
diation and temperature seasonality. According to the predicted 
dissimilarities, the first and second PCA axes represented main 
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variation across latitude and longitude, respectively, while the 
third axis differentiated lowland and mountain regions (Figure 3a). 
The combination of the three axes showed similar patterns of 
species composition (similar colours) in areas aggregated mainly 
in Central Europe, Eastern Europe, Atlantic regions and northern 
Europe. In rich fens, the best predictor after geographical distance 

was the continental variation in summer precipitation (Figure 3b). 
Predictions for the first and second PCA axes reflected longitudi-
nal and latitudinal patterns, while the third PCA mainly pointed to 
the higher Central European mountain systems. The combination 
of the three PCA axes predicted the strongest differences along 
the longitudinal gradient.

Acidophilous beech forests Base- rich fens

Var. Imp. Rel. Cont. Var. Imp. Rel. Cont.

Geographical distance 17.2% 0.5 21.1% 0.5

Potential 
evapotranspiration

4.7% 0.3 1.1% 0.1

Regional soil pH 1.4% 0.1 0.6% 0.1

Summer precipitation 2.1% 0.3 8.2% 0.4

Solar radiation 7.8% 0.9 0.6% 0.1

Temperature seasonality 7.5% 0.8 0 0

Temperature of wettest 
quarter

1.5% 0.1 1.3% 0.2

TABLE  3 Variable importance (Var. 
Imp., in %) and relative contribution (Rel. 
Cont., summarizing coefficients in 
l- splines) of predictor variables in 
generalized dissimilarity modelling 
computed for the variation on plant 
species composition across acidophilous 
beech forests (total explained 
deviance = 19%) and base- rich fens (total 
explained deviance = 15%) in Europe

F IGURE  2 Variable contribution in 
community distribution models (CDMs) 
computed for plant community types 
of (a) acidophilous beech forests and 
(b) base- rich fens in Europe, using 
combinations of geographical regions 
(R1, R2, R3 and R4) as input data. Regions 
as in Figure 1. Bars in the central panel 
show results for models computed with 
three regions for testing transferability, 
and bars in the right panel show models 
computed for each region separately for 
testing extrapolation. [Colour figure can 
be viewed at wileyonlinelibrary.com]
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4  | DISCUSSION

4.1 | Modelling the distribution of discrete 
community types

This study demonstrates how correlative CDMs predict the distribu-
tion of discrete community types at the continental scale. The spatial 
patterns predicted here are in accordance with country- level maps 
of European habitats related to beech forests (Thauront & Stallegger, 
2008) and mountain alkaline fens (Šefferová Stanová et al., 2008); 
and also with the maps provided for the European Red list of 
Habitats (Janssen et al., 2016). Nevertheless, our predictions offer a 
significant improvement to these initiatives by providing continental 
maps at relatively high resolution, covering non- sampled areas and 
providing further information about environmental drivers. We also 
were able to predict the two community types in non- sampled re-
gions, supporting the role of deterministic environmental factors for 
explaining the distributions of discrete vegetation entities.

The predicted areas of suitability for acidophilous beech forests 
were mainly correlated with the interaction of precipitation and 
temperature, which is consistent with the ecological preferences 
known for these communities (Leuschner, Ellenberg, & Sutcliffe, 
2017) and their predicted distribution at regional extents (e.g. 
Luzulo-Fagion in France, Marage & Gégout, 2009). Interestingly, 
this community type was not predicted to occur in the European 

Atlantic region, where another beech- dominated community type 
influenced by oceanic climate occurs on acidic soils (Ilici-Fagion al-
liance in northern Spain and Western France, Marage & Gégout, 
2009). Similarly, the suitable areas for base- rich fens were asso-
ciated with the main climatic drivers influencing these habitats in 
European mountains, namely summer precipitation and solar radi-
ation (Essl et al., 2011). As it was shown in our models, mountain 
base- rich fens hardly occur in the Mediterranean region, where 
summer drought limits water availability (Jiménez- Alfaro et al., 
2014).

We note that both community types also depend on soil factors, 
since they only occur on acidic soils (acidophilous beech forests) and 
in calcareous hard- water habitats (base- rich fens). However, the ex-
pected influence of soil pH was only confirmed in the case of the 
beech forests. This likely reflects their occurrence in zonal habitats 
of regions with predominant acidic bedrocks. In contrast, base- rich 
fens are azonal habitats usually associated with springs, while not all 
base- rich bedrocks support the existence of springs (Grootjans et al., 
2005). This makes it difficult to predict the distribution of base- rich 
fens using coarse- grain variables related to soil conditions. Although 
the spatial accuracy of our occurrence data (~1–2 km) is good enough 
to estimate the extent of occurrence of the modelled entities, it 
seems also limited by high commission error, especially in azonal 
habitats. This issue, caused by the fact that broadscale predictors do 
not account for variation in local conditions, is actually a well- known 

F IGURE  3 Spatial predictions obtained from generalized dissimilarity modelling for the compositional variation of (a) acidophilous beech 
forests and (b) base- rich fens in Europe. Maps show variation in community dissimilarity according to the values predicted for three axes of a 
principal component analysis (PCA), and the combination of the three axes into a unique model output using an RGB (red- green- blue) colour 
plate. The strongest differences in colour reflect the strongest predicted differences in species composition. All maps are masked to suitable 
regions predicted for each community type as in Figure 1. [Colour figure can be viewed at wileyonlinelibrary.com]
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limitation of SDMs (Guisan & Thuiller, 2005) or biodiversity models 
based on remote sensing (Rocchini et al., 2010).

4.2 | Model generalization and compositional 
dissimilarity

Our results support the hypothesis that CDMs strongly depend on 
data completeness at broad scales, as indicated by lower model per-
formance under increasing geographical sampling bias. The models 
perform better when more regions are used for calibration and when 
used for interpolation, in agreement with the known effect of sam-
pling bias in SDMs (Anderson & Gonzalez, 2011; Heikkinen et al., 
2012; Phillips et al., 2009). In general, we found geographical trans-
ferability good enough to be applied from a large proportion of the 
study region to non- sampled areas. However, extrapolation seems 
too challenging for obtaining good models at the continental scale, as 
it has been found in similar scenarios using SDMs (Wenger & Olden, 
2012). Under a scenario of strong sampling bias, our extrapolation 
exercise showed very low performance and low correlation with the 
baseline model. This was expected given the reduced geographi-
cal extent of the calibration data in the context of the whole study 
area, producing truncated responses when models are computed 
with data from one region only (Heikkinen et al., 2012; Thuiller et al., 
2004). This confirms our hypothesis that increasing geographical 
sampling bias significantly decreases model performance.

The performance of spatial transferability and extrapolation was 
also dependent on the characteristics of the regions selected for 
model calibration, as it has been shown in SDMs (Suárez- Seoane, 
Virgós, Terroba, Pardavila, & Barea- Azcón, 2014). Some of these re-
gions are more representative of the environmental variation avail-
able also outside the focal region, as indicated by the variance of 
AUC values and omission rates. This explains the lower model per-
formance found in base- rich fens, for which some of the geographi-
cal partitions represented marginal regions with a low proportion of 
the environmental variation captured therein. The performance of 
model generalization was related to the compositional variation of 
the community types and the influence of environmental drivers ob-
served with GDM. Indeed, habitat suitability and species dissimilarity 
were influenced by similar predictors in beech forests (e.g. tempera-
ture seasonality) and rich fens (e.g. summer precipitation). The influ-
ence of geographical distance was, however, more important than 
environmental variation in both community types, indicating that 
compositional variation is also related to assembly processes such 
as biogeographical history or dispersal limitation (HilleRisLambers, 
Adler, Harpole, Levine, & Mayfield, 2012). These results suggest that 
model transferability and extrapolation are limited by the truncation 
of the environmental space in the training data, but also by the inter-
nal variation in species composition across geographical gradients. 
This challenges the assumption of equilibrium in space and time, es-
pecially when increasing regional sampling bias. Thus, extrapolation 
from a restricted geographical region to the whole continent seems 
to be a risky business in terms of statistical performance and reli-
ability of spatial predictions, except for the hypothetical case that a 

focal region contains the full gradient of environmental conditions 
that is available at the continental extent.

4.3 | Applications for broadscale 
vegetation mapping

In contrast with the geographical extent traditionally used in CDMs, 
this is one of few studies modelling the distribution of plant commu-
nity types at the continental scale. Similar models may be useful for 
estimating the extent of occurrence and the area of occupancy of veg-
etation types in ecosystem assessment (Rodríguez et al., 2015) and 
for supporting projections under past (Potts et al., 2013) and future 
(Keith et al., 2014) environmental conditions. The distribution maps 
produced with our CDMs can be also used to estimate the potential 
area of occupancy of specific habitats related to forests and mires, 
which is a current requirement for conservation in Europe (Álvarez- 
Martínez et al., 2017). We note that, in analogy with the spatial hierar-
chy of species beta- niches in SDMs (Ackerly, Schwilk, & Webb, 2006), 
predictions in grid cells of a few km represent heterogeneous land-
scapes where different community types may co- occur. The potential 
area of occupancy therefore assumes that different community types 
can occur in the same grid cell, which is an important difference to 
vegetation mapping based on high- resolution data (Miller & Franklin, 
2002), or CDMs using remote sensing (Álvarez- Martínez et al., 2017). 
In addition, GDM offers complementary information about the com-
positional variation within the potential area of occupancy. GDM has 
been used to address biodiversity patterns and spatial regionalization 
of different organisms (Brown et al., 2014; Fitzpatrick et al., 2013; 
Lasram, Hattab, Halouani, Romdhane, & Le Loc’h, 2015), while similar 
approaches for modelling species turnover have also been suggested 
with remote sensing applications (Rocchini et al., 2010). Nevertheless, 
these approaches are still poorly integrated in the analysis of broad-
scale vegetation patterns.

Although we modelled vegetation alliances as entities that are 
known to respond to broadscale environmental factors in Europe 
(Jiménez- Alfaro et al., 2014; Mucina et al., 2016), we conclude that 
any community type at any hierarchical level may be modelled at con-
tinental extent, provided it is consistently defined by species compo-
sition and constrained by environmental factors. A key assumption 
of this approach is that community types defined by species com-
position are discrete entities that respond to abiotic factors, thus 
adopting a Clementsian view. This community resolution encapsu-
lates, to a certain extent, the effect of assembly processes such as 
environmental filtering and biotic interactions (HilleRisLambers et al., 
2012). A major limitation attributed to SDMs – the lack of informa-
tion about biotic interactions (Wisz et al., 2013) – is thus expected to 
have a minor impact on models computed for plant community types 
that involve interspecific interactions implicitly (Lortie et al., 2004). 
However, community types defined by similar species assemblages 
and co- occurring niches are not floristically identical across their dis-
tribution range, and complementary methods such as GDM allow to 
integrate a Gleasonian perspective, evaluating the extent of internal 
variation in species responses. The combination of both CDMs and 
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GDM is therefore a promising tool for mapping large- scale vegetation 
patterns, by considering that continental vegetation classifications 
are nowadays on the agenda of biodiversity research, and similar data 
will be accessible due to the increasing availability of international 
databases (Franklin, Serra- Diaz, Syphard, & Regan, 2017).
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