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Abstract 

Aim: Forest understory microclimates are often buffered against extreme heat or cold, with 

important implications for the organisms living in these environments. We quantified seasonal 

effects of understory microclimate predictors describing canopy structure, canopy composition 

and topography (i.e. local factors), as well as forest patch size and distance to coast (i.e. 

landscape factors).   

Location: Temperate forests in Europe 

Time period: 2017-2018 

Major taxa studied: Woody plants 

Methods: We combined data from a microclimate sensor network with weather station records 

to calculate the difference – or offset – between temperatures measured inside and outside 

forests. We used regression analysis to study the effects of local and landscape factors on the 

seasonal offset of minimum, mean and maximum temperatures.   50 

Results: Maximum temperature during summer was on average cooler by 2.1 °C and minimum 51 

temperature during winter and spring were 0.4 °C and 0.9 °C warmer inside than outside 52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

forests. The local canopy cover was a strong non-linear driver of the maximum temperature 

offset during summer, and we found increased cooling beneath tree species that cast the deepest 

shade. Seasonal offsets of minimum temperature were mainly regulated by landscape and 

topographic features, such as the distance to coast and topographic position. 

Main conclusions: Forest organisms experience less severe temperature extremes than 

suggested by currently available macroclimate data, so climate-species relationships and 

species’ responses to anthropogenic global warming cannot be modelled accurately in forests 

using macroclimate data alone. Changes in canopy cover and composition will strongly 

modulate warming of maximum temperatures in forest understories, with important 

implications for understanding responses of forest biodiversity and functioning to the 62 
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combined threats of land-use change and climate change. Our predictive models are generally 63 

applicable across lowland temperate deciduous forests, providing ecologically important 64 

microclimate data for forest understories. 65 

66 

Keywords: Canopy Density, Climate Change, Forest Structure and Composition, Global 67 

Warming, Macroclimate, Microclimate, Temperature Buffering, Understorey 68 

69 
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Introduction 70 

The global network of standardised weather stations deliberately excludes forest microclimate, 71 

focussing instead on measuring synoptic, free-air conditions representing the macroclimate (De 72 

Frenne & Verheyen, 2016). Such weather stations are dictating the global climate data layers 73 

available for ecological research (e.g., CHELSA (Karger et al., 2017) and Worldclim (Fick & 74 

Hijmans, 2017)), despite the fact that such data do not well represent the climatic conditions 75 

many forest organisms experience (Potter et al., 2013; Bramer et al., 2018). We thus know 76 

relatively little about forest microclimate gradients across large spatial scales and over time. 77 

This is a major impediment for global change biology because forests cover almost one third 78 

of the land surface on Earth and harbour about two thirds of all terrestrial biodiversity (MEA, 79 

2005; FAO, 2010).  80 

Variation in forest structure, composition and topographic position leads to highly 81 

heterogeneous microclimate across space and time, with important consequences for the 82 

growth, survival and reproductive success of forest organisms and for forest functioning 83 

(Bazzaz & Wayne, 1994). The significance of microclimate has been acknowledged by 84 

ecologists and foresters for a long time and microclimate is increasingly recognised as an 85 

important moderator of biotic responses to anthropogenic climate change (Uvarov, 1931; 86 

Geiger et al., 2003; Lenoir et al., 2017). For example, canopy structure and the associated 87 

microclimatic conditions strongly mediate forest species responses to climate warming (De 88 

Frenne et al., 2013; Scheffers et al., 2014). Locally experienced warming rates due to 89 

anthropogenic climate and land-use change are strongly modified by changes in canopy 90 

structure, e.g., by changes in canopy cover. Quantifying the variability of forest temperature in 91 

space and over time will thus be key to addressing the responses of forest organisms to climate 92 

and land use change (Lenoir et al., 2017).  93 
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One potential route to derive forest microclimate dynamics is to infer them from climate 94 

data available from weather stations. Advanced modelling approaches, such as the mechanistic 95 

downscaling of microclimate from interpolated weather station data, make it increasingly 96 

feasible to approximate microclimate across space and over time (Bramer et al., 2018; 97 

Zellweger et al., 2019). However, attempts to model forest microclimates are rare and often 98 

lack appropriate data for model calibration and validation (Kearney & Porter, 2017; Maclean 99 

et al., 2018). We need empirical, generalizable data at large spatial scales to further our 100 

understanding of the drivers of the differences between climatic measurements made inside 101 

forests and those made by nearby weather stations outside forests (Jucker et al., 2018). These 102 

could then be combined with the wealth of data describing forest structure and composition 103 

(e.g., collected within national forest inventories) to pave the way to translating past, present 104 

and projected macroclimate data into better representations of the climate conditions that forest 105 

organisms actually experience (Bramer et al., 2018). Yet, quantitative assessments of forest 106 

microclimates at broad spatial scales and over sufficient timespans to detect seasonal effect 107 

sizes of key drivers of microclimate are still scarce (Greiser et al., 2018). 108 

Across all major biomes understory temperatures are offset to free-air conditions by 109 

one to four degrees or more, resulting in buffered, i.e. less extreme, temperature regimes below 110 

tree canopies (De Frenne et al., 2019). Maximum daytime temperatures in woodland 111 

understories are cooled by tree canopies because they reduce transmission of shortwave solar 112 

radiation to the understorey and cool the air by transpiration (Davis et al., 2019). Tree canopies 113 

reduce radiative heat loss and emit some of the energy absorbed during the day to the 114 

understorey, thereby causing warmer daily minimum temperatures in the understorey 115 

compared to free-air conditions (Geiger et al., 2003). Although less often studied, canopy 116 

composition may also affect the microclimate because the quality and quantity of light 117 

transmitted by canopy foliage varies among tree species, leading to subtle species-specific 118 



6 

effects on the light conditions and associated microclimates (Renaud & Rebetez, 2009). 119 

However, despite a growing number of studies showing that canopy cover, basal area and/or 120 

canopy height are major determinants of understorey temperatures (Chen et al., 1999; von Arx 121 

et al., 2013; Greiser et al., 2018; Jucker et al., 2018), we still lack a general model of the form 122 

of the relationship at continental scales.  123 

Differences between macro- and microclimate, i.e. temperature offsets, result from 124 

processes operating at multiple scales and their influence may change over the course of the 125 

seasons. Topographic position and slope exposure have strong influences on radiation regimes 126 

and microclimatic gradients; for example, cold air drainage lowers daily minimum 127 

temperatures in areas where cold air flows and settles (Daly et al., 2010), resulting in increased 128 

temperature offsets (Lenoir et al., 2017). Such effects represent the influence of regional terrain 129 

features on local climate dynamics and are expected to be largely independent from effects 130 

brought about by local canopy characteristics. Wind mixes air and reduces the differences 131 

between the macro- and microclimate. The levels of air mixing and lateral transfer of humidity 132 

and heat by wind generally decrease with increasing distance from the coast, from the edge of 133 

forest patches, or with increasing forest structural complexity, leading to increased temperature 134 

offsets (Kovács et al., 2017; Bramer et al., 2018). At continental and global scales, the 135 

magnitude of the temperature offset varies considerably across biomes and forest types, 136 

suggesting that the macroclimate may explain some of the variation in microclimatic buffering 137 

(De Frenne et al., 2019). To put the influence of local drivers of microclimate into perspective, 138 

it will thus be important to study potential drivers at multiple spatial and temporal scales, and 139 

to make systematic measurements at continental scales.  140 

Here we quantify the differences between air temperatures measured in the understorey 141 

and nearby weather stations in sites spanning much of the temperate deciduous forest biome of 142 

Europe. We analysed the seasonal variation in these temperature differences and compared the 143 
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relative importance of (1) local canopy structure and composition versus (2) variables 144 

describing the landscape structure and the topography to explain this variability. 145 

Materials and Methods 146 

Sampling design and study sites 147 

We compiled data from ten regions spanning an East – West gradient of c. 1700 km and a 148 

North – South gradient of c. 800 km across a major part of the European temperate deciduous 149 

forest biome (Figure 1). In each region, we selected ten plots representing a regional gradient 150 

of canopy cover. This resulted in 100 plots varying in total canopy cover (cumulative sum 151 

across all species and vertical layers) from as little as 41 % up to 213 %. The dominant tree 152 

species in terms of cover (with the number of plots in which they occur) were Fagus sylvatica 153 

(47), Carpinus betulus (44), Fraxinus excelsior (39), Quercus robur (34) and Quercus petraea 154 

(30). The mean annual temperature and precipitation during the time period 1979 - 2013 ranged 155 

from 7.3 to 11.0 °C and 468 to 1000 mm across the studied regions, respectively (Karger et al., 156 

2017). 157 

Measurement of temperature and dependent variables 158 

In each plot we recorded air temperature every hour from 22 February 2017 to 21 February 159 

2018, using Lascar EasyLog EL-USB-1 temperature sensors with an accuracy of ± 0.5 °C. The 160 

sensors were attached to a tree trunk with DBH > 25 cm at 1 m above ground, which marked 161 

the centre of the plot (Figure 1c). To exclude potential bias due to direct sunlight, we placed 162 

the loggers in 18 cm long white plastic radiation shields which we attached at the north side of 163 

the tree trunk (see Supporting Information Figure S1; in Appendix S1). We aggregated the 164 

hourly temperature data to three daily temperature statistics: minimum daily (Tmin), mean 165 

daily (Tmean) and maximum (Tmax) daily temperature. All daily time series were plotted, 166 

visually checked for obvious outliers and compared to all other times series within the 167 

respective region, including the respective temperature time series that we obtained from the 168 
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closest weather station. This allowed us to verify and exclude sampling periods that were 169 

potentially biased due to temporary device malfunction or misplacement (e.g. logger found on 170 

the ground due to disturbance from wild boar, bear, deer, etc.). As a result, our sample sizes 171 

for spring, summer, autumn and winter were 92, 96, 95, and 98 plots, respectively. 172 

We defined temperature offset values as the difference between the daily temperature 173 

statistics (Tmin, Tmean, Tmax) recorded inside the forest and the respective temperature 174 

statistic recorded by the closest official weather station representing free-air conditions outside 175 

forests. The temperature offsets for Tmin, Tmean and Tmax are our dependent variables. 176 

Negative offsets thus indicate cooler, and positive offset values warmer temperatures inside 177 

versus outside forests. We focus on temperature offsets rather than absolute values to facilitate 178 

among-region comparisons across Europe, because macroclimate-microclimate temperature 179 

differences are most relevant for species’ responses to climate change, and because temporal 180 

temperature changes due to anthropogenic climate change are also expressed against a baseline. 181 

To account for temperature differences due to differences in elevation between the 182 

locations of the sensor and the weather station, we applied a constant lapse rate of 0.5 °C per 183 

100 m for Tmin and Tmean, and a seasonal lapse rate for Tmax: 0.5° C in winter, 0.7° C in 184 

spring and summer, and 0.6° C in autumn. The choice of lapse rates were guided by empirical 185 

evidence from several regions in Europe  (Rolland, 2003; Kollas et al., 2014). Our study focus 186 

lies on lowland forests and the differences in elevation between the plots and weather stations 187 

ranged between 1 and 284 m, with a median of 35 m (Appendix S2). Although lapse rates may 188 

vary between sites, seasons and temperature statistics (Tmin, Tmean, Tmax), such unaccounted 189 

variation in lapse rates would result in only minor differences in offset values, not affecting 190 

our main findings and conclusions. This is empirically supported by a lack of residual 191 

correlation of our models and data with the elevational differences between locations of the 192 

sensor and the weather station (Appendix S2). 193 
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We aggregated daily temperature offsets to calculate monthly means, as well as means 194 

across the meteorological seasons, i.e., spring (March, April, May), summer (June, July, 195 

August), autumn (September, October, November) and winter (December, January, February). 196 

Absolute minimum temperatures can be a crucial factor limiting plant survival, so we 197 

calculated the offset value for the absolute daily minimum temperature during winter, as well 198 

as during spring (Kollas et al., 2013).  199 

Measurement of explanatory variables 200 

We applied a combination of field-based surveys and published spatial data to derive 201 

two groups of explanatory variables representing (1) local canopy structure and composition 202 

versus (2) landscape structure and topography (Table 1). Local-scale canopy structure and 203 

composition was assessed between 3 July and 15 August 2017, within a circular plot area with 204 

a radius of 9 m around the central tree on which the temperature sensor was attached (Figure 205 

1c). The plot dimensions were measured with a vertex hypsometer (Vertex IV), and the location 206 

of the interpretation point in each cardinal direction was marked with a pole. The coordinates 207 

of the plot centre were recorded using a differential Global Positioning System with an 208 

accuracy of c. 1 m. In each cardinal direction, we visually estimated canopy cover, by adding 209 

up the species-specific vertical covers of all the plant species in the shrub and tree layer. The 210 

shrub and tree layers included all trees and shrubs with heights between 1 and 7 m, and above 211 

7 m, respectively. Canopy cover per plot was then calculated as the mean of these four 212 

estimations. The species-level approach for estimating canopy cover provides a detailed 213 

measure of the cumulative sum of cover across all species and vertical layers, allowing values 214 

to exceed 100 percent due to overlaps. At the stand level, however, canopy cover estimates are 215 

often confined within the range of 0 to 100 percent. We therefore also analysed a transformed 216 

version of our canopy cover values by accounting for the overlap and constraining the 217 

cumulative cover values below 100 percent (see Appendix S9 for details). Canopy openness 218 
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was measured by taking the mean of spherical densiometer readings taken in the four subplots. 219 

We used a concave spherical densiometer, which displays large parts of the sky hemisphere, 220 

thus enabling us to take an angular view for estimating the fraction of sky hemisphere not 221 

covered by the canopy (Baudry et al., 2014). It is important to note that our estimates of canopy 222 

cover and canopy openness represent one snapshot in time, neglecting temporal variation in 223 

leaf area and associated effects on microclimates. Basal area was estimated based on the 224 

diameter at breast height (DBH) of all trees within the plot with a minimal DBH of 7.5 cm, as 225 

measured with callipers. The total sum of projected crown area (CA) for all individual tree 226 

species was estimated based on the allometric relationship between CA and DBH (Jucker et 227 

al., 2016) (see Appendix S3 for details). We considered CA as an additional variable because 228 

its link to microclimate is more mechanistic compared to DBH. The height of the tree on which 229 

the temperature logger was attached was measured by the mean of two measurements from 230 

opposing directions using the vertex hypsometer (Vertex IV). The shade casting ability (SCA) 231 

describes the ability of each tree species to cast a specific level of shade, ranging between 1 232 

(very low shade casting ability, e.g. Betula spp.) and 5 (very high shade casting ability, e.g. 233 

Fagus sylvatica) (Verheyen et al., 2012). We calculated a weighted SCA per plot by using the 234 

species-specific canopy cover estimates as weights. This allowed us to test whether canopies 235 

made out of tree species with higher SCA scores have a stronger offsetting capacity than those 236 

with low SCA scores. 237 

Landscape and topographic characteristics were derived from satellite-based global tree 238 

cover data with a spatial resolution of c. 30 m (Hansen et al., 2013) and a pan-European digital 239 

elevation model (DEM) with a spatial resolution of 25 m, using Copernicus data and 240 

information from the European Union (EU-DEM, 2018). Forest cover was assessed within a 241 

circular buffer area with a radius of 250 m and measured as the percentage of area covered by 242 

a minimum tree cover of 20 % (Hansen et al., 2013). Distance to forest edge was calculated by 243 
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transforming the forest cover mask into contour lines and extracting the distance from the plot 

coordinate to the nearest contour line, using the rasterToContour and gDistance functions in 

the R packages “raster” (Hijmans, 2017) and “rgeos” (Bivand & Rundel, 2018). Landscape-

level forest cover and distance to edge have previously been related to forest microclimates 

(Latimer & Zuckerberg, 2017; Greiser et al., 2018) and may affect the level of air mixing and 

the lateral transfer of heat and humidity by wind, thus affecting the temperature offset. 

Topographic northness, slope, elevation and topographic position were all derived from the 

DEM to represent topographic effects on the offset of understorey temperatures, including 

variation in solar radiation incidence and cold air drainage, an important process affecting 

minimum temperatures at night and during winter (Daly et al., 2010; Ashcroft & Gollan, 

2013). Topographic northness describes the topographic exposition ranging from 

completely north exposed to completely south exposed, and was derived as cosine of 

topographic aspect. Topographic position was calculated as the difference between the 

elevation of the plot cell and the lowest cell within a circular buffer area with a radius of 

500 m (Ashcroft & Gollan, 2013).  We further considered the distance to the nearest 

coastline because the temperature offset may increase with increasing distance to coast, due 

to increased temperature ranges and lower levels of air mixing.  

Statistical analysis 

To analyze the relative importance of our two groups of predictor variables, i.e., local canopy 

characteristics versus landscape-level metrics, for explaining temperature offsets we used 

variation partitioning following Borcard et al. (1992). First, we performed a principal 

components analysis (PCA) for each of the variable groups and used the first two axes per 

group as predictor variables in the subsequent analysis. Thus, the number of predictor variables 266 

used per group was the same. Among canopy characteristics, crown area and canopy cover had 267 

the highest loadings on the first and second PCA axis, respectively, while the loadings for the 268 
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landscape metrics were more variable among predictor variables (Appendix S4). We then fitted 269 

linear mixed-effects models (LMMs) with the PCA axes as fixed effects and ‘region’ as a 270 

random intercept term to account for the non-independence among replicates from the same 271 

region, using restricted maximum likelihood in the lmer function from the lme4-package (Bates 272 

et al., 2015). We did not include a random slope term because it resulted in higher AIC values 273 

when compared to the models with random intercepts only. We fitted three LMMs: one for 274 

each of the two variable groups (local canopy characteristics versus landscape-level metrics) 275 

and one for the combination of both groups. Based on these three LMMs we finally partitioned 276 

the amount of explained variation (marginal R2) into individual and shared fractions (Borcard 277 

et al., 1992).  278 

To report the relationship between each individual predictor variable and each 279 

dependent variable (i.e, the offset values for Tmin, Tmean and Tmax) we performed χ2-tests 280 

by comparing the univariate LMM including each single predictor (scaled to a mean of 0 and 281 

standard deviation of 1) with a respective intercept-only model, both with ‘region’ as a random 282 

intercept term (Zuur et al., 2009). We log-transformed canopy openness and topographic 283 

position to better conform to normality. Goodness-of-fit was determined by calculating 284 

marginal and conditional R2 values following (Nakagawa & Schielzeth, 2012) using the 285 

r.squaredGLMM function in the MuMIn-package (Barton, 2018). The marginal R2 describes286 

the variation explained by the fixed factors only, whereas the conditional R2 describes the 287 

variation explained by the fixed and random factors together (Nakagawa & Schielzeth, 2012). 288 

We expected that the random intercept term ‘region’ would capture major gradients in 289 

macroclimate in our sampling design (Figure 1), leaving little variation in temperature offset 290 

to be explained by macroclimate once regional effects have been accounted for. To test this 291 

assumption, we performed an additional variation partitioning exercise with three variables 292 

groups, i.e., the two groups representing local canopy characteristics and landscape-level 293 
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metrics, and an additional group representing the macroclimate. The variables in the latter 294 

group were the long-term (1979 – 2013) mean annual precipitation and temperature (Karger et 295 

al., 2017), as well as the daily minimum, maximum and mean temperature statistics from the 296 

weather stations for the 1-year period matching with the understorey temperature sensors’ data, 297 

aggregated over the same time periods as the dependent variables. Following the approach 298 

chosen for the two other groups of local canopy characteristics and landscape-level metrics and 299 

to ensure that the number of predictor variables used per group was the same, we used the first 300 

two axes of a PCA on macroclimate variables as predictor variables in the variation partitioning 301 

(Appendix S4). 302 

To test for non-linear relationships between the temperature offset and canopy 303 

characteristics, as well as topographic position, we used general additive mixed-effects models 304 

(GAMMs) with the gamm function in the “mgcv” package (Wood, 2017) and again ‘region’ 305 

was added as random term. To complement the non-linearity check and to identify possible 306 

break points or thresholds, we used piecewise regression based on the function segmented in 307 

the “segmented” package (Muggeo, 2017). To investigate the degree to which the relationships 308 

between canopy characteristics and temperature offset are transferable to other regions across 309 

the temperate deciduous forest biome, we assessed the model’s predictive performance based 310 

on a cross-validation procedure with blocked data splitting, accounting for our hierarchical 311 

sampling design (‘region’ as a random effect) (Roberts et al., 2017). To this end, we calibrated 312 

ten different models for each of the six canopy variables, i.e. 60 models in total. Each model 313 

was calibrated using the data from nine regions, and validated based on the predictions made 314 

to the 10th, left-out region. For the sake of parsimony, we combined each canopy variable with 315 

only one variable describing landscape structure and topography, i.e. distance to the coast, 316 

which had a relatively large influence on the magnitude of the offset value for maximum 317 

temperatures (see results). We refrained from analysing the predictive performance of the 318 
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landscape structure and topography variables, because our focus here was primarily on the 319 

effects of the canopy structure and composition. Canopy variables were relatively unimportant 320 

for explaining variation in the offset of Tmin, so we restricted our analysis to Tmax. Predictive 321 

performance was assessed based on the R2-value comparing the predicted vs. the observed 322 

values. All analyses were performed in R version 3.5.0 (R Core Team, 2018). 323 

324 
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Results 325 

The mean (range) daily maximum air temperature (Tmax) offset during summer was -2.1 °C 326 

(-3.7 to 1.4) and mean daily minimum air temperature (Tmin) offset during winter was 0.4 °C 327 

(-1.2 to 2.0) (Figure 2). Across all regions and the whole year, the mean offset of Tmax and 328 

Tmin was -0.8 °C (-2.3 to 1.6) and 0.9 °C (-0.6 to 2.8), respectively. The offset of daily average 329 

temperatures (Tmean) was generally low, with means of -0.5 °C (-1.4 to 0.4) during summer 330 

and -0.03 °C (-0.8 to 0.8) during winter. 331 

The offset of temperature extremes varied considerably between the sampled regions 332 

and months and seasons, and was most pronounced during summer and least distinctive during 333 

winter (Figure 2 and Appendix S5). Interestingly, the offset of Tmax during spring were 334 

slightly positive, with a mean of 0.4 °C (-2.4 to 3.0), indicating that spring Tmax inside forests 335 

may often be higher, not lower, than outside forests. The average offset of Tmin in spring was 336 

also positive, i.e. mean daily minimum temperatures in spring were warmer by 0.9 °C (-1.4 to 337 

3.6) in the understorey than outside forests. The same pattern was found for absolute daily 338 

minimum temperature offset during spring and winter, with means of 0.9 °C (-1.7 to 3.2) and 339 

1.5 °C (-1.1 to 5.4), respectively (Appendix S6). 340 

Partitioning the explained variance into independent contributions of local canopy 341 

characteristics versus landscape and topography metrics, as well as their joint contributions, 342 

showed that canopy characteristics were generally more important for explaining the variation 343 

in Tmax offsets, while landscape and topography metrics were most important for explaining 344 

Tmin offsets (Figure 3). During summer, the independent effect of canopy characteristics on 345 

Tmax offset was greatest, with a marginal R2 = 0.22. During winter, landscape and topography 346 

metrics independently explained 40 % of the variation (marginal R2 = 0.4) in Tmin offset. The 347 

joint contributions between canopy characteristics and landscape and topography metrics were 348 

low, suggesting that the groups capture different processes governing forest microclimates. 349 
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The total marginal R2 values for Tmax offset during summer and Tmin offset during winter 350 

were both 0.41, and thus considerably higher than the R2-values for Tmin and Tmax offset 351 

during spring and autumn, which ranged between 0.13 and 0.27 (Figure 3). In line with our 352 

expectation, including the macroclimate as a third variable group in the variation partitioning 353 

revealed relatively small independent effects of macroclimate, except for Tmin in spring 354 

(Figure S7). 355 

Analysis of the independent effect of canopy characteristics on the offset of Tmax during 356 

summer revealed a negative and non-linear relationship for canopy cover, i.e., the cooling of 357 

Tmax in the understorey increased non-linearly with increasing canopy cover (Figure 4). 358 

Piecewise regression analysis identified a canopy cover threshold at 89 % (standard error 8.5 359 

%), below which the offsetting capacity of canopy cover rapidly increased when additional 360 

vegetation cover was added. The results for the transformed version of canopy cover with 361 

values constraint to range between 0 and 100 % suggest a threshold of 75 % (standard error 5.2 362 

%) and a comparably weak non-linearity (Appendix S9). Non-linear relationships were further 363 

found for canopy openness and crown area, but not for basal area, which was weakly and 364 

negatively related to the offset of Tmax during summer (Figure 4 and Table S8). Contrary to 365 

our expectations, the Tmax offset increased with increasing tree height, suggesting a decrease 366 

in temperature buffering. However, this relationship was weak and we thus refrain from further 367 

interpreting this result. 368 

The shade casting ability (SCA) of the tree species composition was significantly and 369 

negatively related to the offset of Tmax, indicating that the buffering capacity increases with 370 

increasing SCA (Figure 4). SCA was not correlated with any of the canopy structure metrics 371 

tested, suggesting that the canopy composition holds information for explaining the 372 

temperature offset that is complementary to canopy structure (Appendix S10). 373 



17 

The topographic position, distance to the coast and elevation were the most important 374 

predictors for Tmin offset across the seasons (Table S8). The minimum temperature offsets 375 

increased linearly with increasing distance to coast, explaining 39 % of the variation for Tmin 376 

during winter and 17 % of the variation for Tmax during summer (Figure 5; Table S8). 377 

Elevation and distance to coast were strongly correlated (Pearson’s r: 0.84, Figure S10) and 378 

thus showed similar patterns. We therefore do not further elaborate on the effects of elevation 379 

on the temperature offset. Topographic position was non-linearly related to the offset of Tmin 380 

in winter (Figure 5), and was also an important predictor of the offset of the absolute daily 381 

minimum temperature in winter and spring (Table S6). Landscape-level forest cover and 382 

distance to the nearest forest edge were equally unimportant for explaining understorey 383 

temperature offsets (Table S8).  384 

Cross-validation of our models suggest that the GAMMs including canopy cover or 385 

canopy openness predict the offset of Tmax during summer reasonably well, with marginal R2 386 

values of 0.33 and 0.43, respectively (Appendix S11). These results further support the non-387 

linear relationship between canopy cover and Tmax offset: the marginal R2 value from the 388 

linear models (i.e. LMMs) including canopy cover was 0.24 and thus considerably lower than 389 

that of the GAMMs (0.33). However, the opposite was the case for canopy openness, with R2 390 

values of 0.43 and 0.24, respectively. SCA also had a moderate predictive performance, with 391 

a marginal R2 value from cross-validated GAMM’s of 0.20 for the offset of Tmax during 392 

summer. The predictive performances of basal area, crown area and tree height were low, with 393 

R2 values ranging from 0.06 to 0.10 (Table S11). 394 

395 
396 
397 
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398 

399 

400 

Discussion 

Understorey air temperature extremes in temperate lowland deciduous forests across 

Europe are considerably less severe than – or buffered from – those reported by weather 

stations outside forests, with mean (range) summer maximum and winter minimum ure offset 401 
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values of -2.1 (-3.7 - 1.4) °C and 0.4 (-1.2 - 2.0) °C, respectively. Together with the spatial 

and temporal analysis of the drivers of the temperature offset, our results have 

important implications for improving the analysis of forest microclimates and their 

effects on forest biodiversity and functioning in the context of climate warming and land use 

change. 

Canopy structure and composition play a key role in regulating the offset of 

maximum summer temperatures. Forests thus provide highly heterogeneous thermal 

environments, with maximum temperature conditions that are often much cooler than 

suggested by available climate layers (Scheffers et al., 2017; Jucker et al., 2018; Senior et 

al., 2018). The maximum temperature offsets reported here compare well to general 

patterns observed in temperate regions across the globe and may even increase if the forest 

temperatures would be measured closer to the forest ground surface (De Frenne et al., 

2019). Local maximum temperatures greatly matter for the response of organisms to climate 

warming, because the relative fitness of a species is strongly related to the species-specific 

heat tolerance (Huey et al., 2012). Many species living below tree canopies may therefore 

find thermal refuges within their habitats, allowing them to evade short-term temperature 

extremes (Scheffers et al., 2014). Topographic microclimate heterogeneity and the associated 

provision of microrefugia reduces the climate-change-related extinction risk of plants and 

insects (Suggitt et al., 2018) and our microclimate results suggest that this may also apply in 

forests; data on organismal responses are needed to explore this issue further. The future 

provision of thermal refuges will depend on the degree to which microclimates are 

decoupled from the macroclimate, potentially resulting in different warming rates under the 

canopy versus in the open (De Frenne et al., 2019). 

422 
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Changes in canopy structure and composition may alter local minimum and maximum 423 

temperatures at magnitudes exceeding the rates of macroclimate warming in the decades to 424 

come (IPCC, 2013). Habitat modifications resulting from a decrease of canopy cover, e.g. tree 425 

harvest in production forests, thus strongly intensify the local impact of macroclimate warming 426 

(and, conversely, increasing cover mitigates impact), which has significant implications for 427 

forest biodiversity dynamics and functioning. Habitat modifications in favour of warmer 428 

habitats matter for the re-assembly of terrestrial communities because the heat tolerance varies 429 

among species, putting species with low heat tolerances at higher risk of being filtered out 430 

(Nowakowski et al., 2018). Incorporating canopy density information and associated shade 431 

effects into biophysical models of body temperatures is thus key to improve predictions of 432 

animals’ vulnerability to climate change (Algar et al., 2018). Increasing forest density, as has 433 

been observed in many temperate European forests as a consequence of changes in forest 434 

management over the past decades (e.g., Hedl et al., 2010), may actually have compensated 435 

for, or even reversed, recent increases in maximum temperatures arising from anthropogenic 436 

global warming in some of these forests. Temperature buffering by trees also directly impacts 437 

human health and well-being, e.g. in cities, where trees alleviate human exposure to heat 438 

(Armson et al., 2012). Considering the interactions between regional macroclimate warming 439 

and the local spatial and temporal dynamics in microclimates is thus crucial for the accurate 440 

assessment of the responses of forest biodiversity, ecosystem functioning and service 441 

provisioning to rapid global change. 442 

The regulating effect of canopy structure and composition on understorey microclimate 443 

has long been embraced by forest ecologists and managers. Nevertheless, our finding that 444 

understory maximum temperatures are also regulated by differences in deciduous tree species 445 

composition, due to species-specific shade casting abilities, provides novel insights into the 446 

drivers of understory microclimates. We further show that the offset of maximum understorey 447 
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air temperatures is non-linearly related to canopy structure, e.g., to canopy cover, a proxy 

variable for the understorey light conditions. Understorey temperature offsets may thus be 

closely tied to the non-linear light absorption along the vertical canopy profile, as proposed by 

the Beer-Lambert law (Monsi & Saeki, 1953). Together with findings from the tropics (Jucker 

et al., 2018) and temperate forests in Australia (Ashcroft & Gollan, 2012), who also found non-

linear effects of canopy cover on maximum temperatures, our results suggest that such non-

linear relationships may represent a general and globally relevant phenomenon, providing 

important insights into the mechanisms governing forest microclimate gradients. 

Forest managers and ecologists frequently use canopy structure per se (e.g. quantified 

via variables such as canopy cover, basal area and LAI) as a proxy for understorey 

microclimatic (including light) conditions, which are key drivers of forest regeneration and 

species performance. Accounting for non-linear relationships between canopy structure, light 

availability and extreme temperatures with associated threshold effects may help forest 

managers to promote tree regeneration by creating or maintaining suitable tree species-specific 

microclimatic conditions, or mitigate microclimate extremes and related damage to crops 

produced in agroforestry schemes (Lin, 2007). In particular we found that canopy cover 

increases daily absolute minimum temperatures during spring, confirming evidence that the 

risks of spring frost damage on tree regeneration are reduced under canopy (Kollas et al., 

2013). Interpreting seasonal effects of canopy cover on microclimates would optimally be 

based on data representing the seasonal variation in canopy cover, the lack of which being a 

limitation to many studies, including ours. Investigating effects of temporal canopy cover 

dynamics on microclimates thus provides an interesting avenue for further research. Moreover, 

higher spring mean and maximum temperatures in forests compared to free-air conditions 

may be driven by increased absorption of solar radiation by dark stems (bark) and remaining 

leaf litter, resulting in accelerated snow melting and prolonged growing seasons (Wild et al., 

2014). Last but not 

472 
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least, better knowledge about the relationship between canopy structure and microclimate will 473 

help to improve the ecological insights gained from investigations of forest structure-474 

biodiversity relationships (Zellweger et al., 2017), and will prove useful in attempts to 475 

maximise stepping stones and microrefugia in human dominated forest landscapes (Hannah et 476 

al., 2014). 477 

Understorey temperatures are regulated by complementing effects of local canopy 478 

attributes as well as topographic and landscape features derived at regional and landscape 479 

scales. Increasing daily and seasonal temperature ranges with increasing distance to the coast 480 

(continentality), result in higher offset values, e.g. owing to an increase in clear-sky days. 481 

Effects of microclimate buffering can thus be expected to be highest in dense forests in 482 

continental regions. Topographic position includes the effects of cold air drainage and pooling, 483 

which drive minimum temperatures during night and winter, particularly in calm, still 484 

conditions (Daly et al., 2010; Dobrowski, 2011; Ashcroft & Gollan, 2012). Elevated locations 485 

inside forests may thus experience relatively warm temperatures, leading to longer snow-free 486 

periods and longer vegetation periods than suggested by macroclimate layers. Lower 487 

temperatures at topographic depressions enable persistent snow cover during winter, allowing 488 

winter-adapted plants and animals to overwinter in warmer and more stable conditions beneath 489 

the snow (Pauli et al., 2013).  490 

Our approach and analysis enable the approximation of forest temperatures based on 491 

widely available weather station data with high temporal resolution. While mechanistic 492 

downscaling of macroclimate data may achieve the same goal (Maclean et al., 2018), our 493 

models can efficiently be used to predict understory temperatures form weather-station data, 494 

based on readily available that data about canopy structure and composition, as well as 495 

topography and landscape characteristics. For example, multitemporal canopy cover data 496 

collected within forest inventories can directly be used to make plot-level predictions of how 497 
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forest microclimates changed over time, and how this is related to responses of forest 498 

biodiversity and functioning to climate and land use change. Similarly, future scenarios of 499 

dynamics in canopy cover and composition can be incorporated into more realistic predictions 500 

of future forest climatic conditions and their ecological implications. Together with upcoming 501 

microclimate mapping techniques, such as the interpolation of in situ forest microclimate 502 

measurements using LiDAR remote sensing-based canopy cover maps (Zellweger et al., 2019), 503 

the presented approach will be useful to fill the current gap of missing forest microclimate data 504 

(De Frenne & Verheyen, 2016).  505 
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Biosketch 708 

We are broadly interested in the responses of forest biodiversity and functioning to climate and 709 

land-use change. We are particularly interested in the role of forest microclimate dynamics in 710 

driving these responses. 711 
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Table 1. Overview and summary statistics of predictor variables used to explain understorey temperature offsets. 717 
Northness, slope, elevation and topographic position were derived from EU-DEM (2018). Note that high values 718 
of basal area and crown area derive from inclusion of some large trees at the edge of the plots.   719 

Variable 

group 

Variable name Description Range (mean) Unit 

Local canopy 

structure and 

composition 

    

 Canopy cover 
Visual estimation of vertical cover of shrub and 
tree layers, summed per species 

41 – 213 (112) % 

 Canopy openness 
Total number of quadrats of open sky visible on 

spherical densiometer 
3.9 – 59.50 (15.7) Number 

 Basal area Basal area of trees with DBH > 7.5 cm 5.2 – 122.3 (33.2) m2/ha 

 Crown area 
Predicted crown area per plot based on scaling 
relationships with DBH (Jucker et al., 2016) 

53.4 – 1199 (309.1) m2 

 Tree height 

Height of tree on which temperature sensor was 

placed; measured using a vertex hypsometer 
(Vertex IV) 

9.2 – 40.0 (26.2) m 

 Shade casting ability 

Tree-species-specific shade casting ability based 
on (Verheyen et al., 2012), community-level 

mean index weighted by tree species-specific 

canopy cover. 

2.1 – 5 (3.6) 

1 (tree species 

with very open 

canopy) to 5 
(very dense & 

shady species) 

Landscape 
structure and 

topography 

    

 Forest cover 
Proportion of area covered by forest within a 
circular buffer area with a radius of 250m 

(Hansen et al., 2013) 

18.1 – 100.0 (96.3) % 

 
Distance to forest 

edge 

Distance to nearest forest edge (Hansen et al., 

2013) 
1.0 – 728.3 (119) m 

 Northness 

Cosine of topographic aspect. Northness is a 

continuous variable describing the topographic 
exposition ranging from completely north 

exposed (-1) to completely south exposed (1).  

-1.0 – 1.0 (-0.3) index 

 Slope Topographic slope 0.4 – 22.0 (4.3) Degrees 

 Elevation Elevation above sea level 30.7 – 636.9 (165.7) m 

 Topographic position 

Relative topographic position describing the 

plot elevation in relation to the surrounding 

elevations. Valley bottoms have low values, 
elevated locations, such as ridges, have high 

values 

1.6 – 147.3 (23.5) m 

 Distance to coast 
Distance to nearest coastline derived from 
Natural Earth (free vector and raster map data 

from naturalearthdata.com) 

11.6 – 518.7 (107.6) km 

 720 
721 
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722 
Figure 1. Sampling design showing (a) the distribution of the ten sampled regions across the temperate deciduous 723 
forest biome in Europe (green area); (b) an example region (SK) and its forest cover taken from Hansen et al. 724 
(2013), with ten plots spread along the regional gradient of canopy cover; (c) the plot sampling design with the 725 
four interpretation points in each cardinal direction, as described in the main text. WW: Wytham, CO: Compiègne, 726 
TB: Tournibus, SP: Speulderbos, GO: Göttingen, PR: Prignitz, SK: Skane, KO: Koda, ZV: Zvolen, BI: 727 
Bialowieza. 728 

729 

730 

731 

732 
Figure 2. A: Daily air temperature offsets per month with 95 %-confidence intervals (grey ribbons), measured 733 
during one year in the understorey of temperate deciduous forests in Europe (Figure 1). B: Distributions of 734 
temperature offset values during spring (March to May), summer (June to August), autumn (September to 735 
November), winter (December to February), and the entire year. Positive values indicate warmer and negative 736 
values indicate cooler conditions in the understorey compared to nearby free-air conditions measured by weather 737 
stations. 738 

739 
740 
741 
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742 
Figure 3. Venn-Euler diagrams showing the independent share of explained variation (R2

m) for each variable 743 
group, i.e., landscape and forest canopy, as well as the shared amount of explained variation (intersection of 744 
ellipses), as determined by variation partitioning. The sizes of the ellipses are scaled according to R2

m. Marginal 745 
R2 (R2m) describes variation explained by fixed factors only; conditional R2 (R2c) the variation explained by the 746 
fixed and random factors together. 747 

748 
749 
750 
751 
752 
753 
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754 
Figure 4. Relationships between canopy characteristics and the offset of daily maximum temperatures during 755 
summer. Smoothed curves with 95 % confidence intervals (light red polygons) and p-values from the GAMMs. 756 
Canopy openness was log-transformed. Canopy cover and canopy openness show non-linear relationships, with 757 
break points at 89 % and 2.7, respectively, as indicated by the red dashed lines. The solid red lines show the 758 
regression lines as calculated using piecewise regression (see text for details). We did not elaborate on threshold 759 
effects for shade casting ability and crown area because of large confidence intervals. Positive offset values 760 
represent warmer temperatures inside than outside forests, negative offset values indicate cooler temperatures 761 
inside than outside forests. 762 

763 
764 
765 

766 
767 
768 
769 
770 
771 
772 
773 

Figure 5. Relationships between the distance to coast and relative topographic position (log-transformed, low 

values representing valley bottoms; high values representing elevated locations, e.g. ridges) and the offset of 

daily minimum temperatures during winter, and daily maximum temperatures during summer. Topographic 

position was non-linearly related to Tmin offset during winter, with a threshold at 3.1 (standard error 0.16), as 

indicated by the red dashed line. 95 % confidence intervals (light red polygons) and p-values from the GAMMs 

are shown. Positive offset values represent warmer temperatures inside than outside forests, negative offset 

values indicate cooler temperatures inside than outside forests. 774 


