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Abstract—For many practical applications, it is necessary to
design controllers that are, one the one hand, robust against
bounded uncertainty in selected parameters and external dis-
turbances. On the other hand, it is also quite common for
such systems, that state constraints need to be accounted for
which must not be exceeded for any possible parameter value.
Although the task is quite challenging, several robust control
design procedures were designed in recent years which allow for
solving these problems, especially with respect to the latter aspect.
In this paper, such robust control procedures are combined in
a novel manner with an interval observer to additionally handle
the influence of unknown but bounded measurement noise and
to prevent the violation of state constraints in a provable fashion.

I. INTRODUCTION

Interval observers have been developed in recent years

for several dynamic systems which are described by either

finite-dimensional sets of state equations or (parabolic) partial

differential equations [3], [4], [7], [9]. In all cases, the design

of these observers makes use of the derivation of suitable

bounding systems which allow for the computation of guar-

anteed lower and upper state bounds despite set-valued uncer-

tainty in system parameters, bounded external disturbances,

and bounded (usually additive) measurement noise.

The computation of guaranteed lower and upper bounds

for such estimates commonly relies on the system property

of cooperativity which leads to a specific ordering relation

in the following form: Lower and upper bounding systems

can be described by independent sets of state equations [15],

where each of them depends on selected extremal parameter

combinations. Such independence can be achieved (for linear

finite-dimensional dynamics), if the system matrix is Metzler,

i.e., it consists only of non-negative off-diagonal elements [6].

Such models are widely applicable in many disciplines

of engineering, especially from the field of thermo-fluidic

systems. To make a feedback controller for such cooperative

systems robust against bounded uncertainty, it is desired that

the error dynamics of the closed control loop remains coopera-

tive and that the worst-case influence of uncertain parameters

and bounded noise can be forecasted in a rigorous manner.

Bounded noise usually influences the closed-loop dynamics

implicitly via tolerance bounds for the state variables that are

reconstructed by a model-based state observer.

This paper aims at designing robust interval observer-based

state feedback controllers for cooperative systems given in the

above-mentioned cooperative form so that besides insensitivity

against uncertainty, the violation of user-defined upper state

bounds is prevented with certainty.

Sec. II gives a brief overview of the task of temperature

control for solid oxide fuel cells (SOFCs) for which the

class of cooperativity-preserving robust controllers with state

constraints is of huge practical relevance. The robust control

design problem is solved in Sec. III by means of a novel

linear matrix inequality (LMI) approach for the combined in-

terval observer and cooperativity-preserving control synthesis.

Sec. IV summarizes representative simulation results for a

mathematical model of the thermal behavior of an SOFC stack

module which is parameterized on the basis of measured data

gathered on a test rig available at the Chair of Mechatronics at

the University of Rostock. Finally, conclusions and an outlook

on possible future research activities are given in Sec. V.

II. MODELING THE THERMAL BEHAVIOR OF SOFC STACK

MODULES

SOFCs are typically operated at high temperature levels and

provide the possibility to supply users simultaneously with

thermal and electrical energy. Common applications of SOFCs

can be found in the area of a decentralized power supply

in which chemical energy contained in a fuel gas (such as

hydrogen or hydro-carbonates) is directly converted into heat

and electricity [1], [8].

In comparison with combustion engines, converting chemi-

cal energy through intermediate conversion stages into rotary

mechanical energy, which is then transformed into electricity

by electrical generator units, the type of energy conversion

of SOFCs cells is not a-priori limited by the Carnot effi-

ciency. Hence, significantly higher efficiency levels are, at

least theoretically, possible. To exploit this advantage, it is,

however, necessary to derive control strategies which prevent

local overtemperatures in the interior of the SOFC stack with

high reliability [12], [13]. Such overtemperatures are typically
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responsible for accelerated aging of the fuel cell stack and

for degradation leading to the stack’s destruction in the worst

case.

To derive robust control strategies and associated reliable

observers, which reconstruct the cell temperature distribution

in an efficient model-based way by exploiting readily available

measurements (i.e., the media temperatures at the gas inlet and

outlet manifolds), it is inevitable to derive low-dimensional

system models in terms of sets of ordinary differential equa-

tions (ODEs). Due to the complex structure of SOFC modules

and due to limited possibilities for measurement of tempera-

tures in its interior, suitable sets of state equations contain

parameter values for which only worst-case interval bounds

are known [11].

Following the early lumping semi-discretization procedure

summarized in [14], which exploits a spatial subdivision of the

cuboid SOFC module into a finite number of n = L ·M ·N
elements with piecewise homogeneous temperatures in each

element (cf. Fig. 1), quasi-linear state equations

ẋ = A (x, p) · x+ B̃ (x, p) · ũ (1)

can be obtained, where the parameter vector p contained in

both the system and input matrices allows for modeling of

• heat transfer due to heat conduction and convection

(comprising a linearized model for heat radiation),

• enthalpy flows of the supplied gases, where χ in Fig. 1

denotes all relevant gas fractions at the anode and cathode

side,

• exothermic reaction enthalpies, and

• Ohmic losses due to electric currents II .

i=1 ,...,L

j=1 ,...,M

k=1,...,N

system
boundary

of supplied
media ṁχ,in

temperature ϑχ,in

=(1,M ,1)

=(1,1,N )

=(L ,1,1)

=(1,1,1)
=(L,M ,N )

1,M,N

⋮

⋮

=(L,M ,1)⋮

⋮

=(1,M ,N )

 

LM

 

 

L N

L
L

mass flow

local temperature distribution ϑ


volume elements ∈{(1,1,1), ... ,(L,M ,N )}
ambient temperature ϑA

ϑA

Fig. 1. Spatial semi-discretization of the fuel cell stack module.

One of the simplest, practically useful semi-discretizations

is given by L = N = 1 with M = 3. This type of model

approximates the SOFC stack temperature distribution in the

direction of the parallel gas mass flows of both, the anode

gas (i.e., the fuel gas mixture) and the cathode gas (typically

preheated air). The resulting set of n ODEs is used in the

following for the development of a novel interval observer-

based reliable control approach.

For this case of n = 3 finite volume elements, the system

and input matrices are given by

A (x, p) =





a11 a12 0
a21 a22 a23

0 a32 a33



 and (2)

B̃ (x, p) =





b11 b12 b13 b14
b21 0 0 b24
b31 0 0 b34



 , (3)

where the state vector contains the element temperatures

x =
[
ϑ(1,1,1) ϑ(1,2,1) ϑ(1,3,1)

]T
. (4)

Moreover, the input vector

ũ =
[
ϑA ϑAG,in ϑCG,in

1
3
I
]T

(5)

consists of the ambient temperature ϑA, the anode and cathode

inlet temperatures ϑAG,in and ϑCG,in, as well as the stack

current I(1,1,1) = I(1,2,1) = I(1,3,1) = 1
3I . For a pure tem-

perature control of the SOFC stack operated with a constant

cathode gas mass flow, the only remaining control input is

the cathode inlet temperature, while all other elements of ũ

represent measurable disturbances with respect to the state

vector x. Thus, B̃(x, p)ũ can be dissociated as follows

B̃(x, p)ũ =





b13
0
0





︸ ︷︷ ︸

B

u(t) +





b11 b12 b14
b21 0 b24
b31 0 b34





︸ ︷︷ ︸

E





ϑA

ϑAG,in
1
3
I





︸ ︷︷ ︸

d(t)

. (6)

In this paper, we restrict our attention to the design of the

controller with the input u = ϑCG,in when d(t) = 0. This

assumption is motivated by neglecting heat transfer through

its encasing to the ambience with temperature ϑAand bu

accounting for the fact that the anode gas enthalpy flow is

smaller than the one at the cathode by more than one order of

magnitude. However, extensions of the proposed method to the

case of both control and disturbance inputs are straightforward

in the sense of input-to-state stability (ISS) during the design

procedure. Enhancing the robustness of the proposed controller

by accounting for variations of the disturbance inputs will be

subject of future work.

In previous work, cf. [2], [14] and the references therein, an

initial identification of the matrices (2) and (3) was performed

so that the interval-valued enclosure for A (x, p) is strictly

Metzler and the matrices B (x, p) and B̃(x, p) are element-

wise non-negative. To obtain a reliable system model, ac-

counting for the worst-case influence of bounded measurement

tolerances on the output

y(t) =
[
0 0 1

]
· x(t) , (7)

representing the outlet temperature ϑ(1,3,1), as well as for

possibly neglected influence of heat convection and nonlinear

radiation effects, the disturbance estimation scheme summa-

rized in the following paragraphs has been developed.

It estimates deviations between the assumed system dy-

namics (1) according to [2], [14] and the measured data

in terms of an additive uncertainty [δi] for each element

i ∈ {1, . . . , n = 3} of the derivative vector ẋ. This uncertainty

is then mapped onto an additive interval-valued correction term

for the system matrix according to

[A] = A ([x], p) +





[δ1] 0 0
0 [δ2] 0
0 0 [δ3]



 , (8)
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where A ([x] , p) represents an interval extension of the matrix

A according to (2), which was evaluated in [11] for the

maximum admissible range of operating temperatures, how-

ever, with purely point-valued least-squares estimates for all

system parameters p. Analogously, [B̃] (and its submatrix [B]
multiplied with the control signal u) is obtained by evaluating

the respective symbolic expression for (3) over the complete

range of possible temperatures. So that, we consider along the

paper that the system as well as input matrices are bounded

element-wise according to

A ≤ A(x(t), p) ≤ A

0 ≤ B ≤ B(x(t), p) ≤ B .
(9)

Note that the state dependencies in A(x(t), p) and B(x(t), p)
result from a polynomial approximation of the temperature

dependencies of heat capacities and reaction enthalpies of the

gas fractions contained in the anode and cathode gases.

Based on (9), an interval model for (1) can be expressed as

ẋ(t) = Ax(t) +Bu(t)
ẋ(t) = Ax(t) +Bu(t)

(10)

where x(t), x(t) ∈ R
n
+ are the upper and lower bounds of

the state vector; u(t) ∈ R
m
+ and y(t) ∈ [y(t), y(t)] are the

element-wise non-negative inputs and the measurement vector

with bounded uncertainty, respectively. The initial condition at

the instant t0, x(t0) = x0, is assumed to be bounded by two

known upper and lower bounds according to

0 ≤ x0 ≤ x0 ≤ x0 . (11)

In what follows, it is assumed that the available mea-

surements are given by y(t) = Cx(t) with additive noise

|ω(t)| ≤ Ω which is unknown but restricted to the a-priori

known bound Ω ∈ R
p
+ resulting in the linear output model

ym(t) = Cx(t) + ω(t) . (12)

In the sequel, we are interested in designing a control

law ensuring stabilization of (1) based on the interval model

(10). As temperature measurements inside the stack are not

available, an interval observer providing upper and lower

estimates for the unknown state x(t) simultaneously is built

and an alternative control law is proposed by using only these

interval-valued estimates.

III. CONTROL DESIGN: AN INTERVAL OBSERVER-BASED

FRAMEWORK

To provide a feedback control law which can be imple-

mented using only the interval-valued enclosures [A] and

[B], we propose to combine the structure of a classical full

state feedback controller with an interval observer in a novel

fashion. The block diagram of the resulting control scheme is

given in Fig. 2, where x̂(t) and x̂(t) are the upper and lower

bounds for the estimated state trajectories. The performance

requirements for the design of the controller include the

following aspects:

1) The control input u(t) should be designed such that the

positivity of the system (1) is not violated for all t ≥ 0,

i.e., u(t) ≥ 0;

Controller
∑

uss

SOFC Stack

Disturbances

Interval Observerx̂(t), x̂(t)

u(t)

u(t)

y(t)

Fig. 2. Architecture of the interval observer-based state feedback control.

2) The interval inclusion

0 ≤ x̂(t) ≤ x(t) ≤ x̂(t) (13)

has to be satisfied;

3) The interval diameter x̂(t)− x̂(t) has to be minimized by

tuning the controller parameters;

4) The steady-state value of
x(t)+x(t)

2 is associated with a

reference input vector r consisting of the same constant

elements such that

x(t) + x(t)

2
→ r as t → ∞ ; (14)

5) In order to avoid overheating phenomena of the SOFC

stack, the controller must be able to prevent the stack

from exceeding its maximum admissible upper tempera-

ture limit. Thus, this requirement can be described as

x(t) ≤ xmax, x̂(t) ≤ xmax , (15)

where xmax is the maximum admissible temperature

inside the SOFC stack.

To achieve these control objectives, the following positive

interval observer is proposed
{

˙̂
x(t) = (A− LC)x̂(t) +Bu(t) + Lym(t) + LΩ
˙̂x(t) = (A− LC)x̂(t) +Bu(t) + max{0, Lym(t)− LΩ}

(16)

where x̂(t), x̂(t) ∈ R
n. To preserve the order relationship (13),

let e(t) = x̂(t)−x(t) and e(t) = x(t)− x̂(t) be the upper and

lower estimation errors. With respect to these error vectors,

we have the associated differential equations

ė(t) =(A− LC)e(t) + (B −B(x(t), p))u(t)

+
(
A−A(x(t), p)

)
x(t) + Lω(t) + LΩ

(17)

and

ė(t) =(A− LC)e(t) + (B(x(t), p)−B)u(t)

+ (A(x(t), p)−A))x(t) + LCx(t)

−max(0, LCx(t)− L(Ω− ω(t)) .

(18)

Referring to the inequalities (9) and the fact that (1) is a

positive dynamical system, i.e, x(t) ≥ 0, u(t) ≥ 0, then both

inequalities

(B −B(x(t), p))u(t) +
(
A−A(x(t), p)

)
x(t) ≥ 0

(B(x(t), p)−B)u(t) + (A(x(t), p)−A)x(t) ≥ 0
(19)

hold. Furthermore, under the conditions L ≥ 0 and L ≥ 0, it

follows that Lω(t)+LΩ ≥ 0 and LCx(t)−max(0, LCx(t)−
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L(Ω−ω(t)) ≥ 0. Moreover, if (A−LC) and (A−LC) are cho-

sen to be Metzler matrices, then, the inclusion property (13)

is satisfied provided that (11) is also satisfied.

Now, consider the following interval observer-based controller

u(t) = K(x̂(t)− xss) +K(x̂(t)− xss) + uss , (20)

where uss = Nur, xss = Nxr and xss = Nxr. Nx, Nx, Nu,

K, K ∈ R
m×n are the observer-based controller gains to be

designed. Define ξ(t) =
[

xT (t) xT (t) x̂
T
(t) x̂T (t)

]T

.

Combining the open-loop model (10) as well as the positive

interval observer (16) and substituting u(t) by (20) for r = 0
yield the 4n-dimensional closed-loop system







ẋ(t)
ẋ(t)
˙̂
x(t)
˙̂x(t)






=







A 0 BK BK

0 A BK BK

0 0 A− LC +BK BK

0 0 BK A− LC +BK







·






x(t)
x(t)
x̂(t)
x̂(t)




+






0
0

Lym(t) + LΩ
max{0, Lym(t)− LΩ}




 .

(21)

With the help of the abbreviations

A =

[

A 0
0 A

]

, B =

[

B
B

]

, K =
[
K K

]
C =

[
C 0
0 C

]

,

L =

[

L 0
0 L

]

, D(t) =






0
0

Lym(t) + LΩ
max{0, Lym(t)− LΩ}




,

equation (21) is rewritten into

ξ̇(t) =

[
A BK

0 A− LC+ BK

]

ξ(t) + D(t) . (22)

For stability analysis, we consider the block-diagonal quadratic

ISS-Lyapunov function of the form

V (ξ(t)) = ξ
T (t)Pξ(t) = ξ

T (t)

[
P1 0
0 P2

]

ξ(t) , (23)

where P1 and P2 are diagonal positive matrices.

Taking the time derivative of the Lyapunov function (23) along

the trajectory of the closed-loop system (22), we get

V̇ (ξ(t)) = ξT (t)

([
A BK

0 A− LC+ BK

]T

P+

P

[
A BK

0 A− LC+ BK

])

ξ(t) + D
TPξ(t) + ξT (t)PD(t) .

(24)

Let γ and ε be two positive scalars. Then, by adding and

subtracting the terms εξT (t)Pξ(t) and −γ D
T (t) D(t), (24)

becomes

V̇ (ξ(t)) =
[
ξT (t) D

T (t)
]T

Φ
[
ξ(t) D(t)

]T

−εV (ξ(t)) + γDT (t)D(t)
(25)

with

Φ =











[
A BK

0 A− LC+ BK

]T

P+

P

[
A BK

0 A− LC+ BK

]

+ εP P

P −γI4n











.

If the gain matrices K and L are found such that

Φ ≺ 0 (26)

is satisfied, the inequality

V̇ (ξ(t)) < −εV (ξ(t)) + γD
T (t)D(t) (27)

holds. Multiplying both sides of (27) by eεt and integrating

from 0 to t, one obtains

V (ξ(t)) < −V (0)e−εt + γ

∫ t

0

e
−ε(t−s)‖D(s)‖22ds . (28)

Recall that for any ξ(t) ∈ R
4n, the bounds

ε1‖ξ(t)‖
2
2 ≤ V (ξ(t)) ≤ ε2‖ξ(t)‖

2
2, ∀ξ(t) ∈ R

4n
(29)

hold, where

ε1 = λmin(P ), ε2 = λmax(P ) (30)

in which λmin(P ) and λmax(P ) denote the minimal and

maximal eigenvalue of the matrix P , respectively. Then, the

inequality (28) becomes

‖ξ(t)‖22 ≤
ε2

ε1
‖ξ(0)‖22e

−εt +
γ

εε1
‖D(t)‖2

∞
(31)

leading to

‖ξ(t)‖2 ≤

√
ε2

ε1
‖ξ(0)‖2e

−
ε

2
t +

√
γ

εε1
‖D(t)‖∞ (32)

which implies that the system (22) is ISS if (26) is satisfied.

The radius of the convergence region is upper bounded by
√

γ
εε1

‖D(t)‖2
∞

. Thus, the bilinear matrix inequality (BMI)

(26) can be used to construct the optimal solution by mini-

mization of γ ≥ 0.

Although the proposed observer-based state feedback approach

provides a controller that minimizes the norm of the dis-

turbances, the state constraint (15) has not been taken into

consideration yet. Let us consider the Lyapunov level set

Ω(P ) = {ξ(t) ∈ R
4n
∣

∣ξ
T (t)Pξ(t) ≤ 1} , (33)

which is positively invariant with respect to the motion of the

closed-loop system (22) (i.e., for every initial condition ξ(0)
inside Ω(P ) the trajectory of ξ(t) remains in Ω(P ) for all

t ≥ 0). Now, define the following set of state constraints

L(F, ϑ) = {ξ(t) ∈ R
4n
∣

∣Fξ(t) ≤ ϑ} , (34)

where F ∈ R
q×4n and ϑ ∈ R

q are given. According to the

previous considerations, if Ω(P ) ⊂ L(F, ϑ) and P satisfies

the condition (26), then for any initial condition inside the

ellipsoid Ω(P ) we have ξ(t) ∈ L(F, ϑ) for all t ≥ 0.

From [10], we obtain the following useful Lemma.

Lemma 1. [10] The inclusion Ω(P ) ⊂ L(F, ϑ) is equivalent

to the existence of positive scalars a1, . . . , aq > 0 such that
[

4aiϑi − FiPiF
T
i 2ai

2ai 1

]

≥ 0 , ∀i ∈ {1, . . . , q} , (35)

where Fi is the ith row of F .

Remark. Regarding the result above, the state set (34) satis-

fying the constraints (15) can be chosen as

F =

[
✶n 0 0 0
0 0 ✶n 0

]

, ϑ =

[
xmax

xmax

]

. (36)
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The following theorem summarizes the discussion above. The

operators ”>”, ”≥” are applied element-wise.

Theorem 1. The control law u(t) given in (20) with r = 0
is robustly stabilizing in an ISS sense, if there exist positive

diagonal matrices P1, P2, and P3, full matrices W and Y,

scalars γ > 0, a1, . . . , aq > 0 for given ε, η ∈ R+, F ∈
R

q×4n, and ϑ ∈ R
q such that the following LMIs hold true,

min
P1,P2,P3,W,Y,a1,...,aq

γ

W > 0 , (37a)

Y > 0 , (37b)

P2A− YC+ ηP2 ≥ 0 , (37c)

P2B = BP3 , (37d)

[

4aiϑi − FiPiF
T
i 2ai

2ai 1

]

≥ 0, ∀i ∈ {1, . . . , 4n} , (37f)

where L = P
−1
2 Y and K = P

−1
3 W.

Proof. The element-wise inequality (37a) guarantees the pos-

itivity of the controller gains, (i.e., K ≥ 0 and K ≥ 0), and

therefore, the positivity of the control law u(t). Moreover,

the element-wise inequality (37b) ensures the positivity of the

interval observer gains. Furthermore, from [5], the matrices

(A − LC) and (A − LC) are Metzler if and only if there

exists a positive scalar η such that

(A− LC) + ηI2n ≥ 0 . (38)

Multiplying the left-hand side of (38) by P2 together with the

change of coordinates Y = P2L, (37c) is directly obtained.

The LMI (37f) guarantees the inclusion of the ellipsoid Ω(P )
in the set of trajectories L(F, ϑ). According to (26), the LMIs

(37d) and (37e) guarantee ISS stability of the closed-loop

system (22). After some calculations, the BMI (26) is rewritten

into










P1A+ A
T
P1 + εP1 P2BK

K
T
B
T
P2 Ξ

P1 0
0 P2

P1 0
0 P2

−γI4n











≺ 0,

where Ξ = P2A+A
T
P2+εP2−P2LC−C

T
L
T
P2+P2BK+

K
T
B
T
P2. To deal with the bilinear term P2BK, the equality

(37d) is introduced. Then, by letting W = P3K and Y = P2L,

(37e) is obtained. This completes the proof.

Finally, it is desired that the mean value
x(t)+x(t)

2 tracks a

reference input r such that
x(t)+x(t)

2 → r as t → ∞. To

find Nx, Nx, and Nu, we consider the desired steady-state

relationships:

ẋss = Axss +Buss = (ANx +BNu)r = 0
ẋss = Axss +Buss = (ANx +BNu)r = 0
[
1
2
In

1
2
In

]
[
xss

xss

]

=
[
1
2
Nx

1
2
Nx

]
[
✶n

✶n

]

r = r .

(39)

Thus, the possible solutions can be found by solving the

following set equality constraints




A 0 B
0 A B

1
2
In

1
2
In 0









Nx

Nx

Nu



 =





0
0
1



 . (40)

Finally, the control law (20) is equivalent to

u(t) = Kx̂(t) +K x̂(t) + (Nu −KNx −KNx)r . (41)

Thus, to ensure that u(t) remains positive, the matrix (Nu −
KNx −KNx) should be positive element-wise according to

[
−K −K 1

]





Nx

Nx

Nu



 ≥ 0 . (42)

Therefore, the steady-state controller design can be achieved

by satisfying the linear constraints (40), (42).

IV. APPLICATION TO ROBUST TEMPERATURE CONTROL

OF AN SOFC STACK

The dynamic model according to Sec. II used for the interval

observer-based control design has been validated using real

measured data gathered during the heating phase of an SOFC

stack module available at the Chair of Mechatronics at the

University of Rostock with the parameters L = N = 1 and

M = 3.

The observer-based controller gains K, K, L, and L are

obtained by solving the convex optimization problem in The-

orem 1 with C =
[

0 0 1
]

, xmax = 1000K, ε = 0.5 and

η = 0.25. The measurement tolerance Ω is taken to be equal to

15K. By applying Theorem 1, the following gains are obtained

L =





0.0000
0.0036
0.1808



 , L =





0.0000
0.0035
0.1686





K =
[
0.0156 0.0134 0.0864

]
,

K =
[
0.0199 0.0175 0.1078

]
,

Nu = 0.9388, Nx =





1.0448
1.1306
1.1641



 , Nx =





0.9552
0.8783
0.7214





with γ = 10−5.

Corresponding simulation results are depicted in Figs. 3 and

4. From these results, it can be concluded that the robust state

feedback control design has been achieved successfully under

consideration of the predefined state constraints. Furthermore,

the estimates provided by the interval observer approach the

desired steady-state operating point (r = 750K). It should be

noted that the reason why the average value of these estimates

does not reach exactly the desired reference value r is because

the dimension of the state space is greater than the number

of control inputs (n = 3, m = 1) which reveals the under-

actuated character of the system.

V. CONCLUSIONS AND OUTLOOK ON FUTURE WORK

The novel interval observer-based state feedback controller

presented in this paper allows for preventing the violation

of state constraints for dynamic systems given in the form

of linear, cooperative ODEs with interval-bounded parameter
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







P1A+ A
T
P1 + εP1 BW

W
T
B

T
P2A+ A

T
P2 + εP2 − YC− C

T
Y

T + BW+W
T
B
T

P1 0
0 P2

P1 0
0 P2

−γI4n









≺ 0 , (37e)

Fig. 3. Time evolution of the upper and lower estimates of the states x1, x2

and x3 with their average values.

Fig. 4. Time evolution of the control action.

uncertainty. The applicability of the controller is demonstrated

in simulations for the thermal behavior of a high-temperature

SOFC stack, allowing for preventing overshooting safety-

critical temperature bounds in a reliable manner.

Future work will extend this research by accounting for the

neglected disturbances in (6) and the dynamics of actuators

(e.g., the lag behavior of the preheaters of the SOFC) in

combination with corresponding range constraints for the

admissible control signals and their admissible variation rates.

Moreover, possibilities for the reduction of the control and

observation effort by the development of partial state feedback

controllers or pure output feedback strategies will be further

investigated.
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