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Abstract

We investigate the problem of strategic point-to-point communication with side information at the

decoder, in which the encoder and the decoder have mismatched distortion functions. The decoding

process is not supervised, it returns the output sequence that minimizes the decoder’s distortion function.

The encoding process is designed beforehand and takes into account the decoder’s distortion mismatch.

When the communication channel is perfect and no side information is available at the decoder, this

problem is referred to as the Bayesian persuasion game of Kamenica-Gentzkow in the Economics

literature. We formulate the strategic communication scenario as a joint source-channel coding problem

with side information at the decoder. The informational content of the source influences the design

of the encoding since it impacts differently the two distinct distortion functions. The side information

complexifies the analysis since the encoder is uncertain about the decoder’s belief on the source statistics.

We characterize the single-letter optimal solution by controlling the posterior beliefs induced by the

Wyner-Ziv’s source coding scheme. This confirms the benefit of sending encoded data bits even if the

decoding process is not supervised.
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I. INTRODUCTION

What information should be communicated to a receiver who minimizes a mismatched distortion

metric? This new question arises in the context of the internet of things (IoT) composed of a

variety of devices which are able to interact and coordinate with each other in order to create new

applications/services and reach their own goals. In this context, wireless devices may have distinct

objectives. For example, adjacent access points in crowded downtown areas, seeking to transmit at the

same time, compete for the use of bandwidth; cognitive radio devices mitigate the interference effects

by allocating their power budget over several parallel multiple access channels, as in [1, Sec. IV]. Such

situations require new efficient techniques to coordinate communication traffic between devices whose

objectives are neither aligned, nor antagonistic. This question differs from the classical paradigm in

Information Theory which assumes that communicating devices are of two types: transmitters who pursue

the common goal of transferring information; or opponents who try to mitigate the communication, e.g. the

jammer corrupts the information, the eavesdropper infers it, the warden detects the covert transmission. In

this work, we characterize the information-theoretic limits of strategic communication between interacting

autonomous devices having general distortion functions, not necessarily aligned.

A. Scenario and contributions

We formulate the strategic communication problem as a joint source-channel coding problem with

decoder’s side information. We assume that the decoding process is not supervised, whereas the encoding

process is designed in advance and takes into account the decoder’s distortion mismatch. The side

information partially discloses the source symbols to the decoder and complicates the design of the

encoding, due to the mismatch of the distortion functions. Indeed, the encoder is uncertain about the

decoder’s belief on the source statistics. The closest paper in the literature is [4], in which no side

information is available at the decoder. The novel contributions are listed below.

1. We characterize the optimal encoder’s distortion for the problem of strategic communication with

side information at the decoder; we relate it to Wyner-Ziv’s rate-distortion function in [5] and to the

separation result by Merhav-Shamai in [6].

2. We determine the posterior beliefs induced by the Wyner-Ziv’s source coding, and we show that

the sequence of decoder’s optimal output is close to the output sequence of Wyner-Ziv’s decoding.

This confirms the benefit of sending encoded data bits to a non-supervised decoder, since the coding

scheme reveals the exact amount of information needed.

3. We formulate the optimal solution in terms of a linear program with an information constraint and

in terms of a convex closure of an auxiliary distortion function with an entropy constraint.
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4. We investigate an example with binary source and side information, and we compute the optimal

posterior beliefs for the doubly symmetric binary source of Wyner-Ziv [5, Sec. II].

We point out three essential features of strategic communication problem with decoder’s side

information.

1. Each source symbol has a different impact on the encoder and the decoder’s distortion functions,

hence it is optimal to encode each symbol differently.

2. The noiseless version of this problem without decoder’s side information corresponds to the Bayesian

persuasion game of Kamenica-Gentzkow [7]. In that case, the optimal information disclosure policy

requires a fixed amount of information bits. When the channel capacity is larger than this amount,

it is optimal not to use all the channel resource.

3. The decoder’s side information has two opposite effects on the optimal encoder’s distortion: it

enlarges the set of decoder’s posterior beliefs, so it may decrease the encoder’s distortion; it reveals

partial information to the decoder, so it forces some decoder’s best-reply symbols which might be

sub-optimal for the encoder’s distortion.

B. Related literature

The problem of “strategic communication” in information-theoretic setting has been formulated by

Akyol et al. in [8], [9], [10]. The authors characterize the optimal solution for Gaussian source, side

information and channel, with the Crawford-Sobel’s quadratic cost functions [11]. They prove that the

optimal solution in the one-shot problem is also optimal when considering several strategic communication

problems. This is not the case for general discrete source, channel and mismatched distortion functions.

These results were further extended in [12] for non-identical prior beliefs about the source and the

channel. The problem of strategic communication was introduced in the Control Theory literature by

Sarıtaş et al. in [13] and [14]. The authors extend the model of Crawford-Sobel to multidimentional

sources and noisy channels and they determine whether the optimal policies are linear or based on

some quantization. The connection to the binary hypothesis-testing problem was pointed out in [15].

Sender-receiver games are also investigated in [16], for the problem of “strategic estimation” involving

self-interested sensors; and in [17], [18], for the “network congestion” problem. In [19], [20], [21], the

authors investigate the computational aspects of the Bayesian persuasion game, when the signals are noisy.

In [22], [23], the interference channel coding problem is formulated as a game in which the users, i.e. the

pairs of encoder/decoder, are allowed to use any encoding/decoding strategy. The authors compute the

set of Nash equilibria for linear deterministic and Gaussian channels. The non-aligned devices’ objectives

are captured by distinct distortion functions. Coding for several distortion measures is investigated for
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“multiple descriptions coding” in [24], for the lossy version of “Steinberg’s common reconstruction”

problem in [25], for the problem of minimax distortion redundancy in [26], for “lossy broadcasting” in

[27], for an alternative measure of “secrecy” in [28], [29], [30], [31].

The lossy source coding problem with mismatched distortion functions was formulated by Lapidoth, in

[32]. In this model, the decoder attempts to reconstruct a source sequence that was encoded with respect

to another distortion metric. The problem of the mismatch channel capacity was studied in [33], [34],

[35], [36], [37], in which the decoding metric is not necessarily matched with the channel statistics.

Zn

Un Xn Y n V n

P Te d

de(u, v) dd(u, v)

Fig. 1. The information source U and side information Z are drawn i.i.d. according to PUZ and the channel TY |X is memoryless.

The encoder e and the decoder d minimize mismatched distortion functions de(u, v) 6= dd(u, v).

The problem of “strategic information transmission” has been well studied in the Economics literature

since the seminal paper by Crawford-Sobel [11]. In this model, a better-informed sender transmits a

signal to a receiver, who takes an action which impacts both sender and receiver’s utility functions. The

problem consists in determining the optimal information disclosure policy given that the receiver’ best-

reply action affects the sender’s utility, see [38] for a survey. In [7], Kamenica-Gentzkow introduced the

Bayesian persuasion game in which the sender commits to an information disclosure policy before the

game starts. This subtle change of rules of the game induces a very different equilibrium solution related

to Stackelberg equilibrium [39], instead of Nash equilibrium [40]. This problem was later referred to

as “information design” in [41], [42], [43] and extended to the setting with “heterogeneous beliefs” in

[44] and [45]. In most of the articles in the Economics literature, the transmission between the sender

and the receiver is noise-free; except in [46], [47], [48] where the noisy transmission is investigated in a

finite block-length with no-error regime. Interestingly, Shannon’s mutual information is widely accepted

as a cost of information for the problem of “rational inattention” in [49] and for the problem of “costly

persuasion” in [50], without explicit reference to a coding problem.

Entropy and mutual information appear endogenously in repeated games with finite automata and

bounded recall [51], [52], [53], with private observation [54], or with imperfect monitoring [55], [56],

[57]. In [58], the authors investigate a sender-receiver game with common interests by formulating a
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coding problem. They characterize the optimal solution via the mutual information. This result was later

refined by Cuff in [59] and referred to as the “coordination problem” in [60], [61], [62], [63].

The paper is organized as follows. The strategic communication problem is formulated in Sec.

II. The encoding and decoding strategies and the distortion functions are defined in Sec. II-A. The

strategic communication scenario is introduced in Sec. II-B. Our coding result and the four different

characterizations are stated in Sec. III. The first one is a linear program under an information constraint,

formulated in Sec. III-A. The main Theorem is stated in Sec.III-B, and the sketch of proof is in Sec.

III-C. In Sec. III-D, we reformulate the solution in terms of three different convex closures. Sec. IV

provides an example based on a binary source, binary side information and binary decoder’s actions. The

proofs are stated in App A - D.

II. STRATEGIC COMMUNICATION PROBLEM

A. Coding strategies and distortion functions

We consider the i.i.d. probability distribution of information source PUZ and the conditional probability

distribution TY |X of the memoryless channel, depicted in Fig. 1. Uppercase letters U denote the random

variables, lowercase letters u denote the realizations and calligraphic fonts U denote the alphabets.

Notations Un, Zn, Xn, Y n, V n stand for sequences of random variables of information source

un = (u1, . . . , un) ∈ Un, decoder’s side information zn ∈ Zn, channel inputs xn ∈ X n, channel outputs

yn ∈ Yn and decoder’s symbols vn ∈ Vn, respectively. The sets U , Z , X , Y , V have finite cardinality

and the notation ∆(X ) stands for the set of probability distributions over X , i.e. the probability simplex.

For a probability distribution QX ∈ ∆(X ), we write Q(x) instead of QX(x) for the probability value

assigned to realization x ∈ X . The notation QX(·|y) ∈ ∆(X ) denotes the conditional distribution

of X given the realization y ∈ Y and Q⊗n
X ∈ ∆(X n) denotes the i.i.d. probability distribution.

The distance between two probability distributions QX and PX is based on L1 norm, denoted by

||QX − PX ||1 =
∑

x∈X |Q(x) − P(x)|. The notation U −
− X −
− Y stands for the Markov chain

property corresponding to PY |XU = PY |X .

Definition II.1 (Encoding and decoding strategies)

The encoding strategy σ and the decoding strategy τ are defined by

σ : Un −→ ∆(X n), (1)

τ : Yn ×Zn −→ ∆(Vn). (2)
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Both strategies (σ, τ) are stochastic and induce a joint probability distribution Pσ,τ ∈ ∆(Un × Zn ×

X n × Yn × Vn) over the n-sequences of symbols, defined by

Pσ,τ =

( n∏

t=1

PUtZt

)
σXn|Un

( n∏

t=1

TYt|Xt

)
τV n|Y nZn. (3)

The encoding and decoding strategies (σ, τ) are defined in the same way as for the joint source-channel

coding problem with side information at the decoder studied in [6], based on Wyner-Ziv’s setting in [5].

Unlike these previous works, we assume that the encoder and the decoder minimize distincts distortion

functions.

Definition II.2 (Distortion functions) The single-letter distortion functions of the encoder and decoder

are defined by

de : U × Z × V −→ R, (4)

dd : U × Z × V −→ R. (5)

The long-run distortion functions dn
e (σ, τ) and dn

d
(σ, τ) are evaluated with respect to the probability

distribution Pσ,τ induced by the strategies (σ, τ)

dn
e (σ, τ) =Eσ,τ

[
1

n

n∑

t=1

de(Ut, Zt, Vt)

]

=
∑

un,zn,vn

Pσ,τ

(
un, zn, vn

)
·

[
1

n

n∑

t=1

de(ut, zt, vt)

]
, (6)

dn
d (σ, τ) =

∑

un,zn,vn

Pσ,τ

(
un, zn, vn

)
·

[
1

n

n∑

t=1

dd(ut, zt, vt)

]
. (7)

B. Strategic communication scenario

In this work, the encoder and the decoder are autonomous devices that choose the strategy σ and

τ in order to minimize their long-run distortion dn
e (σ, τ) and dn

d
(σ, τ). We assume that the encoding

strategy σ is designed in advance, so that the decoder knows σ before the transmission takes place. The

decoder is not supervised and is free to choose any decoding strategy τ . This framework corresponds to

the Bayesian persuasion game [7], in which the encoder commits to an information disclosure policy σ,

and announces it to the decoder who chooses a best-reply strategy τ accordingly.

We assume that the strategic communication takes place as follows:

• The encoder chooses and announces the encoding strategy σ to the decoder.

• The sequences (Un, Zn,Xn, Y n) are drawn according to the joint probability distribution(∏n
t=1 PUtZt

)
σXn|Un

(∏n
t=1 TYt|Xt

)
.

November 9, 2019 DRAFT



7

• The decoder knows σ, observes the sequences of symbols (Y n, Zn), and draws a sequence of

symbols V n according to a best-reply strategy τV n|Y nZn .

Definition II.3 (Decoder’s Best-Replies) For any encoding strategy σ, the set of best-reply decoding

strategies BRd(σ) is defined by

BRd(σ) = argminτ d
n
d (σ, τ) =

{
τ, s.t. dn

d (σ, τ) ≤ dn
d (σ, τ̃ ), ∀τ̃ 6= τ

}
. (8)

In case there are several best-reply strategies, we assume that the decoder chooses the one that

maximizes the encoder’s distortion maxτ∈BRd(σ) d
n
e (σ, τ), so that encoder’s distortion is robust to the

exact specification of decoder’s strategy.

The coding problem under investigation consists in minimizing the encoder’s long-run distortion

inf
σ

max
τ∈BRd(σ)

dn
e (σ, τ). (9)

The decoding process τ is not supervised, it is strategic, causing the mismatch of the decoder’s output

sequence. The design of the encoding strategy σ anticipates this mismatch. Does the “strategic decoder”

necessarily decode the coded bits of information? We provide a positive answer in Theorem III.3, by

refining the analysis of the Wyner-Ziv’s coding scheme [5]. We show that the symbols induced by Wyner-

Ziv’s decoding τwz coincide with those induced by any best-reply τ ∈ BRd(σ
wz) to Wyner-Ziv’s encoding

σwz, for a large fraction of stages.

Remark II.4 (Stackelberg v.s. Nash equilibrium) The optimization problem in (9) corresponds to a

Stackelberg equilibrium [39] in which the encoder is the leader and the decoder is the follower, unlike

the Nash equilibrium [40] in which the two devices choose their strategy simultaneously.

Remark II.5 (Equal distortion functions) When the encoder and decoder have equal distortion func-

tions de = dd, the problem in (9) boils down to the classical approach of Wyner-Ziv [5] and Merhav-

Shamai [6], in which both strategies (σ, τ) are chosen jointly, in order to minimize a distortion function

inf
σ

max
τ∈BRd(σ)

dn
e (σ, τ) = inf

σ
min
τ
dn

e (σ, τ) = min
(σ,τ)

dn
e (σ, τ), (10)

since by Definition II.3, τ ∈ BRd(σ) ⇐⇒ dn
d
(σ, τ) = minτ ′ dn

d
(σ, τ ′).

III. CHARACTERIZATIONS

A. Linear program with an information constraint

We define the encoder’s optimal distortion D⋆
e.
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Definition III.1 (Target distributions) We consider an auxiliary random variable W ∈ W with |W| =

min
(
|U|+ 1, |V||Z|

)
. The set Q0 of target probability distributions is defined by

Q0 =

{
PUZQW |U , s.t., max

PX

I(X;Y )− I(U ;W |Z) ≥ 0

}
. (11)

We define the set Q2

(
QUZW

)
of single-letter best-replies of the decoder

Q2

(
QUZW

)
=argminQV |WZ

E QUZW
QV |WZ

[
dd(U,Z, V )

]
. (12)

The encoder’s optimal distortion D⋆
e is given by

D⋆
e = inf

QUZW∈Q0

max
QV |WZ∈

Q2(QUZW )

E QUZW
QV |WZ

[
de(U,Z, V )

]
. (13)

We discuss the above definitions.

• The information constraint (11) of the set Q0 involves the channel capacity maxPX
I(X;Y ) and the

Wyner-Ziv’s information rate I(U ;W |Z) = I(U ;W )− I(W ;Z), stated in [5]. It corresponds to the

separation result by Shannon [64], extended to the Wyner-Ziv setting by Merhav-Shamai in [6].

• For the clarity of the presentation, the set Q2

(
QUZW

)
contains stochastic functions QV |WZ ,

even if for the linear problem (12), some optimal QV |WZ are deterministic. If there are several

optimal QV |WZ , we assume the decoder chooses the one that maximize encoder’s distortion:

max QV |WZ∈

Q2(QUZW )

E
[
de(U,Z, V )

]
, so that encoder’s distortion is robust to the exact specification of

QV |WZ .

• The infimum over QUZW ∈ Q0 is not a minimum since the function max QV |WZ∈

Q2(QUZW )

E
[
de(U,Z, V )

]

is not continuous with respect to QUZW , see Fig. 10, 11.

• In [65, Theorem IV.2], the author shows that the sets Q0 and Q2 correspond to the target probability

distributions QUZWQV |WZ that are achievable for the problem of empirical coordination, see also

[60], [62]. As noticed in [66] and [67], the empirical coordination approach allows us to characterize

the “core of the decoder’s knowledge”, which captures what the decoder is able to infer about the

random variables involved in the problem.

• The value D⋆
e corresponds to the Stackelberg equilibrium payoff of an auxiliary one-shot game in

which the decoder chooses QV |WZ , knowing in advance that the encoder has chosen QW |U ∈ Q0

and the distortion functions are E
[
de(U,Z, V )

]
and E

[
dd(U,Z, V )

]
.

Remark III.2 (Equal distortion functions) When the encoder and the decoder have equal distortion

functions dd = de, the set Q2

(
QUZW

)
is equal to argminQV |WZ

E
[
de(U,Z, V )

]
. Thus, we have

max
QV |WZ∈

Q2(QUZW )

E QUZW
QV |WZ

[
de(U,Z, V )

]
= min

QV |WZ

E QUZW
QV |WZ

[
de(U,Z, V )

]
. (14)
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Hence, the encoder’s optimal distortion D⋆
e is equal to:

D⋆
e = inf

QUZW∈Q0

max
QV |WZ∈

Q2(QUZW )

E QUZW
QV |WZ

[
de(U,Z, V )

]
(15)

= inf
QUZW∈Q0

min
QV |WZ

E QUZW
QV |WZ

[
de(U,Z, V )

]
(16)

= min
QUZW ∈Q0,

QV |WZ

E QUZW
QV |WZ

[
de(U,Z, V )

]
. (17)

The infimum in (16) is replaced by a minimum in (17) due to the compactness of Q0 and the continuity of

minQV |WZ
E

[
de(U,Z, V )

]
with respect to QUZW . We recover the distortion-rate function corresponding

to [6, Theorem 1].

B. Main result

We denote N⋆ = N \ {0} and characterize the encoder’s long-run optimal distortion (9).

Theorem III.3 (Main result) The long-run optimal distortion of the encoder satisfies:

∀ε > 0, ∃n̄ ∈ N⋆, ∀n ≥ n̄, inf
σ

max
τ∈BRd(σ)

dn
e (σ, τ) ≤ D⋆

e − ε, (18)

∀n ∈ N⋆, inf
σ

max
τ∈BRd(σ)

dn
e (σ, τ) ≥ D⋆

e. (19)

When removing the decoder’s side information Z = ∅ and changing the infimum to a supremum, we

recover our previous result [4, Theorem 3.1]. Theorem III.3 and Fekete’s lemma for a sub-additive

sequence in [68], show that the long-run encoder’s distortion converges to its infimum.

D⋆
e = lim

n→+∞
inf
σ

max
τ∈BRd(σ)

dn
e (σ, τ) = inf

n∈N⋆
inf
σ

max
τ∈BRd(σ)

dn
e (σ, τ). (20)

C. Sketch of proof of Theorem III.3

We provide some intuitions for the main arguments of the proofs, which are given in App. B and C.

Proof of the achievability result (18). We analyse the posterior beliefs induced by the random coding

scheme obtained by concatenating Wyner-Ziv’s source coding [5] with Shannon’s channel coding [64]. We

consider a probability distribution QUZW such that 1) the capacity is strictly positive, 2) the information

constraints are satisfied with strict inequalities, 3) the set of best-reply symbol V⋆
(
z,QU (·|z, w)

)
of
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Definition III.4, is a singleton for all (z, w) ∈ Z ×W . We introduce the Wyner-Ziv’s coding rates R, RL

for the messages (M,L) and denote η > 0 the parameter such that

R + RL = I(U ;W ) + η, (21)

RL ≤ I(Z;W )− η, (22)

R ≤ max
PX

I(X;Y )− η. (23)

We denote by Eδ = 0, the event on which the messages (M,L) are recovered by the decoder and the

sequences are jointly typical
(
Un, Zn,W n,Xn, Y n

)
∈ Aδ with tolerance δ > 0.

The major step is to show that the posterior beliefs Pσ,Ut
(·|yn, zn, Eδ = 0) induced by coding scheme σ

regarding Ut at stage t ∈ {1, . . . , n}, are close on average to the target probability distribution QU (·|w, z):

Eσ

[
1

n

n∑

t=1

D

(
Pσ,Ut

(·|Y n, Zn, Eδ = 0)

∣∣∣∣
∣∣∣∣QUt

(·|Wt, Zt)

)]

≤2δ + η +
2

n
+ 2 log2 |U| · Pσ

(
Eδ = 1

)
:= ǫ. (24)

This is the purpose of the proof of Proposition B.1, stated in Appendix B-C.

Proof of the converse result (19). For any encoding strategy σ of length n ∈ N⋆, we introduce an

auxiliary random variable W = (Y n, Z−T , T ), where T is the uniform random variable over {1, . . . , n}

and Z−T stands for (Z1, . . . , Zt−1, Zt+1, . . . Zn), where ZT has been removed. We show that the Markov

chain W −
− UT −
− ZT is satisfied and that the probability distribution PUZW satisfy

P(u, z, w) =
1

n
· Pσ

(
ut, zt, y

n, z−t
)
, ∀(u,w, z, un, zn, yn). (25)

We define τ̃V |WZ = τVT |Y nZn and we prove that for both encoder and decoder, the long-run distortion

writes

dn
e (σ, τ) =

∑

u,z,w

P(u, z, w)
∑

v

τ̃(v|w, z) · de(u, z, v), (26)

hence

τ ∈ argminτ ′
V n|Y nZn

Eστ ′

[
1

n

n∑

t=1

φd(ut, zt, vt)

]
⇐⇒τ̃V |WZ ∈ Q2

(
PUZW

)
. (27)

Well known arguments from [5] and [6] show that

0 ≤max
PX

I(X;Y )− I(U ;W |Z), (28)

therefore, for any encoding strategy σ and all n, we have

max
τ∈BRd(σ)

dn
e (σ, τ) ≥ inf

QUZW∈Q0

max
QV |WZ∈

Q2(QUZW )

E QUZW
QV |WZ

[
de(U,Z, V )

]
= D⋆

e. (29)
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D. Convex closure formulation

The convex closure of a function f is the largest convex function vex f : X → R∪{−∞} everywhere

smaller than f on X. In this section, we reformulate the encoder’s optimal distortion D⋆
e in terms of

a convex closure, similarly to [7, Corollary 1] and [4, Definition 2.4]. This alternative approach may

simplify the optimization problem in (13), by plugging the decoder’s posterior beliefs and best-reply

symbols into the encoder’s distortion function. The goal of the strategic communication is to control the

posterior beliefs of the decoder, knowing it will choose a best-reply symbol afterwards.

Before the transmission, the decoder holds a prior belief corresponding to the source’s statistics PU ∈

∆(U). After observing the pair of symbols (w, z) ∈ W × Z , the decoder updates its posterior belief

QU (·|z, w) ∈ ∆(U) according to Bayes rule Q(u|z, w) = P(u,z)Q(w|u)∑
u′ P(u′,z)Q(w|u′) , for all (u, z, w) ∈ U×W×Z .

Lemma 1 (Markov property on posterior belief) The Markov chain property Z −
−U −
−W implies

that the posterior beliefs QU (·|z, w) ∈ ∆(U) can be expressed from the interim beliefs QU (·|w) ∈ ∆(U),

Q(u|w, z) =
Q(u, z, w)

Q(z, w)
=

Q(u, z|w)∑
u′ Q(u′, z|w)

=
Q(u|w)P(z|u)∑
u′ Q(u′|w)P(z|u′)

, ∀(u, z, w) ∈ U × Z ×W.

(30)

Definition III.4 (Best-reply) For each symbol z ∈ Z and belief p ∈ ∆(U), the decoder chooses the

best-reply v⋆(z, p) that belongs to the set V⋆(z, p), defined by

V⋆(z, p) = argmax
v∈argmin Ep

[
dd(U,z,v)

] Ep

[
de(U, z, v)

]
. (31)

If several symbols are best-reply to z ∈ Z and belief p ∈ ∆(U), the decoder chooses the worst one for

encoder’s distortion. This is a reformulation of the maximum in (13).

Definition III.5 (Robust distortion) For a symbol z ∈ Z and a belief p ∈ ∆(U), the encoder’s robust

distortion function is defined by

ψe(z, p) = Ep

[
de

(
U, z, v⋆(z, p)

)]
, (32)

where the best-reply v⋆(z, p) belongs to the set defined by (31).

Definition III.6 (Average distortion and average entropy) For each belief p ∈ ∆(U), we define the

average distortion function Ψe(p) and average entropy function h(p) by

Ψe(p) =
∑

u,z

p(u) · P(z|u) · ψe

(
z, pU (·|z)

)
, where pU (u|z) =

p(u) · P(z|u)∑
u′ p(u′) · P(z|u′)

∀(u, z), (33)

h(p) =H(p) +
∑

u

p(u) ·H
(
PZ(·|u)

)
−H

(∑

u

p(u) · PZ(·|u)
)
. (34)
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The conditional probability distribution PZ(·|u) is given by the information source. Note that h(PU ) =

H(U |Z).

Lemma 2 (Concavity) The average entropy h(p) is concave in p ∈ ∆(U).

Proof. [Lemma 2] The average entropy h(p) in (34) is equal to the conditional entropy H(U |Z) evaluated

with respect to the probability distribution p · PZ|U ∈ ∆(U × Z). The mutual information I(U ;Z) is

convex in p ∈ ∆(U) (see [69, pp. 23]), and the entropy H(U) is concave in p ∈ ∆(U). Hence the

conditional entropy h(p) = H(U |Z) = H(U)− I(U ;Z) is concave in p ∈ ∆(U).

Theorem III.7 (Convex closure) The solution D⋆
e of (13) is the convex closure of Ψe(p) evaluated at

the prior distribution PU , under an information constraint,

D⋆
e = inf

{∑

w

λw ·Ψe(pw) s.t.
∑

w

λw · pw = PU ∈ ∆(U),

and
∑

w

λw · h(pw) ≥ H(U |Z)−max
PX

I(X;Y )

}
, (35)

where the infimum is taken over λw ∈ [0, 1] summing up to 1 and pw ∈ ∆(U), for each w ∈ W with

|W| = min
(
|U|+ 1, |V||Z|

)
.

The proof of Theorem III.7, stated in App. A, rely on the Markov chain property Z −
−U −
−W . When

removing, the decoder’s side information, e.g. |Z| = 1, and changing the infimum into a supremum,

we recover the value of the optimal splitting problem of [4, Definition 2.4]. The “splitting Lemma” by

Aumann and Maschler [70], also called “Bayes plausibility” in [7], ensures that the strategy Q(w|u) =

λw·pw(u)
P(u) induces the collection of posterior beliefs (λw, pw)w∈W , also referred to as “the splitting of the

prior belief”. Formulation (35) provides an alternative point of view on the encoder’s optimal distortion

(13).

• The optimal solution D⋆
e can be found by adapting the concavification method [70], to the

minimization problem. In Sec IV, we investigate an example involving binary source and side

information and we compute explicitly the optimal strategy for the Wyner-Ziv’s example with a

doubly symmetric binary source (DSBS), in [5, Sec. II, pp. 3].

• When the channel is perfect and has a large input alphabet |X | ≥ min(|U|, |V||Z|), the strategic

communication problem is equivalent to several i.i.d. copies of the one-shot problem, whose optimal

solution is obtained by removing the information constraint (35). This noise-free setting is related

to the problem of persuasion with heterogeneous beliefs, investigated in [44] and [45].

November 9, 2019 DRAFT



13

• The information constraint
∑

w λw · h(pw) ≥ H(U |Z)−maxPX
I(X;Y ) in (35) is a reformulation

of I(U ;W |Z) ≤ maxPX
I(X;Y ) in (11), since

∑

w

λw · h(pw) =
∑

w

λw ·H(U |Z,W = w) = H(U |Z,W ). (36)

• The dimension of the problem (35) is |U|. Caratheodory’s Lemma (see [71, Corollary 17.1.5, pp.

157] and [4, Corollary A.2, pp. 26]) provides the cardinality bound |W| = |U|+ 1.

• The cardinality of W is also restricted by the vector of recommended symbols |W| = |V||Z|, telling to

the decoder which symbol to return for each side information. Otherwise assume that two posteriors

pw1
and pw2

induce the same vectors of symbols v1 = (v11 , . . . , v
1
|Z|) = v2 = (v21 , . . . , v

2
|Z|). Then,

both posteriors pw1
and pw2

can be replaced by their average:

p̃ =
λw1

· pw1
+ λw2

· pw2

λw1
+ λw2

, (37)

without changing the distortion and still satisfying the information constraint:

h(p̃) ≥
λw1

· h(pw1
) + λw2

· h(pw2
)

λw1
+ λw2

(38)

=⇒
∑

w 6=w1,

w 6=w2

λw · h(pw) + (λw1
+ λw2

) · h(p̃) ≥ H(U |Z)−max
PX

I(X;Y ). (39)

Inequality (38) comes from the concavity of h(p), stated in Lemma 2.

The splitting under information constraint of Theorem III.7 can be reformulated in terms of Lagrangian

and in terms of the convex closure of Ψ̃e(p, ν) defined by

Ψ̃e(p, ν) =




Ψe(p), if ν ≤ h(p),

+∞, otherwise.
(40)

Theorem III.8 The optimal solution D⋆
e reformulates as:

D⋆
e =sup

t≥0

{
vex

[
Ψe + t · h

](
PU

)
− t ·

(
H(U |Z)−max

PX

I(X;Y )
)}

(41)

=vex Ψ̃e

(
PU ,H(U |Z)−max

PX

I(X;Y )
)
. (42)

Equation (41) is the convex closure of a Lagrangian that integrates the information constraint and equation

(42) corresponds to the convex closure of a a bi-variate function where the information constraint requires

an additional dimension. The proof follows directly from [4, Theorem 3.3, pp. 37], by replacing concave

closure by convex closure.
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IV. EXAMPLE WITH BINARY SOURCE AND SIDE INFORMATION

We consider a binary source U ∈ {u0, u1} with probability distribution P(u1) = p0 ∈ [0, 1]. The

binary side information Z ∈ {z0, z1} is drawn according to the conditional probability distribution

P(z|u) with parameter δ0 ∈ [0, 1] and δ1 ∈ [0, 1]. The cardinality bound in Definition III.1 is |W| =

min
(
|U|+1, |V||Z|

)
= 3, hence the random variable W is drawn according to the conditional probability

distribution Q(w|u) with parameters (αk, βk)k∈{1,2,3} ∈ [0, 1]6 such that
∑

k αk =
∑

k βk = 1. The joint

probability distribution P(u, z)Q(w|u) is depicted in Fig. 2.

u1

u0

b

b

b

b

b

b

b

b

b

w3

w1

w2

z1

z0
α1

β3

1− p0

p0

α3
α2

β1
β2

1− δ0

δ0

1− δ1

δ1

Fig. 2. Joint probability distribution P(u, z)Q(w|u) depending on parameters p0, δ0, δ1, (αk, βk)k∈{1,2,3}.

The encoder minimizes the Hamming distortion de(u, v) given by Fig. 3. The decoder’s distortion in

Fig. 4 includes an extra cost κ ∈ [0, 1] when it returns the symbol v1 instead of the symbol v0. The extra

cost κ may capture a computing cost, an energy cost, or the fact that an estimation error for the symbol

v1 is more harmful than an estimation error for the symbol v0.

u1

u0

v0 v1

0

1

1

0

Fig. 3. Encoder’s distortion function de(u, v).

u1

u0

v0 v1

0

1

1 + κ

κ

Fig. 4. Decoder’s distortion dd(u, v) with extra cost κ ∈ [0, 1].

A. Decoder’s best-reply

After receiving the pair of symbols (w, z), the decoder updates its posterior belief QU (·|w, z) ∈ ∆(U),

according to Bayes rule. We denote by p = Q(u1|w, z) ∈ [0, 1] the parameter of the posterior belief.

Given the extra cost is κ = 3
4 and we denote by γ = 1+κ

2 = 7
8 the belief threshold at which the decoder

changes its symbol, as in Fig. 5. When the decoder’s belief is exactly equal to the threshold p = γ = 7
8 ,

the decoder is indifferent between the two symbols {v0, v1}, by convention we assume that it chooses
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v0, i.e. the worst symbol for the encoder. Hence the decoder chooses a best-reply v⋆0 or v⋆1 depending on

the interval [0, γ] or (γ, 1] in which lies the belief parameter p ∈ [0, 1], see Fig. 5.

0 1 p

Ep

[
dd(U, v)

]

1 + κ = 7
4

κ = 3
4

1

v1

v0

γ
=

1+
κ2
=

7
8

b

Fig. 5. Decoder’s expected distortion Ep

[

dd(U, v)
]

= (1 − p) · dd(u0, v) + p · dd(u1, v) for v ∈ {v0, v1}, depending on the

belief parameter p = Q(u1|w, z) ∈ [0, 1]. For an extra cost κ = 3

4
, the decoder’s best-reply is the symbol v⋆0 if the posterior

belief p ∈ [0, γ] and v⋆1 if p ∈ (γ, 1] with γ = 7

8
.

B. Interim and posterior belief

The correlation between random variables (U,Z) is fixed whereas the correlation between random

variables (U,W ) is selected by the encoder. This imposes a strong relationship between the iterim belief

QU |W induced by the encoder, and the posterior belief QU |WZ that determine the decoder’s best-reply

symbol v. For a symbol w ∈ W , we denote the interim belief by q = Q(u1|w) ∈ [0, 1]. Lemma 1 ensures

that the posterior belief depending on the side information z0 or z1, are given by

Q(u1|w, z0) =
Q(u1|w) · P(z0|u1)

Q(u0|w) · P(z0|u0) +Q(u1|w) · P(z0|u1)
=

q · δ1
(1− q) · (1− δ0) + q · δ1

=: p0(q), (43)

Q(u1|w, z1) =
Q(u1|w) · P(z1|u1)

Q(u0|w) · P(z1|u0) +Q(u1|w) · P(z1|u1)
=

q · (1− δ1)

(1− q) · δ0 + q · (1− δ1)
=: p1(q). (44)

The posterior beliefs after receiving the side information z0 or z1 are related to the interim belief q ∈ [0, 1]

through the two functions p0(q), p1(q), depicted on Fig. 6.
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0

1

1 qp
0 =

0.5

p0 = P(u1) = 0.5

P(u1|z0) = 0.344828

P(u1|z1) = 0.909091

b

b

b

b

b b

b

γ = 0.875

ν
0 =

0.930069

ν
1 =

0.411765

bb

bb b

b

b

b

b p0(ν1) = 0.269231

p1(ν0) = 0.992537

p1(q)

p0(q)

Fig. 6. The posterior beliefs functions p0(q) and p1(q) defined in (43) and (44), depending on the interim belief q ∈ [0, 1], for

p0 = 0.5, δ1 = 0.05, δ2 = 0.5 and γ = 0.875.

C. Encoder’s average distortion function

Given the belief threshold γ = 7
8 at which the decoder changes its symbol, we define the parameters

ν0 and ν1 such that p0(ν0) = γ and p1(ν1) = γ.

γ = p0(ν0) ⇐⇒ ν0 =
γ · (1− δ0)

δ1 · (1− γ) + γ · (1− δ0)
, (45)

γ = p1(ν1) ⇐⇒ ν1 =
γ · δ0

γ · δ0 + (1− δ1) · (1− γ)
. (46)

Remark IV.1 We have the equivalence ν1 < ν0 ⇐⇒ δ0 + δ1 < 1.

Since the distortion functions of Fig. 3, 4 do not depend on the side information z, we denote by ψe(p)

the robust distortion function of Definition III.5, given by

ψe(p) = min
v∈argmin

(1−p)·d
d
(u0,v)+p·d

d
(u1,v)

(1− p) · de(u0, v) + p · de(u1, v), (47)

= 1
(
p ≤ γ

)
·
(
(1− p) · de(u0, v0) + p · de(u1, v0)

)

+ 1
(
p > γ

)
·
(
(1− p) · de(u0, v1) + p · de(u1, v1)

)
(48)

= p · 1
(
p ≤ γ

)
+ (1− p) · 1

(
p > γ

)
. (49)
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Without loss of generality, we assume that δ0 + δ1 < 1, hence ν1 < ν0. The average distortion function

Ψe(q) of Definition III.6 depends on the interim belief parameter q ∈ [0, 1] as follows

Ψe(q) =Pq(z0) · ψe

(
p0(q)

)
+ Pq(z1) · ψe

(
p1(q)

)
(50)

=
(
(1− q) · (1− δ0) + q · δ1

)
·
(
p0(q) · 1

(
p0(q) ≤ γ

)
+ (1− p0(q)) · 1

(
p0(q) > γ

))

+
(
(1− q) · δ0 + q · (1− δ1)

)
·
(
p1(q) · 1

(
p1(q) ≤ γ

)
+ (1− p1(q)) · 1

(
p1(q) > γ

))
(51)

=q · 1
(
q ≤ ν1

)
+
(
q · δ1 + (1− q) · δ0

)
· 1
(
ν1 < q ≤ ν0

)
+ (1− q) · 1

(
q > ν0

)
. (52)

In Fig. 7, 8 and 11, the average distortion function Ψe(q) are represented by the orange lines, whereas

the black curve is the average entropy h(q) defined by

h(q) =Hb(q) + (1− q) ·Hb(δ0) + q ·Hb(δ1)−Hb

(
(1− q) · δ0 + q · (1− δ1)

)
. (53)

D. Optimal splitting with three posteriors

Since the cardinality bound is |W| = min
(
|U| + 1, |V||Z|

)
= 3, we consider a splitting of the prior

p0 in three posteriors (q1, q2, q3) ∈ [0, 1]3 with respective weights (λ1, λ2, λ3) ∈ [0, 1]3, defined by (54),

(55).

1 =λ1 + λ2 + λ3, (54)

p0 =λ1 · q1 + λ2 · q2 + λ3 · q3, (55)

H(U |Z)− C =λ1 · h(q1) + λ2 · h(q2) + λ3 · h(q3), (56)

Equation (56) is satisfied when the information constraint is binding. By inverting the system (54)-(56),

we obtain

λ1 =

(
H(U |Z)−C

)
· (q2 − q3) + h(q2) · (q3 − p0) + h(q3) · (p0 − q2)

h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)
, (57)

λ2 =

(
H(U |Z)−C

)
· (q3 − q1) + h(q3) · (q1 − p0) + h(q1) · (p0 − q3)

h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)
, (58)

λ3 =

(
H(U |Z)−C

)
· (q1 − q2) + h(q1) · (q2 − p0) + h(q2) · (p0 − q1)

h(q1) · (q2 − q3) + h(q2) · (q3 − q1) + h(q3) · (q1 − q2)
. (59)

The triple of posteriors (q1, q2, q3) is feasible if and only if the weights (λ1, λ2, λ3) belong to the interval

[0, 1]3. The average distortion Ψe(q) is piece-wise linear, hence the optimal triple of posteriors may

belong to distinct intervals q1 ∈ [0, ν1), q2 ∈ [ν1, ν2), q3 ∈ [ν2, 1]. Otherwise, take the average of two

posteriors of the same interval which provides the same distortion value and has a larger entropy, due to

the strict concavity of entropy function.
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Aumann and Maschler’s splitting lemma [70] or Kamenica and Gentzkow’s Bayes plausibility [7] claim

that the splitting p0 = λ1 · q1 + λ2 · q2 + λ3 · q3 is implemented by the following strategy

Q(wk|u0) =Q(wk) ·
1−Q(u1|wk)

1− P(u1)
= λk ·

1− qk
1− p0

=: αk, k ∈ {, 1, 2, 3} (60)

Q(wk|u1) =Q(wk) ·
Q(u1|wk)

P(u1)
= λk ·

qk
p0

=: βk, k ∈ {, 1, 2, 3}. (61)

0

1

1 q
b
q
2 =

p
0 =

0.5

b b

ν
1 =

0.7

ν
2 =

0.3

δ0 = δ1 = 0.3

bb

b

b

H(U |Z)− C = 0.6813

h(q⋆) = 0.5375

b b

b

b

b

b

q
3 =

1−
q ⋆
=
0.855

q
1 =

q ⋆
=
0.145

b b

b b D⋆
e = 0.2098

Fig. 7. Wyner-Ziv’s example for DSBS. When C ∈ [0, H(U |Z)− h(q⋆)] the optimal splitting is (q1, q2, q3) = (q⋆, 1

2
, 1− q⋆).

For the parameters p0 = 0.5, δ0 = δ1 = 0.3, C = 0.2, κ = 0, the optimal encoder’s distortion is D⋆
e = 0.2098.

E. Wyner-Ziv’s example for DSBS with p0 = 0.5, δ0 = δ1 = 0.3, κ = 0

We investigate the example of doubly symmetric binary source (DSBS) with δ0 = δ1 = 0.3 whose

solution is characterized in [5, Sec. II, pp. 3]. In this example, both encoder and decoder minimize the

Hamming distortion, hence κ = 0 ⇐⇒ γ = 1
2 . We introduce the notation q ⋆ δ := (1− q) · δ+ q · (1− δ),

the average distortion and average entropy write

Ψe(q) =q · 1
(
q ≤ δ

)
+ δ · 1

(
δ < q ≤ 1− δ

)
+ (1− q) · 1

(
q > 1− δ

)
, (62)

h(q) =H(U |Z) +Hb(q)−Hb

(
q ⋆ δ

)
. (63)

We remark that H(U |Z)− h(q) = Hb

(
q ⋆ δ

)
−Hb(q).

Proposition IV.2 We denote by q⋆ the unique solution of

h′(q) =
H(U |Z)− h(q)

δ − q
. (64)
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0
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0.5

b b
ν
1 =

0.7

ν
2 =

0.3

δ0 = δ1 = 0.3

b

b

b

b

b b

H(U |Z)− C = 0.4813
h(q⋆) = 0.5375

b b

b b

1
−
q ⋆
=
0.855

q ⋆
=
0.145

q
3 =

0.8788

q
1 =

0.1212

b bb b

b D⋆
e = 0.1212

Fig. 8. Wyner-Ziv’s example for DSBS. When C ∈ [H(U |Z) − h(q⋆),H(U |Z)] the optimal splitting has two posteriors

(q1, q3) =
(

h−1
(

H(U |Z) − C
)

, 1 − h−1
(

H(U |Z) − C
)

)

. For parameters p0 = 0.5, δ0 = δ1 = 0.3, C = 0.4, κ = 0, the

optimal encoder’s distortion is D⋆
e = 0.1212.

0

C

1 D⋆
e

b
p
0 =

0.5

q ⋆
=
0.145

δ
=
0.3

b

b

b

b

b

b b

H(U |Z) = 0.8813

H(U |Z)− h(q⋆) = 0.3438

H(U |Z)− h(δ) = 0.1002

Fig. 9. Optimal trade-off between the capacity C and the optimal distortion D⋆
e for the DSBS with parameters p0 = 0.5,

δ0 = δ1 = 0.3, κ = 0.

1) If C ∈ [0,H(U |Z)− h(q⋆)], then the optimal splitting (Fig. 7) has three posterior beliefs

q1 = q⋆ q2 =
1
2 q3 = 1− q⋆

λ1 =
1
2 · C

H(U |Z)−h(q⋆) λ2 = 1− C
H(U |Z)−h(q⋆) λ3 =

1
2 · C

H(U |Z)−h(q⋆)

corresponding to the strategies
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α1 = (1− q⋆) · C
H(U |Z)−h(q⋆) α2 = 1− C

H(U |Z)−h(q⋆) α3 = q⋆ · C
H(U |Z)−h(q⋆)

β1 = q⋆ · C
H(U |Z)−h(q⋆) β2 = 1− C

H(U |Z)−h(q⋆) β3 = (1− q⋆) · C
H(U |Z)−h(q⋆)

and the optimal distortion is

D⋆
e =δ − C ·

δ − q⋆

H(U |Z)− h(q⋆)
(65)

2) If C ∈ [H(U |Z)− h(q⋆),H(U |Z)], then the optimal splitting (Fig. 8) has two posterior beliefs

q1 = h−1
(
H(U |Z)− C

)
q2 =

1
2 q3 = 1− h−1

(
H(U |Z)− C

)

λ1 =
1
2 λ2 = 0 λ3 =

1
2

corresponding to the strategies

α1 = 1− h−1
(
H(U |Z)− C

)
α2 = 0 α3 = h−1

(
H(U |Z)− C

)

β1 = h−1
(
H(U |Z)− C

)
β2 = 0 β3 = 1− h−1

(
H(U |Z)− C

)

and the optimal distortion is

D⋆
e =h−1

(
H(U |Z)− C

)
, (66)

where the notation h−1
(
H(U |Z)−C

)
stands for the unique solution of equation h(q) = H(U |Z)−C .

3) If C > H(U |Z), then the optimal splitting rely on the two extreme posterior beliefs (0, 1) and

D⋆
e = 0.

The proof of Proposition IV.2 is given in the Appendix D. When C ≤ H(U |Z) − h(q⋆), the optimal

strategy consists of a time-sharing between the operating point (D⋆
e, C) =

(
q⋆,H(U |Z)−h(q⋆)

)
and the

zero rate point (δ, 0), as depicted in Fig. 9.

F. Distinct distortions without side information, p0 = 0.5, δ0 = 0.5, δ1 = 0.5, C = 0.2, κ = 3
4

We consider that the parameters δ1 = δ2 = 0.5 so that the side information Z is independent of

the source U . This corresponds to the problem studied in [4], when replacing the minimization by the

maximization. We have Hb(δ0) = Hb(δ1) = Hb

(
(1 − q) · δ0 + q · (1 − δ1)

)
= 1 and ν1 = ν2 = γ = 7

8 ,

the average entropy and average distortion write

h(q) =Hb(q), (67)

Ψe(q) =ψe(q) = p · 1
(
p ≤ γ

)
+ (1− p) · 1

(
p > γ

)
. (68)
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Fig. 10. For the parameters p0 = 0.5, δ1 = δ2 = 0.5, C = 0.2, κ = 3

4
, the optimal encoder’s distortion D⋆

e = 0.2668.

Applying [4, Corollary 3.5, pp. 15], the optimal splitting has two posteriors |W| = 2 and must satisfy

the information constraint

p0 − q2
q1 − q2

·Hb(q1) +
q1 − p0
q1 − q2

·Hb(q2) ≥ H(U)− C. (69)

The distortion function has two piece-wise linear components, hence the optimal splitting involves q1 ∈

[0, p0] and q2 ∈ [γ, 1]. For each q2 ∈ [γ, 1], we denote by q1(q2) the function that returns the posterior

which satisfies (69) with equality. From [4, Fig. 5, pp. 19], the function q1(q2) is strictly increasing,

hence its derivative q′1(q2) is strictly positive. The encoder’s distortion function reformulates in terms of

q2 as

Φe(q2) =
p0 − q2

q1(q2)− q2
· q1(q2) +

q1 − p0
q1(q2)− q2

· (1− q2). (70)

Its derivative writes

Φ′
e(q2) =

1

(q1(q2)− q2)2
·

(
q′1(q2) ·

(
q2 · (2 · q2 − 1) + p0

)
− (p0 − q1(q2)) · (1− 2 · q1(q2))

)
. (71)

Since q2 ≥ γ > 1
2 , the sign of the derivative is negative if and only if

0 < q′1(q2) ≤
(p0 − q1(q2)) · (1− 2 · q1(q2))

q2 · (2 · q2 − 1) + p0
. (72)

By numerical optimization, the above inequality is satisfied for p0 = 0.5, δ1 = δ2 = 0.5, C = 0.2, κ = 3
4 ,

hence the optimal distortion is achieved by using q2 = γ, as depicted on Fig. 10.
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Fig. 11. For the parameters p0 = 0.5, δ0 = 0.05, δ1 = 0.5, C = 0.2, κ = 3

4
, the optimal encoder’s distortion is D⋆

e = 0.1721.

G. Distinct distortions with side information, p0 = 0.5, δ0 = 0.05, δ1 = 0.5, C = 0.2, κ = 3
4

We consider an example with distinct distortion functions, i.e. with κ = 3
4 , with decoder’s side

information. By numerical simulation, we determine the optimal triple of posteriors (q1, q2, q3) represented

by the red dots in Fig. 11, that corresponds to the minimal distortion D⋆
e = 0.1721.

q1 = 0.0715 q2 = 0.4118 q3 = 0.9301

λ1 = 0.1288 λ2 = 0.6165 λ3 = 0.2548

The parameters of the optimal strategy in Fig. 2, are given by

α1 = 0.2392 α2 = 0.7252 α2 = 0.0356

β1 = 0.0184 β2 = 0.5077 β3 = 0.4739
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APPENDIX A

PROOF OF THEOREM III.7

We consider a joint probability distribution QUW ∈ ∆(U×W), we identify the parameters λw = Q(w)

and pw = QU (·|w) ∈ ∆(U). The average distortion writes

∑

w

λw ·Ψe(pw) =
∑

w

Q(w) ·Ψe

(
QU (·|w)

)
(73)

=
∑

w

Q(w) ·
∑

u,z

Q(u|w) · P(z|u) · ψe

(
z,QU (·|w, z)

)
(74)

=
∑

w,z

Q(w) · Q(z|w) · EQU(·|w,z)

[
de

(
U, z, v⋆

(
z,QU (·|w, z)

))]
(75)

=EQUZW

[
de

(
U,Z, V ⋆

(
Z,QU (·|W,Z)

))]
(76)

= max
QV |ZW ∈

Q2(QUZW )

E QUZW
QV |ZW

[
de(U,Z, V )

]
. (77)

Equations (74), (75) and (77) come from Definitions III.6, III.5 and III.4.

Equations (73) and (76) are reformulations.

The average entropy writes

∑

w

λw · h(pw) =
∑

w

Q(w) · h
(
QU (·|w)

)
(78)

=
∑

w

Q(w) ·

(
H
(
QU (·|w)

)
+
∑

u

Q(u|w) ·H
(
PZ(·|u)

)
−H

(∑

u

Q(u|w) · PZ(·|u)
))

(79)

=
∑

w

Q(w) ·

(
H
(
QU (·|w)

)
+
∑

u

Q(u|w) ·H
(
QZ(·|u,w)

)
−H

(
QZ(·|w)

))
(80)

=H(U |W ) +H(Z|U,W )−H(Z|W ) = H(U |W,Z). (81)

Equation (79) come from Definition III.6.

Equation (80) come from Markov chain property Z −
−U −
−W that implies PZ(·|u) = QZ(·|u,w) and

QZ(·|w) =
∑

uQ(u|w) · PZ(·|u).

Equations (78) and (81) are reformulations.
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Hence, equation (35) reformulates

inf
λw∈[0,1],

pw∈∆(U)

{∑

w

λw ·Ψe(pw) s.t.
∑

w

λw · pw = PU ∈ ∆(U),

and
∑

w

λw · h(pw) ≥ H(U |Z)−max
PX

I(X;Y )

}
(82)

= inf
QW ,QU|W

{
max

QV |ZW ∈

Q2(QUZW )

E QUZW
QV |ZW

[
de(U,Z, V )

]
s.t.

∑

w

Q(w) · QU (·|w) = PU ∈ ∆(U),

and H(U |W,Z) ≥ H(U |Z)−max
PX

I(X;Y )

}
(83)

= inf
QUZW∈Q0

max
QV |ZW ∈

Q2(QUZW )

E QUZW
×QV |ZW

[
de(U,Z, V )

]
= D⋆

e. (84)

This concludes the proof of Theorem III.7.

APPENDIX B

ACHIEVABILITY PROOF OF THEOREM III.3

We refine the analysis of the Wyner-Ziv’s source coding scheme [5], in order to control the posterior

beliefs of a large fraction of stages, as stated in Proposition B.1 and in (96)-(97). Corollary B.3 shows

that the best-reply strategy of the decoder performs similarly as the Wyner-Ziv’s decoding scheme.

A. Zero capacity

We first investigate the special case of zero capacity.

Lemma 3 If the channel has zero capacity maxPX
I(X;Y ) = 0, then we have:

∀n ∈ N⋆, ∀σ, max
τ∈BRd(σ)

dn
e (σ, τ) = D⋆

e. (85)

Proof. [Lemma 3] When capacity is zero maxPX
I(X;Y ) = 0, then the probability distribution

PUZQW |U ∈ Q0 must satisfy I(U ;W |Z) = 0, hence the Markov chain property U −
− Z −
− W ,

i.e. QU |ZW = PU |Z .

D⋆
e = inf

QUZW∈Q0

max
QV |WZ∈

Q2(QUZW )

E QUZW
QV |WZ

[
de(U,Z, V )

]
(86)

= inf
QUZW∈Q0

EQUZW

[
de

(
U,Z, V ⋆

(
Z,QU (·|W,Z)

))]
(87)

= inf
QUZW∈Q0

EQUZW

[
de

(
U,Z, V ⋆

(
Z,PU (·|Z)

))]
(88)

=EPUZ

[
de

(
U,Z, V ⋆

(
Z,PU (·|Z)

))]
. (89)
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Equation (87) is a reformulation by using the best-reply v⋆
(
z, p
)

of Definition III.4 for symbol z ∈ Z

and the belief QU (·|w, z).

Equation (88) comes from Markov chain property U −
− Z −
− W that allows to replace the belief

QU (·|w, z) by PU (·|z).

Equation (89) comes from removing the random variable W since it has no impact on the distortion

function de

(
u, z, v⋆

(
z,PU (·|z)

))
.

For any n and for any encoding strategy σ, the encoder’s long-run distortion is given by

max
τ∈BRd(σ)

dn
e (σ, τ) = max

τ∈BRd(σ)

∑

un,zn,xn,

yn,vn

n∏

t=1

P
(
ut, zt

)
σ
(
xn
∣∣un
) n∏

t=1

T
(
yt
)
τ
(
vn
∣∣yn, zn

)
·

[
1

n

n∑

t=1

de(ut, zt, vt)

]

(90)

= max
τ∈BRd(σ)

∑

un,zn,vn

n∏

t=1

P
(
ut, zt

)
τ
(
vn
∣∣zn
)
·

[
1

n

n∑

t=1

de(ut, zt, vt)

]
(91)

=
1

n

n∑

t=1

[ ∑

ut,zt,vt

P
(
ut, zt

)
· 1
(
vt = v⋆

(
zt,QU (·|zt)

))
· de(ut, zt, vt)

]
(92)

= EP(u,z)

[
de

(
U,Z, V ⋆

(
Z,PU (·|Z)

))]
. (93)

Equation (90) comes from the zero capacity which imposes that the channel outputs Y n are independent

from the channel inputs Xn.

Equation (91) comes from removing the random variables (Xn, Y n) and noting that the decoder’s best-

reply τ
(
vn
∣∣zn
)

does not depend on yn anymore, since yn is independent of (un, zn).

Equation (92) is a reformulation based on the best-reply v⋆
(
z,PU (·|z)

)
of Definition III.4, for the symbol

z ∈ Z and the belief PU (·|z).

Equation (93) comes from the i.i.d. property of (U,Z) and concludes the proof of Lemma 3.

B. Positive capacity

We now assume that the channel capacity is strictly positive maxPX
I(X;Y ) > 0. We define a specific

convex closure in which the information constraint is satisfied with strict inequality and the sets of
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decoder’s best-reply symbols are always singletons.

D̂e = inf

{∑

w

λw ·Ψe(pw) s.t.
∑

w

λw · pw = PU ∈ ∆(U),

and
∑

w

λw · h(pw) > H(U |Z)−max
PX

I(X;Y ),

and ∀(z, w) ∈ Z ×W, V⋆
(
z,QU (·|z, w)

)
is a singleton

}
. (94)

Lemma 4 If maxPX
I(X;Y ) > 0, then D̂e = D⋆

e .

For the proof of Lemma 4, we refers to the similar proof of [4, Lemma A.5, pp. 32]. We denote by P⋆
X

the probability distribution that maximizes the mutual information I(X;Y ), we denote by Qn
UZW the

empirical distribution of the sequence (un, zn, wn) and we denote by Aδ the set of typical sequences

with tolerance δ > 0, defined by

Aδ =

{
(un, zn, wn, xn, yn), s.t. ||Qn

UZW − PUZQW |U ||1 ≤ δ,

and ||Qn
XY − P⋆

XTY |X ||1 ≤ δ

}
. (95)

We denote by Pσ,Ut
(·|yn, zn) ∈ ∆(U) the posterior belief induced by the strategy σ on Ut at stage t,

given (yn, zn). We define Tα(wn, yn, zn) and Bα,γ,δ depending on parameters α > 0 and γ > 0:

Tα(w
n, yn, zn) =

{
t ∈ {1, . . . , n}, s.t. D

(
Pσ,Ut

(·|yn, zn)
∣∣∣
∣∣∣QUt

(·|wt, zt)
)
≤

α2

2 ln 2

}
, (96)

Bα,γ,δ =

{
(wn, yn, zn), s.t.

|Tα(w
n, yn, zn)|

n
≥ 1− γ and (wn, yn, zn) ∈ Aδ

}
. (97)

The notation Bc
α,γ,δ stands for the complementary set of Bα,γ,δ ⊂ Wn × Yn × Zn. The sequences

(wn, yn, zn) belong to the set Bα,γ,δ if, 1) they are typical, 2) the corresponding posterior belief

Pσ,Ut
(·|yn, zn) is close in K-L divergence to the target belief QUt

(·|wt, zt), for a large fraction of stages

t ∈ {1, . . . , n}.

The cornerstone of this achievability proof is Proposition B.1, which refines the analysis of Wyner-Ziv’s

source coding by controlling the posterior beliefs of a large fraction of stages.

Proposition B.1 (Wyner-Ziv’s Posterior Beliefs) If the probability distribution PUZQW |U satisfies:





maxPX
I(X;Y )− I(U ;W |Z) > 0,

V⋆
(
z,QU (·|z, w)

)
is a singleton ∀(z, w) ∈ Z ×W,

(98)

then

∀ε > 0, ∀α > 0, ∀γ > 0, ∃δ̄ > 0, ∀δ < δ̄, ∃n̄ ∈ N⋆, ∀n ≥ n̄,∃σ, s.t. Pσ(B
c
α,γ,δ) ≤ ε. (99)
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The proof of proposition B.1 is stated in App. B-C.

Proposition B.2 For any encoding strategy σ, we have:
∣∣∣∣ max
τ∈BRd(σ)

dn
e (σ, τ)− D̂e

∣∣∣∣ ≤ (α+ 2γ + δ) · φ̄e + (1− Pσ(Bα,γ,δ)) · φ̄e, (100)

where φ̄e = maxu,z,v
∣∣φe(u, z, v)

∣∣ is the largest absolute value of encoder’s distortion.

For the proof of Proposition B.2, we refers directly to the similar proof of [4, Lemma A.8, pp. 33].

Corollary B.3 For any ε > 0, there exists n̄ ∈ N⋆ such that for all n ≥ n̄ there exists an encoding

strategy σ such that:
∣∣∣∣ max
τ∈BRd(σ)

dn
e (σ, τ) − D̂e

∣∣∣∣ ≤ ε. (101)

The proof of Corollary B.3 comes from combining Proposition B.1 with Proposition B.2 and choosing

parameters α, γ, δ small and n ∈ N⋆ large. The decoder’s best-reply performs similarly as the Wyner-Ziv’s

decoding scheme. It concludes the achievability proof of Theorem III.3.

C. Proof of Proposition B.1

We assume that the probability distribution PUZQW |U satisfies the two following conditions:




maxPX
I(X;Y )− I(U ;W |Z) > 0,

V⋆
(
z,QU (·|z, w)

)
is a singleton ∀(z, w) ∈ Z ×W,

(102)

The strict information constraint ensures that there exists a small parameter η > 0 and rates R ≥ 0,

RL ≥ 0, such that

R + RL = I(U ;W ) + η, (103)

RL ≤ I(Z;W )− η, (104)

R ≤ max
PX

I(X;Y )− η. (105)

We now recall the random coding construction of Wyner-Ziv [5] and we investigate the corresponding

posterior beliefs. We note by Σ the random coding scheme, described as follows.

• Random codebook. We introduces the indices m ∈ M with |M| = 2nR and l ∈ ML with |ML| =

2nRL . We draw |M ×ML| = 2n(R+RL) sequences W n(m, l) with the i.i.d. probability distribution

Q⊗n
W , and |M| = 2nR sequences Xn(m), with the i.i.d. probability distribution P⋆⊗n

X that maximizes

the channel capacity in (105).
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• Encoding function. The encoder observes the sequence of symbols of source Un ∈ Un and finds a

pair of indices (m, l) ∈ M×ML such that the sequences
(
Un,W n(m, l)

)
∈ Aδ are jointly typical.

It sends the sequence Xn(m) corresponding to the index m ∈ M.

• Decoding function. The decoder observes the sequence of channel output Y n ∈ Yn. It returns an

index m̂ ∈ M such that the sequences
(
Y n,Xn(m̂)

)
∈ Aδ are jointly typical. Then it observes

the sequence of side information Zn ∈ Zn and returns an index l̂ ∈ ML such that the sequences
(
Zn,W n(m̂, l̂)

)
∈ Aδ are jointly typical.

• Error Event. We introduce the event of error Eδ ∈ {0, 1} defined as follows:

Eδ =

{
0 if (M,L) = (M̂ , L̂) and

(
Un, Zn,W n,Xn, Y n

)
∈ Aδ,

1 otherwise.
(106)

Expected error probability of the random encoding/decoding Σ. For all ε2 > 0, for all η > 0, there

exists a δ̄ > 0, for all δ ≤ δ̄ there exists n̄ such that for all n ≥ n̄, the expected probability of the

following error events are bounded by ε2:

EΣ

[
P

(
∀(m, l),

(
Un,W n(m, l)

)
/∈ Aδ

)]
≤ ε2, (107)

EΣ

[
P

(
∃l′ 6= l, s.t.

(
Zn,W n(m, l′)

)
∈ Aδ

)]
≤ ε2, (108)

EΣ

[
P

(
∃m′ 6= m, s.t.

(
Y n,Xn(m′)

)
∈ Aδ

)]
≤ ε2, (109)

Equation (107) comes from (103) and the covering lemma [69, pp. 208].

Equation (108) comes from (104) and the packing lemma [69, pp. 46].

Equation (109) comes from (105) and the packing lemma [69, pp. 46].

There exists a coding strategy σ with small error probability:

∀ε2 > 0, ∀η > 0, ∃δ̄ > 0, ∀δ ≤ δ̄, ∃n̄ > 0, ∀n ≥ n̄, ∃σ, Pσ

(
Eδ = 1

)
≤ ε2. (110)

Control of the posterior beliefs. We assume that the event Eδ = 0 is realized. We denote by

Pσ,Ut
(·|yn, zn, Eδ = 0) the conditional probability distribution of Ut given (yn, zn, E = 0), induced
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by the Wyner-Ziv’s encoding strategy σ.

Eσ

[
1

n

n∑

t=1

D

(
Pσ,Ut

(·|Y n, Zn, Eδ = 0)

∣∣∣∣
∣∣∣∣QUt

(·|Wt, Zt)

)]

=
∑

(wn,zn,yn)∈Aδ

Pσ(w
n, zn, yn|Eδ = 0)×

1

n

n∑

t=1

D

(
Pσ,Ut

(·|yn, zn, Eδ = 0)

∣∣∣∣
∣∣∣∣QUt

(·|wt, zt)

)
(111)

=
1

n

∑

(un,zn,wn,yn)∈Aδ

Pσ(u
n, zn, wn, yn|Eδ = 0)× log2

1∏n
t=1 Q(ut|wt, zt)

−
1

n

n∑

t=1

H(Ut|Y
n, Zn, Eδ = 0)

(112)

≤H(U |W,Z)−
1

n
H(Un|W n, Y n, Zn, Eδ = 0) + δ (113)

≤H(U |W,Z)−
1

n
H(Un|W n, Zn, Eδ = 0) + δ (114)

=H(U |W,Z)−
1

n
H(Un|Eδ = 0) +

1

n
I(Un;W n|Eδ = 0)

+
1

n
H(Zn|W n, Eδ = 0)−

1

n
H(Zn|Un,W n, Eδ = 0) + δ. (115)

Equation (111)-(112) come from the hypothesis Eδ = 0 of typical sequences (un, zn, wn, yn) ∈ Aδ and

the definition of the conditional K-L divergence [72, pp. 24].

Equation (113) comes from property of typical sequences [69, pp. 26] and the conditioning that reduces

entropy.

Equation (114) comes from the Markov chain Zn−
−Un −
−W n−
−Y n induced by the channel and the

strategy σ, that implies H(Un|W n, Zn, Eδ = 0) = H(Un|W n, Y n, Zn, Eδ = 0).

Equation (115) is a reformulation of (114).

We denote by Aδ(z
n|wn) the set of sequences zn ∈ Zn that are jointly typical with wn, i.e. ||Qn

WZ −

QWZ ||1 < δ.

1

n
H(Un|Eδ = 0) ≥H(U)−

1

n
− log2 |U| · Pσ

(
Eδ = 1

)
, (116)

1

n
I(Un;W n|Eδ = 0) ≤R + RL = I(U ;W ) + η, (117)

1

n
H(Zn|W n, Eδ = 0) ≤

1

n
log2 |Aδ(z

n|wn)| ≤ H(Z|W ) + δ, (118)

1

n
H(Zn|Un,W n, Eδ = 0) ≥

1

n
H(Zn|Un,W n)−

1

n
− log2 |U| · Pσ

(
Eδ = 1

)
(119)

=H(Z|U,W )−
1

n
− log2 |U| · Pσ

(
Eδ = 1

)
. (120)

Equation (116) comes from the i.i.d. source and Fano’s inequality.

Equation (117) comes from the cardinality of codebook given by (103). This argument is also used in

[73, Eq. (23)].
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Equation (118) comes from the cardinality of Aδ(z
n|wn), see also [69, pp. 27].

Equation (119) comes from Fano’s inequality.

Equation (119) comes from H(Zn|Un,W n) = H(Zn|Un) = H(Z|U) = H(Z|U,W ) due to the Markov

chain Zn −
− Un −
−W n of the encoding σ, the i.i.d. property of the source (U,Z), the Markov chain

Z −
−U −
−W of the single-letter characterization QUZW ∈ Q0.

Equations (115)-(119) shows that on average, the posterior beliefs Pσ,Ut
(·|yn, zn, Eδ = 0) induced by

strategy σ is close to the target probability distribution QU (·|w, z).

Eσ

[
1

n

n∑

t=1

D

(
Pσ,Ut

(·|Y n, Zn, Eδ = 0)

∣∣∣∣
∣∣∣∣QUt

(·|Wt, Zt)

)]

≤2δ + η +
2

n
+ 2 log2 |U| · Pσ

(
Eδ = 1

)
:= ǫ. (121)

Then we have:

Pσ(B
c
α,γ,δ) =1−Pσ(Bα,γ,δ)

=Pσ(Eδ = 1)Pσ(B
c
α,γ,δ|Eδ = 1) + Pσ(Eδ = 0)Pσ(B

c
α,γ,δ|Eδ = 0)

≤Pσ(Eδ = 1) + Pσ(B
c
α,γ,δ|Eδ = 0)

≤ε2 + Pσ(B
c
α,γ,δ|Eδ = 0). (122)

Moreover:

Pσ(B
c
α,γ,δ|Eδ = 0)

=
∑

wn,yn,zn

Pσ

(
(wn, yn, zn) ∈ Bc

α,γ,δ

∣∣∣Eδ = 0
)

(123)

=
∑

wn,yn,zn

Pσ

(
(wn, yn, zn) s.t.

|Tα(w
n, yn, zn)|

n
< 1− γ

∣∣∣∣∣Eδ = 0

)
(124)

=Pσ

(
1

n
·

∣∣∣∣
{
t, s.t. D

(
Pσ,Ut

(·|yn, zn)
∣∣∣
∣∣∣QUt

(·|wt, zt)
)
≤

α2

2 ln 2

}∣∣∣∣ < 1− γ

∣∣∣∣∣Eδ = 0

)
(125)

=Pσ

(
1

n
·

∣∣∣∣
{
t, s.t. D

(
Pσ,Ut

(·|yn, zn)
∣∣∣
∣∣∣QUt

(·|wt, zt)
)
>

α2

2 ln 2

}∣∣∣∣ ≥ γ

∣∣∣∣∣Eδ = 0

)
(126)

≤
2 ln 2

α2γ
· Eσ

[
1

n

n∑

t=1

D
(
Pσ,Ut

(·|yn, zn)
∣∣∣
∣∣∣QUt

(·|wt, zt)
)]

(127)

≤
2 ln 2

α2γ
·

(
η + δ +

2

n
+ 2 log2 |U| · Pσ

(
Eδ = 1

))
. (128)

Equation (123) to (126) are simple reformulations.

Equation (127) comes from the double use of Markov’s inequality as in [4, Lemma A.21, pp. 42].

Equation (128) comes from (121).
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Combining equations (110), (122), (128) and choosing η > 0 small, we obtain the following statement:

∀ε > 0, ∀α > 0, ∀γ > 0, ∃δ̄ > 0, ∀δ < δ̄, ∃n̄ ∈ N⋆, ∀n ≥ n̄,∃σ, s.t. Pσ(B
c
α,γ,δ) ≤ ε. (129)

This concludes the proof of Proposition B.1.

APPENDIX C

CONVERSE PROOF OF THEOREM III.3

We consider an encoding strategy σ of length n ∈ N⋆. We denote by T the uniform random variable

over {1, . . . , n} and let Z−T stand for (Z1, . . . , Zt−1, Zt+1, . . . Zn), where ZT has been removed. We

introduce the auxiliary random variable W = (Y n, Z−T , T ) whose joint probability distribution PUZW

is defined by

P(u, z, w) =Pσ

(
uT , zT , y

n, z−T , T
)

=P(T = t) · Pσ

(
uT , zT , y

n, z−T
∣∣T = t

)

=
1

n
· Pσ

(
ut, zt, y

n, z−t
)
, ∀(u,w, z, un, zn, yn). (130)

This identification ensures that the Markov chain W−
−UT−
−ZT is satisfied. Let us fix a decoding strategy

τV n|Y nZn and define τ̃V |WZ = τ̃V |Y nZ−TTZ = τVT |Y nZn . The encoder’s long-run distortion writes:

dn
e (σ, τ) =

∑

un,zn,yn

Pσ(u
n, zn, yn)

∑

vn

τ(vn|yn, zn) ·

[
1

n

n∑

t=1

de(ut, zt, vt)

]
(131)

=

n∑

t=1

∑
ut,zt,

z−t,yn

1

n
· Pσ(ut, z

n, yn)
∑

vt

τ(vt|y
n, zn) · de(ut, zt, vt) (132)

=
∑

ut,zt,y
n,

z−t,t

Pσ(ut, zt, y
n, z−t, t)

∑

vt

τ(vt|zt, y
n, z−t, t) · de(ut, zt, vt) (133)

=
∑

u,z,w

P(u, z, w)
∑

v

τ̃(v|w, z) · de(u, z, v). (134)

Equations (131) - (133) are reformulations and re-orderings.

Equation (134) comes from replacing the random variables (Y n, Z−T , T ) by W whose distribution is

defined in (130).

November 9, 2019 DRAFT



32

Equations (131) - (134) are also valid for the decoder’s distortion dn
d
(σ, τ) =

∑
u,z,

w,v

P(u, z, w)τ̃ (v|w, z)·

dd(u, z, v). A best-reply strategy τ ∈ BRd(σ) reformulates as:

τ ∈ argminτ ′
V n|Y nZn

∑

un,zn,

xn,yn,vn

Pσ(u
n, zn, xn, yn) · τ ′(vn|yn, zn) ·

[
1

n

n∑

t=1

φd(ut, zt, vt)

]
(135)

⇐⇒τ̃V |WZ ∈ argminτ̃ ′
V |WZ

∑

u,z,w

P(u, z, w) · τ̃ ′(v|w, z) · φd(u, z, v) (136)

⇐⇒τ̃V |WZ ∈ Q2

(
PUZW

)
. (137)

We now prove that the distribution PUZW defined in (130), satisfies the information constraint of the set

Q0.

0 ≤I(Xn;Y n)− I(Un, Zn;Y n) (138)

≤
n∑

t=1

H(Yt)−
n∑

t=1

H(Yt|Xt)− I(Un;Y n|Zn) (139)

≤n ·max
PX

I(X;Y )−
n∑

t=1

I(Ut;Y
n|Zn, U t−1) (140)

=n ·max
PX

I(X;Y )−
n∑

t=1

I(Ut;Y
n, Z−t, U t−1|Zt) (141)

≤n ·max
PX

I(X;Y )−
n∑

t=1

I(Ut;Y
n, Z−t|Zt) (142)

=n ·max
PX

I(X;Y )− n · I(UT ;Y
n, Z−T |ZT , T ) (143)

=n ·max
PX

I(X;Y )− n · I(UT ;Y
n, Z−T , T |ZT ) (144)

=n ·max
PX

I(X;Y )− n · I(U ;W |Z) (145)

=n ·

(
max
PX

I(X;Y )− I(U ;W ) + I(Z;W )

)
. (146)

Equation (138) comes from the Markov chain Y n −
−Xn −
− (Un, Zn).

Equation (139) comes from the memoryless property of the channel and from removing the positive term

I(Un;Zn) ≥ 0.

Equation (140) comes from taking the maximum over PX and the chain rule.

Equation (141) comes from the i.i.d. property of the source (U,Z) which implies I(Ut, Zt;Z
−t, U t−1) =

I(Ut;Z
−t, U t−1|Zt) = 0.

Equation (142) comes from removing I(Ut;U
t−1|Y n, Z−t, Zt) ≥ 0.

Equation (143) comes from the uniform random variable T ∈ {1, . . . , n}.

Equation (144) comes from the independence between T and the source (U,Z), which implies
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I(UT , ZT ;T ) = I(UT ;T |ZT ) = 0.

Equation (145) comes from the identification W = (Y n, Z−T , T ).

Equation (146) comes from the Markov chain W −
−UT −
−ZT . This proves that the distribution Pσ,UZW

belongs to the set Q0.

Therefore, for any encoding strategy σ and all n, we have:

max
τ∈BRd(σ)

dn
e (σ, τ) (147)

= max
τ̃V |WZ∈

Q2(PUZW )

∑

u,z,w

P(u, z, w)
∑

v

τ̃(v|w, z) · de(u, z, v) (148)

= max
τ̃V |WZ∈

Q2(PUZW )

EP(u,z,w)

τ̃V |WZ

[
de(U,Z, V )

]
(149)

≥ inf
QUZW∈Q0

max
QV |WZ∈

Q2(QUZW )

E QUZW
QV |WZ

[
de(U,Z, V )

]
= D⋆

e. (150)

The last inequality comes from the probability distribution PUZW satisfying the information constraint

of the set Q0.

The proof for the cardinality bound |W| = min(|U| + 1, |V||Z|) follows two arguments. The bound

|W| = |U| + 1 comes [71, Corollary 17.1.5, pp. 157], also in [4, Corollary A.2, pp. 26]. The bound

|W| = |V||Z| comes from assuming that the encoder tells to the decoder to select a function from the

side information Z to the symbols V , as discussed in Sec. III-D.

This concludes the proof of (19) in Theorem III.3.

APPENDIX D

PROOF OF PROPOSITION IV.2

The average distortion Ψe(q) defined in (52) is piece-wise linear, hence the optimal triple of posteriors

may belong to distinct intervals q1 ∈ [0, ν1), q2 ∈ [ν1, ν2), q3 ∈ [ν2, 1]. Since δ0 = δ1 and κ = 0, the

function Ψe(q) is symmetric and constant over the interval [ν1, ν2], as depicted in Fig 7. The optimal

splitting must satisfy (q1, q2, q3) = (q1,
1
2 , 1 − q1), since q2 = 1

2 provides the highest entropy h(q2) =

H(U |Z). Equations (57)-(59) reformulate as

λ1 =
1

2
·

C

H(U |Z)− h(q1)
, (151)

λ2 =1−
C

H(U |Z)− h(q1)
, (152)

λ3 =
1

2
·

C

H(U |Z)− h(q1)
. (153)
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We examine the feasibility conditions, i.e. (λ1, λ2, λ3) ∈ [0, 1]3. We recall that the notation

h−1
(
H(U |Z) − C

)
stands for the unique solution q ∈ [0, 12 ] of the equation h(q) = H(U |Z) − C .

Since H(U |Z) ≥ h(q1) for all q1, we have λ1 ≥ 0, λ2 ≤ 1 and λ3 ≥ 0, moreover

λ1 ≤ 1 ⇐⇒ h(q1) ≤ H(U |Z)−
1

2
· C ⇐⇒ q1 ≤ h−1

(
H(U |Z)−

1

2
· C
)

(154)

λ2 ≥ 0 ⇐⇒ h(q1) ≤ H(U |Z)− C ⇐⇒ q1 ≤ h−1
(
H(U |Z)− C

)
. (155)

Since the function h−1 is increasing over the interval [0, 1], we have h−1
(
H(U |Z) − 1

2 · C
)

≤

h−1
(
H(U |Z)− C

)
. This proves the following Lemma.

Lemma 5 The splitting (q1, q2, q3) = (q1,
1
2 , 1− q1) is feasible if and only if

q1 ≤ h−1
(
H(U |Z)− C

)
. (156)

We assume that (q1, q2, q3) = (q1,
1
2 , 1− q1), we define the encoder’s distortion function by

Φe(q1) =λ1Ψe(q1) + λ2Ψe

(1
2

)
+ λ3Ψe(1− q1) (157)

=
1

2
·

C

H(U |Z)− h(q1)
· q1 +

(
1−

C

H(U |Z)− h(q1)

)
· δ +

1

2
·

C

H(U |Z)− h(q1)
· q1 (158)

=δ −
(δ − q1) · C

H(U |Z)− h(q1)
, (159)

Its derivative is

Φ′
e(q1) =

C

(H(U |Z)− h(q1))2
·

(
H(U |Z)− h(q1)− h′(q1) · (δ − q1)

)
, (160)

where the derivative of the entropy h′(q) writes

h′(q) = log2
1− q

q
− (1− 2 · δ) · log2

1− q ⋆ δ

q ⋆ δ
. (161)

We examine the term k(q) =
(
H(U |Z) − h(q) − h′(q) · (δ − q)

)
of the function Φ′

e(q). We have

limq→0 k(q) = −∞ since limq→0 h
′(q) = +∞ and k(δ) = H(U |Z) − h(δ) = Hb(δ ⋆ δ) − Hb(δ) > 0

since δ < 1
2 . The derivative k′(q) = −h′′(q) · (δ − q) > 0 is strictly positive because δ > q and the

entropy is strictly concave h′′(q) < 0. Hence the equation k(q) = 0 has a unique solution q⋆ ∈ (0, δ[.

The derivative Φ′
e(q) is non-positive on the interval q ∈ (0, q⋆] and non-negative on the interval

q ∈ [q⋆, δ), hence the distortion Φe(q) reaches its minimum in q⋆.

1) If q⋆ ≤ h−1
(
H(U |Z)−C

)
, then the optimal splitting is

q1 = q⋆ q2 =
1
2 q3 = 1− q⋆

λ1 =
1
2 · C

H(U |Z)−h(q⋆) λ2 = 1− C
H(U |Z)−h(q⋆) λ3 =

1
2 · C

H(U |Z)−h(q⋆)
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corresponding to the strategies

α1 = (1− q⋆) · C
H(U |Z)−h(q⋆) α2 = 1− C

H(U |Z)−h(q⋆) α3 = q⋆ · C
H(U |Z)−h(q⋆)

β1 = q⋆ · C
H(U |Z)−h(q⋆) β2 = 1− C

H(U |Z)−h(q⋆) β3 = (1− q⋆) · C
H(U |Z)−h(q⋆)

and the optimal distortion is

D⋆
e =δ −C ·

δ − q⋆

H(U |Z)− h(q⋆)
. (162)

2) If q⋆ > h−1
(
H(U |Z)−C

)
, then the optimal splitting is

q1 = h−1
(
H(U |Z)− C

)
q2 =

1
2 q3 = 1− h−1

(
H(U |Z)− C

)

λ1 =
1
2 λ2 = 0 λ3 =

1
2

corresponding to the strategies

α1 = 1− h−1
(
H(U |Z)− C

)
α2 = 0 α3 = h−1

(
H(U |Z)− C

)

β1 = h−1
(
H(U |Z)− C

)
β2 = 0 β3 = 1− h−1

(
H(U |Z)− C

)

and the optimal distortion is

D⋆
e =h−1

(
H(U |Z)− C

)
. (163)

3) If C > H(U |Z), then the extreme splitting (q1, q3) = (0, 1) is feasible and D⋆
e = 0.

This concludes the proof of Proposition IV.2.
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